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Summary:	
	
Brain	organization	can	be	appreciated	across	multiple	spatial	and	temporal	scales,	
where	each	scale	affects	the	other	in	the	emergent	functions	that	we	appreciate	as	
cognition.	As	a	complex	adaptive	system,	the	interplay	of	these	scales	in	the	brain	
represents	the	information	that	ultimately	supports	what	we	think	and	do.	The	
dynamics	of	these	multiscale	operations	can	be	quantified	with	measures	of	
complexity,	which	are	sensitive	to	the	balance	between	information	that	is	coded	in	
local	cell	populations	and	that	captured	in	the	network	interactions	between	
populations.	This	local	vs.	global	balance	has	its	foundation	in	the	structural	
connectivity	of	the	brain,	which	is	then	realized	through	the	dynamics	of	cell	
populations	and	their	ensuing	interactions	with	other	populations.	Considering	
brain	function	and	cognition	in	this	way	enables	a	different	perspective	on	the	
changes	in	cognitive	function	in	aging.	
	
Our	initial	work	examined	changes	in	brain	signal	complexity	from	childhood	to	
adulthood.	Across	two	independent	studies,	we	observed	an	overall	increase	in	
signal	complexity	with	maturation,	which	also	correlated	with	more	stable	and	
accurate	cognitive	performance.	There	was	some	suggestion	that	the	maximal	
change	occurs	in	medial	posterior	cortical	areas,	which	have	been	considered	
“network	hubs”	of	the	brain.	In	extending	to	study	to	healthy	aging,	we	observed	a	
scale	dependent	change	in	brain	complexity	across	three	independent	studies.	
Healthy	aging	brings	a	shift	in	local/global	balance,	where	more	information	is	
coded	in	local	dynamics	and	less	in	global	interactions.	This	balance	is	associated	
with	better	cognitive	performance,	and	interestingly	in	a	more	active	lifestyle.	It	also	
seems	that	the	lack	of	this	shift	in	local/global	balance	is	predictive	of	worse	
cognitive	performance	and	potentially	predictive	of	additional	decline	indicative	of	
dementia.			
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The	main	goal	of	my	chapter	is	to	convince	you	that	age-related	changes	in	brain	
function	can	be	best	appreciated	from	the	perspective	of	complex	network	
dynamics.	The	brain	is	a	collection	of	networks	that	are	constantly	changing	their	
interactions.	The	dynamics	have	spatial	and	temporal	signatures,	which	are	vital	to	
the	emergence	of	stable	behavior.	By	this	same	token,	brain	dysfunctions	can	affect	
space	and	time,	which	can	provide	new	avenues	to	consider	in	diagnosis	and	
treatment	in	the	face	of	disease	or	damage.	
	
Our	brain	is	a	complex	adaptive	system,	showing	constant	flow	of	activity	and	
interactivity	during	coordination	of	behavior	and	cognitive	function.	Complex	
adaptive	systems	can	show	an	optimal	balance	of	integrating	and	segregating	
information	(Tononi,	Sporns,	&	Edelman,	1994).	In	the	brain,	high	complexity	arises	
from	the	interplay	of	brain	structure	and	function	(Sporns,	Tononi,	&	Edelman,	
2000a,	2000b).	Changes	in	this	interplay	underlie	cognitive	evolution	across	the	
lifespan	(McIntosh	et	al.,	2010),	while	brain	damage	or	disease	disrupts	the	
interplay	leading	to	cognitive	dysfunction	(Fornito,	Zalesky,	&	Breakspear,	2015).	
	
One	feature	that	contributes	to	brain	complexity	is	the	space-time	structure	of	
anatomical	connectivity	(Figure	1).	From	a	general	anatomical	perspective,	
neighboring	elements	are	more	densely	connected	relative	to	more	distal	elements.	
For	the	local	connections,	impulse	transmission	is	very	rapid	and	effectively	
instantaneous,	while	impulses	from	distal	regions	will	arrive	with	differing	delays	
based	on	the	relative	distance	and	conduction	velocity.	In	the	absence	of	dynamics,	
the	space-time	structure	conveys	the	potential	network	configurations	that	can	be	
expressed	(Deco,	Jirsa,	&	McIntosh,	2011).	The	space-time	structure	matrix,	when	
extended	into	three	dimensions,	provides	a	useful	way	to	visualize	which	
connections	could	be	active	at	a	given	a	point	in	time.	
	

	
Figure	1.	Space-time	structure	of	anatomical	connectivity.	The	first	matrix	on	the	left	is	the	adjacency	
matrix	showing	the	connections	among	76	bilateral	region	of	interest,	where	each	cell	in	the	matrix	is	a	
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region.	The	top	left	quadrant	is	the	left	hemisphere	and	bottom	right	the	right	hemisphere.	The	other	
two	quadrants	represent	cross-hemispheric	connections.	Shaded	cells	indicate	the	presence	of	a	
connection,	with	the	intensity	indicating	connection	strength.	Subsequent	slices	show	the	adjacency	
matrix	reconfigured	to	illustrate	the	time	it	takes	for	an	impulse	to	traverse	a	connection	based	on	
strength	and	conduction	velocity.	Slices	indicate	connections	that	could	be	“active”	at	a	given	time	step,	
from	0	ms	to	150	ms	in	steps	of	25	ms.		

