LonGP: an additive Gaussian process regression model for longitudinal study designs

Lu Cheng ${ }^{1, *}$, Siddharth Ramchandran ${ }^{1}$, Tommi Vatanen ${ }^{2}$, Niina Lietzen ${ }^{3}$, Riitta Lahesmaa ${ }^{3}$, Aki Vehtari ${ }^{1}$ and Harri Lähdesmäki ${ }^{1, *}$

February 3, 2018
${ }^{1}$ Department of Computer Science, Aalto University School of Science, FI-00076 Aalto, Finland.
${ }^{2}$ Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
${ }^{3}$ Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland.
*To whom correspondence should be addressed.

Abstract

Motivation: Biomedical research typically involves longitudinal study designs where samples from individuals are measured repeatedly over time and the goal is to identify risk factors (covariates) that are associated with an outcome value. General linear mixed effect models have become the standard workhorse for statistical analysis of data from longitudinal study designs. However, analysis of longitudinal data can be complicated for both practical and theoretical reasons, including difficulties in modelling, correlated outcome values, functional (time-varying) covariates, nonlinear effects, and model inference. Results: We present LonGP, an additive Gaussian process regression model for analysis of experimental data from longitudinal study designs. LonGP implements a flexible, non-parametric modelling framework that solves commonly faced challenges in longitudinal data analysis. In addition to inheriting all standard features of Gaussian processes, LonGP can model time-varying random effects and non-stationary signals, incorporate multiple kernel learning, and provide interpretable results for the effects of individual covariates and their interactions. We develop an accurate Bayesian inference and model selection method, and implement an efficient model search algorithm for our additive Gaussian process model. We demonstrate LonGP's performance and accuracy by analysing various simulated and real longitudinal -omics datasets. Our work is accompanied by a versatile software implementation. Availability: LonGP software tool is available at http://research.cs.aalto.fi/csb/software/longp/. Contact: lu.cheng.ac@gmail.com, harri.lahdesmaki@aalto.fi

1 Introduction

A majority of biomedical research involves longitudinal studies where individuals are followed over a period of time and measurements are repeatedly collected from the subjects of the study. Longitudinal studies are effective in identifying various risk factors that are associated with an outcome, such as disease initiation, disease onset or any disease associated molecular biomarker. Characterisation of such risk factors is essential in understanding disease pathogenesis as well as in assessing individuals' disease risk, patient stratification, treatment choice evaluation and, in future personalised medicine paradigm, planning disease prevention strategies.

There are several classes of longitudinal study designs, including prospective vs. retrospective studies and observational vs. experimental studies, and each of these can be implemented with a particular application-specific experimental design. As the risk factors (or covariates) can also be either static or time-varying, statistical analysis tools need to be versatile enough so that they can be appropriately tailored to every application. General linear mixed effect models and generalised
estimating equations have become popular statistical techniques for longitudinal data analysis (Gibbons et al., 2010). Although numerous advanced extensions of these two statistical techniques have been proposed, longitudinal data analysis is still complicated for several reasons, such as difficulties in choosing covariance structures to model correlated outcomes, handling irregular sampling times and missing values, accounting for time-varying covariates, choosing appropriate nonlinear effects, modelling non-stationary signals, and accurate model inference.

Modern statistical methods for longitudinal data analysis make less or better assumptions about the underlying data generating mechanisms. These methods use predominantly non-parametric models, such as splines (Wu and Zhang, 2006), and more recently latent stochastic processes, such as Gaussian processes (GP). Several Bayesian non-parametric methods have been proposed for longitudinal and other data analysis. Most pertinent to this work are recent work on Bayesian semiparametric models (Quintana et al., 2016) and additive GP regression (Qamar and Tokdar, 2014) for longitudinal data analysis. Interestingly, very similar models have been developed in machine learning community. Additive GPs together with type-II maximum likelihood based multiple kernel learning were introduced in (Duvenaud et al., 2011). Similar GP multiple kernel learning has also been formulated in terms of hypothesis testing (Liu and Coull, 2017).

We present a non-parametric model, LonGP, for longitudinal data analysis that is formulated as an additive GP which handles commonly faced challenges in longitudinal data analysis. Being a GP model, LonGP inherits the best features of GPs. Additionally, it can model time-varying random effects and non-stationary signals as well as provide interpretable results for the effects of individual covariates and their interactions. We develop a fully Bayesian predictive inference for LonGP and use that to carry out model selection, i.e., to identify covariates that are associated with a given study outcome value. We demonstrate LonGP's performance and accuracy by analysing various simulated and real longitudinal -omics data sets.

2 Methods

2.1 Notation

We model target variables (gene/protein/bacteria/etc) one at a time. Let us assume that there are P individuals and there are n_{i} time series measurements from the i th individual. The total number of data points is thus $N=\sum_{i=1}^{P} n_{i}$. We denote the target variable by a column vector $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots y_{N}\right)^{T}$ and the covariates by $X=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)$, where $\boldsymbol{x}_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i d}\right)^{T}$ is a d-dimensional column vector and d is the number of covariates. We denote the domain of the j th variable by \mathcal{X}_{j} and the joint domain of all covariates is $\mathcal{X}=\mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{d}$. In general, we use a bold font letter to denote a vector, an uppercase letter to denote a matrix and a lowercase letter to denote a scale value.

2.2 Gaussian process

Gaussian process (GP) can be seen as a distribution of nonlinear functions (Rasmussen and Williams, 2006). For inputs $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{X}$, GP is defined as

$$
\begin{equation*}
f(\boldsymbol{x}) \sim G P\left(\mu(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right), \tag{1}
\end{equation*}
$$

where $\mu(\boldsymbol{x})$ is the mean and $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ is a positive-semidefinite kernel function that defines the covariance between any two realizations of $f(\boldsymbol{x})$ and $f\left(\boldsymbol{x}^{\prime}\right)$ by

$$
\begin{equation*}
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\operatorname{cov}\left(f(\boldsymbol{x}), f\left(\boldsymbol{x}^{\prime}\right)\right), \tag{2}
\end{equation*}
$$

which is called "kernel" for short. The mean is often assumed to be zero, i.e., $\mu(\boldsymbol{x}) \doteq 0$, and the kernel has parameters $\boldsymbol{\theta}$, i.e., $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime} \mid \boldsymbol{\theta}\right)$. For any finite collection of inputs $X=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)$, the function values $\boldsymbol{f}(X)=\left(f\left(\boldsymbol{x}_{1}\right), f\left(\boldsymbol{x}_{2}\right), \ldots, f\left(\boldsymbol{x}_{N}\right)\right)^{T}$ have joint multivariate Gaussian distribution

$$
\begin{equation*}
\boldsymbol{f}(X) \sim N\left(\mathbf{0}, K_{X, X}(\boldsymbol{\theta})\right), \tag{3}
\end{equation*}
$$

where elements of the N-by- N covariance matrix are defined by the kernel $\left[K_{X, X}(\boldsymbol{\theta})\right]_{i, j}=k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j} \mid \boldsymbol{\theta}\right)$. We use the following hierarchical Gaussian process model

$$
\begin{align*}
& \boldsymbol{\theta} \sim \pi(\boldsymbol{\phi}) \\
& \boldsymbol{f} \sim N\left(\mathbf{0}, K_{X, X}(\boldsymbol{\theta})\right) \tag{4}\\
& \boldsymbol{y} \sim N\left(\boldsymbol{f}, \sigma_{\epsilon}^{2} I\right),
\end{align*}
$$

where $\pi(\phi)$ defines a prior for the kernel parameters (including $\left.\sigma_{\epsilon}^{2}\right), \sigma_{\epsilon}^{2}$ is the noise variance and I is the N-by- N identity matrix. For a Gaussian noise model we can marginalise \boldsymbol{f} analytically (Rasmussen and Williams, 2006)

$$
\begin{align*}
p(\boldsymbol{y} \mid X, \boldsymbol{\theta}) & =\int p(\boldsymbol{y} \mid \boldsymbol{f}, X, \boldsymbol{\theta}) p(\boldsymbol{f} \mid X, \boldsymbol{\theta}) d \boldsymbol{f} \tag{5}\\
& =N\left(\mathbf{0}, K_{X, X}(\boldsymbol{\theta})+\sigma_{\epsilon}^{2} I\right) .
\end{align*}
$$

2.3 Additive Gaussian process

To define a flexible and interpretable model, we use the following additive GP model with D kernels

$$
\begin{align*}
f(\boldsymbol{x}) & =f^{(1)}(\boldsymbol{x})+f^{(2)}(\boldsymbol{x})+\ldots+f^{(D)}(\boldsymbol{x}) \tag{6}\\
y & =f(\boldsymbol{x})+\epsilon
\end{align*}
$$

where each $f^{(j)}(\boldsymbol{x}) \sim G P\left(0, k^{(j)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime} \mid \boldsymbol{\theta}^{(j)}\right)\right)$ is a separate GP with kernel specific parameters $\boldsymbol{\theta}^{(j)}$ and ϵ is the additive Gaussian noise. By definition, for any finite collection of inputs $X=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right)$, each GP $\boldsymbol{f}^{(j)}(X)$ follows a multivariate Gaussian distribution. Since a sum of multivariate Gaussian random variables is still Gaussian, the latent function \boldsymbol{f} also follows a multivariate Gaussian distribution. Denote $\boldsymbol{\Theta}=\left(\boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(2)}, \ldots, \boldsymbol{\theta}^{(D)}, \sigma_{\epsilon}^{2}\right)$, then the marginal likelihood for the target variable \boldsymbol{y} is

$$
\begin{equation*}
p(\boldsymbol{y} \mid X, \boldsymbol{\Theta})=N\left(\mathbf{0}, \sum_{j=1}^{D} K_{X, X}^{(j)}\left(\boldsymbol{\theta}^{(j)}\right)+\sigma_{\epsilon}^{2} I\right), \tag{7}
\end{equation*}
$$

where the latent function \boldsymbol{f} has been marginalised out as in Eq. (5). To simplify notation, we define

$$
\begin{equation*}
K_{\mathbf{y}}(\boldsymbol{\Theta})=\sum_{j=1}^{D} K_{X, X}^{(j)}\left(\boldsymbol{\theta}^{(j)}\right)+\sigma_{\epsilon}^{2} I . \tag{8}
\end{equation*}
$$

For the purposes of identifying covariate subsets that are associated with a target variable, we assume that each GP depends only on a small subset of covariates $f^{(j)}(\boldsymbol{x}): \mathcal{X}^{(j)} \rightarrow \mathcal{Y}$, where $\mathcal{X}^{(j)}=\prod \mathcal{X}_{i}, i \in I_{j} \subseteq\{1, \ldots, d\}$ and \mathcal{Y} is the domain for target variable. I_{j} are indices of the covariates associated with the j th kernel.

2.4 Kernel functions for covariates

Longitudinal biomedical studies typically include a variety of continuous, categorical and binary covariates. Typical continuous covariates include age, time from a disease event (sampling time point minus disease event time point), and season (time from beginning of a year). Typical categorical or binary covariates include group (case or control), gender and id (id of an individual). In practice, a key question in setting up the additive GP model is how to choose appropriate kernels for different covariates and their subsets (or interactions).

2.4.1 Stationary kernels

In LonGP, we use the following specific kernels which only involve one or two covariates.

- Squared exponential (SE) kernel for continuous covariates

$$
\begin{equation*}
k_{\mathrm{se}}\left(x_{i}, x_{j} \mid \boldsymbol{\theta}_{\mathrm{se}}\right)=\sigma_{\mathrm{se}}^{2} \exp \left(-\frac{\left(x_{i}-x_{j}\right)^{2}}{2 \ell_{\mathrm{se}}^{2}}\right), \tag{9}
\end{equation*}
$$

where ℓ_{se} is the length-scale parameter, σ_{se}^{2} is the magnitude parameter and $\boldsymbol{\theta}_{\mathrm{se}}=\left(\ell_{\mathrm{se}}, \sigma_{\mathrm{se}}^{2}\right)$. Length-scale ℓ_{se} controls the smoothness and magnitude parameter σ_{se}^{2} controls the magnitude of the kernel.

- Periodic kernel for continuous covariates

$$
\begin{equation*}
k_{\mathrm{pe}}\left(x_{i}, x_{j} \mid \boldsymbol{\theta}_{\mathrm{pe}}\right)=\sigma_{\mathrm{pe}}^{2} \exp \left(-\frac{2 \sin ^{2}\left(\pi\left(x_{i}-x_{j}\right) / \gamma\right)}{\ell_{\mathrm{pe}}^{2}}\right), \tag{10}
\end{equation*}
$$

where ℓ_{pe} is the length-scale parameter, σ_{pe}^{2} is the magnitude parameter, γ is the period parameter and $\boldsymbol{\theta}_{\mathrm{pe}}=\left(\ell_{\mathrm{pe}}, \sigma_{\mathrm{pe}}^{2}, \gamma\right)$. Length-scale ℓ_{pe} controls the smoothness, σ_{pe}^{2} controls the magnitude and γ is the period of the kernel. In our model, γ corresponds to a year.

- Constant kernel

$$
\begin{equation*}
k_{\mathrm{co}}\left(x_{i}, x_{j} \mid \boldsymbol{\theta}\right)=\sigma_{\mathrm{co}}^{2}, \tag{11}
\end{equation*}
$$

where $\boldsymbol{\theta}=\left(\sigma_{\mathrm{co}}^{2}\right)$ is the magnitude parameter of the constant signal.

- Categorical kernel for discrete-valued covariates

$$
k_{\mathrm{ca}}\left(x_{i}, x_{j}\right)= \begin{cases}1, & \text { if } x_{i}=x_{j} \tag{12}\\ 0, & \text { otherwise }\end{cases}
$$

- Binary (mask) kernel for binary covariates

$$
k_{\mathrm{bi}}\left(x_{i}, x_{j}\right)= \begin{cases}1, & \text { if } x_{i}=1 \text { and } x_{j}=1 \tag{13}\\ 0, & \text { otherwise }\end{cases}
$$

- Product kernel between any two valid kernels, such as $k_{\mathrm{bi}}(\cdot)$ and $k_{\mathrm{se}}(\cdot)$ (similarly for any other pair of kernels)

$$
\begin{equation*}
k_{\mathrm{bi} \times \mathrm{se}}(\cdot)=k_{\mathrm{bi}}\left(x_{i p}, x_{j p} \mid \boldsymbol{\theta}_{\mathrm{bi}}^{\left(p^{\prime}\right)}\right) k_{\mathrm{se}}\left(x_{i q}, x_{j q} \mid \boldsymbol{\theta}_{\mathrm{se}}^{\left(q^{\prime}\right)}\right), \tag{14}
\end{equation*}
$$

where $\boldsymbol{\theta}_{\mathrm{bi}}^{\left(p^{\prime}\right)}$ and $\boldsymbol{\theta}_{\mathrm{se}}^{\left(q^{\prime}\right)}$ are kernel parameters for the p th and q th covariates, respectively.

2.4.2 Non-stationary kernel

It may be realistic to assume that the target variable (e.g., a protein) changes rapidly only near a special event, such as disease initiation or onset. This poses a challenge for GP modelling with squared exponential kernel since the kernel is stationary: changes are homogeneous across the whole time window. Non-stationary GPs can be implemented by using special non-stationary kernels, such as the neural network kernel, by defining the kernel parameters to depend on input covariates (Heinonen et al., 2016; Tolvanen et al., 2014; Saul et al., 2016) or via input or output warpings (Snelson et al., 2004). We propose to use the input warping approach and define a bijective mapping $\omega:(-\infty,+\infty) \rightarrow(-c, c)$ for a continuous time/age covariate t as

$$
\begin{equation*}
\omega(t)=2 c \cdot\left(-0.5+\frac{1}{1+e^{-a(t-b)}}\right), \tag{15}
\end{equation*}
$$

where a, b and c are predefined parameters: a controls the size of the effective time window, b controls its location, and c controls the maximum range. The non-stationary kernel is then defined as

$$
\begin{equation*}
k_{\mathrm{ns}}\left(t, t^{\prime} \mid \boldsymbol{\theta}_{\mathrm{se}}\right)=\sigma_{\mathrm{se}}^{2} \exp \left(-\frac{\left(\omega(t)-\omega\left(t^{\prime}\right)\right)^{2}}{2 \ell_{\mathrm{se}}^{2}}\right), \tag{16}
\end{equation*}
$$

where $\boldsymbol{\theta}_{\text {se }}$ are the parameters of the SE kernel.
Suppl. Fig. 1 shows an example transformation with $a=0.5, b=0$ and $c=40$, where we limit the disease related change to be within one year of the disease event. Effectively, all changes in the transformed space corresponds approximately to ± 12 month time window in the original space. Suppl. Fig. 2 shows randomly sampled functions using stationary and non-stationary SE kernels with the same kernel parameters. The non-stationary SE kernel naturally models signals that are spikelike or exhibit a level difference between before and after the disease event, which can be interpreted as a permanent disease effect.

The same parameters as Suppl. Fig. 1 are used for non-stationary kernels in all experiments of Sec. 3.

2.4.3 Kernel specification in practice

The datasets analysed in this work include 11 covariates and covariate pairs which we model using the following kernels (see Sec. 2.5 for prior specifications).

- age: The shared age effect is modelled with a slowly changing stationary SE kernel.
- time from a disease event or diseaseAge: We use the product of the binary kernel and the non-stationary SE kernel (assuming cases are coded as 1 and controls as 0).
- season: We assume that the target variable exhibits an annual period and is modelled with the periodic kernel.

Figure 1: Additive Gaussian process. The top panel shows random functions drawn from different components, i.e., GPs of the specific kernels. The lower panel shows the cumulative effects of the different components. The bottom right panel shows the simulated data.

- group: We model a baseline difference between the cases and controls, which corresponds to average difference between the two groups, using the product of the binary kernel and the constant kernel.
- gender: We use the same kernel as for group covariate.
- loc: Binary covariate indicating if an individual comes from a certain location. We use the same kernel as for group covariate.
- $i d$: We assume baseline differences between different individuals and model that by the product of the categorical kernel and the constant kernel.
- group \times age: We assume that the differences between cases and controls varies across age. That difference is modelled by the product of the binary kernel and the stationary SE kernel.
- gender \times age: The same kernel as for group \times age is used for this interaction term. It implements a different age trend for males and females.
- id \times age: We assume different individuals exhibit different age trends. This longitudinal random effect is modelled by the product of the categorical kernel and the SE kernel. This kernel is especially helpful for modelling individuals with outlying data points.
- group \times gender: This interaction term assumes that male (or female) cases have a baseline difference compared to others. The product of two binary kernels and the constant kernel is used.
Although discrete covariates are modelled as a product of the constant kernel and the binary or categorical kernel, the constant kernel is not explicitly included in our notation.

Fig. 1 shows an example with data simulated from an additive GP model, $y=f_{\mathrm{se}}^{(1)}($ age $)+$ $f_{\mathrm{ca} \times \mathrm{se}}^{(2)}(i d \times a g e)+f_{\mathrm{ns}}^{(3)}($ diseaseAge $)+f_{\mathrm{bi}}^{(4)}(l o c)+f_{\mathrm{bi} \times \mathrm{se}}^{(5)}(l o c \times a g e)+f_{\mathrm{ca}}^{(6)}(i d)+\epsilon$. This example provides an intuitive illustration of the effects of different kernels described above. In case a study contains other covariates or interaction terms, the additive Gaussian process regression provides a very flexible modelling framework that can be adjusted to a number of different applications.

In practice, we often observe missing values in the covariates. Missing values can be due to technical problems in measurements or because some covariates may not be applicable for certain samples, e.g., diseaseAge is not applicable to controls since they do not have a disease. In LonGP, we construct a binary flag vector for each covariate. The missing values are flagged as 0 and nonmissing values are flagged as 1 . Then, we construct a binary kernel for this flag vector and multiply it with any kernel that involves the covariate. Consequently, any kernel involving a missing value is evaluated to 0 , which means that their contribution to the target variable is 0 . All missing values are handled in this way by default and we do not use any extra notations for it. Interaction terms always refer to product kernels with non-missing values, assuming missing values are already handled.

2.5 Prior specifications

Before the actual GP regression, we standardise the target variable and all continuous covariates such that the mean is zero and the standard deviation is one. This helps in defining generally applicable priors for the kernel parameters. After the GP regression, the predictions are transformed back to
the original scale. We visualise the results in the original scale after centering the data by subtracting the mean.

We define a prior $p(\boldsymbol{\Theta})=\prod_{j=1}^{D} p\left(\boldsymbol{\theta}^{(j)}\right) \times p\left(\sigma_{\epsilon}^{2}\right)$ for the kernel parameters as follows. For continuous covariates without interactions, we use the \log normal prior $\left(\mu=0\right.$ and $\left.\sigma^{2}=(\log (1)-\log (0.1))^{2} / 4\right)$ for the length-scales (ℓ_{se} and ℓ_{pe}) and the square root student- t prior ($\mu=0, \sigma^{2}=1$ and $\nu=20$) for the magnitude parameters (σ_{se}^{2} and σ_{pe}^{2}). This length-scale prior penalises small length-scales such that smoothness less than 0.1 has very small probability and the mode is approximately at 0.3 . For continuous covariates with interactions, the prior for the magnitude parameters is the same as for without interactions and the half truncated student- t prior ($\mu=0, \sigma^{2}=1, \nu=4$) is used for the length-scale, which allows smaller length-scales.

Scaled inverse chi-squared prior ($\sigma^{2}=0.01$ and $\nu=1$) is used for the noise variance parameter σ_{ϵ}^{2}. The period parameter γ of the periodic kernel is predefined by the user. Square root student- t prior $\left(\mu=0, \sigma^{2}=1\right.$ and $\left.\nu=4\right)$ is used for the magnitude parameter $\sigma_{\text {co }}^{2}$ of all constant kernels. Suppl. Fig. 3 visualises all the above-described priors with their default hyperparameter values.

2.6 Model inference and prediction

Given the additive GP model specified in Sections 2.2-2.5, we are next interested in the posterior inference of the model conditioned on data (\boldsymbol{y}, X). Assume, for now, that for each additive component $f^{(j)}$ the kernel $k^{(j)}(\cdot)$, its inputs $\mathcal{X}^{(j)}$ and prior are specified. We use two different inference methods, Markov chain Monte Carlo (MCMC) and a deterministic evaluation of the posterior with the central composite design (CCD).

For MCMC we use the slice sampler as implemented in the GPStuff package (Neal, 2003; Vanhatalo et al., 2013) to sample the parameter posterior

$$
\begin{equation*}
p(\boldsymbol{\Theta} \mid \boldsymbol{y}, X) \propto p(\boldsymbol{y} \mid X, \boldsymbol{\Theta}) p(\boldsymbol{\Theta}), \tag{17}
\end{equation*}
$$

where the likelihood is defined in Eq. (7). After convergence checking from 4 independent Markov chains (details in Suppl. Sec. 2), we obtain S posterior samples $\left\{\boldsymbol{\Theta}_{s}\right\}_{s=1}^{S}$, where $\boldsymbol{\Theta}_{s}=\left(\boldsymbol{\theta}_{s}^{(1)}, \boldsymbol{\theta}_{s}^{(2)}, \ldots, \boldsymbol{\theta}_{s}^{(D)}, \sigma_{\epsilon, s}^{2}\right)$. We use the posterior samples to approximate the predictive density for test data $X^{*}=\left(\boldsymbol{x}_{1}^{*}, \boldsymbol{x}_{2}^{*}, \ldots, \boldsymbol{x}_{n}^{*}\right)$

$$
\begin{align*}
p\left(\boldsymbol{f}^{*} \mid \boldsymbol{y}, X, X^{*}\right) & =\int p\left(\boldsymbol{f}^{*} \mid \boldsymbol{y}, X, X^{*}, \boldsymbol{\Theta}\right) p(\boldsymbol{\Theta} \mid \boldsymbol{y}, X) d \boldsymbol{\Theta} \\
& \approx \frac{1}{S} \sum_{s=1}^{S} p\left(\boldsymbol{f}^{*} \mid \boldsymbol{y}, X, X^{*}, \boldsymbol{\Theta}_{s}\right) \tag{18}\\
& =\frac{1}{S} \sum_{s=1}^{S} N\left(\boldsymbol{\mu}_{s}, \Sigma_{s}\right)
\end{align*}
$$

where

$$
\begin{gather*}
\boldsymbol{\mu}_{s}=K_{X^{*}, X}\left(\boldsymbol{\Theta}_{s}\right) K_{\mathbf{y}}\left(\boldsymbol{\Theta}_{s}\right)^{-1} \boldsymbol{y} \tag{19}\\
\Sigma_{s}=K_{X^{*}, X^{*}}\left(\boldsymbol{\Theta}_{s}\right)-K_{X^{*}, X}\left(\boldsymbol{\Theta}_{s}\right) K_{\mathbf{y}}\left(\boldsymbol{\Theta}_{s}\right)^{-1} K_{X, X^{*}}\left(\boldsymbol{\Theta}_{s}\right) \tag{20}
\end{gather*}
$$

are the standard GP prediction equations adapted to additive GPs with $K_{X^{*}, X}\left(\boldsymbol{\Theta}_{s}\right)=\sum_{j=1}^{D} K_{X^{*}, X}^{(j)}\left(\boldsymbol{\theta}_{s}^{(j)}\right)$ encoding the sum of cross-covariances between the inputs X and test data points $X^{*}\left(K_{X^{*}, X^{*}}\right.$ is defined similarly) and $K_{\mathbf{y}}\left(\boldsymbol{\Theta}_{s}\right)$ is defined in Eq. (8).

As an alternative approach to slice sampling for higher dimensional models, we also use a deterministic finite sum using the central composite design (CCD) to approximate the predictive densities for GPs as proposed in (Rue et al., 2009; Vanhatalo et al., 2010). CCD assumes a split-Gaussian posterior $q(\cdot)$ for (log-transformed) parameters $\boldsymbol{\gamma}=\log (\boldsymbol{\Theta})$ and defines a set of R points $\left\{\boldsymbol{\gamma}_{r}\right\}_{r=1}^{R}$ (fractional factorial design, the mode and so-called star points along whitened axes) to estimate the predictive density with a finite sum

$$
\begin{align*}
p\left(\boldsymbol{f}^{*} \mid \boldsymbol{y}, X, X^{*}\right) & \approx \sum_{r=1}^{R} p\left(\boldsymbol{f}^{*} \mid \boldsymbol{y}, X, X^{*}, \boldsymbol{\gamma}_{r}\right) q\left(\boldsymbol{\gamma}_{r}\right) \Delta_{r} \\
& =\sum_{r=1}^{R} N\left(\boldsymbol{\mu}_{r}, \Sigma_{r}\right) q\left(\boldsymbol{\gamma}_{r}\right) \Delta_{r} \tag{21}
\end{align*}
$$

where $N\left(\boldsymbol{\mu}_{r}, \Sigma_{r}\right)$ is computed as in Eqs. (19-20), $q\left(\gamma_{r}\right)$ is the split-Gaussian posterior and Δ_{r} are the area weights for the finite sum (see (Vanhatalo et al., 2010) for details).

Predictions and visualisations for an individual kernel $k^{(j)}(1 \leq j \leq D)$ are obtained by replacing μ_{s} and Σ_{s} in Eqs. (18) and (21) with

$$
\begin{equation*}
\boldsymbol{\mu}_{s}^{(j)}=K_{X^{*}, X}^{(j)}\left(\boldsymbol{\theta}_{s}^{(j)}\right) K_{\mathbf{y}}\left(\boldsymbol{\Theta}_{s}\right)^{-1} \boldsymbol{y} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma_{s}^{(j)}=K_{X^{*}, X^{*}}^{(j)}\left(\boldsymbol{\theta}_{s}^{(j)}\right)-K_{X^{*}, X}^{(j)}\left(\boldsymbol{\theta}_{s}^{(j)}\right) K_{\mathbf{y}}\left(\boldsymbol{\Theta}_{s}\right)^{-1} K_{X, X^{*}}\left(\boldsymbol{\theta}_{s}^{(j)}\right) \tag{23}
\end{equation*}
$$

Similarly, predictions for a subset of kernels are obtained by replacing $K_{X^{*}, X}^{(j)}\left(\boldsymbol{\theta}_{s}^{(j)}\right)$ and $K_{X^{*}, X^{*}}^{(j)}\left(\boldsymbol{\theta}_{s}^{(j)}\right)$ with the relevant sums.

2.7 Model comparison

We have described how to build and infer an additive GP model for a given target variable using a set of kernels and a set of covariates for each kernel. A model M can be specified by a 3 -tuple $\left(D,\left\{k^{(j)}\right\}_{j=1}^{D},\left\{I_{j}\right\}_{j=1}^{D}\right)$, where $D \geq 1$. However, all covariates may not be relevant for the prediction task and often the scientific question is to identify a subset of the covariates that are associated with the target variable. For model selection, we use two cross-validation variants and Bayesian bootstrap as described below.

2.7.1 Leave-one-out cross-validation

We use leave-one-out cross-validation (LOOCV) to compare the models when a continuous covariate such as age, diseaseAge or season is added to a model. In this case, a single time point of an individual is left out as test data and the rest are kept as training data. We use MCMC to infer the parameters of a given model and calculate the following leave-one-out predictive density:

$$
\begin{equation*}
p\left(y_{i} \mid \boldsymbol{y}_{-i}, X, M\right)=\int p\left(y_{i} \mid \boldsymbol{\Theta}, X, M\right) p\left(\boldsymbol{\Theta} \mid \boldsymbol{y}_{-i}, X, M\right) d \boldsymbol{\Theta} \tag{24}
\end{equation*}
$$

where $\boldsymbol{y}_{-i}=\boldsymbol{y} \backslash y_{i}$ and $\boldsymbol{\Theta}$ are the parameters of the GP model M. This can be calculated by setting $\boldsymbol{f}^{*} \leftarrow y_{i}, X^{*} \leftarrow \boldsymbol{x}_{i}, \boldsymbol{y} \leftarrow \boldsymbol{y}_{-i}$ and $X \leftarrow X \backslash \boldsymbol{x}_{i}$ in Eq. (18). The standard LOOCV would require us to run the inference N times, which is time consuming when N is large. In practice, we use importance sampling to sample $p\left(\boldsymbol{\Theta} \mid \boldsymbol{y}_{-i}, X, M\right)$ where the posterior $p(\boldsymbol{\Theta} \mid \boldsymbol{y}, X, M)$ of the full data \boldsymbol{y} is used as the proposal distribution. We thus approximate Eq. (24) as

$$
\begin{align*}
p\left(y_{i} \mid \boldsymbol{y}_{-i}\right) & =\int \frac{p\left(y_{i} \mid \boldsymbol{\Theta}\right) p\left(\boldsymbol{\Theta} \mid \boldsymbol{y}_{-i}\right)}{p(\boldsymbol{\Theta} \mid \boldsymbol{y})} p(\boldsymbol{\Theta} \mid \boldsymbol{y}) d \boldsymbol{\Theta} \\
& \approx \sum_{s=1}^{S} \frac{p\left(y_{i} \mid \boldsymbol{\Theta}_{s}\right) p\left(\boldsymbol{\Theta}_{s} \mid \boldsymbol{y}_{-i}\right)}{p\left(\boldsymbol{\Theta}_{s} \mid \boldsymbol{y}\right)} \tag{25}\\
& \approx \frac{1}{\sum_{s=1}^{S} \frac{1}{p\left(y_{i} \mid \boldsymbol{\Theta}_{s}\right)}}
\end{align*}
$$

where we have omitted X and M in the notation for simplicity and $\boldsymbol{\Theta}_{s}$ is a MCMC sample from the full posterior $p(\boldsymbol{\Theta} \mid \boldsymbol{y})$. However, directly applying Eq. (25) usually results in high variance and is not recommended. We use a recently developed Pareto smoothed importance sampling to control the variance by smoothing the importance ratios $p\left(\boldsymbol{\Theta}_{s} \mid \boldsymbol{y}_{-i}\right) / p\left(\boldsymbol{\Theta}_{s} \mid \boldsymbol{y}\right)$ (for details, see (Vehtari et al., 2017, 2016)).

The importance sampling phase is fast and it is shown to be accurate (Vehtari et al., 2017). Therefore, we only need to run MCMC inference once for the full training data. Once the leave-one-out predictive probabilities in Eq. (24) are obtained for all the data points, the GP models are compared using Bayesian bootstrap described in Sec. 2.7.3.

2.7.2 Stratified cross-validation

In stratified cross-validation (SCV), we leave out all time points of an individual as test data and use the rest as training data. SCV is used when a categorical/binary covariate, such as group or gender, is added to the model. Let $\boldsymbol{y}_{\boldsymbol{i}}$ denote all measured time points corresponding to an individual i (X_{i} is defined similarly) and $\boldsymbol{y}_{-i}=\boldsymbol{y} \backslash \boldsymbol{y}_{\boldsymbol{i}}$. Similar to LOOCV, we want to compute the predictive density of the test data points $\boldsymbol{y}_{\boldsymbol{i}}$

$$
\begin{equation*}
p\left(\boldsymbol{y}_{\boldsymbol{i}} \mid \boldsymbol{y}_{-i}, X, M\right)=\int p\left(\boldsymbol{y}_{\boldsymbol{i}} \mid \boldsymbol{\Theta}, X, M\right) p\left(\boldsymbol{\Theta} \mid \boldsymbol{y}_{-i}, X, M\right) d \boldsymbol{\Theta} \tag{26}
\end{equation*}
$$

This can be calculated by setting $\boldsymbol{f}^{*} \leftarrow \boldsymbol{y}_{\boldsymbol{i}}, X^{*} \leftarrow X_{\boldsymbol{i}}, \boldsymbol{y} \leftarrow \boldsymbol{y}_{-\boldsymbol{i}}$ and $X \leftarrow X_{-\boldsymbol{i}}$ in Eq. (21). Since importance sampling does not work well in this case, we apply the CCD inference P times (once for each individual). Also, we use CCD with SCV as it is much faster than MCMC.

