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ABSTRACT 
 
Interactions between chromatin segments play a large role in functional genomic assays and 
developments in genomic interaction detection methods have shown interacting topological 
domains within the genome. Among these methods, Hi-C plays a key role. Albeit the presence of 
several software to process and visualize Hi-C data, a tool to perform a comprehensive analysis 
including also data pre-processing and topological domains computation was still missing. To 
address this need we developed GITAR (Genome Interaction Tools and Resources). 
GITAR is composed of two modules: 1) HiCtool, a Python library to process and visualize Hi-C 
data, including topologically associating domains (TADs) analysis and 2) Processed data, a large 
collection of human and mouse datasets processed using HiCtool. 
HiCtool leads the user step-by-step through a pipeline which goes from the source data to the 
computation, visualization and storage of intra-chromosomal contact maps and topological 
domain coordinates. A large collection of standardized processed data allows to compare different 
datasets in a consistent way and it saves time of work to obtain data for additional analyses. 
GITAR enables to work with Hi-C data even without any programming or bioinformatic expertise 
and it is available online at www.genomegitar.org as an open source software. 
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INTRODUCTION 
 
Genomes are more than linear sequences, with DNA folding-up into elaborate physical structures that 
allow for extreme spatial compactness of the genetic material and play also an important role in epigenetic 
regulation. During the past fifteen years, several techniques have been developed to explore the 
architecture of genomes, such as Chromosome Conformation Capture (3C) [1], 4C [2], 5C [3], Hi-C [4] 
and ChIA-PET [5]. Among these techniques, Hi-C is one of the most important and it allowed for the first 
time a genome-wide mapping of chromatin interactions. In order to process Hi-C data several steps are 
required, including a normalization procedure to remove biases related to the experimental protocol and 
genomic features. Mostly during the past five years, several software applications have been developed 
to analyze and visualize genomic interaction data, with different characteristics and outputs. If we consider 
Hi-C, available analysis software applications are chromoR [6], HiCdat [7], HiCNorm [8], Hi-Corrector [9], 
Hi-C Pipeline [10], HiC-Pro [11], HiCUP [12], HiFive [13], HIPPIE [14], HiTC [15], HOMER [16], ICE [17]. 
However, besides correcting biases and generating contact maps, most of them do not provide the entire 
pipeline to pre-process the raw data (downloadable files) or to compute topological domain coordinates. 
To call significant chromosome contacts CHiCAGO [18], Fit-Hi-C [19] and HMRFBayesHiC [20] are 
available, while chromoR and diffHiC [21] can be used to compare spatial interactions between cell lines. 
For topological domain analysis, HiCseg [22], HubPredictor [23] and TADtree [24] serve to calculate the 
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domain coordinates. If we consider ChIA-PET, ChIA-PET tool [25], Chiasig [26], Mango [27], MDM [28] 
and MICC [29] can be used to process and analyze data. 
Albeit the large number of software, a tool to perform a comprehensive Hi-C data analysis, including pre-
processing, normalization, visualization and topological domains computation, was still missing. We have 
addressed this need by developing HiCtool, a bioinformatic software for Hi-C data analysis, with the aim 
of creating a standardized, easy and flexible framework to process and visualize Hi-C datasets, and 
perform a comprehensive intra-chromosomal and topological domains analysis. Moreover, although there 
are already dozens of source Hi-C datasets released to the public, there is a relatively small number of 
processed data accessible to researchers to be utilized directly, so we successfully ran and uploaded an 
exhaustive collection of human and mouse processed datasets, of different cell lines and conditions. 
Here we present GITAR (Genome Interaction Tools and Resources), a comprehensive solution to manage 
Hi-C genomic interaction data, from processing to storage and visualization, composed of the two modules 
mentioned above: HiCtool and the processed data hub. 
 
 
RESULTS 
 
HiCtool: a standardized pipeline to process and visualize Hi-C data 
 
HiCtool is an open-source bioinformatic tool based on Python, which integrates several software to perform 
a standardized Hi-C data analysis, from the source data to the visualization of intra-chromosomal 
heatmaps [4] and the identification of topological domains [30]. We implemented a pipeline divided into 
three main sections: data pre-processing, data analysis and visualization, and topological domains 
analysis (Figure 1). 
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Figure 1. HiCtool workflow. HiCtool is divided into three main sections: data pre-processing (left), data 
analysis and visualization (center) to normalize contact data and plot heatmaps, and topological domains 
analysis (right) to calculate topological domain coordinates. 
 