The	space-time	structure	conveys	the	potential	network	configurations,	but	it	is	the	
dynamics	that	actualizes	them.	The	dynamics	in	complex	systems,	like	the	brain,	
show	varying	degrees	of	noise	that	is,	paradoxically,	vital	for	its	function	(Faisal,	
Selen,	&	Wolpert,	2008;	Kosko,	2006).	Noise	in	the	brain	manifests	at	two	levels:	
local	cellular	operations	and	network	dynamics.	The	local	operations	show	a	level	of	
stochasticity	such	that	there	are	imprecisions	in	biophysical	operations	(e.g.,	
channel	openings,	ion	exchange).	The	level	of	local	noise	is	seemingly	“tuned”	so	that	
signal	propagation	can	be	maintained	and	even	facilitated.	A	good	example	of	this	is	
the	classic	stochastic	resonance	phenomenon	wherein	nonlinear	systems	with	an	
optimal	amount	of	noise	are	able	to	detect	weak	signals	(Kosko	&	Mitaim,	2003;	
Manjarrez,	Rojas-Piloni,	Mendez,	&	Flores,	2003;	Ward,	Neiman,	&	Moss,	2002;	
Wiesenfeld	&	Moss,	1995).	
	
The	local	noise	affects	how	incoming	signals	are	received.	The	local	noise,	on	top	of	
the	time	delays	in	the	space-time	structure,	combine	to	what	can	be	considered	
network	noise	leading	to	variation	of	functional	network	configurations.	As	the	
number	of	functional	networks	increases	with	maturation	and	experience,	the	
network	noise	reflects	both	the	number	of	potential	configurations	available	and	
those	that	are	instantiated	(Ghosh,	Rho,	McIntosh,	Kotter,	&	Jirsa,	2008).	In	the	case	
of	a	completely	deterministic	system,	the	network	trajectories	are	fixed	and	hence	
no	matter	what	the	signal	is,	the	information	conveyed	by	the	network	fluctuations	
is	the	same.	In	the	face	of	a	space-time	structure	with	variable	time	delays	and	local	
noise,	the	information	capacity	will	be	higher	reflecting	the	multiple	network	
configurations	that	can	be	realized.	Thus,	while	noise	has	a	negative	connotation,	in	
a	nonlinear	system,	noise	serves	a	crucial	role	in	enabling	the	temporal	evolution	of	
the	system.	This	property	was	acknowledged	at	least	50	yrs.	ago	(Pinneo,	1966),	and	
has	seen	a	revival	as	part	of	the	explanation	for	the	ubiquitous	“resting-state	
networks”	that	have	been	characterized	in	a	plethora	of	functional	neuroimaging	
studies.(Damoiseaux	et	al.,	2006;	Deco	et	al.,	2011;	Fox	et	al.,	2005).		
	
In	the	brain,	signals	from	the	exact	same	network	may	show	different	propagation	
patterns	based	on	the	history	of	the	system	(local	dynamics),	which	can	redirect	
functional	network	configurations.	This	is	a	hallmark	feature	of	complex	adaptive	
systems	that	constantly	explore	current	configurations,	but	also	assess	new	ones	in	
case	they	result	in	better	solutions	for	the	system.		
	
The	evolution	of	network	dynamics	is	believed	to	relate	to	the	similar	evolution	of	
cognitive	and	behavioral	functions.	From	this	link,	it	would	be	reasoned	that	as	the	
richness	of	network	dynamics	grows,	so	too	does	the	richness	of	the	cognitive	
functions.	The	relation	would	not	be	completely	linear,	however,	where	at	some	
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point	excessive	network	dynamics	would	be	unable	to	support	a	coherent	cognitive	
flow.	This	classic	“inverted-U”	relationship	also	illustrates	the	balance	that	must	be	
maintained	between	segregated	and	integration	operations	(or	local	vs.	global).	To	
echo	a	previous	point,	the	brain	moves	between	integrated	and	segregated	states	to	
optimize	the	integration	of	information,	or	complexity.		
	
Measuring	Brain	Complexity		
The	quantitative	estimation	of	complexity	in	the	brain	has	been	an	active	area	of	
study	for	at	least	20	yrs.	Entropy,	as	defined	by	Shannon	(Shannon,	1948),	is	a	useful	
metric	as	it	gauges	the	predictability	of	a	signal	and	the	information	content.	For	
example,	a	sinusoid	carries	little	information	once	the	frequency	and	amplitude	are	
known,	but	a	multi-frequency	signal	requires	more	measures	to	completely	
characterize	it.	Hence,	a	sinusoid	would	less	entropy	than	a	multi-frequency	signal.	
	
Tononi	and	colleagues	(Tononi	et	al.,	1994)	derived	a	measure	of	brain	complexity	
from	entropy,	reformulated	to	reflect	the	balance	of	integration	and	segregation	of	
brain	dynamics.	In	this	instantiation,	systems	with	high	complexity	would	show	
maximal	information	integration.	The	formulation	emphasizes	the	interactions	
between	networks	and	specifically	the	shared	information	between	elements,	
known	as	mutual	information.	The	challenge	with	this	formulation	is	the	practical	
application	to	empirical	data,	as	the	estimation	of	complexity	requires	an	exhaustive	
assessment	of	network	partitions	and	the	mutual	information	between	such	
partitions.		
	
An	alternative	is	to	consider	approximate	methods	that	are	sensitive	to	the	shared	
information	between	neural	elements.	Linear	estimators	are	good	for	this,	such	as	
correlations	of	coherence	estimates,	but	are	limited	in	the	network	dynamics	that	
can	be	measured.	In	particular,	higher-order	nonlinearities	may	be	critical	for	
transition	of	network	configurations,	but	would	be	invisible	to	linear	estimators.		
	