2.7.3 Model comparison using Bayesian bootstrap

After obtaining the leave-one-out predictive densities (Eq. (24) or (26)) for a collection of models, we use Bayesian bootstrap to compare the involved models. Let us start with a simple case where two models M_{1} and M_{2} are compared. In the LOOCV setting, we compare the models by computing the average difference of their log-predictive densities

$$
\begin{equation*}
\frac{1}{N} \sum_{i=1}^{N}\left(\log \left(p\left(y_{i} \mid \boldsymbol{y}_{-i}, X, M_{1}\right)\right)-\log \left(p\left(y_{i} \mid \boldsymbol{y}_{-i}, X, M_{2}\right)\right)\right) \tag{27}
\end{equation*}
$$

which measures the difference of the average prediction accuracy of the two models. If Eq. (27) is greater than 0 , then model M_{1} is better than M_{2}, otherwise model M_{2} is better than M_{1}.

Comparison in Eq. (27) does not provide a probabilistic quantification of how much better one model is compared to the other. We thus approximate the relative probability of a model being better than another model using Bayesian bootstrap (Rubin, 1981), which assumes y_{i} only takes values from the observations $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots y_{N}\right)^{T}$ and has zero probability at all other values. In Bayesian bootstrap, the probabilities of the observation values follow the N-dimensional Dirichlet distribution $\operatorname{Dir}(1,1, \ldots, 1)$. More specifically, we bootstrap the samples N_{B} times $\left(b=1, \ldots, N_{B}\right)$ and each time we get the same N observations \boldsymbol{y}, with each observation taking weight $w_{b i}(i=1, \ldots, N)$ from the N-dimensional Dirichlet distribution. The N_{B} bootstrap samples are then summarised to obtain the probability of M_{1} being better than M_{2}

$$
\begin{equation*}
\frac{1}{N_{B}} \sum_{b=1}^{N_{B}} \delta\left\{\frac{1}{N} \sum_{i=1}^{N} w_{b i} \log \left(\frac{p\left(y_{i} \mid \boldsymbol{y}_{-i}, X, M_{1}\right)}{p\left(y_{i} \mid \boldsymbol{y}_{-i}, X, M_{2}\right)}\right)\right\} \tag{28}
\end{equation*}
$$

where $\delta\{\cdot\}$ is the Heaviside step function and $w_{b i}$ is the bootstrap weight for the i th data point in the b th bootstrap iteration (see Vehtari et al. (2017) for more details). We call the result of Eq. (28) LOOCV factor (LOOCVF).

The above strategy also works when comparing multiple models. Instead of calculating the heaviside step function in the bth bootstrap iteration, we simply choose the model with the highest rank by sorting the models using

$$
\begin{equation*}
\frac{1}{N} \sum_{i=1}^{N} w_{b i}\left(\log \left(p\left(y_{i} \mid \boldsymbol{y}_{-i}, X, M_{m}\right)\right)\right. \tag{29}
\end{equation*}
$$

where m indices the model. In the end, we count the occurrences N_{m} of each model being the best across all N_{B} bootstrap samples and we compute the posterior probability of model M_{m} as N_{m} / N_{B}, which we term as the posterior rank probability.

For SCV, we replace y_{i} with \boldsymbol{y}_{i} and \boldsymbol{y}_{-i} with \boldsymbol{y}_{-i} in Eqs. (27-28) and follow the same procedure as above to compare the models. Eq. (28) is then termed as the SCV factor (SCVF). In practice, we set the threshold of the LOOCVF to be 0.8 and SCVF to be 0.95 , i.e., the LOOCVF (resp. SCVF) of the extended model versus the original model needs to be larger than 0.8 (resp. 0.95) for a continuous covariate (resp. binary covariate) to be added.

Although Eq. (29) can be used to compare any subset of models, complex models will dominate the posterior rank probability when compared together with simpler models. Hence, LonGP only uses it to compare candidate models of similar complexity (see next Section and Suppl. Sec. 3).

2.8 Step-wise additive GP regression algorithm

The space of all models is large and thus an exhaustive search for the best model over the whole model space would be too slow in practice. Two commonly used model (or feature) selection methods include forward and backward search techniques. Starting with the most complex model, as in the backward search approach, is not practical in our case, so we propose to use a greedy forward search approach similar to step-wise linear regression model building. That is, we start from the base model that only includes the $i d$ covariate. Then we add continuous covariates to the model sequentially

Table 1. Model inference results for simulated data with 20 cases and 20 controls, noise variance $\sigma_{\epsilon}^{2}=3$ and samples taken every 3 months. Rows show the number of times each model is inferred as the best model out of 100 Monte Carlo simulations for each generating model. 'Others' corresponds to all the other 11 possible APGM models. The last two columns show the number of times the diseaseAge covariate has or has not been included in the final model

	$\begin{aligned} & 7 \\ & \text { B } \\ & \text { O} \\ & \hline \end{aligned}$	$\sum_{\substack{N \\ 0}}^{N}$	$\sum_{\substack{n \\ 0}}^{\infty}$	$\begin{aligned} & \sum_{\substack{* \\ U}}^{T} \end{aligned}$	$\sum_{\substack{0 \\ 0}}^{20}$	$\begin{aligned} & 0.0 \\ & 0 \\ & 0 \end{aligned}$		
AGPM1	98	2	0	0	0	0	0	100
AGPM2	0	95	2	1	0	2	1	99
AGPM3	0	0	95	0	0	5	0	100
AGPM4	0	3	0	92	3	2	97	3
AGPM5	0	0	3	8	88	1	97	3

until the model cannot be further improved. During each iteration, we first identify the covariate that improves the model the most (Eq. (29)) and test if the LOOCVF of a new proposed model versus the current model exceeds the threshold of 0.8 (Eq. (28)). While including a continuous covariate, we also include relevant interaction terms (allowed interaction terms defined by the user). After adding continuous covariates, we add discrete (categorical or binary) covariates sequentially to the model until it cannot be further improved. As with continuous covariates, during each iteration, we first identify the discrete covariate that improves the model the most and test if the SCVF of a new proposed model versus the current model exceeds the threshold of 0.95 . While including a discrete covariate, we also include relevant interaction terms (allowed interactions specified by user). Details of our forward search algorithm are given in Suppl. Sec. 3 together with a pseudo-algorithm description. We note that although step-wise model selection strategies are commonly used with essentially all modelling frameworks, they have the danger of overfitting a given data. To avoid overfitting, we implement our search algorithm such that an additional component is added to the current model only if the more complex model improves the model fit significantly, as measured by the LOOCVF and SCVF.

Once all the covariates have been added, the kernel parameters of the final model are sampled using MCMC and kernel-specific predictions on the training data X are computed using Eq. (18). Additionally, a user can choose to exclude kernels that have a small effect size as measured by the fraction of total variance explained. we require component specific variances to be at least 1%. The software is implemented using features from the GPStuff package (Vanhatalo et al., 2013) and implementation is discussed in Suppl. Sec. 4.

3 Results

We tested LonGP on simulated datasets and two real datasets including longitudinal metagenomics (Vatanen et al., 2016) and proteomics datasets (Liu et al., 2018).

3.1 Simulated datasets

We first carried out a large simulation study to test and demonstrate LonGP's ability to correctly infer associations between covariates and target variables from longitudinal data. Here we are primarily interested in answering two questions: is LonGP able to select the correct model as well as the correct covariates that were used to generate the data, and can we detect disease associated signals. We

Figure 2: a) Model selection accuracy as a function of noise variance. b) Model selection accuracy as a function of sample size. y-axis shows the number of times the correct model is inferred as the best model out of 100 Monte Carlo simulations.
simulated -omics datasets from five different generating additive GP models (AGPM):

$$
\begin{aligned}
\text { AGPM1: } y= & f_{\mathrm{ca}}^{(1)}(i d)+\epsilon \\
\text { AGPM2: } y= & f_{\mathrm{ca}}^{(1)}(i d)+f_{\mathrm{se}}^{(2)}(\text { age })+f_{\mathrm{ca} \times \mathrm{se}}^{(3)}(i d \times \text { age })+\epsilon \\
\text { AGPM3: } y= & f_{\mathrm{ca}}^{(1)}(i d)+f_{\mathrm{se}}^{(2)}(\text { age })+f_{\mathrm{ca} \times \mathrm{se}}^{(3)}(i d \times \text { age })+ \\
& f_{\mathrm{bi}}^{(4)}(l o c)+f_{\mathrm{bi} \mathrm{se}}^{(5)}(\text { loc } \times \text { age })+\epsilon \\
\text { AGPM4: } y= & f_{\mathrm{ca}}^{(1)}(\text { id })+f_{\mathrm{se}}^{(2)}(\text { age })+f_{\mathrm{ca} \times \mathrm{se}}^{(3)}(\text { id } \times \text { age })+ \\
& f_{\mathrm{ns}}^{(4)}(\text { diseaseAge })+\epsilon \\
\text { AGPM5: } y= & f_{\mathrm{ca}}^{(1)}(\text { id })+f_{\mathrm{se}}^{(2)}(\text { age })+f_{\mathrm{ca} \times \mathrm{se}}^{(3)}(i d \times \text { age })+ \\
& f_{\mathrm{bi}}^{(4)}(\text { loc })+f_{\mathrm{bi} \times \mathrm{se}}^{(5)}(\text { loc } \times \text { age })+ \\
& f_{\mathrm{ns}}^{(6)}(\text { disease } \text { Age })+\epsilon
\end{aligned}
$$

To set up our simulation scenario, we first use 20 cases and 20 controls (i.e., $P=40$) specified by the group covariate, each with $n_{i}=13$ data points ranging from 0 month to 36 months with an increment of three months, thus specifying the age covariate. Other covariates are randomly simulated using the following rules. The disease occurrence time is sampled uniformly from 0 to 36 months for each case subject and diseaseAge is computed accordingly. We make the effect of diseaseAge nonstationary by transforming it with the sigmoid function from Eq. (15), such that majority of changes occur in the range of -12 to +12 months. The location and gender are i.i.d. sampled from a Bernoulli distribution with $p=0.5$ for each individual, where gender acts as an irrelevant covariate. The continuous covariates are subjected to standardisation after being generated, such that the mean of each covariate is 0 and standard deviation is 1 . We then use the kernels described in Sec. 2.4, where the length-scales for continuous (standardised) covariates are set to 1 for the shared components and 0.8 for the interaction components. We set the variances of each shared component to 4 and noise to 3, i.e., $\sigma_{\text {age }}^{2}=\sigma_{\text {diseaseAge }}^{2}=\sigma_{\text {loc }}^{2}=\sigma_{\text {id }}^{2}=4$ and $\sigma_{\epsilon}^{2}=3$. With these specifications, we generate 100 datasets for each AGPM. A randomly generated longitudinal data set from AGPM5 is visualised in Fig. 1 (Note the order of latent functions is changed for better visualisation.).

In the inference, all covariates including gender are used, which means that there are $2^{4}=16$ candidate models to be selected. Interaction terms are allowed for all covariates except for diseaseAge. Table 1 shows the distribution of selected models for each generating additive GP model, with the numbers in bold font indicating correctly identified models. Table 1 shows that LonGP can achieve between 88 and 98% accuracy in inferring the correct model with these parameter settings. Results in Table 1 also shows that it becomes more challenging to identify the correct model as the generating model becomes more complex, which is expected. LonGP can accurately detect the disease related signal as well since the diseaseAge covariate is included in the final model in 97% of the simulation

Figure 3: LonGP regression results for "Lipid A biosynthesis" pathway. Normalized read counts of Russian, Finnish and Estonian infant samples are colored by red, green and blue dots, respectively. The blue line shows the nonlinear age trend for Finnish and Estonian infants. The red line shows the age trend of Russian infants. The red and blue lines are generated as the sum of components $y=f_{\mathrm{se}}^{(1)}(a g e)+f_{\mathrm{bi}}^{(3)}(r u s)+f_{\mathrm{bi} \times \mathrm{se}}^{(5)}(r u s \times a g e)$.
runs for both AGPM4 and AGPM5 models (see Table 1). Moreover, LonGP is notably specific in detecting the diseaseAge covariate as the percentage of false positives is only $0 \%, 1 \%$, and 0% for AGPM1, AGPM2, and AGPM3, respectively (see Table 1).

To better characterise LonGP's performance in different scenarios, we tested how the amount of additive noise affects the results. We varied the noise variance as $\sigma_{\epsilon}^{2} \in\{1,3,5,8\}$ and kept all other settings unchanged, effectively changing the signal to noise ratio, or the effect size relative to the noise level. Fig. 2a) shows that the model selection accuracy increases consistently as the noise variance decreases. We next tested how the number of study subjects (i.e., the sample size P) affects the inference results. We set the number of case-control pairs to $\{(10,10),(20,20),(30,30),(40,40)\}$ and keep all other settings unchanged. As expected, Fig. 2b) shows how LonGP's model selection accuracy increases as the sample size increases. Similarly, LonGP maintains its high sensitivity and specificity in detecting diseaseAge covariate across the additive noise variances and samples sizes considered here (see Suppl. Tables 5 and 6).

Finally, we also quantify how the sampling interval (i.e., the number of time points per individual) affects the inference results. We varied the sampling intervals as $\{2,3,4,6\}$ (months) corresponding to $n_{i} \in\{19,13,10,7\}$ time points for each individual and kept all other simulation settings unchanged. Suppl. Table 3 shows that again the model selection accuracy changes consistently with the number of measurement time points. Suppl. Table 7 shows that changing the sampling interval has a small but systematic effect on the sensitivity and specificity of detecting the diseaseAge covariate.

Overall, our results suggest that we can accurately infer the correct model structure and also detect a relatively weak disease related signal with as few as 10 case-control pairs and notable noise variance. Moreover, the model selection accuracy increases as the number of individuals (biological replicates), the number of time points and signal to noise ratio increases.

3.2 Longitudinal metagenomics dataset

We used LonGP to analyse a longitudinal metagenomics dataset (Vatanen et al., 2016). In this dataset, 222 children from Estonia, Finland and Russia were followed from birth until the age of three with collection of monthly stool samples which were subsequently analysed by metagenomic sequencing. The aim of this study was to characterise the developing gut microbiome in infants from countries with different socioeconomic status and to determine the key factors affecting the early gut

Figure 4: Predicted components and cumulative effect for protein Q7LGC8. Top panel shows contributions of individual components and lower panel shows cumulative effects. Red lines are cases and blue lines are controls. Bottom right panel shows the (centered) data.
microbiome development. Here we model the microbial pathway profiles quantifying the functional potential of the metagenomic communities. There are in total $N=785$ metagenomic samples. We require a pathway to be detected in at least 500 samples to be included in our LonGP analysis, which results in 394 valid microbial pathways. Let $c_{i j}$ denote the number of reads mapping to genes in the j th $(j=1, \ldots, 394)$ pathway in sample $i(i=1, \ldots, 785)$ and C_{i} is the total number of sequencing reads for sample i. The target variable is defined by $c_{i j} / C_{i} \cdot \operatorname{median}\left(C_{1}, C_{2}, \ldots, C_{N}\right)$.

We selected the following 7 covariates for our additive GP regression based on their known interaction with the gut microbiome: age, bfo, caesarean, est, fin, rus and id. bfo indicates whether an infant was breastfed at the time of sample collection; caesarean indicates if an infant was born by Caesarean section; est, fin and rus are binary covariates indicating the home country of the study subjects (Estonia, Finland and Russia, respectively). We use SE kernel for age and bfo, categorical kernel for $i d$, and binary kernel for caesarean, est, fin, and rus. Interactions are allowed for all covariates except for bfo.

We applied LonGP to analyse each microbial pathway as a target variable separately and inferred the covariates for each target variable as described above. The selected models and explained variances of the components for all 394 pathways are available in Suppl. File 1. A key discovery in Vatanen et al. (Vatanen et al., 2016) was that "Lipid A biosynthesis" pathway was significantly enriched in the gut microbiomes of Finnish children compared to Russian children. Our analysis confirmed the linear model based analysis in (Vatanen et al., 2016) by selecting the following model for "Lipid A biosynthesis" pathway: $y=f_{\mathrm{se}}^{(1)}(a g e)+f_{\mathrm{se}}^{(2)}(b f o)+f_{\mathrm{bi}}^{(3)}(r u s)+f_{\mathrm{ca}}^{(4)}(i d)+f_{\mathrm{bi} \times \mathrm{se}}^{(5)}(r u s \times$ $a g e)+f_{\mathrm{bi} \times \mathrm{se}}^{(6)}(i d \times a g e)+\epsilon$, which shows the difference between the Russian and Finnish study groups. Explained variance of $b f o$ was 0.2% and $b f o$ was thus excluded from the final model. Fig. 3 shows the normalized "Lipid A biosynthesis" data together with the additive GP predictions using kernels $y=f_{\mathrm{se}}^{(1)}($ age $)+f_{\mathrm{bi}}^{(3)}(r u s)+f_{\mathrm{bi} \times \mathrm{se}}^{(5)}($ rus \times age $)$. The obtained model fit is similar to that reported in (Vatanen et al., 2016) with an exception that the apparent non-linearity is captured by the additive GP model but otherwise the new model conveys the same information. Our analysis also identified many novel pathways with differences between Finnish, Estonian and Russian microbiomes, reported in Suppl. File 1.

3.3 Longitudinal proteomics dataset

We next analysed a longitudinal proteomics dataset from a type 1 diabetes (T1D) study (Liu et al., 2018). Liu et al. measured the intensities of more than 2000 proteins from plasma samples of 11 T 1 D patients and 10 healthy controls which were collected at 9 time points, resulting in a total of 189 samples. Detection of T1D associated auto-antibodies in the blood is currently held as the best early marker that predict the future development of T1D, and most of the individuals turning positive for multiple T1D auto-antibodies will later on develop the clinical disease. The disease event of interest is called seroconversion, which is the first time point when T1D-specific antibodies are detected in blood. Identifying early markers for T1D that would be detected even before the auto-antibodies is a grand challenge. It would allow early disease prediction and possibly even intervention.

Liu et al. used a linear mixed model with quadratic terms to detect proteins that behave differently between cases and controls. However, they did not model changes near the seroconversion in their

Figure 5: Cumulative effect $y=f_{\mathrm{se}}^{(1)}($ age $)+f_{\mathrm{bi}}^{(2)}($ group $)+f_{\mathrm{bi} \times \mathrm{se}}^{(3)}($ group \times age $)$ against real (centered) intensity of protein Q7LGC8. Red lines are cases and blue lines are controls.
model and only regressed on age. We use LonGP to re-analyse this longitudinal proteomics dataset (Liu et al., 2018) and try to find additional proteins with differing plasma expression profiles between cases and controls in general as well as focusing on samples collected close to seroconversion. The modelling is done with the following covariates: age, sero (measurement time minus seroconversion time), group (case or control), gender, and id. 1538 proteins with less than 50% missing values are kept for further analysis. We follow the same preprocessing steps as described in (Liu et al., 2018) to get the normalised protein intensities. We use SE kernel for age, input warped non-stationary SE kernel for sero, binary kernel for group as well as for gender, and categorical kernel for id. Interactions are allowed for all covariates except for sero. The selected models and explained variances of each component for all 1538 proteins are reported in Suppl. File 2.

We detected 38 proteins that are associated with the group covariate. Protein with Uniprot ID Q7LGC8 shows a group difference (the protein level of cases are higher than controls) and the selected model is $y=f_{\mathrm{se}}^{(1)}($ age $)+f_{\mathrm{bi}}^{(2)}($ group $)+f_{\mathrm{bi} \times \mathrm{se}}^{(3)}($ group \times age $)+f_{\mathrm{ca} \times \mathrm{se}}^{(4)}(i d \times$ age $)+f_{\mathrm{ca}}^{(5)}(i d)+\epsilon$. Fig. 4 shows the contribution of each component and the cumulative effects. Fig. 5 shows the cumulative effect $y=f_{\mathrm{se}}^{(1)}($ age $)+f_{\mathrm{bi}}^{(2)}($ group $)+f_{\mathrm{bi} \times \mathrm{se}}^{(3)}($ group \times age $)$ against the real protein intensity to better visualise the predicted group difference.

We detected 30 proteins that are associated with the sero covariate. We visualise two of those proteins (Uniprot IDs: P07602, Q14982) that show a signal near seroconversion time point. For both proteins LonGP detects model $y=f_{\mathrm{se}}^{(1)}($ age $)+f_{\mathrm{ca} \times \mathrm{se}}^{(2)}(i d \times$ age $)+f_{\mathrm{ca}}^{(3)}(i d)+f_{\mathrm{ns}}^{(4)}($ sero $)+\epsilon$. Fig. 6 shows the contribution of the sero component together with the real (centered) protein intensities as a function of seroconversion age for protein P07602. The sero component increases and then stablises at a higher baseline after seroconversion in the cases. This is shown by the lower baseline of cases before seroconversion and higher baselines after seroconversion. Suppl. Fig. 5 shows the predicted mean of each component as well as the cumulative effects for protein P07602. Suppl. Fig. 6 shows a different type of sero effect for protein Q14982 where a temporary increase of the protein intensity near the seroconversion event is observed in many T1D patients, in contrast to the slowly decreasing age trend. Suppl. Fig. 7 shows the predicted individual components and the cumulative effects for protein Q14982.

4 Discussion and Conclusions

General linear mixed effect model is a simple yet powerful modelling framework that has been widely accepted in biomedical literature. Still, applications of linear models can be challenging, especially when the underlying data generating mechanisms contain unknown nonlinear effects and correlation structures or non-stationary signals.

Figure 6: Predicted mean of the sero component for protein P07602. The dashed red lines show the measurements of cases and the dashed blue lines are controls. x-axis is seroconversion age and y-axis is centered protein intensity. Mean seroconversion age of all cases (79.42 month) is used as the seroconversion age for controls. The solid red line corresponds to the mean of the seroconversion component $y=f_{\mathrm{ns}}^{(4)}($ sero $)$.

Here we have described LonGP, a non-parametric additive Gaussian process model for longitudinal data analysis, which we demonstrate to solve many of the commonly faced modelling challenges. As LonGP builds on GP regression, it can automatically handle irregular sampling time points and timevarying covariates. Missing values are also easily accounted for via binary mask kernels without any extra effort. More generally, LonGP provides a flexible framework to choose appropriate covariance structures for the correlated outcomes via the GP kernel functions, and the chosen kernels are properly adjusted to given data by carrying out Bayesian inference for the kernel parameters. Gaussian processes are known to be capable of approximating any continuous function. Thus, LonGP is applicable to any longitudinal data set. Furthermore, incorporating non-stationary kernels into the kernel mixture easily adapts LonGP for non-stationary signals. Finally, LonGP is equipped with an advanced Bayesian predictive inference method that utilises several recent, state-of-the-art techniques which make model inference accurate and improves running time especially for larger data sizes and more complex models.

Compared with traditional linear regression methods, LonGP is helpful in finding relatively weak signals that have an arbitrary shape. For protein P07602 in the longitudinal proteomics dataset (Liu et al., 2018), the dominant factor is age (explained variance 25%) and the disease related effect sero (explained variance 5.5%) is a minor factor, as shown in Suppl. Fig. 5. Revealing such disease related effects is essential in understanding mechanisms of disease progression and uncovering biomarkers for diagnostic purposes. The seroconversion associated proteins revealed by our study provide a list of candidate proteins for further analysis with a more extensive sample size using, for example, targeted proteomics approaches. Similarly, in the longitudinal metagenomics dataset (Vatanen et al., 2016), we also observe non-linear effects for many of the covariates, some of which warrant further experimental studies.

Overall, supported by our results, we believe LonGP can be a valuable tool in longitudinal data analysis.

Acknowledgements

We acknowledge the computational resources provided by the Aalto Science-IT and CSC-IT Center for Science, Finland.

Funding

This work has been supported by the Academy of Finland Centre of Excellence in Molecular Systems Immunology and Physiology Research 2012-2017 grant 250114; the Academy of Finland grants no. 292660, 292335, 294337, 292482, 287423; JDRF grant no. 17-2013-533, 1-SRA-2017-357-Q-R; and the Finnish Funding Agency for Innovation Tekes.

References

Duvenaud, D. K., Nickisch, H., and Rasmussen, C. E. (2011). Additive gaussian processes. In Advances in Neural Information Processing Systems 24.

Gibbons, R. D., Hedeker, D., and DuToit, S. (2010). Advances in analysis of longitudinal data. Annual review of clinical psychology, 6, 79-107.

Heinonen, M., Mannerström, H., Rousu, J., Kaski, S., and Lähdesmäki, H. (2016). Non-stationary gaussian process regression with hamiltonian monte carlo. In Proceedings of the 19 th International Conference on Artificial Intelligence and Statistics, JMLR: Workshop and Conference Proceedings, pages 732-740. JMLR.

Liu, C.-W., Bramer, L., Webb-Robertson, B.-J., Waugh, K., Rewers, M. J., and Zhang, Q. (2018). Temporal expression profiling of plasma proteins reveals oxidative stress in early stages of type 1 diabetes progression. Journal of Proteomics, 172, 100-110.

Liu, J. and Coull, B. (2017). Robust hypothesis test for nonlinear effect with gaussian processes. In Advances in Neural Information Processing Systems 30.

Neal, R. M. (2003). Slice sampling. The Annals of Statistics, 31(3), 705-741.
Qamar, S. and Tokdar, S. T. (2014). Additive Gaussian Process Regression.

Quintana, F. A., Johnson, W. O., Waetjen, E., and Gold, E. (2016). Bayesian nonparametric longitudinal data analysis. Journal of the American Statistical Association, 111(515), 1168-1181.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. The MIT Press
Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics, 9, 130-134.

Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(2), 319-392.

Saul, A., Hensman, J., Vehtari, A., and Lawrence, N. (2016). Chained Gaussian Processes, volume 51 of Journal of Machine Learning Research: Workshop and Conference Proceedings, pages 1431-1440. JMLR W\&CP.

Snelson, E., Ghahramani, Z., and Rasmussen, C. E. (2004). Warped gaussian processes. In Advances in Neural Information Processing Systems 16, pages 337-344. MIT Press.

Tolvanen, V., Jylänki, P., and Vehtari, A. (2014). Expectation propagation for nonstationary heteroscedastic gaussian process regression. In 2014 IEEE International Workshop on Machine Learning for Signal Processing ($M L S P$).

Vanhatalo, J., Pietiläinen, V., and Vehtari, A. (2010). Approximate inference for disease mapping with sparse gaussian processes. Statistics in Medicine, 29(15), 1580-1607.

Vanhatalo, J., Riihimäki, J., Hartikainen, J., Jylänki, P., Tolvanen, V., and Vehtari, A. (2013). GPstuff: Bayesian modeling with Gaussian processes. Journal of Machine Learning Research, 14(1), 1175-1179.

Vatanen, T., Kostic, A. D., d'Hennezel, E., Siljander, H., Franzosa, E. A., and et al. (2016). Variation in microbiome lps immunogenicity contributes to autoimmunity in humans. Cell, $\mathbf{1 6 5}(4), 842-853$.

Vehtari, A., Mononen, T., Tolvanen, V., Sivula, T., and Winther, O. (2016). Bayesian leave-one-out cross-validation approximations for gaussian latent variable models. Journal of Machine Learning Research, 17(103), 1-38.

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical bayesian model evaluation using leave-one-out crossvalidation and waic. Statistics and Computing, 27(5), 1413-1432.

Wu, H. and Zhang, J.-T. (2006). Nonparametric Regression Methods for Longitudinal Data Analysis: MixedEffects Modeling Approaches. Wiley.

LonGP: an additive Gaussian process regression model for longitudinal study designs (supplementary)

Lu Cheng, Siddharth Ramchandran, Tommi Vatanen, Niina Lietzen, Riitta Lahesmaa, Aki Vehtari and Harri Lähdesmäki

January 29, 2018

1 Supplementary figures

Figure 1: Non-stationary transformation. The x -axis is the original disease related age and the y-axis is the transformed disease related age. Sigmoid function $f(x)=-40+\frac{80}{1+e^{-0.5 x}}$ is used for the transformation. The red bars indicate the positions of ± 12 month.

Figure 2: Functions drawn from stationary and non-stationary SE kernel. The left panel shows functions drawn form a stationary SE kernel with length-scale $l_{\mathrm{se}}=1$ and magnitude $\sigma_{s e}^{2}=1$. The right panel shows functions drawn form a non-stationary SE kernel by first applying the transformation shown in Figure 1 and then generated using the same SE kernel with scale $l_{\text {se }}=1$ and magnitude $\sigma_{s e}^{2}=1$. Random functions are drawn using the standardised inputs and then transformed back to original range.

Figure 3: Priors for kernel parameter. The left panel shows priors for lengthscales and the right panel shows priors for magnitude and noise variance. Note that the target variable and continuous covariates are all standardised to mean 0 and standard deviation 1 .

Figure 4: Software architecture. The task manager monitors the whole process and schedules the tasks. The main worker ensures the tasks for a given target is executed in the right order. The slaves run parallel jobs assigned by the task managers.

Figure 5: Predicted components and cumulative effects for protein P07602. Top panel shows contributions of individual components and lower panel shows cumulative effects. Red lines correspond to cases and blue lines correspond to controls. Bottom right panel shows the (centered) data. Note the x-axis of $f^{(4)}$ is seroconversion age.

Figure 6: Predicted mean of the sero component for protein Q14982. The dashed red lines show the measurements of cases and the dashed blue lines are measurements of controls. x-axis is seroconversion age and y-axis is centered protein intensity. Mean seroconversion age of all cases (79.42 month) is used as the seroconversion age for controls. The solid red line corresponds to the mean of the seroconversion component $y=f_{n s}^{(4)}($ sero $)$.

Figure 7: Predicted components and cumulative effects for protein Q14982. Top panel shows contributions of individual components and lower panel shows cumulative effects. Red lines correspond to cases and blue lines correspond to controls. Bottom right panel shows the (centered) data. Note the x-axis of $f^{(4)}$ is seroconversion age.

2 MCMC details

We start 4 independent Markov chains from different, randomly initialised initial parameter values. Then, we combine the 4 chains and check the convergence by throwing away 500 burn-in samples and thinning the remaining 2000 samples by 5 . If converged, then quit; otherwise we thin the combined chain further by 2 . If not converged, we repeat the process and check the convergence from the resulting combined markov chains, for at most 4 times. The potential reduction scaling factor (PRSF) [1] R is used to check the convergence by the following rules: if $R<=1.1$, converged; if $1.1<R<=1.2$, does not converge well; if $R>1.2$, does not converge.

3 LonGP algorithm

This section describes in detail how the covariate selection process works. Let us denote a given set of continuous covariates by $\mathbf{C}=\left(V_{1}, V_{2}, \ldots ., V_{c}\right)$ and the binary covariates by $\mathbf{B}=\left(V_{c+1}, V_{c+2}, \ldots ., V_{c+b}\right)$, where c and b are the number of continuous and binary/categorical variables. The categorical covariate id must be included in set B. In LonGP, the user needs to provide the kernel types (Sec. 2.4) for all the given covariates, as well as indicate whether interactions for each covariate is allowed. The data are automatically standardised and the parameter priors for kernels are predefined (see Sec. 2.5). For any given subset of covariates (must include $i d$), the additive GP model is constructed by the following rules:

1. Construct a kernel for each covariate according to the given kernel type and add it to the model.
2. For each continuous covariate that allows interaction, construct product kernels with all categorical/binary covariates that also allow interactions (and that are also covariates of a given model) and add them to the model.
3. For each pair of categorical/binary covariates (excluding id) that allows interactions, construct a product kernel and add it to the model.
4. Add the noise to finalise the model.