Entropy	alone	could	be	a	useful	measure,	but	a	pure	noise	signal	can	also	show	high	
entropy	(Costa,	Goldberger,	&	Peng,	2002a).	In	this	case,	its	important	to	measure	
whether	the	information	conveyed	is	the	same	across	scales,	in	this	case	time	scales.	
The	scale-dependency	is	a	critical	factor	in	such	a	differentiation,	which	links	back	to	
the	space-time	structure	mentioned	above.	One	metric	that	accounts	for	timescale	
dependency	is	multi-scale	entropy	(MSE	(Costa,	Goldberger,	&	Peng,	2002b,	2005)),	
where	entropy	is	estimated	across	progressively	coarser	time	scales.	(Entropy	is	
estimated	using	Sample	Entropy	(Se,	(Richman	&	Moorman,	2000)),	which	operates	
well	on	discrete	timeseries	that	are	common	in	empirical	data.	The	expectation	is	
that	signals	with	little	information	will	show	a	rapid	decline	in	entropy	with	
timescale	reduction.	So	too,	pure	noise	will	show	a	decline	in	entropy	with	
timescale.	This	is	because	pure	noise	has	no	timescale	dependency.	Truly	complex	
signals	(e.g.,	colored	noise)	have	dependencies	that	can	arise	for	the	space-time	
structure,	and	thus	will	show	high	entropy	across	multiple	timescales.	
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The	remainder	of	this	chapter	will	focus	on	how	we	have	used	the	principles	of	
complexity	to	assess	the	changes	in	information	processing	capacity	in	development	
and	aging.	The	hypothesis	is	that	if	development	represents	an	increase	in	the	
information	processing	capacity	the	brain,	the	MSE	should	increase	with	
maturation.	In	aging,	the	simple	hypothesis	would	be	that	information	processing	
capacity	goes	down	and	thus	so	should	MSE.	However,	in	both	development	and	
aging,	there	would	very	likely	be	scale-dependency	in	how	these	changes	manifest.	
In	development,	there	are	multiple	local	and	distributed	network	changes	that	
reflect	both	the	biological	maturation	and	the	effects	of	experience.	In	aging,	
biological	changes	are	more	subtle,	as	are	the	cognitive	changes,	and	hence	the	MSE	
changes	may	be	less	extensive	than	those	observed	in	maturation.	Finally,	we	will	
touch	on	clinical	applications	of	MSE,	which	indicates	that	there	may	be	prognostic	
utility	in	the	scale-dependency	information.	
	

APPLICATIONS	
	
MATURATION	AND	BRAIN	COMPLEXITY	
	
Our	first	examination	of	the	changes	in	MSE	focused	on	development	(McIntosh,	
Kovacevic,	&	Itier,	2008).	Here	we	used	EEG	data	recorded	while	kids	8-15	yrs.	
viewed	individual	faces	in	a	1-back	memory	task	(i.e.	“Does	the	current	face	match	
the	one	you	just	saw?”)	Young	adults	from	18-25	yrs.	were	also	tested	in	this	
paradigm.	The	evoked-potentials	to	the	faces	showed	a	well-characterized	
developmental	change	where	the	youngest	child	showed	a	high	amplitude	response	
initially,	without	much	beyond	that	(Figure	2).	With	maturation,	the	overall	
amplitude	of	the	response	reduced	and	secondary	responses	became	more	evident.	
This	change	in	the	mean	response	signal	is	consistent	with	a	move	from	a	
deterministic	system,	where	there	is	a	large	stereotypic	response	on	each	trial,	to	a	
more	stochastic	system	with	more	complexity	reflecting	multiple	network	
dynamics.		
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Figure	2.	Average	evoked-potential	within	age	groups	in	response	to	a	face.	“Butterfly”	plots	show	the	
time	series	for	each	electrode	across	the	350ms	trial.	The	vertical	mark	indicated	the	approximate	time	
of	the	classic	P100	response,	and	is	displayed	on	the	topoplots	for	each	group.	The	youngest	group	has	
the	slowest	peak	response,	but	the	largest	amplitude.	The	shifts	with	age	where	by	adulthood	the	peak	is	
faster	and	the	evoked	response	has	a	more	multi-componential	feature.		

The	increase	in	variability	was	reinforced	in	an	assessment	of	single-trial	variability	
within	each	subject	using	principal	components	analysis	(PCA).	The	assumption	
underlying	the	PCA	application	was	that	if	there	is	more	variance	in	the	trial-by-trial	
response,	this	should	come	out	at	greater	dimensionality	where	more	components	
would	be	needed	to	capture	an	equivalent	proportion	of	variance	across	persons.	
Indeed	it	was	the	case	that	with	maturation,	there	was	an	increase	in	the	number	of	
components	needed	to	capture	90%	of	the	variance	in	a	subject’s	data	(Figure	3).	
Another	feature	captured	in	the	PCA	was	the	dimensionality	reduction	from	the	
stimulus	onset.	Pre-	vs.	post-stimulus	PCA	was	compared	and,	while	there	was	a	
reduction	across	all	ages	after	stimulus	onset,	the	magnitude	of	the	change	reduced	
with	age.	This	would	be	expected	if	maturations	moves	the	brain	from	a	
deterministic	system	to	one	with	higher	complexity,	as	a	deterministic	system	
would	show	greater	overall	entrainment	from	a	stimulus.	
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Figure	3.	Topoplots	for	each	EEG	channel	within	age	group	showing	the	number	of	principal	components	
(%total)	need	to	capture	90%	of	the	total	variance	across	single-trials.	The	PCA	was	done	both	for	pre-	(-
200	to	0)	and	post-stimulus	(0-200ms)	trials.	In	additional	to	higher	dimensionality	in	general	with	
increasing	age,	the	dimensionality	reduction	from	the	stimulus	also	decreased	with	age.	

As	might	be	expected,	analysis	of	MSE	also	showed	a	maturational	increase.	While	
the	curves	suggest	a	general	increase	across	all	scales,	there	is	a	somewhat	stronger	
effect	at	the	mid-range	of	the	timescales	(scale	6-10).	The	curve	for	adults	shows	the	
highest	entropy	scales	and	the	children	fall	ordinally	in	place	with	the	youngest	kids	
at	the	bottom	of	the	graph	(Figure	4).		
	

	
Figure	4.	Mulitiscale	Entropy	(MSE)	curves	for	each	age	group	at	a	posterior	EEG	channel.	Sample	
entropy	(Entropy)	is	plotted	from	fine	to	coarse	time	scales.	Maturation	shows	a	general	increase	in	MSE,	
with	the	largest	change	at	mid-range	scales	(6-10).		
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While	the	observations	of	increasing	signal	variability	and	complexity	with	
maturation	are	intriguing,	relating	these	changes	to	behavior	helps	with	
interpretation.	We	correlated	the	PCA	and	MSE	metrics	with	reaction	time,	the	
coefficient	of	variation	of	reaction	time	(SD/Mean,	CVrt)	and	accuracy	on	the	1-back	
task.	First,	mean	reaction	time	did	not	show	a	stable	correlation	across	the	entire	
sample.	However,	CVrt	showed	a	negative	correlation	with	PCA	and	MSE,	indicating	
that	a	steadier	reaction	time	was	related	to	higher	signal	variability	and	complexity.	
Accuracy	showed	a	positive	correlation,	where	greater	accuracy	was	correlated	with	
higher	signal	variability	and	complexity.	Said	together,	brains	with	greater	noise	
show	more	stable	and	accurate	behavior.	It	is	noteworthy	that	this	pattern	remains,	
albeit	somewhat	weaker,	if	age	is	regressed	out	the	sample,	indicating	that	this	
relationship	may	be	a	general	feature,	rather	than	an	exclusive	reflection	of	
development.	
	
Two	issues	are	noteworthy	here	regarding	the	metrics	of	brain	noise.	First,	it	is	
unlikely	that	these	effects	can	be	explained	by	measurement	noise,	particularly	in	
the	case	that	the	MSE	measure	is	able	to	differentiate	structured	noise	from	
random/white	noise.	One	may	expect	that	measurement	noise	would	be	higher	is	
children,	which	is	opposite	of	what	we	observed	with	PCA	and	MSE	estimation.		
	
Second,	spectral	power	analysis	showed	complementary	effects	to	that	of	MSE,	with	
the	highest	age-related	changes	in	the	beta	bands	(15-30Hz).	Thus,	the	temptation	is	
to	explain	the	MSE	results	as	a	simple	reflection	of	spectral	power	changes.	Insofar	
as	spectral	power	and	MSE	will	reflect	similar	underlying	biophysical	phenomena,	
this	is	a	reasonable	explanation.	Local	estimates	of	spectral	power	will	reflect	the	
influences	of	local	(high	frequency)	and	distributed	(low	frequency)	sources.	MSE,	
as	a	local	measure,	will	also	reflect	local	(fine	scale)	and	distributed	(coarse	scale)	
influences.	Both	capture	the	capacity	inherent	in	the	space-time	structure.	Where	
the	two	measures	diverge	is	how	they	reflect	the	interdependencies	across	space	
and	time.	Spectral	power	decomposition	is	not	sensitive	to	the	cross-spectral	
dependencies,	whereas	MSE	estimates	are.	This	difference	is	most	easily	captured	in	
simple	simulations	(McIntosh	et	al.,	2008).	We	can	transform	the	adult	spectral	
power	data	to	match	that	of	the	children.	MSE	was	calculated	on	the	reconstructed	
data,	and	compared	to	the	original	curve.	Here	the	MSE	curves	in	the	modified	data	
showed	a	similar	profile	as	in	the	children,	with	lower	entropy	at	mid-scales.	
Another	simulation	was	done	to	destroy	the	cross-spectral	dependencies.	Here	the	
signals	from	the	adults	were	decomposed	into	the	Fourier	domain,	and	rather	than	
modifying	the	power	of	the	coefficients,	the	phases	of	the	frequencies	were	
scrambled,	which	leaves	the	spectral	power	distribution	the	same,	but	changes	the	
higher-order	dependencies.	As	before,	the	signals	were	reconstructed	and	MSE	
calculated.	The	MSE	estimates	were	altered	showing	higher	entropy	in	the	modified	
time	series.	These	simple	simulations	indicate	that	spectral	power	and	MSE	provide	
complementary	characterizations	of	brain	signals.		
	
Replication:	
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Replication	is	a	crucial	aspect	of	scientific	investigation.		We	were	able	to	replicate	
the	developmental	patterns	in	a	second	study,	which	used	MEG	rather	than	EEG	in	
the	same	1-back	task	(Misic,	Mills,	Taylor,	&	McIntosh,	2010).	These	data	also	
covered	a	broader	age-range:	6	to	16	yrs.	
	
The	MEG	data	were	source-modeled,	expressing	the	signals	as	emerging	from	
cortical	sources	rather	than	from	the	scalp	surface.	MSE	analysis	of	these	data	
showed	the	same	age	effects	as	we	noted	earlier	-	an	increase	in	MSE	with	age.	The	
effect	was	present	across	most	sources,	but	was	strongest	in	medial	parietal	cortex.	
Interestingly,	this	region	has	been	labeled	as	a	network	hub,	in	that	its	structural	
connectivity	pattern	provides	capacity	to	interact	with	many	different	networks	
(Hagmann	et	al.,	2008).	Such	a	region	could	be	expected	to	show	higher	complexity.	
	
Brain-behavior	analysis	also	replicated	what	we	noted	before,	though	this	time	
reaction	time	was	also	correlated	with	MSE,	where	faster	and	more	consistent	
reaction	time	was	related	to	higher	MSE.	These	relations	did	not	show	regional	
specificity.	
	
Spectral	power	analysis	of	these	data	showed	a	similar	overall	effect	to	what	we	
found	previously,	with	the	greatest	changes	in	the	middle	beta	band	(15-20	Hz).	
What	is	interesting	here	is	the	distribution	of	the	maximum	spatial	effect	differs	
from	MSE.	Spectral	power	effects	were	most	prominent	in	lateral	parieto-occiptial	
cortices.		
	