For any covariate subset V, we can construct a GP model GPM(V) according
to these four steps. The covariates are then selected by the following algorithm:

```
Algorithm 1: Stepwise GP regression algorithm
    Result: A GP model
    Set the current selected covariate set to \(\mathbf{V}_{\text {curr }}=\{i d\}\) and the current
        model to GPM \(\left(\mathbf{V}_{\text {curr }}\right)\), infer the parameters using MCMC and perform
        LOOCV ;
    for \(i \leftarrow 1\) to \(c\) do
        foreach \(V_{j} \in \mathbf{C} \backslash \mathbf{V}_{\text {curr }}\) do
            Add \(V_{j}\) and build a candidate model \(\operatorname{GPM}\left(\mathbf{V}_{\text {curr }} \cup V_{j}\right)\), run
                    MCMC and perform LOOCV ;
        end
        Compare all the generated candidate models (Section 2.7.3) and
            choose the best model \(\operatorname{GPM}\left(\mathbf{V}_{\text {curr }} \cup V_{\text {best }}\right)\);
        Calculate LOOCVF of \(\operatorname{GPM}\left(\mathbf{V}_{\text {curr }} \cup V_{\text {best }}\right)\) versus \(\operatorname{GPM}\left(\mathbf{V}_{\text {curr }}\right)\);
        if \(L O O C V F \geq 0.8\) then
            Set \(\mathbf{V}_{\text {curr }}=\mathbf{V}_{\text {curr }} \cup V_{\text {best }}\), update the current model accordingly ;
        else
            break ;
        end
    end
    Perform SCV on the current model ;
    for \(i \leftarrow 1\) to \(b\) do
            foreach \(V_{j} \in \mathbf{B} \backslash \mathbf{V}_{\text {curr }}\) do
                Add \(V_{j}\) and build a candidate model \(\operatorname{GPM}\left(\mathbf{V}_{\text {curr }} \cup V_{j}\right)\), run
                    MCMC and perform SCV ;
            end
            Compare all the generated candidate models (Section 2.7.3) and
            choose the best model \(\operatorname{GPM}\left(\mathbf{V}_{\text {curr }} \cup V_{\text {best }}\right)\);
            Calculate SCVF of \(\operatorname{GPM}\left(\mathbf{V}_{\text {curr }} \cup V_{\text {best }}\right)\) versus \(\operatorname{GPM}\left(\mathbf{V}_{\text {curr }}\right)\);
            if \(S C V F \geq 0.95\) then
                Set \(\mathbf{V}_{\text {curr }}=\mathbf{V}_{\text {curr }} \cup V_{\text {best }}\), update the current model accordingly ;
            else
                break ;
            end
    end
    Make the current model the final model and run MCMC inference. ;
    Make predictions using each component (kernel) on the training data,
        calculate the variances. ;
    Calculate the explained variance (variances divided by the sum) of each
        component, delete components that have lower variances than a user
        defined threshold ;
```

The algorithm tries to select covariates with reasonably large effects and the thresholds of the LOOCVF and SCVF are determined by the user (defaults are 0.8 and 0.95).

4 Software architecture

In many occasions more than one target variable is measured, such as in transcriptome studies using microarrays or RNA-sequencing, which means that we need to run LonGP for many target variables at the same time. Fortunately, several parts of our method can be efficiently parallelised. We designed the LonGP software so that it can be easily deployed and parallelised in a modern computing cluster with shared storage, as shown in Fig. 4. Briefly, there are three types of nodes in the physical layer. The task manager monitors the whole process and assigns different tasks to the main workers and slaves. The main workers focus on one target variable and ensure that the tasks are executed in the right order. It also informs the task manager about the parallel tasks that are available. The slaves run parallel tasks assigned by the task manager. When a main worker finishes its job, it will turn into a slave node.

5 Tables for simulation experiments

Table 1. Model selection accuracy as a function of noise variance. Table shows the number of times the correct model is identified among 100 Monte Carlo simulations.

Generated Datasets	noise $=1$	noise $=3$	noise $=5$	noise $=8$
AGPM1	100	98	93	95
AGPM2	98	95	92	86
AGPM3	96	95	93	91
AGPM4	96	92	92	90
AGPM5	94	88	82	80

Table 2. Model selection accuracy as a function of sample size. Table shows the number of times the correct model is identified among 100 Monte Carlo simulations.

Generated Datasets	10 cases and 10 controls	20 cases and 20 controls	30 cases and 30 controls	40 cases and 40 controls
AGPM1	90	98	94	98
AGPM2	71	95	93	95
AGPM3	85	95	95	97
AGPM4	85	92	94	96
AGPM5	71	88	96	97

Table 3. Model selection accuracy as a function of sampling time points. Table shows the number of times the correct model is identified among 100 Monte Carlo simulations.

Generated Datasets	2 months	3 months	4 months	6 months
AGPM1	97	98	94	96
AGPM2	95	95	88	85
AGPM3	97	95	91	93
AGPM4	96	92	86	86
AGPM5	94	88	87	86

Table 4. Inclusion of diseaseAge in the final model for simulated data with 20 cases and 20 controls, noise variance $\sigma_{\epsilon}^{2}=3$ and samples taken every 3 months. Table shows the number of times the diseaseAge covariate is included in the inferred model among 100 Monte Carlo simulations.

Generated Datasets	diseaseAge detected	diseaseAge not detected
AGPM1	0	100
AGPM2	1	99
AGPM3	0	100
AGPM4	97	3
AGPM5	97	3

Table 5. Inclusion of diseaseAge in the final model as a function of noise variance. Table shows the number of times the diseaseAge covariate is included in the inferred model among 100 Monte Carlo simulations.

Generated Datasets	noise $=1$	noise $=3$	noise $=5$	noise $=8$
AGPM1	0	0	5	0
AGPM2	0	1	0	2
AGPM3	0	0	1	2
AGPM4	98	97	98	97
AGPM5	99	97	94	92

Table 6. Inclusion of diseaseAge in the final model as a function of sample size. Table shows the number of times the diseaseAge covariate is included in the inferred model among 100 Monte Carlo simulations.

Generated Datasets	10 cases and 10 controls	20 cases and 20 controls	30 cases and 30 controls	40 cases and 40 controls
AGPM1	4	0	0	0
AGPM2	0	1	0	5
AGPM3	0	0	0	0
AGPM4	94	97	99	96
AGPM5	93	97	100	100

Table 7. Inclusion of diseaseAge in the final model as a function of sampling time points. Table shows the number of times the diseaseAge covariate is included in the inferred model among 100 Monte Carlo simulations.

Generated Datasets	2 months	3 months	4 months	6 months
AGPM1	0	0	0	0
AGPM2	0	1	3	4
AGPM3	0	0	1	1
AGPM4	100	97	94	92
AGPM5	98	97	94	92

References

[1] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin. Bayesian Data Analysis, Third Edition. Chapman \& Hall/CRC Texts in Statistical Science. Taylor \& Francis, 2013.

Appendices

- Supplementary File 1
- Supplementary File 2

Full result tables in xls format can be downloaded from:
http://research.cs.aalto.fi/csb/software/longp/

Supplementary File 1

targetio targentame	delName												
		lllll	${ }_{0}^{1}$	$\begin{array}{lll}0 \\ 0 & 1 \\ 0 & 1\end{array}$	年，1．0\％\％	，	o， 0 ， 20%	${ }_{\text {a }}^{\text {0，10\％}}$	${ }_{\substack{0,20 \% \\ 13,9 \%}}^{\text {，}}$	0，00\％	0，10\％	99，00\％	0．00\％
	model 0 O ageetiofordidegetid				0，30\％	0，40\％	${ }^{0}$	${ }^{\text {90，50\％}}$	${ }_{\substack{8,70 \%}}^{12,000}$				
58 co：00061441｜18P 95 ｜Purine nucleobase metabolic	del 0 agethorotdagetid	$\begin{array}{lllllll}2 & 1 & 1 & 0 & 0\end{array}$	0	1	17，90\％	0，30\％	0，20\％	30，5\％	51，10\％				
${ }^{74} 60.000090921$｜PP 105 Ifaty acid catabolic process	model 0 agethforid togetid		0	01	20，10\％	0，70\％	${ }^{0.40 \%}$	69，30\％	9，60\％				
			\％	1 0 0	${ }^{\text {9，50\％}}$	0，50\％	${ }_{\text {en }}^{\text {2，6\％}}$	${ }^{\text {5，50\％}}$	${ }_{8}^{40,50 \%}$				
	model 0 agethtordidagetid	$\begin{array}{lllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}$	0	01	0，00\％	0，00\％	1，80\％	98，10\％	0，10\％				
118860.00092929 ［PP1031［8enetic transer	model ${ }^{\text {a }}$ agethforid + agetid	$\begin{array}{lllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}$	0	01	1，00\％	2，70\％	2，80\％	10，30\％	83，10\％				
		$\begin{array}{llllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$		$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1\end{array}$	4，${ }_{4,70 \%}$	${ }^{0.50 \%}$	${ }^{1,80 \%}$	${ }^{5,10 \%}$	${ }_{\text {8，}}^{89,50 \%} 88,00 \%$				
		${ }_{2}^{2} 1111000$	。	01	30，70\％	${ }_{0}^{0,70 \%}$	0，80\％	33，10\％	34，80\％				
		$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0\end{array}$	－	$\begin{array}{ll}0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}$	10，80\％	－ 0.80%	${ }_{\substack{0 \\ 5.30 \% \%}}^{\text {5，0\％\％}}$	8，70\％	（29，30\％				
			\％	${ }_{0}^{0} 1$	12，30\％	0，30\％	${ }_{0}^{0,40 \%}$	3，30\％	93，20\％				
		$\begin{array}{llllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$	－	$\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}$	15，70\％	－ 0.70%	${ }_{\text {l }}^{1.20 \%}$		（71，70\％				
		$\begin{array}{llllllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$	！	$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1\end{array}$	${ }^{4}$ 4，90\％	${ }^{0,10 \%}$	10，50\％	${ }^{24.8,8 \%}$	$54,20 \%$ $65,60 \%$				
	model 0 a agethionotdigetid	${ }_{2}^{2} 111000$	。	01	5，00\％	1，00\％	0，30\％	8，90\％	84，80\％				
			0	01	6，80\％	1，10\％	0，30\％	16，70\％	75，00\％				
		$\begin{array}{llllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}$	－	$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1 \\ 0\end{array}$	19，60\％	0，50\％	${ }^{0.60 \%}$	72，0\％	7，20\％				
257 60：00004601 M M 1022 leperxidaseasativity	model 0 agethtiontidigetid		－	01	16，50\％	1，2\％	0，40\％	12，20\％	69，70\％				
	model 0 agethfotid riget		0	${ }_{0} 1$	2，80\％	0，70\％	5，90\％	14，0\％\％	78.50% $8,00 \%$				
		$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}$	－	${ }^{0} 1$	${ }^{\text {5，0，0\％}}$	（e20\％	¢， $\begin{aligned} & \text { 5，60\％} \\ & 0,20 \% \\ & 0\end{aligned}$		${ }_{\substack{80,90 \% \\ 7,90 \%}}$				
		$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$	－	$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1 \\ 0\end{array}$	${ }^{0} 0.00 \%$	－	${ }^{0.00 \%}$	99，9\％\％	${ }^{0.00 \%}$				
	model 0 ageethiotiditagetid		－	${ }_{0} 1$	${ }_{\substack{0 \\ 5,00 \% \\ 0.00 \%}}$	${ }_{\text {1，40\％}}^{0.10 \%}$	0，62\％	8，7，70\％	－1，00\％				
		$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$	－	$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1\end{array}$	0，30\％	0，20\％	（0，20\％	98，80\％	${ }^{0.50 \%}$				
357 60．000628998PP 104 Incleotideexcision reeair	model 0 agethitotidagetid	1	0	01	2，90\％	0，60\％	0，40\％	4，30\％	91，80\％				
		$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$	－	$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1\end{array}$	16，80\％	， 0.30%	li，${ }_{\text {2，0\％}}$	${ }^{76,10 \%}$	${ }_{\text {c }}^{6.50 \%}$				
391 60：031123／ $\mathrm{BP} / 06$｜RNA 3 －end processing	model 0 O agetifioididagetid	${ }_{2}^{2} 1111000$	0		3，60\％	1，50\％	${ }^{\text {0，50\％}}$	21，80\％	72，50\％				
		$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}$	1	11	4，00\％	0，70\％	1，30\％	${ }^{0.30 \%}$	1，20\％	5，20\％	0，10\％	34，10\％	0，00\％
			1	${ }_{0}^{1} 1$	－${ }_{\text {14，20\％}}^{\text {2，20\％}}$	${ }^{1,720 \%}$	${ }^{\text {li，10\％}}$	${ }^{3,00 \%}$	${ }_{8,10 \%}^{41,20 \%}$	${ }_{\text {33，50\％}}^{43,50 \%}$	40，88\％		
		$\begin{array}{llllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$	1	$\begin{array}{ll}0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}$	${ }^{0.70 \%}$	0，60\％	${ }_{\substack{2,80 \% \\ 3,40 \%}}^{\text {a }}$	0．50\％${ }_{\text {2，10\％}}$	4，60\％	8．50\％ 14.80% der	${ }^{84,90 \%}$		
${ }_{29} 960.00006994 \mid$｜PP $107 \mid$ Ifuconeoegenesis	model \sim ogetblioturustidaget	${ }_{2}^{2} 1111000$		01	0，00\％	1，90\％	4，20\％	0，50\％	${ }_{\text {2，0\％}}$	14，85\％	75，70\％		
		$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$		$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1\end{array}$	${ }^{0,40 \%}$	${ }^{3,50 \%}$	3，00\％	2， $2,0 \%$	${ }^{9,70 \%}$				
			1	01	${ }^{\text {2，40\％}}$	${ }^{\text {3，30\％}}$	${ }^{\text {4，20\％}}$	0，6\％\％	${ }_{\text {g，}}^{\text {g，7\％}}$	47，70\％	${ }^{\text {37，90\％}}$		
		$\begin{array}{llllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}$			（0，00\％	（0，50\％\％	ceme	li， $1,00 \%$	${ }_{8,00 \%}^{11,70 \%}$		（2， 5 50\％\％		
			1	01	0．00\％	0，90\％	5，00\％	0，30\％	10，30\％	39，60\％	43，90\％		
		$\begin{array}{llllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$	1	$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1\end{array}$	16，30\％	－	${ }^{3,520 \%}$	${ }_{\text {l }}^{0,20 \%}$	${ }^{9,40 \%}$	${ }_{\text {b }}^{53,10 \%}$	${ }_{\substack{36,60 \% \\ 4,00 \%}}^{\text {a，}}$		
		$\begin{array}{llllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}$	1	${ }^{0} 1$	${ }^{0,20 \%}$	${ }_{\substack{1.80 \% \\ 4.10 \%}}^{1}$		0．50\％	${ }_{\text {4，40\％}}^{4}$	ces．，			
				${ }^{0} 1$	${ }^{2,30 \%}$	${ }^{4,100 \%}$	${ }^{3,90 \%}$	${ }_{0}^{0,70 \%}$			43，30\％		
		$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$	1	$\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}$	－0，0\％\％	（1，0\％\％	$\xrightarrow{2.10 \%}$		－${ }_{8.80 \%}^{8.80 \%}$				
	model \sim ogetbitiorustidagee	$\begin{array}{llllllll}2 & 1 & 1 & 1 & 0 & 0\end{array}$	1	${ }_{0} 1$	0，00\％	0，6\％\％	7，60\％	${ }^{2}, 08 \%$	${ }_{6,70 \%}^{8.80}$	20，5\％\％	${ }_{61,40 \%}^{62,}$		
		$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$	1	$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1\end{array}$	2．0\％\％	，	eneme	0，50\％	${ }_{\text {2，}}^{\text {2，6\％\％}} 1$	$3,40 \%$ 40.00% at，			
		${ }_{2}^{2} 11 \begin{array}{llllll}1 & 1 & 0 & 0\end{array}$	1	01	10，75\％	2，60\％	${ }^{\text {a }}$	${ }^{\text {1，40\％}}$	${ }_{\text {c，}}^{\substack{18,90 \%}}$		${ }_{56,20 \%}^{23,20 \%}$		
		$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}$		$\begin{array}{ll}0 \\ 0 \\ 0 & 1 \\ 0 & 1\end{array}$	24，50\％	0，70\％	${ }^{0.60 \%}$	${ }_{0}^{0,90 \%}$	${ }_{\text {l }}^{\text {1，90\％}}$				
	moded 0 ogetbiforustid taget ustage id	$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0\end{array}$	1	01	0，00\％	0，70\％	${ }^{3,80 \%}$	${ }^{2}, 20 \%$	61，60\％	27，80\％	${ }^{3,7,70 \%}$		
		$\begin{array}{llllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$		$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1\end{array}$	${ }_{\substack{0,20 \% \\ 6,40 \%}}^{0,08}$	${ }_{\text {1，40\％}}^{1,90 \%}$	${ }^{0.9,70 \%}$	${ }^{4,50 \%}$	$\underset{\substack{11,20 \% \\ 5,20 \%}}{1}$		（10，7，9\％\％		
		$\begin{array}{llllllllll}2 & 1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}$	1	01	5，30\％	0，60\％	2，30\％	0，40\％\％		${ }^{21.50 \% \%}$	${ }_{\substack{6,7,30 \% \\ 6688 \%}}$		
		$\begin{array}{llllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ & 1 & 0 & 0\end{array}$		$\begin{array}{ll}0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}$	12，10\％	${ }_{\text {0，}}^{\substack{1,10 \% \%}}$	${ }_{\text {l }}^{\text {1，80\％}}$	${ }_{0}^{0,20 \%} 0$	${ }_{\text {4，}}^{4,40 \%}$				
		$\begin{array}{llllllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$		$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1\end{array}$	${ }^{2.50 \%}$	－	$\underbrace{1}_{\substack{4.80 \% \\ 3,10 \%}}$	${ }_{4}^{1.20 \%}$	7．80\％		${ }^{\text {co，30\％}}$ 21，10\％		
			1	${ }_{0}^{0} 1$	17，0\％	${ }^{0}$	${ }^{\text {3，20\％}}$	${ }_{\substack{4 \\ 0,30 \%}}^{4,400 \%}$	$\xrightarrow{1,2,0 \%}$		${ }_{62,00 \%}^{2,1,00 \%}$		
		$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$		$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1\end{array}$	${ }_{\text {c，}}^{\substack{0,70 \% \\ 3,10 \%}}$	0．50\％	${ }^{3.40 \%}$	（0，20\％		（1，10\％	${ }_{\substack{71,00 \% \\ 0.30 \%}}$		
		$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0\end{array}$	1	01	－，70\％	${ }^{3,70 \%}$	${ }_{5}^{5,50 \%}$	0，70\％	5，20\％	18，90\％	${ }^{55,20 \%}$		
		$\begin{array}{lllllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$	1	$\begin{array}{ll}0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}$	9，80\％	－	${ }^{4,730 \%}$	， $\begin{aligned} & 0,80 \% \\ & 3,80 \% \\ & \\ & \text { ，}\end{aligned}$	${ }_{\text {li，}}^{13,5 \%}$	退年，80\％	${ }_{\text {cke }}^{\text {26，10\％}}$		
		$\begin{array}{llllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$	1	${ }^{0} 1$	14，80\％	－${ }_{\text {3，70\％}}^{0.60 \%}$		2，60\％			$3,880 \%$ 14.20%		
		$\begin{array}{lllllllll}2 & 1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$		1 0 0 1	${ }^{2,70 \%}$	${ }^{0,60 \%}$	${ }^{3,00 \%}$	0，50\％	${ }_{\text {2，10\％}}^{14,40 \%}$	${ }_{4,00 \%}^{66,50 \%}$	${ }_{8}^{14,20 \%}$		
		$\begin{array}{llllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}$	1	${ }^{0} 1$	${ }^{1,40 \%}$	0，60\％	－${ }_{\text {1，50\％}}^{\text {，} 50 \%}$	0，40\％\％			${ }_{\substack{8,50 \% \\ 0.10 \%}}^{\text {a }}$		
				$\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1\end{array}$	${ }^{4}$,	${ }^{\text {1，50\％}}$	7，00\％	${ }^{\text {a }}$ 0，20\％	34，00\％		${ }_{\text {cke }}^{\substack{\text { 6，} 20 \%}}$		
		$\begin{array}{llllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0\end{array}$		$\begin{array}{ll}0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}$	12．6\％\％	（e20\％		0．00\％	${ }_{\text {2，}}^{\substack{2,10 \%}}$		cem， $\begin{gathered}6,30 \% \\ 58.80 \%\end{gathered}$		
	model \sim ogetbitiotustidagee	${ }_{2}^{2} 1111000$		${ }_{0} 1$	5，60\％	${ }^{\text {0，50\％}}$	${ }^{3,70 \%}$	${ }^{0,70 \%}$	${ }^{\text {2，90\％}}$	9，90\％	76，6\％\％		
	mode o oreetifotustid tage tusagetd	$\begin{array}{llllllll}2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0\end{array}$		01	， 2 \％	0，50\％	，	－${ }_{\text {4，20\％}}^{1.20 \%}$	4，40\％	退 50%			
$26060: 0048038$｜MF｜03／quinone binding	modelo 0 agethforustididget	$2{ }_{2} 111000$		01	5，70\％	0，30\％	2，70\％	0，70\％	7，40\％	66，80\％	16，40\％		

[^0][^1]| 175 G0:0005929\|CC|02|cilium |
| :---: |

Supplementary File 2

targetID	targetName	modelName	convergeFlag	age	oT	up	er	d	Variance Ex	lained							
55	P10912	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	32,20\%	19,00\%	12,90\%	1,70\%	11,10\%	23,10\%			
67	Q6PID9	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	41,80\%	5,60\%	7,40\%	14,80\%	10,60\%	19,90\%			
70	P62333	model $0 \sim$ age+gender+id+age*gender+age*id	2	1	0	0	1	1	22,40\%	12,30\%	7,20\%	0,90\%	6,10\%	51,20\%			
89	P55290	model $0 \sim$ age+gender+id + age ${ }^{*}$ gender + age*id	2	1	0	0	1	1	3,40\%	5,70\%	60,00\%	2,80\%	14,30\%	13,90\%			
159	095490	model $0 \sim$ age+gender+id+age*gender+age*id	2	1	0	0	1	1	4,20\%	6,40\%	48,00\%	0,40\%	26,90\%	14,10\%			
245	P02788	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	2,10\%	3,40\%	37,90\%	1,40\%	51,50\%	3,70\%			
258	P09622	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	31,30\%	10,30\%	9,40\%	14,10\%	15,10\%	19,80\%			
322	Q93070	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	6,50\%	4,00\%	68,30\%	0,40\%	2,80\%	18,10\%			
323	Q13554	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	24,50\%	2,20\%	68,00\%	0,20\%	0,30\%	4,80\%			
374	000462	model 0 ~ age+gendertid+age*gender+age*id	2	1	0	0	1	1	34,70\%	9,00\%	36,50\%	0,20\%	4,80\%	14,90\%			
383	P47813	model $0 \sim$ age + gender + id+age*gender+age*id	2	1	0	0	1	1	9,00\%	7,50\%	2,30\%	2,30\%	46,40\%	32,50\%			
386	014791	model $0 \sim$ age+gender+id+age*gender+age*id	2	1	0	0	1	1	23,20\%	6,30\%	43,80\%	0,80\%	4,50\%	21,60\%			
397	015204	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	25,50\%	5,50\%	34,90\%	0,30\%	16,20\%	17,50\%			
439	075493	model $0 \sim$ age+gender+id+age*gender+age*id	2	1	0	0	1	1	6,50\%	8,50\%	25,30\%	31,80\%	14,90\%	13,00\%			
505	P01344	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	28,60\%	3,00\%	27,20\%	2,90\%	8,60\%	29,60\%			
512	P02458	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	84,40\%	0,80\%	1,90\%	3,80\%	2,40\%	6,80\%			
525	P02747	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	12,10\%	9,70\%	42,20\%	4,60\%	9,90\%	21,50\%			
569	P05019	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	75,40\%	2,50\%	10,00\%	1,50\%	1,00\%	9,50\%			
638	P08174	model $0 \sim$ age+gender+id+age*gender+age*id	2	1	0	0	1	1	12,50\%	7,70\%	38,40\%	0,90\%	9,80\%	30,90\%			
706	P12107	model $0 \sim$ age + gender + id+age*gender+age*id	2	1	0	0	1	1	65,90\%	2,00\%	4,90\%	9,10\%	7,40\%	10,70\%			
778	P17936	model $0 \sim$ age+gender+id+age*gender+age*id	2	1	0	0	1	1	59,80\%	2,60\%	22,70\%	2,60\%	1,30\%	11,00\%			
864	P28062	model $0 \sim$ age+gender+id+age*gender+age*id	2	1	0	0	1	1	0,70\%	0,50\%	86,40\%	0,00\%	9,60\%	2,70\%			
897	P31948	model $0 \sim$ age + gender + id + age ${ }^{\text {\% gender }}$ +age*id	2	1	0	0	1	1	12,80\%	0,00\%	17,00\%	6,60\%	31,30\%	32,40\%			
1097	Q03167	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	13,60\%	7,10\%	37,50\%	0,60\%	8,10\%	33,10\%			
1098	Q03591	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	0,40\%	0,50\%	96,20\%	0,00\%	0,20\%	2,70\%			
1206	Q15848	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	40,70\%	1,30\%	14,60\%	1,80\%	15,10\%	26,50\%			
1355	Q92859	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	2,60\%	2,90\%	21,20\%	10,80\%	19,90\%	42,60\%			
1357	Q92896	model $0 \sim$ age + gender + id + age ${ }^{*}$ gender + age*id	2	1	0	0	1	1	3,50\%	8,90\%	45,40\%	0,40\%	7,00\%	34,80\%			
1479	Q9P232	model $0 \sim$ age + gender + id+age*gender+age*id	2	1	0	0	1	1	24,10\%	4,30\%	32,70\%	0,70\%	6,20\%	32,00\%			
1493	Q9UHG3	model 0 ~ age+gender+id+age*gender+age*id	2	1	0	0	1	1	3,10\%	9,30\%	44,50\%	1,00\%	5,90\%	36,20\%			
	P35237	model 0 ~ age+group+gender+id+age*group+age*gender+age*id+group*gender	2	1	0	1	1	1	7,70\%	0,30\%	0,10\%	2,20\%	6,60\%	0,70\%	50,20\%	30,10\%	2,20\%
104	P13942	model 0 ~ age+group+gender+id+age*group+age*gender+age*id+group ${ }^{\text {* }}$ gender	2	1	0	1	1	1	77,20\%	2,40\%	1,90\%	1,70\%	2,10\%	3,20\%	2,40\%	0,00\%	9,10\%
1502	Q9uk05		2	1	0	1	1	1	1,70\%	0,10\%	0,30\%	66,30\%	0,60\%	0,10\%	22,60\%	0,10\%	8,10\%
74	Q9ULH1	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	47,60\%	12,50\%	17,80\%	15,50\%	1,90\%	4,70\%			
112	075390	model $0 \sim$ age + grouptid+age*group+age*id	2	1	0	1	0	1	26,40\%	17,10\%	7,80\%	7,70\%	16,50\%	24,50\%			
166	Q9Y6E0	model $0 \sim$ age+grouptid+age*group+age*id	2	1	0	1	0	1	20,70\%	1,20\%	2,80\%	8,80\%	53,80\%	12,70\%			
181	Q96EE4	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	4,50\%	26,00\%	33,10\%	1,40\%	7,80\%	27,20\%			
318	Q96NZ9		2	1	0	1	0	1	13,50\%	4,60\%	57,90\%	0,30\%	2,60\%	21,20\%			
370	000339	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	39,00\%	5,50\%	22,90\%	0,70\%	10,60\%	21,30\%			
582	P05186	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	7,80\%	2,30\%	3,10\%	5,80\%	79,50\%	1,40\%			
595	P06576	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	42,00\%	0,40\%	3,10\%	22,40\%	30,00\%	2,20\%			
652	P08648	model $0 \sim$ age + group+id+age*group+age*id	2	1	0	1	0	1	7,30\%	16,90\%	13,40\%	2,30\%	44,00\%	16,10\%			
664	P09486	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	4,50\%	0,70\%	84,90\%	0,10\%	5,60\%	4,30\%			
764	P16152	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	11,50\%	2,90\%	7,60\%	13,30\%	9,30\%	55,40\%			
783	P18463	model $0 \sim$ age+grouptid+age*group+age*id	2	1	0	1	0	1	8,90\%	6,40\%	76,80\%	0,30\%	2,60\%	5,00\%			
804	P20774	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	46,20\%	3,60\%	30,50\%	1,70\%	4,10\%	13,80\%			
836	P23526	model $0 \sim$ age+grouptid+age*group+age*id	2	1	0	1	0	1	53,20\%	0,00\%	1,20\%	6,20\%	7,70\%	31,70\%			
886	P30460	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	9,40\%	14,40\%	60,40\%	0,70\%	4,70\%	10,30\%			
946	P42574	model $0 \sim$ age + group+id + age ${ }^{*}$ group+age*id	2	1	0	1	0	1	32,10\%	0,10\%	3,20\%	39,00\%	12,30\%	13,30\%			

967	P48506	model $0 \sim$ age+grouptid+age*group+age*id	2	1	0	1	0	1	58,80\%	0,10\%	6,00\%	7,90\%	7,50\%	19,60\%
984	P49773	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	32,70\%	0,10\%	5,20\%	7,90\%	22,00\%	32,00\%
1033	P61019	model $0 \sim$ age+grouptid+age*group+age*id	2	1	0	1	0	1	37,30\%	8,20\%	7,30\%	7,20\%	36,40\%	3,60\%
1044	P61769	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	2,70\%	2,70\%	81,20\%	0,10\%	9,00\%	4,30\%
1049	P62263	model $0 \sim$ age+grouptid+age*group+age*id	2	1	0	1	0	1	27,00\%	7,80\%	34,20\%	6,70\%	15,80\%	8,50\%
1161	Q14008	model $0 \sim$ age+grouptid+age*group+age*id	2	1	0	1	0	1	47,90\%	0,00\%	13,80\%	37,80\%	0,20\%	0,30\%
1166	Q14126	model $0 \sim$ age+grouptid+age*group+age*id	2	1	0	1	0	1	29,20\%	0,80\%	46,20\%	3,00\%	8,60\%	12,30\%
1217	Q16651	model $0 \sim$ age+grouptid+age*group+age*id	2	1	0	1	0	1	21,80\%	13,50\%	46,20\%	2,80\%	4,40\%	11,40\%
1271	Q6ZMJ2	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	15,70\%	0,10\%	16,10\%	61,30\%	2,90\%	4,00\%
1279	Q7LGC8	model $0 \sim$ age + grouptid+age*group+age*id	2	1	0	1	0	1	16,70\%	20,70\%	19,60\%	2,20\%	11,60\%	29,20\%
1296	Q86VZ4	model $0 \sim$ age+grouptid+age*group+age*id	2	1	0	1	0	1	24,90\%	5,90\%	32,70\%	0,60\%	17,30\%	18,60\%
1383	Q96NL6	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	65,10\%	0,10\%	1,20\%	32,00\%	0,30\%	1,40\%
1388	Q99436	model $0 \sim$ age+grouptid+age*group+age*id	2	1	0	1	0	1	18,40\%	8,50\%	10,90\%	3,30\%	8,50\%	50,40\%
1403	Q9BR76	model $0 \sim$ age+grouptid+age*group+age*id	2	1	0	1	0	1	24,90\%	0,70\%	5,10\%	30,60\%	25,30\%	13,40\%
1404	Q9BRA2	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	25,30\%	4,30\%	1,50\%	5,40\%	6,90\%	56,70\%
1419	Q9BYH1	model $0 \sim$ agetgrouptid+age*group+age*id	2	1	0	1	0	1	78,70\%	0,00\%	4,10\%	1,70\%	2,70\%	12,70\%
1496	Q9UIJ	model $0 \sim$ age+grouptid+age*group+age*id	2	1	0	1	0	1	27,20\%	0,50\%	5,70\%	49,40\%	9,60\%	7,70\%
1524	Q9Y2T3	model $0 \sim$ age+group+id+age*group+age*id	2	1	0	1	0	1	42,90\%	8,90\%	3,70\%	22,60\%	13,50\%	8,50\%
2	Q7LBX6	model $0 \sim$ age+id+age ${ }^{*}$ id	2	1	0	0	0	1	7,90\%	41,10\%	19,00\%	32,10\%		
3	Q9H4M9	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	9,60\%	2,80\%	77,20\%	10,40\%		
12	P08575	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	44,30\%	26,10\%	6,10\%	23,60\%		
14	P08123	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	66,60\%	17,20\%	2,10\%	14,10\%		
15	P08887	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	3,00\%	77,40\%	2,00\%	17,70\%		
16	Q12913	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	44,50\%	18,50\%	10,70\%	26,30\%		
17	A0A087WTM	1 model $0 \sim$ age+id+age*id	2	1	0	0	0	1	5,80\%	72,60\%	7,70\%	13,80\%		
18	Q7Z5N4	model $0 \sim$ age+id+age ${ }^{*}$ id	2	1	0	0	0	1	8,70\%	61,10\%	23,40\%	6,80\%		
21	P41271	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	20,80\%	48,30\%	3,70\%	27,30\%		
22	A0A087WU9	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	27,30\%	14,10\%	26,80\%	31,80\%		
23	015467	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	9,50\%	58,30\%	16,60\%	15,50\%		
24	Q3LXA3	model $0 \sim$ age+id+age ${ }^{*}$ id	2	1	0	0	0	1	4,30\%	27,00\%	32,40\%	36,30\%		
26	P07203	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	37,10\%	11,80\%	13,70\%	37,40\%		
27	095196	model $0 \sim$ age $+i d+$ age ${ }^{*}$ id	2	1	0	0	0	1	69,00\%	2,20\%	4,10\%	24,70\%		
29	Q5T123	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	10,90\%	4,80\%	44,10\%	40,30\%		
31	P15941	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	4,30\%	71,10\%	2,60\%	22,00\%		
32	Q14517	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	12,20\%	71,80\%	8,40\%	7,50\%		
34	Q13477	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	41,60\%	41,40\%	6,20\%	10,80\%		
36	P23470	model $0 \sim$ age+id+age ${ }^{\text {*id }}$	2	1	0	0	0	1	1,30\%	87,00\%	0,50\%	11,10\%		
38	Q9Y274	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	1,50\%	71,70\%	6,00\%	20,80\%		
40	P01860	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	8,70\%	55,70\%	12,90\%	22,60\%		
42	Q9UPZ6	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	1,70\%	70,20\%	25,20\%	2,90\%		
43	P21802	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	18,00\%	45,90\%	22,10\%	14,00\%		
45	Q9bzG9	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	5,00\%	74,80\%	6,90\%	13,20\%		
46	Q6UXD5	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	75,70\%	6,30\%	3,90\%	14,10\%		
47	Q16851	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	4,00\%	43,90\%	8,30\%	43,70\%		
48	Q15185	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	8,10\%	4,40\%	81,20\%	6,30\%		
51	Q9H3K6	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	29,40\%	7,70\%	11,70\%	51,10\%		
52	Q9Y4L1	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	5,30\%	63,50\%	13,50\%	17,80\%		
56	P39059	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	23,90\%	40,80\%	15,70\%	19,60\%		
60	Q6ZRP7	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	5,40\%	55,40\%	9,00\%	30,20\%		
61	Q9UBW5	model $0 \sim$ age $+i d+a g e * i d$	2	1	0	0	0	1	23,40\%	9,10\%	62,10\%	5,50\%		

62	060613	model 0 ~ age+id+age*id	2	1	0	0	0	1	10,60\%	51,50\%	32,20\%	5,70\%
63	P22352	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	0,70\%	83,50\%	1,70\%	14,10\%
64	Q16663	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	10,00\%	62,20\%	3,70\%	24,10\%
65	095633	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	5,50\%	47,20\%	19,40\%	27,80\%
68	Q9UL46	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	13,80\%	2,40\%	32,10\%	51,70\%
71	Q8NDA2	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	17,00\%	50,20\%	6,40\%	26,50\%
75	P22061	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	23,20\%	40,20\%	8,30\%	28,30\%
76	P12259	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	11,00\%	54,20\%	7,90\%	26,90\%
77	Q8WU40	model $0 \sim$ age+id+age ${ }^{*}$ id	2	1	0	0	0	1	14,50\%	26,90\%	22,60\%	36,00\%
79	P33527	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	21,60\%	2,30\%	31,80\%	44,40\%
80	P15151	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	19,10\%	66,70\%	5,30\%	9,00\%
81	Q4LDE5	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	16,50\%	37,50\%	16,20\%	29,80\%
82	Q53EL9	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	68,00\%	12,60\%	6,90\%	12,50\%
85	Q13418	model 0 ~ age+id+age*id	2	1	0	0	0	1	10,90\%	19,30\%	54,50\%	15,30\%
88	Q96B86	model $0 \sim$ age+id+age ${ }^{*}$ id	2	1	0	0	0	1	4,90\%	78,90\%	4,80\%	11,30\%
90	P06744	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	7,30\%	10,90\%	25,40\%	56,50\%
92	Q9uap3	model 0 ~ age+id+age*id	2	1	0	0	0	1	2,80\%	77,30\%	15,20\%	4,80\%
94	Q07654	model $0 \sim$ age+id+age ${ }^{*}$ id	2	1	0	0	0	1	14,10\%	60,10\%	4,90\%	20,90\%
95	Q8WWV6	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	41,70\%	37,50\%	5,80\%	14,90\%
96	P00533	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	7,40\%	22,50\%	13,40\%	56,70\%
99	Q9UHJ6	model $0 \sim$ age+id+age ${ }^{*}$ id	2	1	0	0	0	1	27,30\%	54,30\%	8,80\%	9,70\%
101	Q99685	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	19,50\%	6,50\%	41,70\%	32,20\%
103	Q9NR71	model 0 ~ age+id+age*id	2	1	0	0	0	1	16,50\%	48,10\%	4,70\%	30,60\%
105	P04179	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	8,50\%	23,70\%	52,90\%	14,90\%
107	Q14242	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	5,60\%	75,20\%	11,60\%	7,70\%
108	P15289	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	3,50\%	62,10\%	33,90\%	0,50\%
109	Q8NF91	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	61,10\%	0,90\%	9,00\%	29,00\%
110	P20810	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	43,90\%	11,50\%	7,50\%	37,10\%
111	Q5ZPR3	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	18,80\%	43,00\%	7,70\%	30,50\%
113	Q96DA0	model $0 \sim$ age+id+age ${ }^{*}$ id	2	1	0	0	0	1	26,30\%	40,40\%	10,90\%	22,40\%
115	P02753	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	5,30\%	85,20\%	1,30\%	8,10\%
116	P07359	model $0 \sim$ age $+i d+$ age ${ }^{*}$ id	2	1	0	0	0	1	10,50\%	72,40\%	6,90\%	10,20\%
118	Q9NZN3	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	9,10\%	15,20\%	71,80\%	3,90\%
119	Q12884	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	12,90\%	41,70\%	17,60\%	27,80\%
120	Q16288	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	32,00\%	32,40\%	9,80\%	25,80\%
121	Q5TFM2	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	0,10\%	98,80\%	0,20\%	0,90\%
124	060610	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	12,20\%	19,90\%	51,60\%	16,30\%
127	P13762	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	10,10\%	65,10\%	8,00\%	16,90\%
128	P04440	model $0 \sim$ age+id+age ${ }^{*}$ id	2	1	0	0	0	1	18,10\%	67,10\%	1,60\%	13,30\%
130	Q8N307	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	36,20\%	18,50\%	42,60\%	2,70\%
131	Q8N149	model $0 \sim$ age $+i d+$ age ${ }^{*}$ id	2	1	0	0	0	1	1,80\%	54,90\%	12,00\%	31,30\%
132	Q9HBB8	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	7,90\%	79,50\%	1,00\%	11,60\%
133	075023	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	2,00\%	92,70\%	1,00\%	4,30\%
134	Q8N6C8	model $0 \sim$ age+id+age ${ }^{*}$ id	2	1	0	0	0	1	8,10\%	53,60\%	20,70\%	17,50\%
138	Q9ULB1	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	2,30\%	78,20\%	10,80\%	8,70\%
139	AOAOU1RO	model 0 ~ age+id+age*id	2	1	0	0	0	1	5,20\%	86,30\%	1,10\%	7,50\%
141	Q9Y2D4	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	7,80\%	41,70\%	37,10\%	13,40\%
142	A0AOU1RR	model 0 ~ age+id+age*id	2	1	0	0	0	1	2,00\%	91,10\%	0,40\%	6,40\%
143	Q9Y4C0	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	37,20\%	23,60\%	10,70\%	28,50\%
144	A1L4H1	model 0 ~ age+id+age*id	2	1	0	0	0	1	10,70\%	67,20\%	8,80\%	13,30\%

145 P04156
148 P54578 149 P60033 150 A6NMZ7 151 P21926 152 P55145 154 P02656 155 P25325 156 P47756 158 B1ALD9 160 Q14141 162 Q86TH1 163 Q99439 165 P00736 168 P49368 169 P62987 172 P20062 173 Q15019 175 P60660 178 Q5VT82 179 Q9BXY5 182 P30626 182 P30626 183 Q9BUL8 184 Q8TEU8 185 P10646 187 P99999 188 Q9UKJ1 189 P19971 190 P13798 191 P48551 193 Q92823 211 D3DSM0 212 Q7Z7G0 213 P02746 214 Q13557 215 Q9NQ76 216 D6RAR4 217 Q9bT78 218094856 219 D6RE86 221000584 223 Q99715 224 P16871 225094903 227 Q8TDQ0 227 Q8TDQ0 228 Q15043 229075347 231 Q99952 233 P61916
234 P58215
model 0 ~age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ age+id + age ${ }^{*} i d$ model $0 \sim$ agetid+age ${ }^{*}$ id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~age+id+age*id model $0 \sim$ agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ age $+i d+$ age ${ }^{2}$ id model $0 \sim$ agetid + age $* i d$ model $0 \sim$ age+id + age ${ }^{*}$ id model $0 \sim$ agetid $+2 e^{*}{ }^{2}$ model 0 age+id+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model 0 age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model 0 ~age+id+age*id model 0 ~age+id+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ age+id+age*id model 0 ~ age+id + age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age $* i d$
model $0 \sim$ agetid $+a g e * i d ~$ model 0 ~ age+id + age*id model $0 \sim$ age agetid + +age ${ }^{*}$ id model 0 agetid+age ${ }^{\text {idd }}$ model $0 \sim$ agetid +age ${ }^{2}$

2	1	0	0	0	1	$10,80 \%$	$56,90 \%$	$13,30 \%$	$19,00 \%$
2	1	0	0	0	1	$15,80 \%$	$27,80 \%$	$11,70 \%$	$44,70 \%$
2	1	0	0	0	1	$10,80 \%$	$57,20 \%$	$20,50 \%$	$11,40 \%$
2	1	0	0	0	1	$9,90 \%$	$61,00 \%$	$9,90 \%$	$19,20 \%$
2	1	0	0	0	1	$30,60 \%$	$3,10 \%$	$17,30 \%$	$49,00 \%$
2	1	0	0	0	1	$12,50 \%$	$12,80 \%$	$52,50 \%$	$22,10 \%$
2	1	0	0	0	1	$1,40 \%$	$70,40 \%$	$5,30 \%$	$22,90 \%$
2	1	0	0	0	1	$24,60 \%$	$16,30 \%$	$21,60 \%$	$37,50 \%$
2	1	0	0	0	1	$12,80 \%$	$9,70 \%$	$56,70 \%$	$20,80 \%$
2	1	0	0	0	1	$23,30 \%$	$51,00 \%$	$8,00 \%$	$17,70 \%$
2	1	0	0	0	1	$19,80 \%$	$4,30 \%$	$57,80 \%$	$18,20 \%$
2	1	0	0	0	1	$4,40 \%$	$35,80 \%$	$11,90 \%$	$47,90 \%$
2	1	0	0	0	1	$17,90 \%$	$8,40 \%$	$38,30 \%$	$35,40 \%$
2	1	0	0	0	1	$2,60 \%$	$67,00 \%$	$9,80 \%$	$20,60 \%$
2	1	0	0	0	1	$23,90 \%$	$3,10 \%$	$63,60 \%$	$9,40 \%$
2	1	0	0	0	1	$19,90 \%$	$45,20 \%$	$8,10 \%$	$26,80 \%$
2	1	0	0	0	1	$3,50 \%$	$83,90 \%$	$3,80 \%$	$8,80 \%$
2	1	0	0	0	1	$10,90 \%$	$11,30 \%$	$38,60 \%$	$39,20 \%$
2	1	0	0	0	1	$9,80 \%$	$11,70 \%$	$76,70 \%$	$1,70 \%$
2	1	0	0	0	1	$17,10 \%$	$5,70 \%$	$13,60 \%$	$16,60 \%$
2	1	0	0	0	1	$9,20 \%$	$38,40 \%$	$18,40 \%$	$33,90 \%$
2	1	0	0	0	1	$25,80 \%$	$1,90 \%$	$2,80 \%$	$3,50 \%$
2	1	0	0	0	1	$3,10 \%$	$14,50 \%$	$13,00 \%$	$3,40 \%$
2	1	0	0	0	1	$73,20 \%$	$6,20 \%$	$7,00 \%$	$13,60 \%$
2	1	0	0	0	1	$15,30 \%$	$63,30 \%$	$5,50 \%$	$15,90 \%$
2	1	0	0	0	1	$16,20 \%$	$21,00 \%$	$56,80 \%$	$6,00 \%$
2	1	0	0	0	1	$0,30 \%$	$75,80 \%$	$20,50 \%$	$3,40 \%$
2	1	0	0	0	1	$12,00 \%$	$21,10 \%$	$31,30 \%$	$35,60 \%$
2	1	0	0	0	1	$28,30 \%$	$9,10 \%$	$9,30 \%$	$53,30 \%$
2	1	0	0	0	1	$5,60 \%$	$63,50 \%$	$11,40 \%$	$19,50 \%$
2	1	0	0	0	1	$41,60 \%$	$24,20 \%$	$8,70 \%$	$25,50 \%$
2	1	0	0	0	1	$23,80 \%$	$29,40 \%$	$8,80 \%$	$38,10 \%$
2	1	0	0	0	1	$34,40 \%$	$28,90 \%$	$27,80 \%$	$9,00 \%$
2	1	0	0	0	1	$24,50 \%$	$48,10 \%$	$19,90 \%$	$7,50 \%$
2	1	0	0	0	1	$1,70 \%$	$20,70 \%$	$22,30 \%$	$55,40 \%$
2	1	0	0	0	1	$44,30 \%$	$29,90 \%$	$23,40 \%$	$2,50 \%$
2	1	0	0	0	1	$4,40 \%$	$61,90 \%$	$15,20 \%$	$18,50 \%$
2	1	0	0	0	1	$19,00 \%$	$40,50 \%$	$20,40 \%$	$20,10 \%$
2	1	0	0	0	1	$3,30 \%$	$30,40 \%$	$64,90 \%$	$1,40 \%$
2	1	0	0	0	1	$10,60 \%$	$49,20 \%$	$38,20 \%$	$2,00 \%$
2	1	0	0	0	1	$6,70 \%$	$68,50 \%$	$4,00 \%$	$20,90 \%$
2	1	0	0	0	1	$70,70 \%$	$9,00 \%$	$8,20 \%$	$12,10 \%$
2	1	0	0	0	1	$2,10 \%$	$60,40 \%$	$3,40 \%$	$34,20 \%$
2	1	0	0	0	1	$5,20 \%$	$56,10 \%$	$4,10 \%$	$34,60 \%$
2	1	0	0	0	1	$4,40 \%$	$43,80 \%$	$41,70 \%$	$10,10 \%$
2	1	0	0	0	1	$14,40 \%$	$44,10 \%$	$14,40 \%$	$27,20 \%$
2	1	0	0	0	1	$11,00 \%$	$5,50 \%$	$62,50 \%$	$20,90 \%$
2	1	0	0	0	1	$17,20 \%$	$17,80 \%$	$31,20 \%$	$33,80 \%$
2	1	0	0	0	1	$9,80 \%$	$51,50 \%$	$21,70 \%$	$17,00 \%$
2	1	0	0	0	1	$20,40 \%$	$36,20 \%$	$13,30 \%$	$30,20 \%$
2									

236 P12111 238 Q16181 240 P37840 241 P22105 243 P15311 246 Q9UIA9 250 Q13822 251 P10163 252 P22234 253 Q9Y2E5 256 P07333 257 Q5T7FO 259 Q9Y2 Q3 261 Q6ZR08 262 P54764 263 Q15262 265 Q12866 266 P23528 269 P13987 274 Q86VB7 275 Q96BZ4 275 Q96BZ4 276 P55209 277 Q9UBP4 278 Q9HC38 280 P43487 281 P43487 281 Q8N4AO 283 Q9H159 284 P36873 285 P54819 286 P50281 288 Q9HCK4 289000461 293 P59998 295 P02786 296 Q9NY33 297095998 300 Q9UBX5 301 P60900 302 P07942 303 P26927 305000560 305 OO0560 306 Q9HDC9 307 P16070 309 Q5TCQ3 311076061
model 0 ~age+id+age*id model $0 \sim$ age+id $+a g e e^{*} i d$ model $0 \sim$ age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{* i d}$ model $0 \sim$ age+id + age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid+age ${ }^{\text {id }}$ model 0 ~ age+id+age*id model $0 \sim$ age+id+age*id model 0 ~ age+id + age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age $+i d+$ age $* i d$ model $0 \sim$ agetid + age $* i d$ model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age*id model $0 \sim$ agetid + age $*$ id model 0 age+id + age ${ }^{*}$ id model 0 agetid+age id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 agetid+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~age+id+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model 0 ~ agetid+age*id model $0 \sim$ age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age $* i d$
model $0 \sim$ agetid $+a g e * i d ~$ model $0 \sim$ age 0 agetid + age ${ }^{*}{ }^{*}$ id model $0 \sim$ age $+i d+a g e * i d ~$
model 0 model $0 \sim$ age 0 idatage*id model 0 ~

2	1	0	0	0	1	$7,10 \%$	$34,90 \%$	$10,00 \%$	$48,00 \%$
2	1	0	0	0	1	$14,50 \%$	$1,30 \%$	$63,50 \%$	$20,70 \%$
2	1	0	0	0	1	$22,00 \%$	$24,00 \%$	$36,80 \%$	$17,10 \%$
2	1	0	0	0	1	$10,10 \%$	$49,60 \%$	$9,60 \%$	$30,60 \%$
2	1	0	0	0	1	$14,50 \%$	$58,60 \%$	$7,90 \%$	$19,00 \%$
2	1	0	0	0	1	$26,30 \%$	$5,40 \%$	$14,00 \%$	$54,20 \%$
2	1	0	0	0	1	$58,70 \%$	$12,70 \%$	$5,10 \%$	$23,40 \%$
2	1	0	0	0	1	$0,20 \%$	$63,10 \%$	$32,40 \%$	$4,40 \%$
2	1	0	0	0	1	$35,40 \%$	$2,00 \%$	$16,20 \%$	$46,40 \%$
2	1	0	0	0	1	$3,20 \%$	$59,60 \%$	$10,40 \%$	$26,80 \%$
2	1	0	0	0	1	$9,30 \%$	$40,20 \%$	$9,30 \%$	$41,20 \%$
2	1	0	0	0	1	$5,60 \%$	$52,00 \%$	$20,20 \%$	$22,20 \%$
2	1	0	0	0	1	$28,20 \%$	$11,90 \%$	$35,50 \%$	$24,40 \%$
2	1	0	0	0	1	$3,80 \%$	$78,40 \%$	$10,20 \%$	$7,60 \%$
2	1	0	0	0	1	$70,60 \%$	$6,00 \%$	$12,80 \%$	$10,60 \%$
2	1	0	0	0	1	$9,30 \%$	$53,30 \%$	$34,00 \%$	$3,40 \%$
2	1	0	0	0	1	$12,30 \%$	$62,40 \%$	$20,90 \%$	$4,40 \%$
2	1	0	0	0	1	$11,30 \%$	$11,30 \%$	$41,30 \%$	$36,10 \%$
2	1	0	0	0	1	$3,60 \%$	$1,80 \%$	$15,70 \%$	$45,90 \%$
2	1	0	0	0	1	$25,80 \%$	$4,60 \%$	$9,30 \%$	$20,30 \%$
2	1	0	0	0	1	$1,60 \%$	$50,80 \%$	$1,30 \%$	$20,30 \%$
2	1	0	0	0	1	$36,30 \%$	$54,70 \%$	$3,10 \%$	$5,90 \%$
2	1	0	0	0	1	$6,50 \%$	$26,50 \%$	$48,40 \%$	$18,50 \%$
2	1	0	0	0	1	$1,40 \%$	$6,80 \%$	$29,40 \%$	$7,40 \%$
2	1	0	0	0	1	$14,80 \%$	$2,40 \%$	$9,40 \%$	$54,40 \%$
2	1	0	0	0	1	$6,60 \%$	$42,00 \%$	$2,60 \%$	$28,80 \%$
2	1	0	0	0	1	$35,90 \%$	$16,90 \%$	$14,80 \%$	$32,30 \%$
2	1	0	0	0	1	$9,40 \%$	$68,50 \%$	$12,90 \%$	$9,10 \%$
2	1	0	0	0	1	$69,30 \%$	$17,80 \%$	$5,60 \%$	$7,30 \%$
2	1	0	0	0	1	$11,60 \%$	$55,40 \%$	$5,40 \%$	$27,60 \%$
2	1	0	0	0	1	$22,60 \%$	$2,90 \%$	$47,00 \%$	$27,50 \%$
2	1	0	0	0	1	$23,90 \%$	$6,70 \%$	$62,10 \%$	$7,20 \%$
2	1	0	0	0	1	$31,40 \%$	$15,10 \%$	$20,50 \%$	$33,00 \%$
2	1	0	0	0	1	$13,70 \%$	$28,90 \%$	$16,50 \%$	$40,90 \%$
2	1	0	0	0	1	$15,20 \%$	$51,10 \%$	$25,60 \%$	$8,20 \%$
2	1	0	0	0	1	$12,10 \%$	$15,90 \%$	$62,00 \%$	$9,90 \%$
2	1	0	0	0	1	$29,00 \%$	$10,10 \%$	$11,00 \%$	$49,90 \%$
2	1	0	0	0	1	$9,80 \%$	$11,80 \%$	$31,00 \%$	$47,40 \%$
2	1	0	0	0	1	$5,10 \%$	$57,90 \%$	$23,30 \%$	$13,80 \%$
2	1	0	0	0	1	$14,80 \%$	$40,00 \%$	$28,80 \%$	$16,30 \%$
2	1	0	0	0	1	$4,90 \%$	$40,30 \%$	$10,20 \%$	$44,60 \%$
2	1	0	0	0	1	$16,10 \%$	$45,00 \%$	$10,60 \%$	$28,30 \%$
2	1	0	0	0	1	$4,80 \%$	$88,90 \%$	$1,60 \%$	$4,80 \%$
2	1	0	0	0	1	$15,10 \%$	$29,20 \%$	$15,40 \%$	$40,40 \%$
2	1	0	0	0	1	$9,70 \%$	$63,20 \%$	$4,00 \%$	$23,10 \%$
2	1	0	0	0	1	$14,90 \%$	$59,90 \%$	$7,70 \%$	$17,60 \%$
2	1	0	0	0	1	$15,90 \%$	$30,80 \%$	$8,80 \%$	$44,60 \%$
2	1	0	0	0	1	$53,20 \%$	$13,70 \%$	$13,60 \%$	$19,50 \%$
2	1	0	0	0	1	$4,20 \%$	$80,20 \%$	$4,60 \%$	$11,00 \%$
2	1	0	0	0	1	$18,40 \%$	$29,90 \%$	$30,10 \%$	$21,60 \%$
2									

312 P01130 313 Q8TF62 314 Q13449 316 P06865 319 P09493 320 H7BZ55 324 Q96JN2 325 HフC5R1 326015394 327 Q13404 329 P22607 330000233 332 P49913 333014618 334 Q9NPR2 335 P54108 336 P22455 338 P30046 339 Q9NTK5 340 P78509 344 P19105 346075144 346075144 347 Q8IYT4 351 Q99497 351 Q99497 354 Q8IUL8 361003405 361 Q03405 $362 P 08637$
363075015 363075015 364000151 367000194 369000299 371000391 372000429 373000451 378000592 380000754 381014498 382014594 385014745 387014793 388014818 390014960 391015020 393015117 394015143 395015144 396015145
model 0 ~age+id+age*id model $0 \sim$ age+id $+a g e e^{*} i d$ model $0 \sim$ age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ age $+i d+a g e * i d$ model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model 0 ~ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ age $+i d+$ age ${ }^{2}$ id model $0 \sim$ agetid + age $* i d$ model 0 agetid+age ${ }^{\text {id }}$ model 0 ~ agetid + age ${ }^{\text {id }}$ model $0 \sim$ agetid model 0 ~ model 0 agetid+age id model 0 ~ age+id+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model 0 agetid+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model $0 \sim$ age+id+age*id model 0 ~ age+id+age*id model 0 ~ agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~age+id+age*id model $0 \sim$ age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model 0 ~ age+id + age*id model $0 \sim$ age agetid + +age ${ }^{*}$ id model 0~age \sim ag+idage*id model 0 ~ agetid+age model $0 \sim$ agetid $+a g e{ }^{*}$ id

2	1	0	0	0	1	$32,10 \%$	$31,00 \%$	$15,70 \%$	$21,10 \%$
2	1	0	0	0	1	$15,10 \%$	$39,10 \%$	$21,40 \%$	$24,40 \%$
2	1	0	0	0	1	$20,00 \%$	$17,40 \%$	$17,40 \%$	$45,20 \%$
2	1	0	0	0	1	$16,00 \%$	$42,40 \%$	$17,20 \%$	$24,30 \%$
2	1	0	0	0	1	$4,80 \%$	$28,20 \%$	$49,70 \%$	$17,40 \%$
2	1	0	0	0	1	$3,00 \%$	$7,50 \%$	$48,50 \%$	$41,00 \%$
2	1	0	0	0	1	$7,90 \%$	$44,00 \%$	$6,10 \%$	$42,00 \%$
2	1	0	0	0	1	$31,70 \%$	$11,60 \%$	$21,90 \%$	$34,80 \%$
2	1	0	0	0	1	$3,80 \%$	$63,40 \%$	$27,40 \%$	$5,40 \%$
2	1	0	0	0	1	$20,00 \%$	$7,80 \%$	$19,40 \%$	$52,80 \%$
2	1	0	0	0	1	$12,20 \%$	$60,70 \%$	$24,90 \%$	$2,10 \%$
2	1	0	0	0	1	$47,10 \%$	$2,20 \%$	$13,40 \%$	$37,20 \%$
2	1	0	0	0	1	$11,40 \%$	$45,50 \%$	$6,70 \%$	$36,50 \%$
2	1	0	0	0	1	$32,70 \%$	$11,40 \%$	$25,40 \%$	$30,40 \%$
2	1	0	0	0	1	$13,30 \%$	$47,40 \%$	$18,20 \%$	$21,10 \%$
2	1	0	0	0	1	$16,20 \%$	$66,80 \%$	$5,60 \%$	$11,50 \%$
2	1	0	0	0	1	$4,60 \%$	$41,20 \%$	$24,10 \%$	$30,10 \%$
2	1	0	0	0	1	$6,09 \%$	$81,10 \%$	$1,80 \%$	$10,20 \%$
2	1	0	0	0	1	$22,40 \%$	$13,70 \%$	$13,10 \%$	$50,70 \%$
2	1	0	0	0	1	$9,00 \%$	$60,30 \%$	$12,20 \%$	$18,40 \%$
2	1	0	0	0	1	$5,20 \%$	$6,10 \%$	$47,90 \%$	$40,80 \%$
2	1	0	0	0	1	$4,50 \%$	$67,70 \%$	$5,60 \%$	$22,20 \%$
2	1	0	0	0	1	$17,50 \%$	$6,40 \%$	$37,70 \%$	$38,40 \%$
2	1	0	0	0	1	$11,70 \%$	$44,90 \%$	$12,30 \%$	$31,20 \%$
2	1	0	0	0	1	$17,80 \%$	$7,60 \%$	$43,90 \%$	$30,70 \%$
2	1	0	0	0	1	$27,70 \%$	$11,70 \%$	$26,60 \%$	$34,00 \%$
2	1	0	0	0	1	$36,60 \%$	$39,60 \%$	$7,50 \%$	$16,40 \%$
2	1	0	0	0	1	$3,30 \%$	$81,20 \%$	$3,70 \%$	$11,80 \%$
2	1	0	0	0	1	$10,60 \%$	$74,00 \%$	$5,40 \%$	$10,00 \%$
2	1	0	0	0	1	$10,80 \%$	$78,20 \%$	$1,60 \%$	$9,30 \%$
2	1	0	0	0	1	$9,40 \%$	$10,20 \%$	$60,40 \%$	$20,00 \%$
2	1	0	0	0	1	$2,00 \%$	$3,20 \%$	$87,30 \%$	$7,50 \%$
2	1	0	0	0	1	$10,90 \%$	$10,80 \%$	$51,70 \%$	$26,50 \%$
2	1	0	0	0	1	$3,60 \%$	$85,00 \%$	$0,90 \%$	$10,50 \%$
2	1	0	0	0	1	$11,50 \%$	$7,20 \%$	$67,10 \%$	$14,10 \%$
2	1	0	0	0	1	$18,20 \%$	$32,30 \%$	$15,90 \%$	$33,60 \%$
2	1	0	0	0	1	$1,00 \%$	$67,90 \%$	$8,40 \%$	$22,80 \%$
2	1	0	0	0	1	$3,50 \%$	$86,20 \%$	$6,10 \%$	$4,30 \%$
2	1	0	0	0	1	$13,10 \%$	$69,90 \%$	$5,50 \%$	$11,50 \%$
2	1	0	0	0	1	$70,50 \%$	$2,80 \%$	$9,50 \%$	$17,20 \%$
2	1	0	0	0	1	$9,20 \%$	$30,30 \%$	$25,50 \%$	$35,10 \%$
2	1	0	0	0	1	$48,00 \%$	$7,90 \%$	$15,30 \%$	$28,80 \%$
2	1	0	0	0	1	$20,70 \%$	$15,60 \%$	$16,00 \%$	$47,80 \%$
2	1	0	0	0	1	$2,60 \%$	$81,20 \%$	$1,70 \%$	$14,50 \%$
2	1	0	0	0	1	$3,80 \%$	$60,50 \%$	$29,30 \%$	$6,40 \%$
2	1	0	0	0	1	$23,60 \%$	$3,20 \%$	$33,80 \%$	$39,50 \%$
2	1	0	0	0	1	$13,80 \%$	$8,10 \%$	$40,90 \%$	$37,10 \%$
2	1	0	0	0	1	$11,40 \%$	$4,30 \%$	$77,20 \%$	$7,10 \%$
2	1	0	0	0	1	$4,50 \%$	$47,90 \%$	$42,20 \%$	$5,40 \%$
2	1	0	0	0	1	$24,30 \%$	$21,80 \%$	$15,80 \%$	$38,00 \%$
2									

400 Q05BJ3 401015335 403015438 404015511
405043157 405043157 406043278 407043280 410043488 411043505 412043529 413043665 414043707 416043852 417043866 418043895 421060234 423060493 424060664 425060667 428060888 430075083 431075116 433075223 434075326 440075558 441075558
442075563 442075563 445075752 446075874 448075976 449076074 451094898 452094910 453094919 454094985 455095274 456095302 458095393 459 Q5H8X8 462095479 463095497 464095502 465095810 467095897 468095980 469 P00325 470 P00338 471 P00352
model 0 ~ age+id+age*id model $0 \sim$ age $+i d+a g e{ }^{*} i d$ model $0 \sim$ age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model 0 ~agetid+age ${ }^{\text {id }}$ model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid + age $* i d$ model 0 agetid+age ${ }^{\text {id }}$ model 0 ~ agetid + age ${ }^{2}$ id model 0 ~ agetid model 0 ~agetid+age model 0 agetid+age id model 0 ~ age+id+age*id model $0 \sim$ age+id+age*id model 0 agetid+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model $0 \sim$ age+id+age*id model 0 ~ age+id+age*id model 0 ~ agetid+age*id model 0 ~agetid+age*id model 0 ~age+id+age*id model 0 ~age+id+age*id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age $* i d$ model $0 \sim$ agetid + age id model 0 agetid+age ${ }^{\text {idd }}$ model \sim ~ model $0 \sim$ agetid $+a g e{ }^{*}$ id