Interim	Summary:	
	
In	development,	the	brain	increases	its	overall	capacity	for	information	processing.	
There	are	a	multitude	of	changes:	synaptic	proliferation	and	pruning,	white	matter	
connectivity	increases,	and	various	environmental	effects	that	interact	with	the	
emerging	cognitive	function.	Such	a	broad	range	of	effects	may	be	expected	to	
increase	brain	noise	across	many	scales,	which	are	well-reflected	in	the	MSE	
estimation.	We	also	found	that	these	general	changes	can	be	mapped	as	far	back	as	
1-month-old	infants	(Lippe,	Kovacevic,	&	McIntosh,	2009).	Importantly,	the	MSE	
changes	are	correlated	with	behavior,	suggesting	a	strong	link	to	signal	complexity	
and	information	processing	capacity.	
	
Aging	
	
Complexity	in	the	brain	shows	a	gradual	increase	across	most	scales	in	
development.	In	aging,	one	could	hypothesize	a	few	scenarios.	Given	the	proven	
decline	in	overall	cognitive	function,	one	may	expect	complexity	to	go	down.	On	the	
other	hand,	the	cognitive	changes	are	not	as	broad	as	one	sees	in	development,	in	
that	some	functions	do	indeed	decline,	while	others	remain	relatively	stable	or	
perhaps	even	increase	with	age.	Hence,	it	may	be	that	the	changes	in	brain	
complexity	observed	in	normal	aging	show	more	spatiotemporal	dependency	than	
in	maturation.	
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Our	first	exploration	was	a	study	that	examined	two	datasets,	one	EEG	and	one	
MEG(McIntosh	et	al.,	2014).	The	EEG	data	were	acquired	in	three	age	groups,	young	
(mean	age	=	22	yrs.),	middle	(mean	=	45	yrs.)	and	old	adults	(mean	=	66	yrs.),	while	
performing	visual	perception	tasks.	The	MEG	data	were	collected	from	two	groups	
(young:	mean	=	23	yrs.;	old:	mean	=	70	yrs.),	performing	an	auditory-visual	
attention	task.	The	data	were	source	modeled	to	allow	more	inferences	on	regional	
changes.		
	
Both	data	sets	showed	essentially	the	same	temporal	effects,	suggesting	that	the	
nature	of	age-related	changes	cannot	be	characterized	as	simple	increases	or	
decreases	of	signal,	or	signal	complexity,	but	rather	the	effects	depend	on	“when”	
and	“where”	you	are	looking.	
	
The	MSE	changes	in	the	EEG	data	nicely	illustrate	this	point	(Figure	5).	What	we	saw	
in	the	group	average	curves	is	that	the	finest	scales,	the	middle	and	old-aged	group	
show	higher	Se,	but	the	curves	cross	at	middle	scales	such	that	at	the	most	coarse	
scales	these	two	groups	show	lower	Se	compared	to	the	young	group.	There	was	
regional	variation	in	the	strength	of	this	effect,	with	strong	precuneus	and	left	
prefrontal	involvement	(Figure	6).	The	MEG	data	showed	the	same	temporal	effect	
with	the	older	group	having	higher	Se	at	fine	scales	and	lower	Se	at	coarse	scales.	
The	effects	were	broad	and	showed	less	regionality	than	the	EEG	data.	

	
Figure	5.	Mean	(+/-	SE)	MSE	curves	for	the	three	age	groups	at	a	precuneus	EEG	source.	Open	circles	
above	scales	indicate	points	of	significant	divergence	of	curves	from	one	another,	as	assessed	by	
multivariate	partial	least	squares	analysis.	
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Figure	6.	Summary	of	EEG	sources	and	MSE	time	scales	showing	group	differences	(Figure	7).	Blue	colors	
indicate	higher	entropy	in	middle	and	older	adults,	while	yellow	and	red	indicate	higher	entropy	in	
younger	adults.	Bootstrap	ratios	are	comparable	to	z-scores	and	are	derived	y	bootstrap	estimation	
within	the	partial	least	squares	analysis	framework.	

	
	
As	noted	earlier,	MSE	is	effectively	a	local	measure	in	that	it	captures	the	variation	in	
Se	from	a	given	location	without	considering	the	source	of	the	variation.	Specifically,	
the	activity	in	an	area	will	be	a	function	of	local	dynamics	from	the	interacting	cell	
populations,	and	the	influence	of	other	connected	areas.	The	MSE	estimation	will	
reflect	both	of	these	effects.	While	there	are	more	recent	advances	in	MSE	that	allow	
multivariate	calculations	(Ahmed	&	Mandic,	2011),	with	these	data	we	were	able	to	
parse	the	MSE	effects	into	those	related	to	local	dynamics,	and	those	related	to	
distributed	effects.	
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This	parcellation	can	be	captured	by	considering	a	Venn	diagram	for	the	different	
sources	of	entropy	(Figure	7).	The	total	entropy	of	a	region’s	signal	(H(x)	and	H(y))	
is	a	function	of	local	variation	and	interactions	with	other	regions.	The	interactions	
can	be	estimated	using	mutual	information	(I(x;y)),	which	is	the	shared	Se,	when	Se	
unique	to	each	source	is	parsed	out	(H(x|y)	and	H(y|x)).	Similarly	one	can	estimate	
the	local	Se,	which	would	be	the	Se	for	a	given	region	(again	H(x|y)	and	H(y|x)),	with	
shared	Se	from	all	other	sources	parsed	out.	Like	MSE,	this	estimation	can	be	done	
for	each	scale.		
	

	
Figure	7.	Partitioning	of	entropy	(H),	into	local	and	global	effect.	H(X)	and	H(Y)	are	total	entropy	for	
variables	X	and	Y,	and	H(X,Y)	are	the	joint	entropy	for	both.	Mutual	information	(I(X;Y))	is	the	uniquely	
shared	entropy	between	X	and	Y,	while	H(X|Y)	and	H(Y|X)	are	=	entropy	estimates	for	X	and	Y,	
conditioned	by	the	entropy	of	the	opposing	variable.	I(X;Y)	is	distributed	entropy,	and	H(X|Y)	and	H(Y|X)	
are	local	entropy	

	
When	expressed	in	terms	of	local	and	distributed	entropy,	a	clear	picture	emerged	
that	helps	explain	the	effects	noted	in	the	MSE	estimation	(Figure	8).	Local	entropy	
for	both	the	MEG	and	EEG	data	set	was	higher	for	the	older	groups.	Distributed	
entropy	showed	a	predominant	decrease	for	the	older	groups,	with	the	largest	
effects	involving	cross-hemispheric	interactions.		
	

	
Figure	8.	Matrix	showing	the	distributed	entropy	decreases	(red)	and	increases	(blue)	for	the	
interactions	between	EEG	sources	in	healthy	aging.	Upper	left	and	lower	right	quadrants	are	cross-
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hemispheric	interactions	and	upper	right	and	lower	left	are	within	hemisphere.	Aging	shows	strong	
cross-hemispheric	decreases	in	distributed	entropy	and	increases	within	hemisphere.	The	vector	below	
the	matrix	indicates	local	entropy,	which	shows	general	increase	in	aging.	

Some	clarity	to	the	picture	now	emerges	with	the	analysis	of	local	and	distributed	
effects,	considered	with	the	MSE	analyses.	One	can	interpret	the	changes	are	
reflecting	age-related	changes	in	network	dynamics	such	that	a	larger	proportion	of	
information	is	being	processed	locally	and	less	in	distributed	networks,	particularly	
long-range	connections.	Its	is	important	to	keep	in	mind	that	these	are	not	
absolutes,	but	rather	a	relative	shift	in	the	balance	of	how	much	information	is	
carried	in	local	versus	distributed	networks.		
	
Replication		
	
The	subjects	in	the	MEG	and	EEG	studies	were	considered	“healthy	elderly”	by	
conventional	screening.	However,	a	question	remains	as	to	whether	the	changes	in	
complexity	reflect	truly	healthy	aging	or	are	indicative	of	cognitive	decline.	This	was	
a	focus	of	a	follow-up	study	that	examined	MSE	changes	across	age	in	relation	to	
performance	on	a	memory	task	and	lifestyle,	particularly	physical	activity	(Heisz,	
Gould,	&	McIntosh,	2015).		
	
Participants	conducted	a	directed	forgetting	task	while	EEG	was	measured.	Subjects	
were	given	a	serial	list	of	stimuli	and	then,	based	on	a	cue,	are	directed	to	remember	
all	or	only	part	of	the	list.	In	addition,	to	these	data,	participants	completed	the	
Victoria	Longitudinal	Study	Activity	Questionnaire	and	the	Montreal	Cognitive	
Assessment	battery	(MOCA)(Nasreddine,	Phillips,	&	Chertkow,	2012;	Nasreddine	et	
al.,	2005).		
	
The	overall	EEG	effects	in	terms	of	MSE	were	the	same	as	reported	in	the	original	
studies	(i.e.,	higher	Se	at	fine	scale	and	less	Se	at	coarse	scales	for	older	subjects).	
There	was	a	trend	towards	differences	in	task	performance	between	groups,	but	
was	not	significant	by	conventional	statistical	criteria.		
	
A	further	assessment	of	the	MSE	effects	in	relation	to	task	performance,	physical	
activity,	and	MSE	scale	showed	interesting	age	effects.	First,	within	each	group	the	
correlation	between	fine	and	coarse	scale	MSE	was	calculated	showing	that	in	the	
older	group,	greater	Se	at	fine	scale	correlated	with	less	Se	at	coarse	scales.	This	
correlation	was	not	significant	in	young	subjects.		
	
The	scale-dependency	was	also	evident	in	the	correlation	with	task	performance	
accuracy:	higher	fine-scale	Se	and	lower	coarse	scale	Se	was	related	to	better	
performance	in	the	older	subjects.	The	dependency	in	the	old	subjects	is	also	
evident	if	we	plot	the	MSE	curves	for	the	older	subjects	based	on	performance	split	
(Figure	9).	High	performing	older	subjects	showed	relatively	higher	fine-	and	less	
coarse-scale	Se,	relative	to	younger	subjects.	Low	performing	elderly	showed	less	
fine-scale	Se,	compared	to	high	performing	elderly,	and	similar	levels	of	coarse-scale	
Se	as	young	adults.	This	scale	dependency	is	also	present	in	relation	to	cognitive	
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performance	on	the	MOCA,	where	older	adults	with	worse	MOCA	scores	show	less	
entropy	at	fine	scales	and	more	at	coarse	scales	relative	to	participants	with	better	
MOCA	scores.		

	
Figure	9.	Left	panel:	MSE	curves	for	young	adults	(grey)	and	high-	(dashed	blue)	and	low	(black)	
performing	old	adults.	High	performing	old	adults	have	high	fine	scale	and	low	coarse	scale	entropy.	
Right	panel:	MSE	curves	for	the	same	older	adults	divided	base	on	cognitive	performance	on	the	
Montreal	Cognitive	Assessment	battery	(MoCA).	The	MSE	curve	patterns	matches	that	related	to	
performance	in	the	left	panel.	