2	1	0	0	0	1	$45,40 \%$	$22,10 \%$	$7,10 \%$	$25,40 \%$
2	1	0	0	0	1	$6,90 \%$	$55,40 \%$	$7,30 \%$	$30,40 \%$
2	1	0	0	0	1	$8,70 \%$	$52,10 \%$	$6,70 \%$	$32,50 \%$
2	1	0	0	0	1	$5,70 \%$	$7,10 \%$	$85,30 \%$	$2,00 \%$
2	1	0	0	0	1	$9,20 \%$	$57,30 \%$	$11,60 \%$	$21,90 \%$
2	1	0	0	0	1	$8,30 \%$	$49,20 \%$	$16,00 \%$	$26,50 \%$
2	1	0	0	0	1	$19,50 \%$	$44,90 \%$	$15,70 \%$	$20,00 \%$
2	1	0	0	0	1	$18,30 \%$	$15,00 \%$	$36,90 \%$	$29,90 \%$
2	1	0	0	0	1	$9,50 \%$	$54,40 \%$	$16,30 \%$	$19,80 \%$
2	1	0	0	0	1	$56,40 \%$	$18,20 \%$	$5,40 \%$	$20,00 \%$
2	1	0	0	0	1	$44,90 \%$	$17,90 \%$	$9,30 \%$	$27,90 \%$
2	1	0	0	0	1	$8,00 \%$	$11,40 \%$	$77,60 \%$	$3,00 \%$
2	1	0	0	0	1	$14,30 \%$	$6,00 \%$	$56,60 \%$	$23,10 \%$
2	1	0	0	0	1	$11,90 \%$	$45,40 \%$	$9,50 \%$	$33,30 \%$
2	1	0	0	0	1	$7,50 \%$	$65,00 \%$	$12,80 \%$	$14,80 \%$
2	1	0	0	0	1	$36,20 \%$	$57,00 \%$	$0,90 \%$	$5,80 \%$
2	1	0	0	0	1	$15,20 \%$	$6,60 \%$	$41,90 \%$	$36,40 \%$
2	1	0	0	0	1	$11,50 \%$	$9,00 \%$	$73,90 \%$	$5,50 \%$
2	1	0	0	0	1	$0,20 \%$	$48,20 \%$	$31,60 \%$	$20,10 \%$
2	1	0	0	0	1	$3,00 \%$	$58,40 \%$	$6,40 \%$	$31,60 \%$
2	1	0	0	0	1	$2,90 \%$	$92,40 \%$	$0,30 \%$	$4,40 \%$
2	1	0	0	0	1	$11,30 \%$	$7,90 \%$	$57,60 \%$	$23,20 \%$
2	1	0	0	0	1	$24,50 \%$	$3,50 \%$	$24,20 \%$	$47,80 \%$
2	1	0	0	0	1	$29,90 \%$	$3,60 \%$	$8,70 \%$	$57,70 \%$
2	1	0	0	0	1	$16,50 \%$	$38,50 \%$	$26,90 \%$	$18,10 \%$
2	1	0	0	0	1	$37,90 \%$	$22,30 \%$	$10,40 \%$	$29,40 \%$
2	1	0	0	0	1	$1,80 \%$	$7,70 \%$	$80,00 \%$	$10,50 \%$
2	1	0	0	0	1	$24,30 \%$	$3,40 \%$	$18,40 \%$	$53,90 \%$
2	1	0	0	0	1	$2,60 \%$	$71,80 \%$	$8,50 \%$	$17,10 \%$
2	1	0	0	0	1	$41,10 \%$	$23,40 \%$	$16,30 \%$	$19,20 \%$
2	1	0	0	0	1	$7,30 \%$	$42,30 \%$	$38,20 \%$	$12,30 \%$
2	1	0	0	0	1	$0,00 \%$	$58,10 \%$	$41,50 \%$	$0,40 \%$
2	1	0	0	0	1	$2,00 \%$	$7,40 \%$	$82,40 \%$	$8,20 \%$
2	1	0	0	0	1	$14,20 \%$	$60,60 \%$	$21,70 \%$	$3,50 \%$
2	1	0	0	0	1	$21,10 \%$	$7,30 \%$	$50,10 \%$	$21,50 \%$
2	1	0	0	0	1	$7,90 \%$	$51,30 \%$	$20,30 \%$	$20,60 \%$
2	1	0	0	0	1	$76,10 \%$	$4,40 \%$	$7,90 \%$	$11,60 \%$
2	1	0	0	0	1	$0,50 \%$	$26,40 \%$	$30,60 \%$	$42,50 \%$
2	1	0	0	0	1	$15,20 \%$	$21,10 \%$	$23,10 \%$	$40,60 \%$
2	1	0	0	0	1	$2,30 \%$	$3,50 \%$	$41,30 \%$	$52,80 \%$
2	1	0	0	0	1	$12,70 \%$	$11,50 \%$	$17,60 \%$	$58,10 \%$
2	1	0	0	0	1	$2,80 \%$	$90,20 \%$	$4,00 \%$	$2,90 \%$
2	1	0	0	0	1	$2,60 \%$	$92,20 \%$	$1,30 \%$	$4,00 \%$
2	1	0	0	0	1	$84,40 \%$	$3,50 \%$	$6,30 \%$	$5,90 \%$
2	1	0	0	0	1	$7,60 \%$	$11,50 \%$	$71,00 \%$	$9,90 \%$
2	1	0	0	0	1	$13,40 \%$	$67,20 \%$	$9,50 \%$	$9,90 \%$
2	1	0	0	0	1	$11,00 \%$	$59,70 \%$	$19,60 \%$	$9,70 \%$
2	1	0	0	0	1	$33,00 \%$	$11,90 \%$	$41,10 \%$	$14,00 \%$
2	1	0	0	0	1	$6,00 \%$	$26,90 \%$	$65,10 \%$	$2,00 \%$
2	1	0	0	0	1	$49,00 \%$	$17,00 \%$	$7,40 \%$	$26,50 \%$
2									

473 P00390 474 P00441 475 P00450 476 P00451 478 P00491 479 P00492 481 P00568 484 P00740 485 P00742 486 P00747 487 P00748 489 P00915 490 P00918 491 P00995 495 P01019 496 P01023 497 P01024 498 P01031 499 P01033 500 P01034 507 P01833 509 P02042 509 P02042 511 P02452 513 P02461 516 P02647 517 P02649
518 P02652 518 P02652
524 P02745 524 P02745 526 P02748 527 P02749 530 P02760 532 P02765 535 P02775 536 P02776 537 P02787 539 P02792 540 P02818 541 P03950 542 P03951 544 P03973 546 P04004 547 P04040 548 P04066 551 P04085 552 P04114 554 P04180 556 P04217 557 P04222 561 P04278
model 0 ~ age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model 0 ~ age+id+age*id model $0 \sim$ age+id + age ${ }^{*} i d$ model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~ agetid+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age $*$ id model $0 \sim$ agetid + age $* i d$ model $0 \sim$ age 0 add + age ${ }^{2}$ id model $0 \sim$ agetid + age ${ }^{2}$ id model $0 \sim$ agetid + age id model 0 ~agetid+age model 0 ~agetid+age id model $0 \sim$ age+id + age ${ }^{*}$ id model $0 \sim$ age+id+age*id model 0 agetid+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model $0 \sim$ age+id+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age $* i d$ model $0 \sim$ agetid + age ${ }^{\text {id }}$ model $0 \sim$ agetid+age*id model \sim ~ model $0 \sim$ agetid $+a g e{ }^{*}$ id

2	1	0	0	0	1	$34,10 \%$	$35,70 \%$	$18,40 \%$	$11,80 \%$
2	1	0	0	0	1	$24,30 \%$	$10,90 \%$	$21,00 \%$	$43,80 \%$
2	1	0	0	0	1	$5,60 \%$	$76,20 \%$	$13,50 \%$	$4,80 \%$
2	1	0	0	0	1	$1,20 \%$	$88,90 \%$	$0,80 \%$	$9,10 \%$
2	1	0	0	0	1	$11,30 \%$	$7,90 \%$	$45,80 \%$	$35,00 \%$
2	1	0	0	0	1	$36,40 \%$	$11,50 \%$	$8,60 \%$	$43,50 \%$
2	1	0	0	0	1	$42,10 \%$	$5,00 \%$	$11,50 \%$	$41,40 \%$
2	1	0	0	0	1	$28,70 \%$	$33,60 \%$	$11,60 \%$	$26,10 \%$
2	1	0	0	0	1	$8,10 \%$	$36,10 \%$	$14,70 \%$	$41,00 \%$
2	1	0	0	0	1	$5,20 \%$	$60,10 \%$	$15,50 \%$	$19,20 \%$
2	1	0	0	0	1	$0,90 \%$	$92,20 \%$	$1,00 \%$	$5,90 \%$
2	1	0	0	0	1	$53,30 \%$	$23,00 \%$	$4,60 \%$	$19,10 \%$
2	1	0	0	0	1	$50,60 \%$	$12,70 \%$	$6,70 \%$	$29,90 \%$
2	1	0	0	0	1	$24,60 \%$	$19,90 \%$	$10,20 \%$	$45,30 \%$
2	1	0	0	0	1	$2,10 \%$	$78,30 \%$	$8,10 \%$	$11,50 \%$
2	1	0	0	0	1	$0,60 \%$	$95,70 \%$	$0,50 \%$	$3,20 \%$
2	1	0	0	0	1	$19,50 \%$	$33,20 \%$	$16,20 \%$	$31,10 \%$
2	1	0	0	0	1	$10,70 \%$	$26,80 \%$	$27,90 \%$	$3,60 \%$
2	1	0	0	0	1	$10,50 \%$	$28,30 \%$	$9,50 \%$	$51,60 \%$
2	1	0	0	0	1	$19,90 \%$	$44,20 \%$	$18,90 \%$	$17,00 \%$
2	1	0	0	0	1	$7,00 \%$	$53,40 \%$	$20,40 \%$	$19,20 \%$
2	1	0	0	0	1	$14,10 \%$	$51,90 \%$	$10,50 \%$	$23,50 \%$
2	1	0	0	0	1	$7,10 \%$	$79,60 \%$	$3,80 \%$	$9,40 \%$
2	1	0	0	0	1	$63,70 \%$	$11,30 \%$	$3,80 \%$	$22,20 \%$
2	1	0	0	0	1	$73,40 \%$	$12,80 \%$	$3,30 \%$	$10,50 \%$
2	1	0	0	0	1	$4,70 \%$	$55,70 \%$	$14,20 \%$	$25,40 \%$
2	1	0	0	0	1	$3,50 \%$	$74,10 \%$	$4,20 \%$	$18,30 \%$
2	1	0	0	0	1	$26,70 \%$	$38,20 \%$	$6,30 \%$	$28,80 \%$
2	1	0	0	0	1	$13,50 \%$	$72,20 \%$	$4,30 \%$	$10,00 \%$
2	1	0	0	0	1	$12,00 \%$	$25,70 \%$	$37,90 \%$	$24,30 \%$
2	1	0	0	0	1	$14,10 \%$	$72,20 \%$	$6,70 \%$	$7,00 \%$
2	1	0	0	0	1	$16,40 \%$	$47,80 \%$	$15,90 \%$	$19,80 \%$
2	1	0	0	0	1	$11,20 \%$	$67,50 \%$	$7,10 \%$	$14,10 \%$
2	1	0	0	0	1	$13,30 \%$	$43,20 \%$	$8,70 \%$	$34,80 \%$
2	1	0	0	0	1	$4,80 \%$	$62,80 \%$	$13,10 \%$	$19,30 \%$
2	1	0	0	0	1	$0,40 \%$	$88,40 \%$	$3,80 \%$	$7,40 \%$
2	1	0	0	0	1	$7,20 \%$	$61,70 \%$	$4,00 \%$	$27,10 \%$
2	1	0	0	0	1	$20,80 \%$	$38,20 \%$	$18,00 \%$	$23,00 \%$
2	1	0	0	0	1	$41,30 \%$	$31,00 \%$	$4,00 \%$	$23,70 \%$
2	1	0	0	0	1	$2,90 \%$	$62,10 \%$	$23,20 \%$	$11,90 \%$
2	1	0	0	0	1	$27,90 \%$	$34,70 \%$	$10,20 \%$	$27,20 \%$
2	1	0	0	0	1	$22,10 \%$	$47,30 \%$	$12,30 \%$	$18,30 \%$
2	1	0	0	0	1	$50,40 \%$	$13,60 \%$	$9,10 \%$	$26,90 \%$
2	1	0	0	0	1	$0,50 \%$	$95,50 \%$	$0,20 \%$	$3,90 \%$
2	1	0	0	0	1	$3,10 \%$	$76,00 \%$	$2,00 \%$	$18,90 \%$
2	1	0	0	0	1	$6,80 \%$	$66,00 \%$	$5,30 \%$	$21,90 \%$
2	1	0	0	0	1	$11,10 \%$	$48,10 \%$	$33,50 \%$	$7,30 \%$
2	1	0	0	0	1	$2,60 \%$	$87,60 \%$	$1,60 \%$	$8,20 \%$
2	1	0	0	0	1	$5,80 \%$	$83,30 \%$	$7,40 \%$	$3,40 \%$
2	1	0	0	0	1	$41,20 \%$	$37,20 \%$	$12,40 \%$	$9,30 \%$
2									

562	P04406	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	42,50\%	16,60\%	9,90\%	31,10\%
564	P04439	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	7,40\%	76,90\%	1,40\%	14,40\%
565	P04745	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	17,10\%	62,80\%	9,70\%	10,40\%
566	P04746	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	32,50\%	58,60\%	2,50\%	6,40\%
567	P04792	model $0 \sim$ agetid + age ${ }^{*}$ id	2	1	0	0	0	1	9,00\%	32,70\%	15,80\%	42,60\%
571	P05060	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	29,70\%	47,70\%	5,70\%	16,90\%
573	P05067	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	5,60\%	64,70\%	5,30\%	24,50\%
574	P05089	model $0 \sim$ agetid + age ${ }^{*}$ id	2	1	0	0	0	1	39,00\%	3,60\%	11,50\%	45,90\%
575	P05106	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	11,40\%	3,60\%	74,50\%	10,50\%
577	P05121	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	3,70\%	49,80\%	30,90\%	15,60\%
578	P05154	model $0 \sim$ agetid + age ${ }^{*}$ id	2	1	0	0	0	1	12,70\%	66,60\%	9,40\%	11,30\%
579	P05155	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	24,30\%	52,20\%	10,20\%	13,40\%
580	P05160	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	12,90\%	46,70\%	11,00\%	29,50\%
583	P05362	model $0 \sim$ agetid + age ${ }^{*}$ id	2	1	0	0	0	1	25,50\%	48,50\%	6,60\%	19,40\%
585	P05534	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	2,80\%	94,30\%	0,40\%	2,50\%
586	P05543	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	3,10\%	77,90\%	2,10\%	16,90\%
587	P05546	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	2,90\%	84,50\%	5,30\%	7,20\%
588	P05556	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	26,20\%	9,00\%	24,00\%	40,70\%
590	P06132	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	7,90\%	28,20\%	29,50\%	34,40\%
591	P06276	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	1,80\%	71,00\%	13,00\%	14,10\%
594	P06396	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	11,10\%	71,50\%	2,50\%	14,90\%
598	P06703	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	53,40\%	14,00\%	18,50\%	14,20\%
599	P06727	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	13,50\%	35,70\%	7,20\%	43,60\%
600	P06732	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	15,90\%	29,30\%	15,20\%	39,70\%
601	P06733	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	5,40\%	11,60\%	63,40\%	19,60\%
602	P06737	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	6,30\%	23,00\%	26,70\%	44,10\%
603	P06753	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	12,70\%	6,10\%	49,20\%	32,00\%
605	P06756	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	27,40\%	29,50\%	20,70\%	22,40\%
606	P06858	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	8,80\%	38,30\%	11,20\%	41,70\%
608	P07195	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	22,50\%	18,80\%	53,70\%	5,00\%
609	P07225	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	8,20\%	33,20\%	28,70\%	29,90\%
610	P07237	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	1,20\%	26,20\%	62,30\%	10,20\%
611	P07307	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	11,30\%	62,20\%	12,80\%	13,60\%
612	P07339	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	19,60\%	57,00\%	2,70\%	20,70\%
614	P07357	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	5,10\%	55,40\%	22,90\%	16,60\%
616	P07360	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	13,80\%	59,30\%	10,20\%	16,60\%
617	P07384	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	9,60\%	19,60\%	48,30\%	22,60\%
620	P07476	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	9,80\%	55,40\%	7,40\%	27,40\%
623	P07686	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	16,80\%	16,20\%	10,80\%	56,20\%
625	P07737	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	13,70\%	6,80\%	58,30\%	21,20\%
626	P07738	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	49,10\%	5,30\%	13,60\%	32,10\%
630	P07902	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	1,60\%	0,90\%	96,20\%	1,20\%
631	P07911	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	5,50\%	73,80\%	6,00\%	14,70\%
632	P07949	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	4,50\%	54,10\%	25,90\%	15,40\%
633	P07954	model $0 \sim$ agetid+age*id	2	1	0	0	0	1	18,50\%	8,80\%	9,80\%	62,80\%
634	P07996	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	2,60\%	62,90\%	21,60\%	12,90\%
635	P07998	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	36,00\%	34,30\%	4,80\%	25,00\%
636	P08118	model $0 \sim$ agetid + age ${ }^{*}$ id	2	1	0	0	0	1	14,20\%	29,60\%	24,80\%	31,40\%
637	P08133	model $0 \sim$ agetid+age ${ }^{*}$ id	2	1	0	0	0	1	20,10\%	9,80\%	21,80\%	48,30\%
	P08185	model $0 \sim$ agetid+age*id	2		0							21,40

641 P08253 642 P08294 643 P08493 644 P08514 645 P08519 646 P08567 647 P08571 648 P08572 649 P08581 650 P08582 651 P08603 653 P08670 654 P08697 655 P08709 656 P08758 657 P08833 659 P09172 660 P09211 663 P09467 665 P09493 666 P09525 671 P09972 674 PODJD9 675 PODJI8 676 P10124 677 P10153 679 P10451 680 P10586 681 P10599 682 P10619 683 P10643 684 P10644 685 P10645 686 P10720 687 P10721 688 P10768 690 P10915 691 P11021 692 P11047 694 P11150 696 P11216 697 P11226 698 P11279 701 P11684 702 P11717 703 P11766 703 P11766 704 P12081 707 P12109 708 P12110
709 P12110
model 0 ~ age+id+age*id model $0 \sim$ age+id $+a g e e^{*} i d$ model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ age+id + age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*}$ id model 0 ~ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age ${ }^{\text {id }}$ model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ age $+i d+$ age ${ }^{2}$ id model $0 \sim$ agetid+age*id model 0 agetid+age ${ }^{\text {id }}$ model 0 ~ agetid +age model 0 agetid+age model 0 agetid+age . model $0 \sim$ agetid+age id model 0 ~ age+id+age*id model $0 \sim$ age+id+age*id model 0 agetid+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model $0 \sim$ age+id+age*id model 0 ~ agetid+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~age+id+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age $* i d$
model $0 \sim$ agetid $+a g e * i d ~$ model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{2}$.id model 0~agetid+age*id ode 0 age id +age ${ }^{2}$ model $0 \sim$ agetid $+a g e{ }^{*}$ id

2	1	0	0	0	1	$15,50 \%$	$27,80 \%$	$7,80 \%$	$49,00 \%$
2	1	0	0	0	1	$14,20 \%$	$51,90 \%$	$7,00 \%$	$26,80 \%$
2	1	0	0	0	1	$12,90 \%$	$67,20 \%$	$9,30 \%$	$10,60 \%$
2	1	0	0	0	1	$5,20 \%$	$10,50 \%$	$64,40 \%$	$19,90 \%$
2	1	0	0	0	1	$2,10 \%$	$95,70 \%$	$0,10 \%$	$2,00 \%$
2	1	0	0	0	1	$14,00 \%$	$4,20 \%$	$75,50 \%$	$5,60 \%$
2	1	0	0	0	1	$8,20 \%$	$60,10 \%$	$27,70 \%$	$4,00 \%$
2	1	0	0	0	1	$34,30 \%$	$1,50 \%$	$35,50 \%$	$28,70 \%$
2	1	0	0	0	1	$3,30 \%$	$66,90 \%$	$14,50 \%$	$15,30 \%$
2	1	0	0	0	1	$16,60 \%$	$63,00 \%$	$3,70 \%$	$16,70 \%$
2	1	0	0	0	1	$5,00 \%$	$26,50 \%$	$50,00 \%$	$18,40 \%$
2	1	0	0	0	1	$10,00 \%$	$17,00 \%$	$32,80 \%$	$40,10 \%$
2	1	0	0	0	1	$5,40 \%$	$65,80 \%$	$16,90 \%$	$12,00 \%$
2	1	0	0	0	1	$2,20 \%$	$87,50 \%$	$1,10 \%$	$9,10 \%$
2	1	0	0	0	1	$13,30 \%$	$20,60 \%$	$26,80 \%$	$39,30 \%$
2	1	0	0	0	1	$28,60 \%$	$14,00 \%$	$13,10 \%$	$44,40 \%$
2	1	0	0	0	1	$14,40 \%$	$79,00 \%$	$4,00 \%$	$2,70 \%$
2	1	0	0	0	1	$12,20 \%$	$20,40 \%$	$57,10 \%$	$10,40 \%$
2	1	0	0	0	1	$1,80 \%$	$39,20 \%$	$22,40 \%$	$36,60 \%$
2	1	0	0	0	1	$11,70 \%$	$11,10 \%$	$54,30 \%$	$22,90 \%$
2	1	0	0	0	1	$13,50 \%$	$19,80 \%$	$33,30 \%$	$33,40 \%$
2	1	0	0	0	1	$65,30 \%$	$23,90 \%$	$3,60 \%$	$7,10 \%$
2	1	0	0	0	1	$1,00 \%$	$44,60 \%$	$13,90 \%$	$40,40 \%$
2	1	0	0	0	1	$5,60 \%$	$57,60 \%$	$5,50 \%$	$31,30 \%$
2	1	0	0	0	1	$3,50 \%$	$40,10 \%$	$49,90 \%$	$6,50 \%$
2	1	0	0	0	1	$2,50 \%$	$70,00 \%$	$26,20 \%$	$1,30 \%$
2	1	0	0	0	1	$23,70 \%$	$38,20 \%$	$25,30 \%$	$12,90 \%$
2	1	0	0	0	1	$4,40 \%$	$60,30 \%$	$13,60 \%$	$21,60 \%$
2	1	0	0	0	1	$7,80 \%$	$62,40 \%$	$12,50 \%$	$17,30 \%$
2	1	0	0	0	1	$20,40 \%$	$21,90 \%$	$13,50 \%$	$44,30 \%$
2	1	0	0	0	1	$8,30 \%$	$59,10 \%$	$19,10 \%$	$13,50 \%$
2	1	0	0	0	1	$18,40 \%$	$21,20 \%$	$25,10 \%$	$35,30 \%$
2	1	0	0	0	1	$14,80 \%$	$5,80 \%$	$41,60 \%$	$37,70 \%$
2	1	0	0	0	1	$5,70 \%$	$16,60 \%$	$18,20 \%$	$59,50 \%$
2	1	0	0	0	1	$4,80 \%$	$50,20 \%$	$10,30 \%$	$34,70 \%$
2	1	0	0	0	1	$5,60 \%$	$43,30 \%$	$14,80 \%$	$36,40 \%$
2	1	0	0	0	1	$11,70 \%$	$39,30 \%$	$13,80 \%$	$35,20 \%$
2	1	0	0	0	1	$16,60 \%$	$39,70 \%$	$5,50 \%$	$38,20 \%$
2	1	0	0	0	1	$26,70 \%$	$24,20 \%$	$8,60 \%$	$40,50 \%$
2	1	0	0	0	1	$4,00 \%$	$85,10 \%$	$2,50 \%$	$8,40 \%$
2	1	0	0	0	1	$11,30 \%$	$14,80 \%$	$49,20 \%$	$24,70 \%$
2	1	0	0	0	1	$0,90 \%$	$96,60 \%$	$0,10 \%$	$2,40 \%$
2	1	0	0	0	1	$7,80 \%$	$46,80 \%$	$18,20 \%$	$27,20 \%$
2	1	0	0	0	1	$5,30 \%$	$48,30 \%$	$15,80 \%$	$30,60 \%$
2	1	0	0	0	1	$13,20 \%$	$40,10 \%$	$18,60 \%$	$28,20 \%$
2	1	0	0	0	1	$15,10 \%$	$5,10 \%$	$53,60 \%$	$26,20 \%$
2	1	0	0	0	1	$1,70 \%$	$0,30 \%$	$89,00 \%$	$9,00 \%$
2	1	0	0	0	1	$62,40 \%$	$0,90 \%$	$11,40 \%$	$25,30 \%$
2	1	0	0	0	1	$26,40 \%$	$48,10 \%$	$2,40 \%$	$23,10 \%$
2	1	0	0	0	1	$22,50 \%$	$6,00 \%$	$39,90 \%$	$31,60 \%$
2									

710 P12111 712 P12277 713 P12318 714 P12429 715 P12814 720 P13473 720 P13473 721 P13489 722 P13497 723 P13591 724 P13611 725 P13639 726 P13667 727 P13671 730 P13688 732 P13716 733 P13727 734 P13796 735 P13797 736 P13929 737 P14151 738 P14174 742 P14543 742 P14543 744 P14618 745 P14618 748 P14868 750 P15085 751 P15086 752 P15090 754 P63000 755 P15169 756 P15291 757 P15374 758 P15509 759 P15907 762 P16083 763 P16109 765 P16233 768 P16581 769 P16930 770 P17050 772 P17174 772 P17174
773 P17301 774 P17655 774 P17655 775 P17813 776 P17900 779 P17987
model 0 ~age+id+age*id model $0 \sim$ age+id $+a g e e^{*} i d$ model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ age+id + age ${ }^{*} i d$ model $0 \sim$ age $+i d+a g e * i d$ model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~age+id+age*id model $0 \sim$ agetid+age*id model $0 \sim$ age $+i d+a g e{ }^{*}$ id model $0 \sim$ agetid+age ${ }^{\text {id }}$ model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age $*$ id model $0 \sim$ agetid + age $* i d$ model 0 agetid+age ${ }^{\text {id }}$ model $0 \sim$ agetid $+2 e^{*}{ }^{*}$ model 0 ~ agetid + age $*$ id model $0 \sim$ agetid + age ${ }^{2}$ id model 0 age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 age+id+age*id model 0 ~ agetid+age*id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model $0 \sim$ age+id+age*id model 0 ~age+id+age*id model 0 ~ agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age ${ }^{\sim}+i d+$ +age*id model 0 agetid+age ${ }^{\text {idd }}$ model 0 agetid+age id model $0 \sim$ age
\sim

2	1	0	0	0	1	$46,30 \%$	$21,60 \%$	$9,80 \%$	$22,20 \%$
2	1	0	0	0	1	$11,20 \%$	$72,60 \%$	$9,60 \%$	$6,60 \%$
2	1	0	0	0	1	$9,20 \%$	$80,30 \%$	$2,70 \%$	$7,80 \%$
2	1	0	0	0	1	$11,80 \%$	$4,90 \%$	$43,10 \%$	$40,20 \%$
2	1	0	0	0	1	$12,80 \%$	$9,40 \%$	$57,90 \%$	$20,00 \%$
2	1	0	0	0	1	$4,40 \%$	$79,10 \%$	$2,90 \%$	$13,60 \%$
2	1	0	0	0	1	$2,50 \%$	$73,70 \%$	$6,90 \%$	$16,90 \%$
2	1	0	0	0	1	$20,80 \%$	$24,30 \%$	$10,50 \%$	$44,40 \%$
2	1	0	0	0	1	$16,90 \%$	$41,20 \%$	$13,30 \%$	$28,60 \%$
2	1	0	0	0	1	$30,80 \%$	$31,50 \%$	$22,30 \%$	$15,40 \%$
2	1	0	0	0	1	$8,80 \%$	$47,90 \%$	$14,70 \%$	$28,60 \%$
2	1	0	0	0	1	$7,50 \%$	$15,40 \%$	$26,50 \%$	$50,70 \%$
2	1	0	0	0	1	$4,30 \%$	$4,30 \%$	$89,00 \%$	$2,40 \%$
2	1	0	0	0	1	$11,60 \%$	$46,80 \%$	$13,20 \%$	$28,40 \%$
2	1	0	0	0	1	$3,60 \%$	$77,10 \%$	$4,90 \%$	$14,40 \%$
2	1	0	0	0	1	$45,00 \%$	$16,30 \%$	$15,50 \%$	$23,20 \%$
2	1	0	0	0	1	$0,10 \%$	$16,80 \%$	$33,20 \%$	$49,80 \%$
2	1	0	0	0	1	$19,60 \%$	$28,00 \%$	$13,40 \%$	$39,00 \%$
2	1	0	0	0	1	$1,40 \%$	$52,00 \%$	$10,60 \%$	$20,00 \%$
2	1	0	0	0	1	$1,60 \%$	$8,90 \%$	$26,80 \%$	$62,80 \%$
2	1	0	0	0	1	$15,50 \%$	$5,50 \%$	$23,20 \%$	$8,80 \%$
2	1	0	0	0	1	$6,10 \%$	$1,00 \%$	$48,60 \%$	$30,20 \%$
2	1	0	0	0	1	$26,80 \%$	$5,010 \%$	$10,50 \%$	$8,60 \%$
2	1	0	0	0	1	$11,70 \%$	$42,80 \%$	$39,00 \%$	$6,40 \%$
2	1	0	0	0	1	$57,70 \%$	$2,70 \%$	$2,00 \%$	$17,60 \%$
2	1	0	0	0	1	$11,20 \%$	$51,30 \%$	$32,50 \%$	$4,90 \%$
2	1	0	0	0	1	$1,30 \%$	$5,10 \%$	$24,80 \%$	$68,80 \%$
2	1	0	0	0	1	$6,70 \%$	$19,50 \%$	$23,40 \%$	$50,40 \%$
2	1	0	0	0	1	$13,30 \%$	$2,10 \%$	$39,00 \%$	$45,60 \%$
2	1	0	0	0	1	$16,10 \%$	$61,70 \%$	$9,10 \%$	$13,10 \%$
2	1	0	0	0	1	$3,60 \%$	$6,60 \%$	$89,30 \%$	$0,50 \%$
2	1	0	0	0	1	$4,50 \%$	$73,40 \%$	$7,50 \%$	$14,50 \%$
2	1	0	0	0	1	$5,10 \%$	$48,90 \%$	$16,70 \%$	$29,30 \%$
2	1	0	0	0	1	$44,60 \%$	$2,20 \%$	$28,30 \%$	$24,90 \%$
2	1	0	0	0	1	$1,70 \%$	$87,60 \%$	$2,70 \%$	$8,00 \%$
2	1	0	0	0	1	$2,70 \%$	$87,20 \%$	$1,60 \%$	$8,50 \%$
2	1	0	0	0	1	$2,10 \%$	$88,70 \%$	$1,20 \%$	$8,00 \%$
2	1	0	0	0	1	$6,40 \%$	$68,90 \%$	$4,10 \%$	$20,60 \%$
2	1	0	0	0	1	$1,30 \%$	$83,90 \%$	$11,30 \%$	$3,40 \%$
2	1	0	0	0	1	$4,60 \%$	$81,40 \%$	$3,20 \%$	$10,80 \%$
2	1	0	0	0	1	$10,30 \%$	$70,60 \%$	$7,70 \%$	$11,40 \%$
2	1	0	0	0	1	$6,40 \%$	$62,60 \%$	$7,30 \%$	$23,70 \%$
2	1	0	0	0	1	$21,00 \%$	$28,90 \%$	$9,70 \%$	$40,40 \%$
2	1	0	0	0	1	$35,40 \%$	$5,10 \%$	$23,20 \%$	$36,40 \%$
2	1	0	0	0	1	$55,60 \%$	$9,20 \%$	$11,10 \%$	$24,10 \%$
2	1	0	0	0	1	$3,60 \%$	$78,20 \%$	$9,90 \%$	$8,30 \%$
2	1	0	0	0	1	$11,50 \%$	$35,20 \%$	$15,40 \%$	$37,90 \%$
2	1	0	0	0	1	$7,90 \%$	$22,90 \%$	$24,30 \%$	$45,00 \%$
2	1	0	0	0	1	$40,10 \%$	$40,70 \%$	$5,30 \%$	$14,00 \%$
2	1	0	0	0	1	$13,80 \%$	$2,50 \%$	$51,10 \%$	$32,60 \%$
2									

780 P18065 781 P18206 784 P18669 785 P18850 786 P19021 787 P19022 788 P19320 792 P19823 793 P19827 794 P20023 795 P20023 800 P20340 802 P20701 803 P20742 805 P20827 808 P20908 809 P20933 810 P21291 811 P21333 813 P21695 813 P21695 818 P22304 818 P22304
820 P22392 820 P22392 822 P22692 823 P22792 824 P22891 825 P22897 827 P23142 828 P23142 829 P23229 830 P23284 831 P23381 832 P23435 833 P23467 835 P23471 837 P24043 839 P24387 840 P24592 841 P24593 842 P24666 843 P24821 845 P25311 849 P25788 849 P25788 852 P26038 854 P26572 854 P26572
856 P26992 856 P26992
857 P27169 857 P27169 858 P27348
859 P27487
model 0 ~ age+id+age*id model $0 \sim$ age $+i d+a g e * i d$ model $0 \sim$ agetid+age ${ }^{*} i d$ model $0 \sim$ age+id + age ${ }^{*} i d$ model $0 \sim$ agetid+age ${ }^{*}$ id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid+age*id model $0 \sim$ age $+i d+a g e * i d$ model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age $*_{i d}$ model $0 \sim$ agetid + age $* i d$ model $0 \sim$ age+id + age ${ }^{*}$ id model $0 \sim$ agetid $+2 e^{*} * i d$ model 0 agetid+age id model 0 agetid+age*id model 0 agetid+age id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 agetid+age*id model 0 ~ agetid+age*id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model $0 \sim$ agetid+age*id model 0 ~age+id+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age ${ }^{*}$ id model 0 ~ age+id+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid + age $* i d$ model $0 \sim$ age $+i d+a g e * i d ~$
model $0 \sim$ age $+i d+a g e * i d ~$ model 0 ~ age+id + age ${ }^{*}$ id model $0 \sim$ agetid $+a g e{ }^{*}$ id