	
Next,	within	the	older	subject	group,	the	correlation	of	MSE	scale,	task	performance	
and	physical	activity	was	examined	(with	age	partialled	out).	Task	performance	and	
physical	activity	were	positively	related	with	Se	at	fine	timescales,	whereas	only	
task	performance	was	negatively	related	to	Se	at	coarse	timescales.	Physical	activity	
was	also	positively	correlated	with	great	Se	at	only	at	fine	scale	Se.		
	
Finally,	a	causal	modeling	analysis	was	done	to	ascertain	whether	the	relation	of	
physical	activity	and	task	performance	could	be	mediated	through	the	MSE	scale	
changes	(Figure	10).	This	analysis	showed	both	a	direct	effect	of	physical	activity	on	
task	performance,	as	well	as	a	significant	indirect	effect	going	serially	from	physical	
activity,	to	fine	scale,	Se,	coarse	scale	Se,	and	then	task	performance.	There	was	no	
significant	indirect	effect	if	the	two	MSE	scales	were	considered	separately.		
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Figure	10.	Causal	model	indicating	the	impact	of	physical	activity	on	memory	performance	and	its	
indirect	effect	on	MSE	at	fine	and	coarse	scale.	Dashed	arrows	indicate	negative	effects.		

These	results	have	several	implications.	First,	the	relation	of	the	MSE	scale	
differences	and	aging	suggest	that	the	relative	shift	in	fine	and	coarse	timescales	is,	
in	fact,	indicative	of	healthy	aging.	The	correlation	of	the	fine	and	coarse	scales	in	
the	older	subjects	suggests	this	balance	does	vary	with	healthy	aging.	Moreover,	the	
relation	to	physical	activity	and	task	performance	reinforces	the	assertion	that	the	
fine	vs.	coarse	scale	balance	can	index	healthy	aging.	
	
Studies	that	have	used	fMRI	to	examine	brain	signal	variance	changes	in	aging	have	
noted	spatial	variation	in	these	changes	(Garrett,	Kovacevic,	McIntosh,	&	Grady,	
2010).	The	metric	in	this	study	was	the	standard	deviation	of	the	fMRI	BOLD	
timeseries.	While	many	regions	show	decreased	standard	deviations	with	healthy	
aging,	notably	medial	posterior	cortices,	there	were	also	some	regions	that	increase	
in	ventral	temporal	cortices.	Task-modulated	effects	also	showed	distinct	age-
related	differences,	in	the	face	of	very	similar	performance	(Garrett,	Kovacevic,	
McIntosh,	&	Grady,	2013).	This	reinforces	the	assertion	that	age-related	changes	in	
complexity	are	not	unidirectional	and	have	a	spatiotemporal	structure.		
	
Clinical	extensions	
The	data	from	work	on	healthy	aging	suggest	that	scale-dependent	changes	in	brain	
complexity	are	expected	in	the	face	of	relatively	good	cognitive	function	(Bertrand	
et	al.,	2016).	The	final	study	examines	how	this	scale-dependency	may	act	as	an	
index	of	unhealthy	cognitive	status.	Here	we	examined	persons	with	Parkinson’s	
Disease	(PD),	half	of	which	converted	to	show	dementia	two	years	after	the	initial	
assessment.	There	were	62	PD	patients	(41	men,	mean	age	±	SD:	65.60±8.44	years)	
and	37	controls	(26	men,	mean	age	±	SD	=	66.64±8.90	years)	included	in	this	study.	
At	follow-up,	44	PD	patients	were	dementia-free	(PDnD)	and	18	developed	
dementia	(PDD).		
	
Clinical	EEG	data	were	taken	at	the	first	assessment	while	the	participants	were	in	a	
resting-state	with	their	eyes-closed	but	awake.	Relative	to	controls	both	PD	groups	
showed	lower	fine-scale	entropy.	However,	the	PDD	group	also	showed	higher	
coarse	scale	Se,	relative	to	both	controls	and	the	PDnD	group.	Keeping	in	mind	these	
data	were	collected	at	least	two	years	prior	to	the	expression	of	dementia,	these	
finding	suggest	the	higher	coarse	scale	Se	may	be	a	predictor	of	future	cognitive	
decline.	The	MSE	results	showed	a	cohesive	link	to	the	healthy	aging	pattern	with	
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respect	to	the	scale-dependent	differences,	particularly	the	relation	of	the	MSE	
scales	and	the	scores	on	the	MOCA	scale	(Figure	11).	

	
Figure	11.	MSE	curves	from	two	EEG	channels	in	Parkinson	Disease	patients	(PD)	and	age-matched	
controls.	PD	patients	who	converted	to	show	dementia	(PD-conv)	two-years	after	the	initial	measure,	
showed	lower	fine	scale	and	higher	coarse	scale	entropy	relative	to	non-converters	(PD-nconv)	and	
controls.	

Other	groups	have	also	observed	the	scale-dependency	in	dementia.	Yang	et	al	
(Yang	et	al.,	2013)	observed	that	the	scale	dependency	related	with	severity	of	
dementia	in	patients	with	Alzheimer’s	disease,	with	the	morphology	of	the	curve	
tracking	the	severity	of	dementia.	Moreover,	the	fine-	vs.	coarse-scale	balance	also	
related	to	behavioral	symptoms.		
	
It	is	noteworthy	to	consider	that	the	specific	profile	observed	in	the	MSE	changes	
may	be	related	to	cognitive	impairment	as	opposed	to	other	disorders.	Yang	and	
colleagues	have	mapped	the	MSE	curves	in	neuropsychiatric	disorders	(Hager	et	al.,	
2017),	noting	a	mixture	of	general	decreases	in	complexity	and	scale-dependent	
shifts	across	brain	areas.	Critically,	there	is	a	trend	wherein	those	with	psychiatric	
disorder	show	regions	where	there	is	a	move	to	“randomness”,	where	fine	scale	
entropy	is	high	followed	by	a	drop	that	is	reminiscent	to	pure	noise	processes.		
	
Conclusions	&	Future	Directions	
	
A	general	perspective	can	now	be	elucidated	that	summarizes	the	observations	on	
brain	complexity	across	the	lifespan.	If	we	superimpose	the	space-time	structure	
with	the	summary	MSE	curves	from	the	studies	that	have	been	reviewed,	the	
observations	come	as	follows:	
	
1)	The	general	morphology	of	the	MSE	curve	in	healthy	adults	shows	increasing	
entropy	with	scale,	peaking	at	mid-scales	and	then	showing	a	slight	decline	at	
coarser	scales.	Adults	show	the	highest	information	processing	(as	indexed	by	
entropy)	that	at	a	middle	scale.	This	curve	can	be	treated	as	the	standard	for	
subsequent	comparisons.	
	
2)	Children	show	overall	lower	entropy	across	all	scales,	and	the	curve	shifts	
upwards	with	maturation.	The	greatest	increase	is	at	middle	time	scales.	
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3)	Healthy	old	adults	show	a	relative	increase	of	entropy	at	fine	scales	and	a	decline	
at	coarse	scales.	This	maps	on	to	higher	local	processing	and	reduced	long-range	
processing.		
	
4)	Old	adults	at	risk	for	cognitive	decline	do	not	show	the	increase	at	fine	scale	
entropy,	and	show	either	similar	or	higher	entropy	at	coarse	scales.	
	
The	timescale	differences	in	the	curves	are	suggestive	of	differing	local	and	global	
spatial	scales	over	which	these	effects	are	expressed	(Figure	1).	Fine	scale	entropy	
would	represent	local	interactions	of	adjacent	cell	populations,	and	the	distance	of	
interactions	would	increase	with	temporal	scale.	These	mappings	are	purely	
speculative,	but	do	represent	testable	hypotheses	that	can	better	relate	brain	
structure	and	function	and	the	cognitive	functions	they	support.	
	
Hypothesis	1:	given	the	relative	change	in	density	of	the	space-time	structure	of	the	
connectivity	matrix,	and	the	morphology	of	the	MSE	curves,	the	highest	information	
exchange	in	the	brain	should	occur	at	intermediate	spatiotemporal	scales.	This	
could	be	assessed	through	estimates	of	mutual	information,	or	comparable,	as	a	
function	of	connection	distance	with	the	expectation	that	information	would	be	
highest	for	the	middle	distance	connections	
	
Hypothesis	2:	the	relative	shift	to	faster	timescale	(local)	processing	indicates	
healthy	brain	function.	While	this	is	a	simple	restatement	of	the	empirical	findings,	if	
this	shift	is,	in	fact,	an	accurate	index	of	healthy	aging,	it	could	impact	how	we	
consider	the	neural	support	for	cognition.		
	 We	have	observed	in	healthy	adults	that	episodic	memory	processes	tend	to	
emphasize	local	processes	more	so	that	semantic	memory	(Heisz,	Vakorin,	Ross,	
Levine,	&	McIntosh,	2014).	If	this	relation	is	maintained	in	healthy	aging,	then	it	
suggests	that	the	nature	of	cognitive	processes	associated	with	these	memory	
functions	may	show	a	qualitative	change,	despite	being	under	the	guise	of	“healthy	
aging”.		
	 For	this	second	hypothesis,	there	would	be	tremendous	benefit	in	a	
longitudinal	assessment	of	the	observed	scale-dependent	entropy	shifts.	The	MSE	
curves	presented	here	reflect	group	averages	and	snap-shots	in	time,	so	it	is	not	
possible	to	ascertain	how	much	of	what	we	see	reflects	a	current	“state”	of	one’s	
brain,	or	a	“trait”	that	may	be	a	stable	index	of	information	processing	capacity.		
	 The	space-time	changes	that	we	report	also	have	obvious	clinical	utility	as	an	
early	marker	of	risk	for	cognitive	decline.	Again,	longitudinal	testing	would	
determine	whether	the	space-time	pattern	is	a	trait	or	shows	changes	across	time.	
	
I	have	used	the	notion	of	complex	adaptive	systems	to	review	work,	primarily	from	
my	own	lab,	that	characterizes	brain	complexity	changes	in	aging.	These	changes	
can	be	conceptualized	as	a	reflection	of	changing	information	processing	capacity.	
An	important	aspect	of	this	change	is	that	it	reflect	changes	in	space	and	time,	hence	
“which”	areas/networks	and	“when”	for	a	given	cognitive	process	may	indeed	
change	as	we	age.	There	are	potential	implications	for	the	nature	of	the	link	between	
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brain	and	behavior	if	we	assume	that	the	elemental	processes	that	are	linked	in	
coordinating	behavior	show	the	same	features	of	complexity	as	the	brain	(Kelso,	
1995;	Perdikis,	Huys,	&	Jirsa,	2011;	Pillai	&	Jirsa,	2017).	This	could	indeed	bring	a	
different	perspective	on	the	fundamental	cognitive	processes	where	“cognitive	
deficits”	in	aging	is	not	simply	a	decline	of	the	system	that	we	had	as	young	adults,	
but	rather	a	reconfiguration	or	adaptation	of	the	system.	Thus,	in	healthy	aging,	at	
least	the	changes	are	a	natural	evolution	of	the	brain	rather	that	a	non-optimal	state.	
In	this	framework,	the	perspective	on	disease	and	degeneration	also	changes	in	that	
the	overall	behavior	that	emerges	is	an	adaptation	of	the	system.	The	accompanying	
deficits	are	thus	as	much	a	reflection	of	the	damaged	or	missing	elements,	as	they	
are	the	expression	of	a	new	repertoire	of	the	system	following	adaptation.		
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