2	1	0	0	0	1	$50,40 \%$	$9,30 \%$	$24,00 \%$	$16,30 \%$
2	1	0	0	0	1	$14,40 \%$	$3,30 \%$	$62,50 \%$	$19,80 \%$
2	1	0	0	0	1	$7,90 \%$	$4,60 \%$	$52,30 \%$	$35,20 \%$
2	1	0	0	0	1	$19,80 \%$	$17,30 \%$	$24,70 \%$	$38,30 \%$
2	1	0	0	0	1	$4,40 \%$	$48,70 \%$	$21,70 \%$	$25,20 \%$
2	1	0	0	0	1	$53,50 \%$	$11,60 \%$	$10,20 \%$	$24,70 \%$
2	1	0	0	0	1	$18,90 \%$	$54,10 \%$	$24,90 \%$	$2,20 \%$
2	1	0	0	0	1	$7,10 \%$	$69,60 \%$	$10,50 \%$	$12,80 \%$
2	1	0	0	0	1	$4,40 \%$	$81,10 \%$	$6,20 \%$	$8,30 \%$
2	1	0	0	0	1	$12,90 \%$	$58,50 \%$	$6,30 \%$	$22,20 \%$
2	1	0	0	0	1	$16,50 \%$	$13,00 \%$	$27,10 \%$	$43,40 \%$
2	1	0	0	0	1	$5,90 \%$	$1,80 \%$	$85,10 \%$	$7,20 \%$
2	1	0	0	0	1	$34,20 \%$	$28,30 \%$	$29,50 \%$	$8,00 \%$
2	1	0	0	0	1	$0,60 \%$	$79,20 \%$	$15,10 \%$	$5,10 \%$
2	1	0	0	0	1	$26,40 \%$	$35,00 \%$	$19,00 \%$	$19,50 \%$
2	1	0	0	0	1	$57,50 \%$	$18,30 \%$	$5,20 \%$	$19,00 \%$
2	1	0	0	0	1	$6,00 \%$	$61,00 \%$	$3,40 \%$	$29,60 \%$
2	1	0	0	0	1	$12,90 \%$	$7,40 \%$	$69,10 \%$	$10,60 \%$
2	1	0	0	0	1	$31,50 \%$	$10,90 \%$	$46,00 \%$	$11,60 \%$
2	1	0	0	0	1	$1,20 \%$	$37,00 \%$	$18,50 \%$	$43,30 \%$
2	1	0	0	0	1	$6,80 \%$	$57,10 \%$	$9,30 \%$	$26,70 \%$
2	1	0	0	0	1	$7,90 \%$	$28,90 \%$	$17,60 \%$	$45,60 \%$
2	1	0	0	0	1	$18,20 \%$	$13,60 \%$	$19,50 \%$	$48,70 \%$
2	1	0	0	0	1	$19,00 \%$	$30,60 \%$	$9,90 \%$	$40,40 \%$
2	1	0	0	0	1	$11,50 \%$	$53,10 \%$	$12,10 \%$	$23,30 \%$
2	1	0	0	0	1	$2,20 \%$	$88,30 \%$	$2,50 \%$	$7,00 \%$
2	1	0	0	0	1	$6,90 \%$	$41,30 \%$	$38,00 \%$	$13,80 \%$
2	1	0	0	0	1	$26,80 \%$	$29,00 \%$	$14,60 \%$	$29,60 \%$
2	1	0	0	0	1	$18,90 \%$	$36,00 \%$	$4,50 \%$	$40,60 \%$
2	1	0	0	0	1	$24,50 \%$	$5,90 \%$	$19,20 \%$	$50,40 \%$
2	1	0	0	0	1	$10,70 \%$	$15,70 \%$	$65,00 \%$	$8,60 \%$
2	1	0	0	0	1	$8,70 \%$	$25,50 \%$	$38,60 \%$	$27,20 \%$
2	1	0	0	0	1	$5,30 \%$	$75,20 \%$	$4,30 \%$	$15,30 \%$
2	1	0	0	0	1	$1,50 \%$	$72,30 \%$	$20,90 \%$	$5,30 \%$
2	1	0	0	0	1	$25,90 \%$	$34,00 \%$	$18,50 \%$	$21,50 \%$
2	1	0	0	0	1	$3,10 \%$	$15,20 \%$	$18,70 \%$	$63,00 \%$
2	1	0	0	0	1	$0,10 \%$	$61,30 \%$	$10,80 \%$	$27,90 \%$
2	1	0	0	0	1	$26,50 \%$	$38,00 \%$	$11,40 \%$	$24,10 \%$
2	1	0	0	0	1	$58,80 \%$	$10,30 \%$	$8,60 \%$	$22,20 \%$
2	1	0	0	0	1	$15,60 \%$	$42,70 \%$	$23,90 \%$	$17,90 \%$
2	1	0	0	0	1	$31,10 \%$	$23,30 \%$	$14,40 \%$	$31,30 \%$
2	1	0	0	0	1	$15,30 \%$	$55,80 \%$	$24,80 \%$	$4,10 \%$
2	1	0	0	0	1	$5,30 \%$	$19,20 \%$	$17,20 \%$	$58,30 \%$
2	1	0	0	0	1	$7,30 \%$	$10,60 \%$	$65,60 \%$	$16,40 \%$
2	1	0	0	0	1	$44,80 \%$	$0,80 \%$	$27,40 \%$	$27,00 \%$
2	1	0	0	0	1	$8,90 \%$	$42,30 \%$	$13,10 \%$	$35,80 \%$
2	1	0	0	0	1	$20,30 \%$	$55,30 \%$	$15,90 \%$	$8,50 \%$
2	1	0	0	0	1	$9,10 \%$	$52,90 \%$	$8,60 \%$	$29,40 \%$
2	1	0	0	0	1	$8,00 \%$	$2,20 \%$	$60,70 \%$	$29,20 \%$
2	1	0	0	0	1	$9,60 \%$	$64,30 \%$	$5,00 \%$	$21,00 \%$
2									

860 P27797 861 P27824 862 P27918 863 P27930 867 P28072 868 P28074 869 P28799 871 P29218 872 P29279 875 P29622 877 P30041 878 P30043 879 P30044 880 P30048 881 P30085 882 P30086 883 P30101 884 P30153 885 P30405 887 P30508 888 P30530 888 P30530 889 P30740 890 P31146 892 P31153 893 P31939 895 P31946 | 896 P31947 |
| :--- |
| 899 | 899 P32004

900 P32119 900 P32119 903 P32942 904 P33151 906 P34059 907 P34096 909 P35052 911 P35247 912 P35442 913 P35443 916 P35579 920 P35858 922 P36222 925 P36955 926 P36959 929 P37802 932 P39060 932 P39060 935 P40197 938 P40925 939 P40926 940 P40967
model 0 ~age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~age+id+age*id model 0 ~age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid+age ${ }^{\text {id }}$ model 0 ~ age+id+age*id model $0 \sim$ age+id+age ${ }^{*}$ id model 0 ~ age+id + age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ age+id + age ${ }^{*}$ id model $0 \sim$ agetid + age $* i d$ model 0 agetid+age ${ }^{\text {id }}$ model $0 \sim$ agetid $+2 e^{*}{ }^{*}$ model 0 agetid+age id model 0 agetid+age*id model 0 age+id+age*id model 0 age+id+age*id model $0 \sim$ age+id + age ${ }^{*}$ id model 0 ~ age+id+age*id model $0 \sim$ age+id + age*id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model $0 \sim$ age+id+age*id model $0 \sim$ agetid+age*id model 0 ~age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid $+a g e{ }^{*}$ id model $0 \sim$ agetid + age ${ }^{2}$ id model 0 ~ age+id + age*id model $0 \sim$ age ${ }^{\sim}+i d+$ +age*id model $0 \sim$ age $+i d+a g e * i d ~$
model $0 \sim$ age $+i d+a g e * i d ~$ model $0 \sim$ agetid +age ${ }^{*}$ model $0 \sim$ agetid $+a g e{ }^{*}$ id

2	1	0	0	0	1	$2,30 \%$	$11,80 \%$	$79,40 \%$	$6,50 \%$
2	1	0	0	0	1	$5,60 \%$	$64,80 \%$	$7,80 \%$	$21,80 \%$
2	1	0	0	0	1	$14,00 \%$	$55,30 \%$	$8,20 \%$	$22,50 \%$
2	1	0	0	0	1	$13,80 \%$	$52,00 \%$	$8,60 \%$	$25,60 \%$
2	1	0	0	0	1	$12,80 \%$	$25,80 \%$	$27,20 \%$	$34,20 \%$
2	1	0	0	0	1	$14,70 \%$	$22,20 \%$	$38,40 \%$	$24,70 \%$
2	1	0	0	0	1	$30,40 \%$	$28,80 \%$	$6,00 \%$	$34,80 \%$
2	1	0	0	0	1	$8,20 \%$	$23,30 \%$	$39,60 \%$	$28,90 \%$
2	1	0	0	0	1	$30,60 \%$	$17,30 \%$	$16,10 \%$	$36,00 \%$
2	1	0	0	0	1	$2,40 \%$	$80,50 \%$	$5,50 \%$	$11,60 \%$
2	1	0	0	0	1	$36,90 \%$	$24,20 \%$	$14,50 \%$	$24,40 \%$
2	1	0	0	0	1	$51,80 \%$	$15,30 \%$	$6,50 \%$	$26,40 \%$
2	1	0	0	0	1	$1,40 \%$	$66,90 \%$	$27,20 \%$	$4,40 \%$
2	1	0	0	0	1	$4,40 \%$	$74,40 \%$	$6,20 \%$	$15,10 \%$
2	1	0	0	0	1	$7,50 \%$	$12,90 \%$	$45,40 \%$	$34,20 \%$
2	1	0	0	0	1	$24,90 \%$	$6,70 \%$	$24,20 \%$	$44,20 \%$
2	1	0	0	0	1	$7,80 \%$	$6,10 \%$	$74,90 \%$	$11,20 \%$
2	1	0	0	0	1	$17,00 \%$	$17,50 \%$	$16,00 \%$	$48,90 \%$
2	1	0	0	0	1	$9,60 \%$	$5,30 \%$	$83,50 \%$	$1,60 \%$
2	1	0	0	0	1	$1,30 \%$	$97,10 \%$	$0,20 \%$	$1,40 \%$
2	1	0	0	0	1	$16,30 \%$	$61,10 \%$	$5,80 \%$	$16,80 \%$
2	1	0	0	0	1	$14,20 \%$	$6,60 \%$	$63,60 \%$	$15,70 \%$
2	1	0	0	0	1	$13,60 \%$	$0,50 \%$	$75,30 \%$	$10,60 \%$
2	1	0	0	0	1	$11,30 \%$	$30,70 \%$	$45,30 \%$	$12,70 \%$
2	1	0	0	0	1	$20,70 \%$	$8,30 \%$	$28,80 \%$	$42,30 \%$
2	1	0	0	0	1	$12,60 \%$	$6,10 \%$	$45,20 \%$	$36,20 \%$
2	1	0	0	0	1	$16,40 \%$	$6,00 \%$	$67,70 \%$	$10,00 \%$
2	1	0	0	0	1	$10,30 \%$	$57,10 \%$	$6,70 \%$	$26,00 \%$
2	1	0	0	0	1	$52,40 \%$	$11,70 \%$	$7,20 \%$	$28,70 \%$
2	1	0	0	0	1	$23,20 \%$	$47,50 \%$	$9,70 \%$	$19,60 \%$
2	1	0	0	0	1	$5,90 \%$	$75,20 \%$	$4,60 \%$	$14,30 \%$
2	1	0	0	0	1	$12,60 \%$	$66,80 \%$	$8,20 \%$	$12,40 \%$
2	1	0	0	0	1	$3,60 \%$	$63,10 \%$	$6,90 \%$	$26,40 \%$
2	1	0	0	0	1	$6,80 \%$	$50,40 \%$	$26,30 \%$	$16,60 \%$
2	1	0	0	0	1	$4,70 \%$	$66,00 \%$	$3,60 \%$	$25,70 \%$
2	1	0	0	0	1	$45,20 \%$	$12,40 \%$	$9,70 \%$	$32,60 \%$
2	1	0	0	0	1	$23,40 \%$	$19,00 \%$	$10,00 \%$	$47,50 \%$
2	1	0	0	0	1	$20,60 \%$	$11,70 \%$	$60,00 \%$	$7,80 \%$
2	1	0	0	0	1	$26,70 \%$	$67,70 \%$	$0,50 \%$	$5,20 \%$
2	1	0	0	0	1	$8,50 \%$	$48,40 \%$	$9,40 \%$	$33,70 \%$
2	1	0	0	0	1	$3,80 \%$	$25,20 \%$	$64,60 \%$	$6,40 \%$
2	1	0	0	0	1	$54,90 \%$	$26,70 \%$	$8,80 \%$	$9,50 \%$
2	1	0	0	0	1	$9,30 \%$	$9,30 \%$	$34,00 \%$	$47,40 \%$
2	1	0	0	0	1	$16,30 \%$	$11,40 \%$	$58,00 \%$	$14,30 \%$
2	1	0	0	0	1	$20,70 \%$	$39,50 \%$	$12,80 \%$	$27,00 \%$
2	1	0	0	0	1	$7,70 \%$	$42,10 \%$	$17,90 \%$	$32,30 \%$
2	1	0	0	0	1	$12,80 \%$	$13,50 \%$	$39,40 \%$	$34,30 \%$
2	1	0	0	0	1	$17,90 \%$	$9,90 \%$	$69,30 \%$	$3,00 \%$
2	1	0	0	0	1	$9,00 \%$	$39,10 \%$	$11,80 \%$	$40,10 \%$
2	1	0	0	0	1	$19,90 \%$	$34,60 \%$	$11,80 \%$	$33,60 \%$
2									

943 P41240 944 P41250 945 P42126 947 P42785 948 P43034 949 P43121 951 P43251 953 P43652 954 P45877 955 P45974 958 P46531 960 P48052 961 P48059 963 P48163 965 P48357 966 P48426 968 P48637 969 P48723 970 P48735 972 P48740 973 P48745 973 P48745 974 P48960 975 P49247 977 P49407 980 P49593 981 P49641 983 P49746 986 P50395 989 P50552 990 P50990 991 P51149 992 P51452 993 P51693 997 P52565 998 P52566 1000 P52790 1002 P52848 1003 P52888 1004 P52907 1005 P53004 1006 P53396 008 P54289 1008 P54289 1010 P54727 1011 P54760 012 P54802 016 P55058 018 P55103
model 0 ~ age+id+age*id model $0 \sim$ age $+i d+$ age ${ }^{*} i d$ model 0 ~age+id+age*id model $0 \sim$ age+id+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*}$ id model 0 ~ agetid+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model $0 \sim$ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age $*$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model 0 ~ agetid + age ${ }^{\text {id }}$ model 0 ~agetid+age model 0 agetid+age model 0 age+id+age id model $0 \sim$ agetid + age ${ }^{\text {id }}$ model 0 agetid + age*id model $0 \sim$ agetid + age ${ }^{*}$ id model 0 ~ agetid+age*id model $0 \sim$ agetid+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model $0 \sim$ age+id+age*id model 0 ~age+id+age*id model 0 ~ agetid+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age $* i d$
model $0 \sim$ agetid $+a g e * i d ~$ model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id + age *id model 0~age \sim ag+idage*id model \sim ~ model $0 \sim$ agetid $+a g e{ }^{*}$ id

2	1	0	0	0	1	$18,80 \%$	$24,30 \%$	$21,30 \%$	$35,50 \%$
2	1	0	0	0	1	$15,10 \%$	$2,00 \%$	$24,40 \%$	$58,50 \%$
2	1	0	0	0	1	$6,00 \%$	$61,40 \%$	$26,30 \%$	$6,20 \%$
2	1	0	0	0	1	$5,90 \%$	$77,50 \%$	$2,00 \%$	$14,70 \%$
2	1	0	0	0	1	$8,00 \%$	$7,30 \%$	$43,90 \%$	$40,70 \%$
2	1	0	0	0	1	$18,30 \%$	$44,00 \%$	$4,50 \%$	$33,20 \%$
2	1	0	0	0	1	$1,50 \%$	$90,00 \%$	$1,60 \%$	$6,80 \%$
2	1	0	0	0	1	$51,10 \%$	$24,30 \%$	$5,00 \%$	$19,60 \%$
2	1	0	0	0	1	$1,50 \%$	$89,40 \%$	$0,80 \%$	$8,30 \%$
2	1	0	0	0	1	$31,80 \%$	$11,20 \%$	$13,50 \%$	$43,50 \%$
2	1	0	0	0	1	$8,10 \%$	$64,80 \%$	$6,60 \%$	$20,50 \%$
2	1	0	0	0	1	$14,20 \%$	$57,60 \%$	$9,60 \%$	$18,60 \%$
2	1	0	0	0	1	$11,30 \%$	$17,90 \%$	$60,30 \%$	$10,40 \%$
2	1	0	0	0	1	$2,60 \%$	$63,40 \%$	$14,10 \%$	$19,90 \%$
2	1	0	0	0	1	$26,60 \%$	$38,00 \%$	$12,00 \%$	$23,40 \%$
2	1	0	0	0	1	$15,60 \%$	$14,40 \%$	$47,30 \%$	$22,70 \%$
2	1	0	0	0	1	$4,20 \%$	$64,20 \%$	$8,90 \%$	$22,70 \%$
2	1	0	0	0	1	$12,09 \%$	$53,80 \%$	$5,40 \%$	$27,80 \%$
2	1	0	0	0	1	$23,30 \%$	$12,30 \%$	$55,00 \%$	$9,50 \%$
2	1	0	0	0	1	$19,50 \%$	$55,30 \%$	$6,10 \%$	$19,10 \%$
2	1	0	0	0	1	$9,90 \%$	$43,60 \%$	$22,10 \%$	$24,50 \%$
2	1	0	0	0	1	$11,00 \%$	$5,80 \%$	$21,60 \%$	$61,60 \%$
2	1	0	0	0	1	$4,10 \%$	$55,20 \%$	$7,60 \%$	$33,00 \%$
2	1	0	0	0	1	$39,50 \%$	$7,10 \%$	$18,60 \%$	$34,80 \%$
2	1	0	0	0	1	$14,70 \%$	$13,20 \%$	$51,20 \%$	$20,90 \%$
2	1	0	0	0	1	$8,70 \%$	$0,50 \%$	$85,00 \%$	$5,80 \%$
2	1	0	0	0	1	$0,30 \%$	$84,50 \%$	$13,60 \%$	$1,70 \%$
2	1	0	0	0	1	$39,30 \%$	$15,40 \%$	$10,20 \%$	$35,00 \%$
2	1	0	0	0	1	$9,90 \%$	$4,60 \%$	$52,20 \%$	$33,30 \%$
2	1	0	0	0	1	$28,70 \%$	$13,60 \%$	$31,10 \%$	$26,60 \%$
2	1	0	0	0	1	$13,80 \%$	$9,70 \%$	$44,20 \%$	$32,30 \%$
2	1	0	0	0	1	$10,20 \%$	$1,90 \%$	$59,40 \%$	$28,50 \%$
2	1	0	0	0	1	$9,20 \%$	$5,40 \%$	$80,70 \%$	$4,60 \%$
2	1	0	0	0	1	$5,10 \%$	$20,10 \%$	$66,60 \%$	$8,20 \%$
2	1	0	0	0	1	$56,50 \%$	$19,70 \%$	$5,40 \%$	$18,40 \%$
2	1	0	0	0	1	$7,50 \%$	$2,70 \%$	$70,40 \%$	$19,40 \%$
2	1	0	0	0	1	$10,00 \%$	$9,50 \%$	$42,70 \%$	$37,90 \%$
2	1	0	0	0	1	$12,90 \%$	$38,50 \%$	$13,70 \%$	$35,00 \%$
2	1	0	0	0	1	$18,70 \%$	$52,30 \%$	$7,60 \%$	$21,50 \%$
2	1	0	0	0	1	$5,00 \%$	$63,60 \%$	$5,90 \%$	$25,50 \%$
2	1	0	0	0	1	$13,70 \%$	$1,10 \%$	$62,20 \%$	$23,00 \%$
2	1	0	0	0	1	$23,80 \%$	$12,80 \%$	$17,40 \%$	$45,90 \%$
2	1	0	0	0	1	$46,70 \%$	$8,80 \%$	$16,60 \%$	$27,90 \%$
2	1	0	0	0	1	$12,90 \%$	$49,50 \%$	$9,40 \%$	$28,20 \%$
2	1	0	0	0	1	$7,10 \%$	$8,00 \%$	$13,60 \%$	$71,40 \%$
2	1	0	0	0	1	$11,90 \%$	$32,20 \%$	$18,30 \%$	$37,70 \%$
2	1	0	0	0	1	$11,70 \%$	$68,50 \%$	$3,20 \%$	$16,70 \%$
2	1	0	0	0	1	$9,80 \%$	$63,50 \%$	$10,50 \%$	$16,20 \%$
2	1	0	0	0	1	$34,80 \%$	$14,80 \%$	$5,50 \%$	$44,90 \%$
2	1	0	0	0	1	$22,90 \%$	$37,70 \%$	$16,60 \%$	$22,70 \%$
2									

1020 P55285 021 P55287 023 P55957 1024 P56199 025 P58546 1027 P60022 1028 P60174 1029 P60709 1032 P60981 1034 P61020 1037 P61088 1038 P61106 1039 P61158 1040 P61160 1042 P61224 1045 P61970 1046 P61981 1048 P62258 1050 P62328 1052 P62820 1053 P62937 1056 P63104 1056 P63104 1057 P63208 1059 P67936 059 P67936 1060 P67936 1062 P68036 1062 P68036 1063 P68363 1064 P68366 1065 P68371 1066 P68871 1068 P69905 1071 P78417 072 P78504 1075 P80108 1076 P80188 1078 P80723 1081 P98095 1082 P98160 1083 P98161 1084 Q01459 1085 Q01469 1086 Q01518 1086 Q01518 1087 Q01523 090 Q02487 1091 Q02747 092 Q02763 1096 Q03154
model 0 ~ age+id+age*id model $0 \sim$ age+id $+a g e e^{*} i d$ model 0 ~ agetid+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model $0 \sim$ age+id + age ${ }^{* i d}$ model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*}$ id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~age+id+age ${ }^{\text {id }}$ model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age $* i d$ model $0 \sim$ age ~ agetid + age *id model 0 ~ agetid + age*id model $0 \sim$ age $+i d+$ age ${ }^{*}$ id model 0 agetid+age*id model 0 ~agetid+age id model 0 ~ age+id+age ${ }^{*}$ id model $0 \sim$ age $+1 d+$ age ${ }^{\text {id }}$ model 0 agetid + age*id model 0 ~ agetid+age*id model 0 ~ agetid+age*id model $0 \sim$ agetid+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model $0 \sim$ age+id+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model $0 \sim$ agetid+age*id model 0 ~age+id+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age $* i d$
model $0 \sim$ agetid $+a g e * i d ~$ model $0 \sim$ agetid+age $* i d$ model $0 \sim$ agetid + age .id model 0 ~ agetid + age*id model $0 \sim$ agetid + age*id model $0 \sim$ agetid $+a g e{ }^{*}$ id

2	1	0	0	0	1	$27,90 \%$	$34,10 \%$	$7,70 \%$	$30,30 \%$
2	1	0	0	0	1	$20,00 \%$	$42,70 \%$	$34,80 \%$	$2,50 \%$
2	1	0	0	0	1	$10,00 \%$	$25,20 \%$	$33,50 \%$	$31,30 \%$
2	1	0	0	0	1	$4,60 \%$	$13,40 \%$	$35,60 \%$	$46,40 \%$
2	1	0	0	0	1	$13,00 \%$	$1,70 \%$	$72,90 \%$	$12,50 \%$
2	1	0	0	0	1	$17,80 \%$	$34,60 \%$	$6,70 \%$	$40,90 \%$
2	1	0	0	0	1	$9,30 \%$	$2,60 \%$	$47,40 \%$	$40,80 \%$
2	1	0	0	0	1	$12,40 \%$	$7,90 \%$	$57,10 \%$	$22,60 \%$
2	1	0	0	0	1	$13,50 \%$	$5,90 \%$	$46,80 \%$	$33,80 \%$
2	1	0	0	0	1	$0,40 \%$	$5,20 \%$	$93,60 \%$	$0,80 \%$
2	1	0	0	0	1	$15,20 \%$	$6,70 \%$	$31,00 \%$	$47,20 \%$
2	1	0	0	0	1	$19,30 \%$	$16,80 \%$	$45,80 \%$	$18,10 \%$
2	1	0	0	0	1	$9,50 \%$	$8,50 \%$	$65,50 \%$	$16,50 \%$
2	1	0	0	0	1	$10,40 \%$	$12,30 \%$	$58,60 \%$	$18,70 \%$
2	1	0	0	0	1	$12,30 \%$	$35,20 \%$	$44,90 \%$	$7,60 \%$
2	1	0	0	0	1	$34,20 \%$	$6,30 \%$	$25,50 \%$	$34,00 \%$
2	1	0	0	0	1	$4,80 \%$	$6,00 \%$	$72,30 \%$	$16,90 \%$
2	1	0	0	0	1	$6,70 \%$	$7,60 \%$	$48,20 \%$	$37,60 \%$
2	1	0	0	0	1	$6,80 \%$	$8,80 \%$	$64,20 \%$	$20,30 \%$
2	1	0	0	0	1	$4,50 \%$	$81,40 \%$	$5,70 \%$	$8,40 \%$
2	1	0	0	0	1	$5,30 \%$	$1,30 \%$	$6,80 \%$	$16,70 \%$
2	1	0	0	0	1	$12,10 \%$	$6,00 \%$	$5,10 \%$	$24,80 \%$
2	1	0	0	0	1	$13,30 \%$	$62,50 \%$	$3,80 \%$	$20,40 \%$
2	1	0	0	0	1	$7,00 \%$	$3,70 \%$	$30,30 \%$	$28,00 \%$
2	1	0	0	0	1	$13,30 \%$	$5,40 \%$	$69,00 \%$	$12,30 \%$
2	1	0	0	0	1	$17,50 \%$	$13,60 \%$	$4,60 \%$	$24,30 \%$
2	1	0	0	0	1	$4,30 \%$	$42,20 \%$	$39,90 \%$	$13,60 \%$
2	1	0	0	0	1	$31,50 \%$	$1,90 \%$	$18,20 \%$	$48,40 \%$
2	1	0	0	0	1	$5,90 \%$	$34,60 \%$	$43,40 \%$	$16,10 \%$
2	1	0	0	0	1	$17,10 \%$	$29,50 \%$	$36,20 \%$	$17,10 \%$
2	1	0	0	0	1	$11,80 \%$	$30,70 \%$	$41,00 \%$	$16,50 \%$
2	1	0	0	0	1	$7,70 \%$	$78,70 \%$	$3,00 \%$	$10,60 \%$
2	1	0	0	0	1	$9,50 \%$	$75,00 \%$	$2,50 \%$	$13,00 \%$
2	1	0	0	0	1	$15,30 \%$	$9,00 \%$	$34,50 \%$	$41,10 \%$
2	1	0	0	0	1	$3,20 \%$	$72,60 \%$	$7,60 \%$	$16,60 \%$
2	1	0	0	0	1	$18,30 \%$	$55,10 \%$	$10,30 \%$	$16,30 \%$
2	1	0	0	0	1	$4,00 \%$	$59,30 \%$	$8,70 \%$	$28,10 \%$
2	1	0	0	0	1	$16,60 \%$	$54,60 \%$	$7,50 \%$	$21,40 \%$
2	1	0	0	0	1	$8,50 \%$	$74,70 \%$	$6,10 \%$	$10,80 \%$
2	1	0	0	0	1	$14,90 \%$	$27,10 \%$	$32,10 \%$	$26,00 \%$
2	1	0	0	0	1	$11,80 \%$	$42,50 \%$	$18,20 \%$	$27,50 \%$
2	1	0	0	0	1	$12,60 \%$	$48,20 \%$	$11,60 \%$	$27,60 \%$
2	1	0	0	0	1	$7,10 \%$	$17,40 \%$	$38,50 \%$	$37,00 \%$
2	1	0	0	0	1	$13,90 \%$	$7,70 \%$	$67,20 \%$	$11,20 \%$
2	1	0	0	0	1	$28,20 \%$	$49,50 \%$	$8,90 \%$	$13,40 \%$
2	1	0	0	0	1	$20,00 \%$	$45,90 \%$	$11,40 \%$	$22,70 \%$
2	1	0	0	0	1	$0,10 \%$	$54,30 \%$	$12,20 \%$	$33,40 \%$
2	1	0	0	0	1	$1,00 \%$	$27,20 \%$	$21,70 \%$	$50,10 \%$
2	1	0	0	0	1	$15,60 \%$	$31,40 \%$	$49,80 \%$	$3,30 \%$
2	1	0	0	0	1	$12,90 \%$	$6,90 \%$	$21,20 \%$	$59,00 \%$
2									

1100 Q04721 1101 Q04756 102 Q04760 1103 Q04917 105 Q05682 1106 Q05707 1107 Q06033 1110 Q06187 111 Q06323 113 Q06830 115 Q07954 117 Q0817 118 Q08188 120 Q08380 1124 Q08ET2 1125 Q09328 1129 Q10471 1132 Q12805 1134 Q12841 1135 Q12860 1136 Q12864 1139 Q13093 139 Q13093 1140 Q1310 142 Q13201 1142 Q13201 1144 Q13228 1146 Q13232 1148 Q13308 1149 Q13332 1150 Q13421 1152 Q13508 1154 Q13642 1155 Q13683 158 Q13790 160 Q13867 1162 Q14012 1163 Q14019 1164 Q14112 1165 Q14118 1168 Q14247 1169 Q14314 1170 Q14315 1173 Q14515 1174 Q14520 1176 Q14563 1176 Q14563 1779 Q14574 179 Q14624 1180 Q14644 1183 Q14847
model 0 ~ age+id+age*id model $0 \sim$ agetid+age*id model 0 ~age+id+age*id model $0 \sim$ age+id+age*id model $0 \sim$ age+id+age*id model $0 \sim$ age+id + age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ age + id + age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*}$ id model 0 ~agetid+age*id model 0 ~ age+id+age ${ }^{\text {id }}$ model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~age+id+age ${ }^{\text {id }}$ model $0 \sim$ age+id+age ${ }^{*}$ id model 0 agetid+age id model $0 \sim$ agetid + age $* i d$ model $0 \sim$ agetid + age $*$ id model $0 \sim$ agetid+age model $0 \sim$ agetid + age ${ }^{*}$ id model 0 ~ age tid + age ${ }^{\text {id }}$ model 0 ~ agetid model $0 \sim$ agetid+age .id model 0 age+id+age id model 0 ~age+id+age*id model 0 age+id+age*id model $0 \sim$ age+id + age ${ }^{*}$ id model 0 ~age+id+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age ${ }^{\text {id }}$ model $0 \sim$ agetid+age $* i d$
 model 0 ~ agetid + age*id model $0 \sim$ agetid + age*id model 0 ~agetid+age model $0 \sim$ age+id+age*id

2	1	0	0	0	1	$13,90 \%$	$46,40 \%$	$38,30 \%$	$1,40 \%$
2	1	0	0	0	1	$0,10 \%$	$16,40 \%$	$26,20 \%$	$57,30 \%$
2	1	0	0	0	1	$33,90 \%$	$5,80 \%$	$24,70 \%$	$35,50 \%$
2	1	0	0	0	1	$12,00 \%$	$11,80 \%$	$59,60 \%$	$16,60 \%$
2	1	0	0	0	1	$14,70 \%$	$7,60 \%$	$57,90 \%$	$19,80 \%$
2	1	0	0	0	1	$51,90 \%$	$14,60 \%$	$4,00 \%$	$29,50 \%$
2	1	0	0	0	1	$7,80 \%$	$38,10 \%$	$17,70 \%$	$36,40 \%$
2	1	0	0	0	1	$9,30 \%$	$10,30 \%$	$69,10 \%$	$11,20 \%$
2	1	0	0	0	1	$9,00 \%$	$9,10 \%$	$38,10 \%$	$43,80 \%$
2	1	0	0	0	1	$25,60 \%$	$31,80 \%$	$9,20 \%$	$33,40 \%$
2	1	0	0	0	1	$9,00 \%$	$6,20 \%$	$18,20 \%$	$66,60 \%$
2	1	0	0	0	1	$20,20 \%$	$51,80 \%$	$9,40 \%$	$18,60 \%$
2	1	0	0	0	1	$3,50 \%$	$59,10 \%$	$31,90 \%$	$5,60 \%$
2	1	0	0	0	1	$9,60 \%$	$69,90 \%$	$4,60 \%$	$15,90 \%$
2	1	0	0	0	1	$2,70 \%$	$75,40 \%$	$15,10 \%$	$6,80 \%$
2	1	0	0	0	1	$20,10 \%$	$28,70 \%$	$25,60 \%$	$25,60 \%$
2	1	0	0	0	1	$9,40 \%$	$47,70 \%$	$21,40 \%$	$21,50 \%$
2	1	0	0	0	1	$25,90 \%$	$34,90 \%$	$8,90 \%$	$30,40 \%$
2	1	0	0	0	1	$50,10 \%$	$20,20 \%$	$12,00 \%$	$17,70 \%$
2	1	0	0	0	1	$5,90 \%$	$28,40 \%$	$13,20 \%$	$52,60 \%$
2	1	0	0	0	1	$18,60 \%$	$56,40 \%$	$3,60 \%$	$21,40 \%$
2	1	0	0	0	1	$26,20 \%$	$28,90 \%$	$5,90 \%$	$39,00 \%$
2	1	0	0	0	1	$7,20 \%$	$85,30 \%$	$0,80 \%$	$6,70 \%$
2	1	0	0	0	1	$0,70 \%$	$24,80 \%$	$63,30 \%$	$11,20 \%$
2	1	0	0	0	1	$4,10 \%$	$64,50 \%$	$25,40 \%$	$6,00 \%$
2	1	0	0	0	1	$40,40 \%$	$31,30 \%$	$8,00 \%$	$20,30 \%$
2	1	0	0	0	1	$6,40 \%$	$21,70 \%$	$15,40 \%$	$56,50 \%$
2	1	0	0	0	1	$40,40 \%$	$36,50 \%$	$3,30 \%$	$19,80 \%$
2	1	0	0	0	1	$18,20 \%$	$44,20 \%$	$19,40 \%$	$18,20 \%$
2	1	0	0	0	1	$10,40 \%$	$59,50 \%$	$7,20 \%$	$22,90 \%$
2	1	0	0	0	1	$7,90 \%$	$51,80 \%$	$12,60 \%$	$27,70 \%$
2	1	0	0	0	1	$9,40 \%$	$17,30 \%$	$65,50 \%$	$7,80 \%$
2	1	0	0	0	1	$11,20 \%$	$27,80 \%$	$43,80 \%$	$17,20 \%$
2	1	0	0	0	1	$15,80 \%$	$62,00 \%$	$3,00 \%$	$19,20 \%$
2	1	0	0	0	1	$5,40 \%$	$78,80 \%$	$2,00 \%$	$13,90 \%$
2	1	0	0	0	1	$16,40 \%$	$1,20 \%$	$64,00 \%$	$18,40 \%$
2	1	0	0	0	1	$10,00 \%$	$9,10 \%$	$57,50 \%$	$23,40 \%$
2	1	0	0	0	1	$7,80 \%$	$38,10 \%$	$21,20 \%$	$33,00 \%$
2	1	0	0	0	1	$14,60 \%$	$50,00 \%$	$4,20 \%$	$31,30 \%$
2	1	0	0	0	1	$10,00 \%$	$12,30 \%$	$50,60 \%$	$27,20 \%$
2	1	0	0	0	1	$15,20 \%$	$65,70 \%$	$5,80 \%$	$13,30 \%$
2	1	0	0	0	1	$38,10 \%$	$2,00 \%$	$58,30 \%$	$1,50 \%$
2	1	0	0	0	1	$18,30 \%$	$18,50 \%$	$54,20 \%$	$9,00 \%$
2	1	0	0	0	1	$5,60 \%$	$61,10 \%$	$14,70 \%$	$18,60 \%$
2	1	0	0	0	1	$9,80 \%$	$52,50 \%$	$18,20 \%$	$19,40 \%$
2	1	0	0	0	1	$10,10 \%$	$36,00 \%$	$12,40 \%$	$41,50 \%$
2	1	0	0	0	1	$2,50 \%$	$75,20 \%$	$10,10 \%$	$12,20 \%$
2	1	0	0	0	1	$13,00 \%$	$10,20 \%$	$71,90 \%$	$4,90 \%$
2	1	0	0	0	1	$4,00 \%$	$56,80 \%$	$19,40 \%$	$19,80 \%$
2	1	0	0	0	1	$11,70 \%$	$6,90 \%$	$71,00 \%$	$10,40 \%$
2									

1184 Q14956 185 Q14974 187 Q15008 1188 Q15063 1189 Q15063 1190 Q15084 1191 Q15102 1192 Q15113 1193 Q15166 1194 Q15223 195 Q15293 196 Q15365 197 Q15375 198 Q15404 1200 Q15555 1201 Q15582 1202 Q15691 1203 Q15746 1204 Q15828 1207 Q15942 1208 Q16270 209 Q16394 1209 Q16394 1210 Q16531 211 Q16539 1212 Q16543 1213 Q16555 1216 Q16627 1218 Q16658 1219 Q16706 1224 Q24JP5 1226 Q29940 1227 Q3ZCW2 1228 Q495W5 1229 Q4KMGO 1233 Q5BLP8 234 Q5JSH3 235 Q5KU26 1236 Q5тото 1237 Q5T2D2 1238 Q5T314 1240 Q5T985 1242 Q5TCJ5 1243 P07951 1246 Q5VY43 1246 Q5VY43 1247 Q641Q3 1248 Q6EOU4 249 Q6EMK4 250 Q6FHJ7 1253 G6P4E1
model 0 ~ age+id+age*id model $0 \sim$ age+id+age ${ }^{*}$ id model 0 ~agetid+age*id model $0 \sim$ age+id+age*id model $0 \sim$ age+id+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age ${ }^{*}$ id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model $0 \sim$ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age ${ }^{\text {id }}$ model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model 0 agetid+age id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid + age $*$ id model $0 \sim$ agetid+age*id model 0 ~ age+id + age ${ }^{*}$ id model 0 ~ age tid + age ${ }^{\text {id }}$ model 0 ~agetid+age model 0 agetidrage *id model 0 age+id+age id model 0 ~age+id+age*id model 0 age+id+age*id model 0 agetid+age*id model 0 ~age+id+age*id model $0 \sim$ agetid+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model $0 \sim$ age+id+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age $* i d$ model $0 \sim$ agetid+age $* i d$ model 0 ~ age+id+age . model 0 ~ agetid + ase*id mode 0 ~ model $0 \sim$ agetid $+a g e{ }^{*}$ id

2	1	0	0	0	1	$0,60 \%$	$33,40 \%$	$12,70 \%$	$53,30 \%$
2	1	0	0	0	1	$10,70 \%$	$2,90 \%$	$55,50 \%$	$30,90 \%$
2	1	0	0	0	1	$18,60 \%$	$5,00 \%$	$10,60 \%$	$65,70 \%$
2	1	0	0	0	1	$23,70 \%$	$53,30 \%$	$12,10 \%$	$10,90 \%$
2	1	0	0	0	1	$5,10 \%$	$67,00 \%$	$7,30 \%$	$20,60 \%$
2	1	0	0	0	1	$7,20 \%$	$17,10 \%$	$71,40 \%$	$4,20 \%$
2	1	0	0	0	1	$41,50 \%$	$17,30 \%$	$11,10 \%$	$30,00 \%$
2	1	0	0	0	1	$5,10 \%$	$17,70 \%$	$20,40 \%$	$56,80 \%$
2	1	0	0	0	1	$17,90 \%$	$66,60 \%$	$4,60 \%$	$11,00 \%$
2	1	0	0	0	1	$11,70 \%$	$23,10 \%$	$19,50 \%$	$45,70 \%$
2	1	0	0	0	1	$1,10 \%$	$25,30 \%$	$72,30 \%$	$1,30 \%$
2	1	0	0	0	1	$16,80 \%$	$5,10 \%$	$67,70 \%$	$10,40 \%$
2	1	0	0	0	1	$4,50 \%$	$66,40 \%$	$21,20 \%$	$7,90 \%$
2	1	0	0	0	1	$14,00 \%$	$13,50 \%$	$61,70 \%$	$10,80 \%$
2	1	0	0	0	1	$14,90 \%$	$9,80 \%$	$62,60 \%$	$12,70 \%$
2	1	0	0	0	1	$10,70 \%$	$73,70 \%$	$3,10 \%$	$12,50 \%$
2	1	0	0	0	1	$11,50 \%$	$9,40 \%$	$66,50 \%$	$12,70 \%$
2	1	0	0	0	1	$8,50 \%$	$5,20 \%$	$66,00 \%$	$20,30 \%$
2	1	0	0	0	1	$23,60 \%$	$40,90 \%$	$5,10 \%$	$30,50 \%$
2	1	0	0	0	1	$13,10 \%$	$7,20 \%$	$60,70 \%$	$19,10 \%$
2	1	0	0	0	1	$1,30 \%$	$58,50 \%$	$24,40 \%$	$15,80 \%$
2	1	0	0	0	1	$6,20 \%$	$20,70 \%$	$23,40 \%$	$49,70 \%$
2	1	0	0	0	1	$12,40 \%$	$30,30 \%$	$44,70 \%$	$12,60 \%$
2	1	0	0	0	1	$4,10 \%$	$1,30 \%$	$81,60 \%$	$13,00 \%$
2	1	0	0	0	1	$7,10 \%$	$23,40 \%$	$39,10 \%$	$30,50 \%$
2	1	0	0	0	1	$11,50 \%$	$15,00 \%$	$58,80 \%$	$14,70 \%$
2	1	0	0	0	1	$15,20 \%$	$34,50 \%$	$45,50 \%$	$4,80 \%$
2	1	0	0	0	1	$26,60 \%$	$22,30 \%$	$19,20 \%$	$31,90 \%$
2	1	0	0	0	1	$10,20 \%$	$53,90 \%$	$9,70 \%$	$26,20 \%$
2	1	0	0	0	1	$24,40 \%$	$2,90 \%$	$25,50 \%$	$47,20 \%$
2	1	0	0	0	1	$4,20 \%$	$82,30 \%$	$2,00 \%$	$11,40 \%$
2	1	0	0	0	1	$14,40 \%$	$6,40 \%$	$58,20 \%$	$20,90 \%$
2	1	0	0	0	1	$3,70 \%$	$41,50 \%$	$18,80 \%$	$36,10 \%$
2	1	0	0	0	1	$44,40 \%$	$27,30 \%$	$9,40 \%$	$18,90 \%$
2	1	0	0	0	1	$65,10 \%$	$17,20 \%$	$3,80 \%$	$13,90 \%$
2	1	0	0	0	1	$10,10 \%$	$11,60 \%$	$61,60 \%$	$16,70 \%$
2	1	0	0	0	1	$26,60 \%$	$29,80 \%$	$37,00 \%$	$6,60 \%$
2	1	0	0	0	1	$77,30 \%$	$0,20 \%$	$7,60 \%$	$14,90 \%$
2	1	0	0	0	1	$42,30 \%$	$34,90 \%$	$6,10 \%$	$16,60 \%$
2	1	0	0	0	1	$14,30 \%$	$49,10 \%$	$5,30 \%$	$31,40 \%$
2	1	0	0	0	1	$3,40 \%$	$47,80 \%$	$24,70 \%$	$24,10 \%$
2	1	0	0	0	1	$11,00 \%$	$52,50 \%$	$20,00 \%$	$16,50 \%$
2	1	0	0	0	1	$10,70 \%$	$6,40 \%$	$69,50 \%$	$13,50 \%$
2	1	0	0	0	1	$1,10 \%$	$46,80 \%$	$50,80 \%$	$1,30 \%$
2	1	0	0	0	1	$26,00 \%$	$53,90 \%$	$18,70 \%$	$1,40 \%$
2	1	0	0	0	1	$8,40 \%$	$37,90 \%$	$37,30 \%$	$16,40 \%$
2	1	0	0	0	1	$1,80 \%$	$82,90 \%$	$2,20 \%$	$13,20 \%$
2	1	0	0	0	1	$15,60 \%$	$11,00 \%$	$27,50 \%$	$45,80 \%$
2	1	0	0	0	1	$8,60 \%$	$49,00 \%$	$34,80 \%$	$7,70 \%$
2	1	0	0	0	1	$14,80 \%$	$56,30 \%$	$20,00 \%$	$8,90 \%$
2									

model 0 ~age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model 0 ~ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~age+id+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~ age+id+age ${ }^{\text {id }}$ model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*}$ id model 0 ~ age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ age $+i d+$ age $* i d$ model $0 \sim$ agetid + age $* i d$ model 0 agetid+age ${ }^{\text {id }}$ model 0 ~age+id+age*id model $0 \sim$ age $+i d+$ age ${ }^{*}$ id model 0 agetid+age id model $0 \sim$ agetid + age 1 id model $0 \sim$ age+id + age ${ }^{*}$ id model 0 ~ age+id+age*id model 0 agetid + age*id model 0 ~ agetid+age*id model 0 ~agetid+age*id model $0 \sim$ agetid+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid+age ${ }^{\text {id }}$ model 0 ~age+id+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*}$ id model 0 ~ age + id+age*id model $0 \sim$ age $+i d+$ age $* i d ~$
model $0 \sim$ agetid + age $* i d ~$ model $0 \sim$ age agetid + +age ${ }^{*}$ id model 0 ~age 0 id + age*id mode 0 age model $0 \sim$ agetid $+a g e{ }^{*}$ id

2	1	0	0	0	1	$19,30 \%$	$57,00 \%$	$10,70 \%$	$13,00 \%$
2	1	0	0	0	1	$17,00 \%$	$26,10 \%$	$11,10 \%$	$45,70 \%$
2	1	0	0	0	1	$4,70 \%$	$42,80 \%$	$10,20 \%$	$42,30 \%$
2	1	0	0	0	1	$57,20 \%$	$13,40 \%$	$7,90 \%$	$21,50 \%$
2	1	0	0	0	1	$12,40 \%$	$50,00 \%$	$8,90 \%$	$28,70 \%$
2	1	0	0	0	1	$52,90 \%$	$29,80 \%$	$13,20 \%$	$4,20 \%$
2	1	0	0	0	1	$35,30 \%$	$16,10 \%$	$14,10 \%$	$34,50 \%$
2	1	0	0	0	1	$7,60 \%$	$77,20 \%$	$2,30 \%$	$12,90 \%$
2	1	0	0	0	1	$14,10 \%$	$7,60 \%$	$40,70 \%$	$37,60 \%$
2	1	0	0	0	1	$44,80 \%$	$9,20 \%$	$6,60 \%$	$39,50 \%$
2	1	0	0	0	1	$1,90 \%$	$68,60 \%$	$28,50 \%$	$1,00 \%$
2	1	0	0	0	1	$9,60 \%$	$26,30 \%$	$10,60 \%$	$53,60 \%$
2	1	0	0	0	1	$15,70 \%$	$38,60 \%$	$10,50 \%$	$35,30 \%$
2	1	0	0	0	1	$8,60 \%$	$20,80 \%$	$35,80 \%$	$34,80 \%$
2	1	0	0	0	1	$4,70 \%$	$72,00 \%$	$4,40 \%$	$18,80 \%$
2	1	0	0	0	1	$7,40 \%$	$62,60 \%$	$9,40 \%$	$20,60 \%$
2	1	0	0	0	1	$5,10 \%$	$75,10 \%$	$6,20 \%$	$13,60 \%$
2	1	0	0	0	1	$8,90 \%$	$72,20 \%$	$10,00 \%$	$8,90 \%$
2	1	0	0	0	1	$42,60 \%$	$15,10 \%$	$5,50 \%$	$36,80 \%$
2	1	0	0	0	1	$54,10 \%$	$29,30 \%$	$15,70 \%$	$0,90 \%$
2	1	0	0	0	1	$3,60 \%$	$56,70 \%$	$7,80 \%$	$31,90 \%$
2	1	0	0	0	1	$3,70 \%$	$82,60 \%$	$8,10 \%$	$5,60 \%$
2	1	0	0	0	1	$9,60 \%$	$50,20 \%$	$15,60 \%$	$24,50 \%$
2	1	0	0	0	1	$15,10 \%$	$9,30 \%$	$60,60 \%$	$15,00 \%$
2	1	0	0	0	1	$31,40 \%$	$5,80 \%$	$7,10 \%$	$55,70 \%$
2	1	0	0	0	1	$11,80 \%$	$19,80 \%$	$24,60 \%$	$43,80 \%$
2	1	0	0	0	1	$16,40 \%$	$63,70 \%$	$4,20 \%$	$15,70 \%$
2	1	0	0	0	1	$6,90 \%$	$62,40 \%$	$11,80 \%$	$19,00 \%$
2	1	0	0	0	1	$24,30 \%$	$54,30 \%$	$5,70 \%$	$15,80 \%$
2	1	0	0	0	1	$9,20 \%$	$55,70 \%$	$14,60 \%$	$20,40 \%$
2	1	0	0	0	1	$15,70 \%$	$36,30 \%$	$26,00 \%$	$22,00 \%$
2	1	0	0	0	1	$7,40 \%$	$66,60 \%$	$3,10 \%$	$23,00 \%$
2	1	0	0	0	1	$42,90 \%$	$3,60 \%$	$6,80 \%$	$46,70 \%$
2	1	0	0	0	1	$5,30 \%$	$73,60 \%$	$6,40 \%$	$14,70 \%$
2	1	0	0	0	1	$30,10 \%$	$50,10 \%$	$3,50 \%$	$16,20 \%$
2	1	0	0	0	1	$13,00 \%$	$7,30 \%$	$49,50 \%$	$30,20 \%$
2	1	0	0	0	1	$27,30 \%$	$56,40 \%$	$5,50 \%$	$10,80 \%$
2	1	0	0	0	1	$12,00 \%$	$34,20 \%$	$14,40 \%$	$39,40 \%$
2	1	0	0	0	1	$10,20 \%$	$65,10 \%$	$7,50 \%$	$17,20 \%$
2	1	0	0	0	1	$2,50 \%$	$71,40 \%$	$25,50 \%$	$0,70 \%$
2	1	0	0	0	1	$7,10 \%$	$29,90 \%$	$10,00 \%$	$53,10 \%$
2	1	0	0	0	1	$22,50 \%$	$39,70 \%$	$10,00 \%$	$27,90 \%$
2	1	0	0	0	1	$13,70 \%$	$15,50 \%$	$61,30 \%$	$9,50 \%$
2	1	0	0	0	1	$2,50 \%$	$77,40 \%$	$6,00 \%$	$14,00 \%$
2	1	0	0	0	1	$60,50 \%$	$2,90 \%$	$11,40 \%$	$25,10 \%$
2	1	0	0	0	1	$43,30 \%$	$17,10 \%$	$28,70 \%$	$10,90 \%$
2	1	0	0	0	1	$26,20 \%$	$36,50 \%$	$19,90 \%$	$17,40 \%$
2	1	0	0	0	1	$26,60 \%$	$4,00 \%$	$11,30 \%$	$58,10 \%$
2	1	0	0	0	1	$7,80 \%$	$73,80 \%$	$7,60 \%$	$10,70 \%$
2	1	0	0	0	1	$9,10 \%$	$12,40 \%$	$11,20 \%$	$67,30 \%$
2									

1339 Q8WWZ8 1342 Q8WZ75 343 Q8WZA1 1344 Q92187 1345 Q92484 1346 Q92496 1348 Q92626 1353 Q92820 1360 Q93063 1361 Q969E1 1362 Q969H8 1363 Q96C86 1364 Q96CG8 1366 Q96CX2 1367 Q96FE7 1368 Q96G03 1369 Q96H15 1372 Q96IU4 1373 Q96IY4 1374 Q96JP9 1375 Q96JQ0 1376 Q96KG7 1376 Q96KG7 377 Q96KN2 1379 Q96LA6 381 Q96MK3 1384 Q96PD5 1385 Q96PD 1385 Q96RD9 1386 Q96RW 1387 Q96596 1390 Q99536 1391 Q99538 392 Q99650 1395 Q99784 397 Q99941 1398 Q99969 1399 Q99972 1400 Q99983 1401 Q9BQ51 1405 Q9brкз 1408 Q9BUN1 1411 Q9BWV1 1412 Q9BXJO 1414 Q9BXJ4 1415 Q9BXR6 1415 Q9BXR6 1418 Q9BYE9 1420 Q9BYJo 1422 Q9COC4
1423 Q9COC9
model 0 ~age+id+age*id model $0 \sim$ agetid+age ${ }^{* i d}$ model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ age+id+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id + age ${ }^{* i d}$ model $0 \sim$ age+id + age ${ }^{* i d}$ model $0 \sim$ agetid+age*id model 0 ~age+id+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model 0 ~ age+id+age ${ }^{\text {id }}$ model 0 ~age+id+age ${ }^{\text {id }}$ model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid + age $*$ id model $0 \sim$ agetid+age*id model 0 ~ age+id + age ${ }^{*}$ id model 0 ~ agetid model 0 ~agetid+age model 0 agetid+age . model 0 agetid+age id model 0 age+id+age*id model 0 agetid+age*id model $0 \sim$ age+id+age ${ }^{\text {id }}$ model 0 ~ agetid+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~ agetid+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ age+id+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age $* i d$ model $0 \sim$ agetid+age $* i d$ model $0 \sim$ agetid + age id model 0 ~ age+id+age*id mod 0 ~ model $0 \sim$ age 0 id + age
mogetid + age*id

2	1	0	0	0	1	$10,80 \%$	$44,30 \%$	$30,70 \%$	$14,10 \%$
2	1	0	0	0	1	$2,20 \%$	$85,80 \%$	$2,60 \%$	$9,40 \%$
2	1	0	0	0	1	$21,10 \%$	$24,20 \%$	$50,70 \%$	$4,00 \%$
2	1	0	0	0	1	$17,70 \%$	$28,00 \%$	$10,90 \%$	$43,50 \%$
2	1	0	0	0	1	$3,20 \%$	$91,40 \%$	$1,50 \%$	$3,90 \%$
2	1	0	0	0	1	$10,40 \%$	$69,60 \%$	$11,00 \%$	$9,00 \%$
2	1	0	0	0	1	$19,00 \%$	$18,30 \%$	$37,10 \%$	$25,60 \%$
2	1	0	0	0	1	$7,60 \%$	$61,90 \%$	$5,20 \%$	$25,20 \%$
2	1	0	0	0	1	$11,90 \%$	$28,90 \%$	$34,50 \%$	$24,70 \%$
2	1	0	0	0	1	$3,50 \%$	$37,60 \%$	$8,90 \%$	$50,10 \%$
2	1	0	0	0	1	$4,80 \%$	$13,50 \%$	$69,30 \%$	$12,40 \%$
2	1	0	0	0	1	$23,70 \%$	$55,50 \%$	$11,60 \%$	$9,20 \%$
2	1	0	0	0	1	$39,70 \%$	$33,40 \%$	$12,20 \%$	$14,70 \%$
2	1	0	0	0	1	$2,90 \%$	$10,20 \%$	$34,70 \%$	$52,20 \%$
2	1	0	0	0	1	$5,60 \%$	$59,20 \%$	$28,80 \%$	$6,40 \%$
2	1	0	0	0	1	$7,10 \%$	$2,10 \%$	$67,60 \%$	$23,10 \%$
2	1	0	0	0	1	$7,50 \%$	$79,30 \%$	$6,40 \%$	$6,80 \%$
2	1	0	0	0	1	$9,50 \%$	$25,90 \%$	$12,50 \%$	$52,20 \%$
2	1	0	0	0	1	$4,80 \%$	$33,00 \%$	$39,50 \%$	$22,70 \%$
2	1	0	0	0	1	$13,90 \%$	$10,00 \%$	$8,20 \%$	$6,90 \%$
2	1	0	0	0	1	$9,70 \%$	$48,70 \%$	$34,20 \%$	$7,40 \%$
2	1	0	0	0	1	$2,70 \%$	$22,80 \%$	$28,40 \%$	$46,20 \%$
2	1	0	0	0	1	$72,60 \%$	$21,90 \%$	$2,70 \%$	$2,80 \%$
2	1	0	0	0	1	$49,40 \%$	$30,80 \%$	$4,80 \%$	$14,90 \%$
2	1	0	0	0	1	$7,50 \%$	$65,80 \%$	$4,80 \%$	$21,90 \%$
2	1	0	0	0	1	$5,90 \%$	$52,00 \%$	$23,50 \%$	$18,70 \%$
2	1	0	0	0	1	$3,10 \%$	$71,60 \%$	$5,60 \%$	$19,70 \%$
2	1	0	0	0	1	$15,80 \%$	$34,50 \%$	$16,70 \%$	$33,00 \%$
2	1	0	0	0	1	$48,30 \%$	$21,10 \%$	$21,00 \%$	$9,50 \%$
2	1	0	0	0	1	$39,90 \%$	$28,00 \%$	$15,00 \%$	$17,10 \%$
2	1	0	0	0	1	$8,10 \%$	$29,70 \%$	$16,90 \%$	$45,30 \%$
2	1	0	0	0	1	$11,00 \%$	$52,90 \%$	$7,80 \%$	$28,30 \%$
2	1	0	0	0	1	$4,00 \%$	$55,20 \%$	$11,50 \%$	$29,20 \%$
2	1	0	0	0	1	$21,30 \%$	$37,80 \%$	$37,10 \%$	$3,80 \%$
2	1	0	0	0	1	$17,50 \%$	$42,70 \%$	$6,70 \%$	$33,10 \%$
2	1	0	0	0	1	$4,30 \%$	$60,50 \%$	$13,20 \%$	$22,00 \%$
2	1	0	0	0	1	$54,70 \%$	$11,90 \%$	$9,90 \%$	$23,50 \%$
2	1	0	0	0	1	$9,60 \%$	$16,00 \%$	$20,50 \%$	$53,90 \%$
2	1	0	0	0	1	$6,40 \%$	$30,20 \%$	$27,80 \%$	$35,50 \%$
2	1	0	0	0	1	$4,20 \%$	$8,10 \%$	$26,40 \%$	$61,40 \%$
2	1	0	0	0	1	$3,60 \%$	$73,40 \%$	$7,00 \%$	$16,10 \%$
2	1	0	0	0	1	$20,30 \%$	$15,60 \%$	$16,30 \%$	$47,80 \%$
2	1	0	0	0	1	$14,40 \%$	$10,70 \%$	$34,30 \%$	$40,60 \%$
2	1	0	0	0	1	$34,00 \%$	$36,90 \%$	$3,90 \%$	$25,20 \%$
2	1	0	0	0	1	$39,40 \%$	$32,40 \%$	$8,60 \%$	$19,50 \%$
2	1	0	0	0	1	$22,40 \%$	$53,50 \%$	$4,30 \%$	$19,80 \%$
2	1	0	0	0	1	$4,30 \%$	$53,60 \%$	$13,50 \%$	$28,60 \%$
2	1	0	0	0	1	$0,20 \%$	$21,60 \%$	$41,40 \%$	$36,90 \%$
2	1	0	0	0	1	$12,10 \%$	$2,90 \%$	$13,70 \%$	$71,30 \%$
2	1	0	0	0	1	$2,80 \%$	$74,90 \%$	$2,40 \%$	$19,90 \%$
		0	0						

1425 Q9GZP4 1428 Q9нох4 430 Q9H2G2 1431 Q9H4A4 432 Q9H4A9 433 Q9H4B 1434 Q9H4G4 1435 Q9H6X2 440 Q9HBI1 1441 Q9HBRO 1442 Q9HBW1 1444 Q9нCB6 1445 Q9HCLO 1446 Q9HCN 1447 Q9нсUо 1448 Q9NPFO 1449 Q9NPG4 1450 Q9NPH3 1451 Q9NPY3 1452 Q9NQ38 457 Q9NRB3 1459 Q9NRR1 1559 Q9NRR1 1460 Q9NRV9 464 Q9NT22 465 Q9NT99 1473 Q9NYU2 1474 Q9NZO8 1474 Q9NZ08 1477 Q9P121 1478 Q9P1F3 1480 Q9BTNO 1481 Q9P2B2 1482 Q9P2X0 1483 Q9UBGO 484 Q9UBQ6 1486 Q9UBR2 1488 Q9UBX1 1489 Q9UEW3 1490 Q9UGM5 1491 Q9UGT4 1492 Q9UHG2 1495 Q9UIB8 1499 Q9UJC5 1500 Q9uנf 1501 Q9UJU6 501 Q9UJU6 503 Q9UK23 504 Q9UKU6 505 Q9UKY7
1507 Q9ULI
model 0 ~ age+id+age*id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ age+id+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model $0 \sim$ agetid+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model 0 ~ age+id+age*id model $0 \sim$ age+id+age ${ }^{*}$ id model $0 \sim$ agetid + age ${ }^{*} i d$ model $0 \sim$ agetid + age ${ }^{*}$ id model $0 \sim$ agetid + age $*$ id model $0 \sim$ agetid+age model $0 \sim$ agetid $+2 g^{*}{ }^{*}$ id model 0 ~ agetid + age ${ }^{\text {id }}$ model 0 ~agetid+age model 0 ~agetid+age model 0 age+id+age id model 0 age+id + age *id model 0 agetid+age*id model $0 \sim$ agetid + age ${ }^{*}$ id model 0 ~ agetid+age*id model 0 ~ age+id+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model $0 \sim$ age+id+age*id model $0 \sim$ agetid+age*id model $0 \sim$ agetid+age*id model 0 ~agetid+age*id model 0 ~agetid+age*id model 0 ~age+id+age ${ }^{\text {id }}$ model $0 \sim$ agetid+age ${ }^{*}$ id model $0 \sim$ agetid+age*id model $0 \sim$ agetid + age ${ }^{\text {id }}$ model $0 \sim$ agetid+age $* i d$ model $0 \sim$ age agetid + +age ${ }^{*}$ id model 0 ~ agetid + age*id model 0 ~ agetid + age*id model $0 \sim$ agetid $+a g e{ }^{*}$ id

2	1	0	0	0	1	$48,10 \%$	$8,90 \%$	$8,10 \%$	$34,90 \%$
2	1	0	0	0	1	$4,00 \%$	$41,90 \%$	$22,40 \%$	$31,70 \%$
2	1	0	0	0	1	$18,30 \%$	$33,60 \%$	$7,10 \%$	$41,10 \%$
2	1	0	0	0	1	$4,00 \%$	$43,80 \%$	$15,50 \%$	$36,70 \%$
2	1	0	0	0	1	$20,90 \%$	$27,60 \%$	$11,80 \%$	$39,70 \%$
2	1	0	0	0	1	$11,40 \%$	$41,80 \%$	$37,60 \%$	$9,20 \%$
2	1	0	0	0	1	$12,70 \%$	$57,00 \%$	$11,00 \%$	$19,30 \%$
2	1	0	0	0	1	$9,50 \%$	$41,90 \%$	$19,60 \%$	$29,00 \%$
2	1	0	0	0	1	$16,80 \%$	$5,70 \%$	$68,20 \%$	$9,30 \%$
2	1	0	0	0	1	$21,70 \%$	$36,70 \%$	$13,30 \%$	$28,40 \%$
2	1	0	0	0	1	$23,40 \%$	$31,40 \%$	$12,00 \%$	$33,20 \%$
2	1	0	0	0	1	$38,00 \%$	$20,20 \%$	$10,70 \%$	$31,10 \%$
2	1	0	0	0	1	$33,30 \%$	$35,90 \%$	$8,60 \%$	$22,20 \%$
2	1	0	0	0	1	$13,20 \%$	$30,30 \%$	$46,90 \%$	$9,60 \%$
2	1	0	0	0	1	$28,00 \%$	$19,50 \%$	$15,70 \%$	$36,80 \%$
2	1	0	0	0	1	$2,30 \%$	$12,40 \%$	$58,70 \%$	$26,60 \%$
2	1	0	0	0	1	$30,90 \%$	$44,40 \%$	$7,20 \%$	$17,50 \%$
2	1	0	0	0	1	$4,80 \%$	$84,70 \%$	$9,30 \%$	$1,10 \%$
2	1	0	0	0	1	$13,40 \%$	$52,50 \%$	$7,80 \%$	$26,30 \%$
2	1	0	0	0	1	$3,00 \%$	$4,50 \%$	$21,00 \%$	$71,60 \%$
2	1	0	0	0	1	$9,30 \%$	$33,10 \%$	$5,00 \%$	$52,60 \%$
2	1	0	0	0	1	$6,60 \%$	$58,60 \%$	$4,80 \%$	$30,00 \%$
2	1	0	0	0	1	$20,90 \%$	$3,80 \%$	$12,10 \%$	$63,20 \%$
2	1	0	0	0	1	$36,60 \%$	$12,70 \%$	$35,80 \%$	$14,90 \%$
2	1	0	0	0	1	$32,10 \%$	$19,20 \%$	$12,00 \%$	$36,70 \%$
2	1	0	0	0	1	$10,40 \%$	$42,70 \%$	$11,30 \%$	$35,60 \%$
2	1	0	0	0	1	$16,50 \%$	$38,80 \%$	$38,80 \%$	$6,00 \%$
2	1	0	0	0	1	$2,30 \%$	$90,10 \%$	$1,30 \%$	$6,20 \%$
2	1	0	0	0	1	$36,80 \%$	$2,20 \%$	$18,70 \%$	$42,30 \%$
2	1	0	0	0	1	$19,30 \%$	$7,20 \%$	$41,40 \%$	$32,10 \%$
2	1	0	0	0	1	$6,10 \%$	$40,10 \%$	$21,00 \%$	$32,80 \%$
2	1	0	0	0	1	$6,60 \%$	$70,70 \%$	$7,90 \%$	$14,70 \%$
2	1	0	0	0	1	$0,20 \%$	$3,30 \%$	$39,30 \%$	$57,20 \%$
2	1	0	0	0	1	$12,90 \%$	$24,80 \%$	$18,70 \%$	$43,60 \%$
2	1	0	0	0	1	$7,10 \%$	$38,50 \%$	$7,40 \%$	$47,00 \%$
2	1	0	0	0	1	$29,00 \%$	$18,30 \%$	$6,30 \%$	$46,30 \%$
2	1	0	0	0	1	$6,90 \%$	$58,50 \%$	$4,10 \%$	$30,50 \%$
2	1	0	0	0	1	$14,10 \%$	$46,20 \%$	$12,60 \%$	$27,00 \%$
2	1	0	0	0	1	$18,60 \%$	$34,00 \%$	$13,20 \%$	$34,10 \%$
2	1	0	0	0	1	$9,40 \%$	$11,30 \%$	$42,90 \%$	$36,30 \%$
2	1	0	0	0	1	$29,80 \%$	$36,80 \%$	$11,90 \%$	$21,60 \%$
2	1	0	0	0	1	$0,30 \%$	$4,20 \%$	$94,30 \%$	$1,30 \%$
2	1	0	0	0	1	$5,50 \%$	$0,40 \%$	$86,10 \%$	$8,00 \%$
2	1	0	0	0	1	$8,10 \%$	$13,00 \%$	$11,20 \%$	$67,70 \%$
2	1	0	0	0	1	$13,60 \%$	$7,00 \%$	$63,40 \%$	$16,10 \%$
2	1	0	0	0	1	$11,00 \%$	$19,60 \%$	$46,90 \%$	$22,50 \%$
2	1	0	0	0	1	$53,50 \%$	$1,20 \%$	$18,70 \%$	$26,60 \%$
2	1	0	0	0	1	$10,50 \%$	$2,20 \%$	$77,30 \%$	$10,00 \%$
2	1	0	0	0	1	$5,30 \%$	$31,20 \%$	$23,50 \%$	$39,90 \%$
2	1	0	0	0	1	$3,70 \%$	$60,00 \%$	$21,60 \%$	$14,70 \%$
2									

1508	Q9ULV4	model 0 ~ age+id+age*id	2	1	0	0	0	1	20,30\%	7,80\%	46,60\%	25,30\%			
1510	Q9umx5	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	16,40\%	55,70\%	4,40\%	23,50\%			
1512	Q9UN70	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	28,60\%	34,20\%	7,80\%	29,40\%			
1514	Q9UNN8	model $0 \sim$ age+id+age ${ }^{*}$ id	2	1	0	0	0	1	5,30\%	70,40\%	7,60\%	16,60\%			
1516	Q9unz2	model $0 \sim$ age $+i d+$ age ${ }^{*}$ id	2	1	0	0	0	1	15,70\%	3,70\%	53,60\%	27,10\%			
1517	Q9UP79	model 0 ~ age+id+age*id	2	1	0	0	0	1	4,50\%	74,90\%	14,40\%	6,20\%			
1518	Q9UQ52	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	11,10\%	41,30\%	47,40\%	0,30\%			
1521	Q9Y251	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	18,90\%	20,10\%	50,70\%	10,20\%			
1523	Q9Y279	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	17,60\%	34,00\%	25,80\%	22,60\%			
1525	Q9Y3F4	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	16,50\%	6,70\%	69,80\%	7,00\%			
1526	Q9Y490	model $0 \sim$ age $+i d+a g e * i d$	2	1	0	0	0	1	19,10\%	5,10\%	45,60\%	30,10\%			
1527	Q9Y4D7	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	1,50\%	65,90\%	24,90\%	7,70\%			
1529	Q9Y5 X9	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	3,90\%	73,90\%	4,00\%	18,20\%			
1530	Q9Y5Y6	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	36,40\%	34,40\%	10,30\%	19,00\%			
1531	Q9Y5Y7	model 0 ~ age+id+age*id	2	1	0	0	0	1	8,50\%	55,00\%	7,90\%	28,70\%			
1532	Q9Y608	model $0 \sim$ age+id+age ${ }^{*}$ id	2	1	0	0	0	1	66,70\%	0,10\%	11,60\%	21,60\%			
1533	Q9Y646	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	13,20\%	52,60\%	4,70\%	29,50\%			
1534	Q9Y696	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	11,80\%	19,90\%	45,40\%	22,90\%			
1535	Q9Y6N7	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	33,80\%	47,90\%	10,60\%	7,80\%			
1536	Q9Y6R7	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	18,50\%	65,00\%	9,20\%	7,40\%			
1538	Q9Y627	model $0 \sim$ age+id+age*id	2	1	0	0	0	1	6,10\%	53,00\%	16,20\%	24,80\%			
419	043915	model $0 \sim$ age + seroT+gendertid+age*gender+age*id	2	1	1	0	1	1	2,40\%	14,00\%	24,50\%	24,70\%	2,20\%	28,60\%	3,60\%
543	P03971	model $0 \sim$ age + seroT+gendertid+age*gender+age*id	2	1	1	0	1	1	0,70\%	0,00\%	49,00\%	1,80\%	43,90\%	3,30\%	1,30\%
429	075037	model $0 \sim$ age + seroT+group+id + age*group+age*id	2	1	1	1	0	1	60,60\%	5,50\%	0,30\%	0,50\%	30,10\%	0,70\%	2,30\%
33	Q00610	model $0 \sim$ age + seroT+id+age*id	2	1		0	0	1	27,80\%	1,60\%	5,40\%	14,00\%	51,10\%		
39	P12830	model $0 \sim$ agetseroT+id+age*id	2	1	1	0	0	1	4,40\%	0,80\%	61,10\%	5,10\%	28,60\%		
49	P05997	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	32,10\%	0,10\%	29,80\%	28,20\%	9,90\%		
50	Q9BY67	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	20,20\%	0,20\%	54,30\%	10,20\%	15,10\%		
54	P09668	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	4,20\%	2,30\%	77,80\%	5,20\%	10,40\%		
57	A0A087X0M	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	0,20\%	2,00\%	52,50\%	23,70\%	21,70\%		
117	Q8N2S1	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	12,60\%	6,40\%	12,20\%	25,30\%	43,50\%		
123	AOAOG2JH38	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	0,30\%	10,30\%	88,90\%	0,20\%	0,30\%		
237	Q9H2x3	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	2,50\%	0,20\%	44,50\%	52,20\%	0,70\%		
270	095084	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	58,90\%	2,40\%	20,20\%	11,40\%	7,20\%		
292	043493	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	6,20\%	0,00\%	35,70\%	30,70\%	27,30\%		
294	Q96AP7	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	8,70\%	0,50\%	51,80\%	32,20\%	6,80\%		
298	Q9UK55	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	3,40\%	1,30\%	69,70\%	10,10\%	15,40\%		
328	Q01484	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	71,30\%	5,00\%	4,00\%	9,80\%	10,00\%		
341	Q8WVN6	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	13,10\%	0,20\%	7,80\%	32,10\%	46,80\%		
342	P09564	model $0 \sim$ age + seroT+id+age*id	2	1		0	0	1	28,90\%	0,80\%	48,70\%	8,00\%	13,60\%		
368	000241	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	6,00\%	9,30\%	50,40\%	17,50\%	16,70\%		
438	075368	model $0 \sim$ age + seroT+id + age ${ }^{*}$ id	2	1	1	0	0	1	11,20\%	14,30\%	26,60\%	19,80\%	28,10\%		
443	075594	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	16,10\%	2,60\%	40,20\%	20,30\%	20,70\%		
460	095428	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	23,70\%	2,50\%	50,80\%	8,40\%	14,60\%		
488	P00813	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	4,80\%	0,30\%	66,50\%	19,70\%	8,70\%		
510	P02144	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	3,10\%	0,40\%	11,00\%	12,40\%	73,20\%		
553	P04155	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	3,00\%	5,30\%	60,70\%	23,90\%	7,00\%		
619	P07451	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	26,50\%	2,00\%	1,90\%	47,30\%	22,30\%		
622	P07602	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	25,00\%	5,50\%	18,60\%	5,70\%	45,20\%		
628	P07858	model $0 \sim$ age + seroT+id+age*id	2	1	1	0	0	1	19,20\%	0,90\%	55,70\%	13,10\%	11,10\%		

728 P13674
747 P14780 761 P16035 814 P21709 817 P22303 834 P23468
866 P28070
937 P40306
1112 Q06828
1126 Qovaf6 186 Q14982 1232 Q58EX2 1270 Q6ZMI3 1297 Q86WI1
1340 Q8WXD2
1347 Q92520
1350 Q92692
1354 Q92854
1472 Q9NYQ6
1509 Q9UM47
137 P07478
137 P07478
1334 Q8WUA8
487 Q9UBV8
4075503
5000748
6 P25787
7 P01834
8 P01714
9 POCG05
10 P01617
3 P80303
20 Q96C36
25 P49720
28 Q8IYS5
30 P01857
35 Q9P2T1
37 Q15833
41 P50895
44 P29122
53 Q9H251
58 Q9UMY4
59 P69849
66 P09326
69 P01871
69 P01871
2 Q86UX2
73 P35542
78 P22694
83 Q86UQ4
84 Q6UX73
86 P07108
model 0 ~ age+seroT+id+age*id model 0 ~age+seroT+id+age*id model 0 ~ age+seroT+id+age*id model $0 \sim$ age + serot+id+age*i model $0 \sim$ age + seroT+id + age ${ }^{*}$ model 0 ~ age serot+id+age* model $0 \sim$ age + seroT+id+age ${ }^{*}$ model $0 \sim$ age + serot+id + age ${ }^{*}$ id
model $0 \sim$ age + serot $+i d+a g e * i d ~$ model $0 \sim$ age serot+id+age ${ }^{*}$ id model $0 \sim$ age+serot+id+age ${ }^{2}$ model $0 \sim$ age + seroT+id + age ${ }^{*}$ id model $0 \sim$ age + serot+id + age ${ }^{\prime}$ id model 0 age+seroT+id+age model 0 agetseroT+id+age model 0 ~age+seroT+id+age*id model 0 ~ age+seroT+id+age*id model $0 \sim$ age + seroT+id+age*id model 0 ~ age+seroT+id+age*id model 0 ~ age+seroT+id+age*id model 0 ~age + seroT+id+age*id model 0 ~ grouptid
model $0 \sim$ grouptid
model $0 \sim$ grouptid
model $0 \sim$ id
model 0 ~id
model 0 ~id
model $0 \sim$ id
model 0 ~id
model 0 id
model $0 \sim$ id
model 0 ~id
model $0 \sim$ id
model 0 ~id
model $0 \sim$ id
model $0 \sim$ id
model 0 ~id
model $0 \sim$ id
model $0 \sim$ id
model 0 ~id
model $0 \sim$ id
model $0 \sim$ id
model $0 \sim$ id
model 0 ~id
model 0 ~id
model $0 \sim$ id
model 0 id
model $0 \sim$ id

2	1	1	0	0	1	36,90\%	4,20\%	36,60\%	11,70\%	10,60\%
2	1	1	0	0	1	2,70\%	2,30\%	76,60\%	5,50\%	13,00\%
2	1	1	0	0	1	16,30\%	0,80\%	31,60\%	12,70\%	38,60\%
2	1	1	0	0	1	13,20\%	1,70\%	43,20\%	19,00\%	22,80\%
2	1	1	0	0	1	18,20\%	5,70\%	47,00\%	20,60\%	8,50\%
2	1	1	0	0	1	30,20\%	1,50\%	46,30\%	18,30\%	3,70\%
2	1	1	0	0	1	6,40\%	0,70\%	26,00\%	13,10\%	53,90\%
2	1	1	0	0	1	8,70\%	1,90\%	27,90\%	31,60\%	29,90\%
2	1	1	0	0	1	50,20\%	0,10\%	10,10\%	7,90\%	31,70\%
2	1	1	0	0	1	21,10\%	5,30\%	40,90\%	6,30\%	26,30\%
2	1	1	0	0	1	51,30\%	2,50\%	10,60\%	8,60\%	27,00\%
2	1	1	0	0	1	30,90\%	0,80\%	37,40\%	7,30\%	23,70\%
2	1	1	0	0	1	2,00\%	78,50\%	4,60\%	2,90\%	12,10\%
2	1	1	0	0	1	2,30\%	0,60\%	82,10\%	2,50\%	12,40\%
2	1	1	0	0	1	63,40\%	0,40\%	24,70\%	2,60\%	8,80\%
2	1	1	0	0	1	36,10\%	2,10\%	23,30\%	13,00\%	25,60\%
2	1	1	0	0	1	25,40\%	0,60\%	16,90\%	51,20\%	5,90\%
2	1	1	0	0	1	2,30\%	1,40\%	47,00\%	13,40\%	36,00\%
2	1	1	0	0	1	24,60\%	1,30\%	50,00\%	19,50\%	4,60\%
2	1	1	0	0	1	4,20\%	4,10\%	58,90\%	8,70\%	24,20\%
2	0	0	1	0	1	20,10\%	21,40\%	58,50\%		
2	0	0	1	0	1	13,50\%	21,50\%	65,00\%		
2	0	0	1	0	1	4,20\%	28,40\%	67,40\%		
2	0	0	0	0	1	10,30\%	89,70\%			
2	0	0	0	0	1	49,90\%	50,10\%			
2	0	0	0	0	1	68,40\%	31,60\%			
2	0	0	0	0	1	49,60\%	50,40\%			
2	0	0	0	0	1	26,00\%	74,00\%			
2	0	0	0	0	1	42,40\%	57,60\%			
2	0	0	0	0	1	25,30\%	74,70\%			
2	0	0	0	0	1	18,90\%	81,10\%			
2	0	0	0	0	1	5,90\%	94,10\%			
2	0	0	0	0	1	61,70\%	38,30\%			
2	0	0	0	0	1	53,30\%	46,70\%			
2	0	0	0	0	1	40,60\%	59,40\%			
2	0	0	0	0	1	8,10\%	91,90\%			
2	0	0	0	0	1	0,40\%	99,60\%			
2	0	0	0	0	1	45,80\%	54,20\%			
2	0	0	0	0	1	40,30\%	59,70\%			
2	0	0	0	0	1	50,90\%	49,10\%			
	0	0	0	0	1	3,90\%	96,10\%			
2	0	0	0	0	1	29,00\%	71,00\%			
2	0	0	0	0	1	60,40\%	39,60\%			
	0	0	0	0	1	62,50\%	37,50\%			
2	0	0	0	0	1	14,80\%	85,20\%			
2	0	0	0	0	1	23,60\%	76,40\%			
	0	0	0	0	1	0,30\%	99,70\%			
2	0	0	0	0	1	7,10\%	92,90\%			
2	0	0	0	0	1	59,90\%	40,10\%			
2	0	0	0	0	1	13,20\%	86,80\%			

235 P04070	model $0 \sim$ id	2	0	0	0	0	1	37,60\%	62,40\%
239 P28827	model 0 ~ id	2	0	0	0	0	1	55,70\%	44,30\%
242 P16278	model 0 ~ id	2	0	0	0	0	1	52,00\%	48,00\%
244 P51659	model 0 ~id	2	0	0	0	0	1	21,80\%	78,20\%
247 E7ESP4	model 0 ~ id	2	0	0	0	0	1	9,00\%	91,00\%
248 P05156	model 0 ~ id	2	0	0	0	0	1	13,40\%	86,60\%
249 E7ETN3	model 0 ~ id	2	0	0	0	0	1	42,30\%	57,70\%
254 P15121	model 0 ~ id	2	0	0	0	0	1	7,40\%	92,60\%
255 P35916	model 0 ~ id	2	0	0	0	0	1	51,90\%	48,10\%
260 E9PFZ2	model $0 \sim$ id	2	0	0	0	0	1	98,80\%	1,20\%
264 P05452	model 0 ~ id	2	0	0	0	0	1	65,90\%	34,10\%
268 P55786	model 0 ~ id	2	0	0	0	0	1	39,30\%	60,70\%
271095967	model $0 \sim$ id	2	0	0	0	0	1	48,20\%	51,80\%
272 Q96FW1	model 0 ~ id	2	0	0	0	0	1	2,80\%	97,20\%
273 P08195	model 0 ~ id	2	0	0	0	0	1	56,40\%	43,60\%
287 Q99542	model 0 ~ id	2	0	0	0	0	1	37,50\%	62,50\%
290 P48740	model 0 ~ id	2	0	0	0	0	1	70,60\%	29,40\%
291 Q9Y6X6	model 0 ~ id	2	0	0	0	0	1	33,90\%	66,10\%
299 Q14767	model 0 ~ id	2	0	0	0	0	1	52,90\%	47,10\%
308 P29017	model 0 ~ id	2	0	0	0	0	1	43,20\%	56,80\%
315 P62491	model 0 ~ id	2	0	0	0	0	1	5,60\%	94,40\%
317 Q92736	model 0 ~ id	2	0	0	0	0	1	45,20\%	54,80\%
321 Q15435	model 0 ~ id	2	0	0	0	0	1	18,80\%	81,20\%
331 J3KN67	model 0 ~ id	2	0	0	0	0	1	24,70\%	75,30\%
337 P58335	model 0 ~ id	2	0	0	0	0	1	53,90\%	46,10\%
343 P04626	model 0 ~ id	2	0	0	0	0	1	36,10\%	63,90\%
345 P13598	model 0 ~ id	2	0	0	0	0	1	42,50\%	57,50\%
348095834	model 0 ~ id	2	0	0	0	0	1	23,30\%	76,70\%
349 Q99426	model 0 ~ id	2	0	0	0	0	1	6,40\%	93,60\%
352043765	model 0 ~ id	2	0	0	0	0	1	1,00\%	99,00\%
353 Q13526	model 0 ~ id	2	0	0	0	0	1	1,80\%	98,20\%
355 P02655	model 0 ~ id	2	0	0	0	0	1	32,30\%	67,70\%
357 P02654	model 0 ~ id	2	0	0	0	0	1	63,20\%	36,80\%
358 P55083	model 0 ~ id	2	0	0	0	0	1	56,10\%	43,90\%
359 P55899	model 0 ~ id	2	0	0	0	0	1	65,90\%	34,10\%
360 Q9NNX6	model 0 ~ id	2	0	0	0	0	1	37,50\%	62,50\%
365000161	model 0 ~ id	2	0	0	0	0	1	2,90\%	97,10\%
366000187	model 0 ~ id	2	0	0	0	0	1	64,20\%	35,80\%
375000468	model 0 ~ id	2	0	0	0	0	1	54,80\%	45,20\%
376000507	model 0 ~ id	2	0	0	0	0	1	48,50\%	51,50\%
377000533	model 0 ~ id	2	0	0	0	0	1	56,20\%	43,80\%
379000602	model 0 ~ id	2	0	0	0	0	1	46,50\%	53,50\%
384014672	model 0 ~ id	2	0	0	0	0		43,70\%	56,30\%
389014917	model 0 ~ id	2	0	0	0	0	1	29,50\%	70,50\%
392015031	model 0 ~ id	2	0	0	0	0	1	46,60\%	53,40\%
398015230	model 0 ~ id	2	0	0	0	0	1	17,10\%	82,90\%
402015400	model 0 ~ id	2	0	0	0	0	1	0,20\%	99,80\%
409043405	model 0 ~ id	2	0	0	0	0	1	51,80\%	48,20\%
415043827	model 0 ~ id	2	0	0	0	0	1	22,20\%	77,80\%
420043916	model 0 ~ id	2	0	0	0	0	1	60,70\%	39,30\%

422060279 426060749 427060844 432075131 436075340 437075356 447075882 457095336 461095445 466 Q5SSV3 472 P00367 477 P00488 480 P00558 482 P00734 483 P00738 492 P01008 493 P01009 494 P01011 501 P01042 502 P01042 503 P01127 506 P01591 508 P01876 514 P02462 515 P02545 519 P02671 520 P02675 521 P02679 522 P02741 523 P02743 528 P02750 529 P02751 533 P02766 534 P02774 538 P02790 545 P04003 549 P04075 550 P04083 555 P04196 558 P04259 559 P04264 560 P04275 563 P04424 570 P05026 572 P05062 572 P05062 576 P05109 581 P05164 584 P05451 589 P05771

model $0 \sim$ id
$\operatorname{model} 0$ model $0 \sim$ id model $0 \sim$ id mola~id model $0 \sim$ id model $0 \sim$ id model 0 ~id model 0 ~id model $0 \sim$ id model $0 \sim$ id model $0 \sim$ id model $0 \sim$ id
model $0 \sim$ id model 0 ~id model $0 \sim$ id model 0 id model $0 \sim$ id model $0 \sim$ id model 0 ~id model $0 \sim$ id model $0 \sim$ id model $0 \sim$ id model $0 \sim$ id model $0 \sim$ id
model $0 \sim$ id model $0 \sim$ id model 0 ~id

2	0	0	0		0	1	$37,00 \%$
2	0	0	0	0	1	$4,43,00 \%$	$95,60 \%$
2	0	0	0	0	1	$34,70 \%$	$65,30 \%$
2	0	0	0		0	1	$16,80 \%$
2	0	0	0		0	1	$83,00 \%$
2	0	0	0	0	1	$58,00 \%$	$17,00 \%$
2	0	0	0	0	1	$59,00 \%$	
2	0	00%	$40,40 \%$				
2	0	0	0	0	1	$20,20 \%$	$79,80 \%$
2	0	0	0	0	1	$42,00 \%$	$58,00 \%$
2	0	0	0	0	1	$9,10 \%$	$90,90 \%$
2	0	0	0	0	1	$59,60 \%$	$40,40 \%$
2	0	0	0	0	1	$58,70 \%$	$41,30 \%$
2	0	0	0	0	1	$2,20 \%$	$97,80 \%$
2	0	0	0	0	1	$34,90 \%$	$65,10 \%$
2	0	0	0	0	1	$77,10 \%$	$22,90 \%$
2	0	0	0	0	1	$36,70 \%$	$63,30 \%$
2	0	0	0	0	1	$45,90 \%$	$54,10 \%$
2	0	0	0	0	1	$23,70 \%$	$76,30 \%$
2	0	0	0	0	1	$64,10 \%$	$35,90 \%$
2	0	0	0	0	1	$53,80 \%$	$46,20 \%$
2	0	0	0	0	1	$10,60 \%$	$89,40 \%$
2	0	0	0	0	1	$66,70 \%$	$33,30 \%$
2	0	0	0	0	1	$29,80 \%$	$70,20 \%$
2	0	0	0	0	1	$48,60 \%$	$51,40 \%$
2	0	0	0	0	1	$16,60 \%$	$83,40 \%$
2	0	0	0	0	1	$44,90 \%$	$55,10 \%$
2	0	0	0	0	1	$25,80 \%$	$74,20 \%$
2	0	0	0	0	1	$27,10 \%$	$72,90 \%$
2	0	0	0	0	1	$37,50 \%$	$62,50 \%$
2	0	0	0	0	1	$22,10 \%$	$77,90 \%$
2	0	0	0	0	1	$67,50 \%$	$32,50 \%$
2	0	0	0	0	1	$7,80 \%$	$92,20 \%$
2	0	0	0	0	1	$12,60 \%$	$87,40 \%$
2	0	0	0	0	1	$32,80 \%$	$67,20 \%$
2	0	0	0	0	1	$52,40 \%$	$47,60 \%$
2	0	0	0	0	1	$32,90 \%$	$67,10 \%$
2	0	0	0	0	1	$6,30 \%$	$93,70 \%$
2	0	0	0	0	1	$0,60 \%$	$99,40 \%$
2	0	0	0	0	1	$84,50 \%$	$15,50 \%$
2	0	0	0	0	1	$24,60 \%$	$75,40 \%$
2	0	0	0	0	1	$25,20 \%$	$74,80 \%$
2	0	0	0	0	1	$7,40 \%$	$92,60 \%$
2	0	0	0	0	1	$53,80 \%$	$46,20 \%$
2	0	0	0	0	1	$27,40 \%$	$72,60 \%$
2	0	0	0	0	1	$30,40 \%$	$69,60 \%$
2	0	0	0	0	1	$18,50 \%$	$81,50 \%$
2	0	0	0	0	1	$13,60 \%$	$86,40 \%$
2	0	0	0	0	1	$21,20 \%$	$78,80 \%$
2	0	0	0	0	1	$12,10 \%$	$87,90 \%$
2	0	0	0	0	1	$0,40 \%$	$99,60 \%$
			0	0			

	P20073	
798	P20138	model $0 \sim$ id
799	P20160	odel 0
801	P20618	model $0 \sim$ id
806	P20851	model $0 \sim$ id
807	P20851	odel 0
2	P21399	model $0 \sim$ id
816	P22223	model $0 \sim$ id
9	P22314	model 0
821	P22413	model 0
826	P23141	model $0 \sim$ id
838	P24298	model 0
844	P24855	model 0 ~
847	P25774	model $0 \sim$ id
848	P25786	model $0 \sim$
850	P25789	model $0 \sim$ id
851	P26022	model $0 \sim$ id
855	P26639	model 0
865	P28066	model $0 \sim$ id
870	P28838	model $0 \sim$ id
873	P29350	model 0
874	P29401	model $0 \sim$ id
876	P30040	model $0 \sim$ id
891	P31150	model 0 ~
894	P31944	model $0 \sim$ id
898	P31949	model $0 \sim$ id
901	P32320	model 0 ~
902	P32754	model $0 \sim$ id
905	P33908	model 0 ~
908	P34932	odel 0
910	P35241	model $0 \sim$ id
914	P35527	model $0 \sim$ id
5	P35555	model $0 \sim$ id
917	P35590	model $0 \sim$ id
919	P35813	model $0 \sim$ id
3	P36269	model $0 \sim$ id
927	P36980	model $0 \sim$ id
928	P37235	model $0 \sim$ id
930	P37837	model $0 \sim$ id
931	P38606	model $0 \sim$ id
933	P40121	model $0 \sim$ id
934	P40189	model $0 \sim$ id
936	P40227	model $0 \sim$ id
942	P41226	model $0 \sim$ id
950	P43235	model $0 \sim$ id
952	P43405	model $0 \sim$ id
956	P46108	model $0 \sim$ id
957	P46109	model $0 \sim$ id
959	P47755	model 0 ~
	P48147	

2	0	0	0		0	1	$11,00 \%$
2	0	0	0	0	1	$75,20 \%$	$24,00 \%$
2	0	0	0	0	1	$34,90 \%$	$65,10 \%$
2	0	0	0		0	1	$45,40 \%$
2	0	0	0		0	1	$30,50 \%$
2	0	0	0	0	1	$42,50 \%$	$67,50 \%$
2	0	0	0	0	1	$35,90 \%$	$64,50 \%$
2	0	0	0	0	1	$43,70 \%$	$56,30 \%$
2	0	0	0	0	1	$25,20 \%$	$74,80 \%$
2	0	0	0	0	1	$20,80 \%$	$79,20 \%$
2	0	0	0	0	1	$74,90 \%$	$25,10 \%$
2	0	0	0	0	1	$45,10 \%$	$54,90 \%$
2	0	0	0	0	1	$70,60 \%$	$29,40 \%$
2	0	0	0	0	1	$44,10 \%$	$55,90 \%$
2	0	0	0	0	1	$36,30 \%$	$63,70 \%$
2	0	0	0	0	1	$70,00 \%$	$30,00 \%$
2	0	0	0	0	1	$57,90 \%$	$42,10 \%$
2	0	0	0	0	1	$3,80 \%$	$96,20 \%$
2	0	0	0	0	1	$41,90 \%$	$58,10 \%$
2	0	0	0	0	1	$7,10 \%$	$92,90 \%$
2	0	0	0	0	1	$3,20 \%$	$96,80 \%$
2	0	0	0	0	1	$35,20 \%$	$64,80 \%$
2	0	0	0	0	1	$1,60 \%$	$98,40 \%$
2	0	0	0	0	1	$5,30 \%$	$94,70 \%$
2	0	0	0	0	1	$7,40 \%$	$92,60 \%$
2	0	0	0	0	1	$9,70 \%$	$90,30 \%$
2	0	0	0	0	1	$61,80 \%$	$38,20 \%$
2	0	0	0	0	1	$43,00 \%$	$57,00 \%$
2	0	0	0	0	1	$31,30 \%$	$68,70 \%$
2	0	0	0	0	1	$15,70 \%$	$84,30 \%$
2	0	0	0	0	1	$1,40 \%$	$98,60 \%$
2	0	0	0	0	1	$26,30 \%$	$73,70 \%$
2	0	0	0	0	1	$35,90 \%$	$64,10 \%$
2	0	0	0	0	1	$76,40 \%$	$23,60 \%$
2	0	0	0	0	1	$3,80 \%$	$96,20 \%$
2	0	0	0	0	1	$65,30 \%$	$34,70 \%$
2	0	0	0	0	1	$91,30 \%$	$8,70 \%$
2	0	0	0	0	1	$6,10 \%$	$93,90 \%$
2	0	0	0	0	1	$5,60 \%$	$94,40 \%$
2	0	0	0	0	1	$11,60 \%$	$88,40 \%$
2	0	0	0	0	1	$32,50 \%$	$67,50 \%$
2	0	0	0	0	1	$44,50 \%$	$55,50 \%$
2	0	0	0	0	1	$57,10 \%$	$42,90 \%$
2	0	0	0	0	1	$16,40 \%$	$83,60 \%$
2	0	0	0	0	1	$15,70 \%$	$88,30 \%$
2	0	0	0	0	1	$26,20 \%$	$73,80 \%$
2	0	0	0	0	1	$32,70 \%$	$67,30 \%$
2	0	0	0	0	1	$14,70 \%$	$85,30 \%$
2	0	0	0	0	1	$8,40 \%$	$91,60 \%$
2	0	0	0	0	1	$19,60 \%$	$80,40 \%$
2							

1127	GT2	
128	Q10469	model 0 ~
30	Q10472	model 0 ~ id
31	Q12797	model $0 \sim$ id
37	Q12882	model
38	Q12907	model 0 ~ id
43	Q13217	model $0 \sim$ id
1147	Q13275	od
51	Q13444	model $0 \sim$ id
53	Q13561	model $0 \sim$ id
1157	Q13740	mod
59	Q13797	model $0 \sim$ id
67	Q14204	model 0 ~ id
1171	Q14393	mode
72	Q14508	ode
75	Q14554	model $0 \sim$ id
8	Q14624	model $0 \sim$ id
81	Q14697	od
99	Q15485	model $0 \sim$ id
1205	Q15843	de
14	Q16610	model $0 \sim$ id
20	Q16787	model $0 \sim$ id
1221	Q16832	model $0 \sim$ id
22	Q16853	model $0 \sim$ id
23	Q16881	model $0 \sim$ id
1225	Q27J81	mode
230	Q504Y2	model $0 \sim$ id
31	Q53RD9	model $0 \sim$ id
1239	Q5T6H7	od
41	Q5T987	model $0 \sim$ id
44	Q5VU97	mod
1245	Q5VW32	model $0 \sim$ id
52	Q6P179	model 0 ~id
54	Q6Q788	model $0 \sim$ id
1257	Q6UWP8	model $0 \sim$ id
59	Q6UX71	model 0 ~ id
262	Q6UXH0	model $0 \sim$ id
263	Q6UXH9	model $0 \sim$ id
264	Q6UXK5	model 0 ~ id
1265	Q6UY14	mod
1267	Q6WN34	model 0 ~ id
1273	Q76LX8	model 0 ~ id
7276	Q7L576	odel 0 ~
1277	Q9H8S9	model 0 ~ id
1287	Q86SQ4	model $0 \sim$ id
1289	Q86	~
1298	Q86X29	del 0
1300	Q8IUI8	model $0 \sim$ id
130	Q8IUK5	model $0 \sim$ i
	WK	

2	0	0	0	0	1	$12,30 \%$	$87,70 \%$
2	0	0	0	0	1	$38,50 \%$	$61,50 \%$
2	0	0	0	0	1	$46,50 \%$	$53,50 \%$
2	0	0	0	0	1	$20,40 \%$	$79,60 \%$
2	0	0	0	0	1	$58,00 \%$	$42,00 \%$
2	0	0	0	0	1	$54,80 \%$	$45,20 \%$
2	0	0	0	0	1	$46,00 \%$	$54,00 \%$
2	0	0	0	0	1	$34,60 \%$	$65,40 \%$
2	0	0	0	0	1	$58,00 \%$	$42,00 \%$
2	0	0	0	0	1	$4,60 \%$	$95,40 \%$
2	0	0	0	0	1	$3,30 \%$	$62,70 \%$
2	0	0	0	0	1	$29,50 \%$	$70,50 \%$
2	0	0	0	0	1	$28,80 \%$	$71,20 \%$
2	0	0	0	0	1	$1,00 \%$	$99,00 \%$
2	0	0	0	0	1	$44,70 \%$	$55,30 \%$
2	0	0	0	0	1	$25,60 \%$	$74,40 \%$
2	0	0	0	0	1	$75,70 \%$	$24,30 \%$
2	0	0	0	0	1	$49,20 \%$	$50,80 \%$
2	0	0	0	0	1	$27,00 \%$	$73,00 \%$
2	0	0	0	0	1	$0,10 \%$	$99,90 \%$
2	0	0	0	0	1	$24,40 \%$	$75,60 \%$
2	0	0	0	0	1	$51,50 \%$	$48,50 \%$
2	0	0	0	0	1	$43,10 \%$	$56,90 \%$
2	0	0	0	0	1	$63,30 \%$	$36,70 \%$
2	0	0	0	0	1	$1,20 \%$	$98,80 \%$
2	0	0	0	0	1	$47,50 \%$	$52,50 \%$
2	0	0	0	0	1	$44,40 \%$	$55,60 \%$
2	0	0	0	0	1	$37,40 \%$	$62,60 \%$
2	0	0	0	0	1	$8,40 \%$	$91,60 \%$
2	0	0	0	0	1	$30,10 \%$	$69,90 \%$
2	0	0	0	0	1	$10,50 \%$	$89,50 \%$
2	0	0	0	0	1	$1,00 \%$	$99,00 \%$
2	0	0	0	0	1	$90,90 \%$	$9,10 \%$
2	0	0	0	0	1	$47,70 \%$	$52,30 \%$
2	0	0	0	0	1	$29,10 \%$	$70,90 \%$
2	0	0	0	0	1	$71,30 \%$	$28,70 \%$
2	0	0	0	0	1	$21,20 \%$	$78,80 \%$
2	0	0	0	0	1	$53,20 \%$	$46,80 \%$
2	0	0	0	0	1	$66,10 \%$	$33,90 \%$
2	0	0	0	0	1	$32,60 \%$	$67,40 \%$
2	0	0	0	0	1	$41,50 \%$	$58,50 \%$
2	0	0	0	0	1	$43,40 \%$	$56,60 \%$
2	0	0	0	0	1	$2,40 \%$	$97,60 \%$
2	0	0	0	0	1	$19,90 \%$	$80,10 \%$
2	0	0	0	0	1	$64,60 \%$	$35,40 \%$
2	0	0	0	0	1	$68,70 \%$	$31,30 \%$
2	0	0	0	0	1	$23,40 \%$	$76,60 \%$
2	0	0	0	0	1	$18,90 \%$	$81,10 \%$
2	0	0	0	0	1	$42,60 \%$	$57,40 \%$
2	0	0	0	0	1	$36,80 \%$	$63,20 \%$
2							

[^0]:

[^1]: NNONNNRNNNNNNNNNNN