The data pre-processing pipeline takes downloadable files in sra format as input and performs several 
steps to generate input files for the normalization procedure. To do this, HiCtool integrates several software 
including SRA Toolkit, Bowtie 2, SAMTools and Bedtools. The pre-processing steps include: downloading 
of the sra data; conversion of the data from sra to fastq format (SRA Toolkit); mapping of the paired-reads 
over the reference genome (Bowtie 2); removing PCR duplicates from the output bam file (SAMTools); 
splitting the bam file into two bam files, related to the first and the second read in the pairs; mapping the 
restriction enzyme (used in the Hi-C experimental protocol [4]) sites over the reference genome to create 
a fragment-end (fend) related bed file. The fend bed file is used to normalize the data and it contains 
restriction sites coordinates and additional information related to the GC content of the fragments. The 
outputs of the pre-processing section are two bam files related to the first and second read in the pairs 
and the fend bed file. 
The data analysis and visualization section provides the pipeline to normalize the data and plot the contact 
heatmaps. The complex experimental Hi-C protocol unavoidably produces several biases. According to 
Yaffe and Tanay [10], the most significant biases are related to spurious ligation products between 
fragments, transcription start sites (TSSs) and CTCF-bound sites within topological domains, length and 
GC content of the fragments. Spurious ligation products generate paired-reads whose sum of the two 
distances to the nearest restriction sites is larger than 500 bp. About TSSs, analysis of the distribution of 
cis contacts involving fragment ends located 0-5 kb upstream of an active TSS showed a strong 
enrichment 20 kb to ~400 kb upstream and downstream, increasing the probability that long-range 
contacts may be associated with the active transcriptional state. In addition, fragments located 0-5 kb on 
one side of a CTCF-binding site displayed cis contacts asymmetry over a range up to ~400 kb. About 
fragment length, long and short fragments may have a variable ligation efficiency. The probability of contact 
can be also influenced by the GC content near the ligated fragment ends, up to 200 bp next to the 
restriction sites. To consider and correct all the mentioned biases, we normalized the data according to 
Yaffe and Tanay’s model [10], performed using the Binning algorithm of the package HiFive [13]. We chose 
this normalization method because it derives from a comprehensive biological background about Hi-C 
potential sources of bias and it is one of the most popular approaches. We did not use the also popular 
HiC Pipeline (hicpipe) [10] because HiFive’s Binning algorithm has a more consistent performance across 
all binning resolutions and, at bin sizes lower than 50 kb, HiFive’s performance is better [13]. This is a 
crucial point for our pipeline since as default we processed the data at a resolution of 40 kb to enable the 
topological domains analysis [30]. In addition, HiFive’s capability of handling high-resolution data makes it 
able to process the last generation of Hi-C datasets, created with the “in situ Hi-C” protocol [31]. This 
derives from the use of the HDF5 binary data format, which allows to store a huge amount of data with a 
high efficient memory usage. Lastly, about the running time, HiFive’s Binning algorithm performs faster 
not only than hicpipe, but also than the other normalization tools based on R, which is slower compared 
to Python. 
According to the biases listed above, in our pipeline we removed the paired reads whose total distance 
from the nearest restriction sites was greater than 500 bp. Then, we filtered out fragments interacting within 
a distance of 500 kb before learning the correction parameters related to fend biases (length and GC 
content). This allowed to eliminate the effects of biased regions upstream or downstream of an active TSS 
or CTCF-binding site. To remove the bias related to the GC content, we added the information about the 
GC content of regions up to 200 bp next to the restriction sites to the fend related bed file. After that, 
correction parameters for fragment length and GC content were learned using Yaffe and Tanay’s method 
[10], dividing the length and GC content ranges into 20 bins, such that each bin contained the same 
number of fragments. For the optimization process of the correction matrices by likelihood maximization, 
we used a learning threshold of 1 (the same of Yaffe and Tanay) and a maximum number of iterations of 
1000. At this point, for any arbitrary division of the genome into bins, we computed two matrices for each 
chromosome: an observed intra-chromosomal contact matrix O[i,j], where each entry contains the 
observed reads count between the regions identified by the bins i and j, and a “fend” expected contact 
matrix E[i,j], where each entry contains the sum of corrections for all the paired-reads between bins i and 
j. Then, the normalized contact matrix N[i,j] is calculated according to: 
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𝑁[𝑖, 𝑗] = 	
𝑂[𝑖, 𝑗]
𝐸[𝑖, 𝑗]

 

 
where each entry contains the corrected reads count according to the previous model. We computed also 
an “enrichment” expected contact matrix, which represents the expected read counts considering the 
learned correction parameters and the distance between fends. In particular, the average 
intrachromosomal contact probability for pairs of loci decreases monotonically with increasing of the linear 
genomic distance [4]. The enrichment value was then calculated as the ratio between the observed and 
the “enrichment” expected data. The pipeline allows finally to plot the contact heatmaps, with additional 
colorbar and histogram of the output data (Figure 2). 
The topological domains analysis section provides the code to calculate the Directionality Index (DI) and 
topological domains coordinates. It computes either the observed DI and the hidden “true” DI using a 
Hidden Markov Model (HMM). Both the observed and the HMM biased states (“true” DI) can be plotted in 
the same figure, therefore it is possible to infer easily about the presence of topological domains and 
boundaries over the genome (Figure 3). Topological domain coordinates are then calculated using the 
shifts of the biased HMM states according to Dixon et al. [30]. 
 

  
 
Figure 2. Chr 6 [50-54] Mb at a bin size of 40 kb: contact data. (A) Normalized contact matrix where 
each bin contains the corrected read counts. Range from 0 to 19 reads. (B) Enrichment normalized contact 
matrix where each bin contains the log2 of the enrichment value (observed over expected data considering 
the distance between fends and the learned correction parameters). The gray pixels represent non-valid 
log2 (enrichment) values, where the corresponding expected value is 0. Range from -2.421 to 3.047. GEO 
accession number: GSM862723. 
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Figure 3. Chr 6 [50-54] Mb at a bin size of 40 kb: observed DI and HMM biased states. The plot shows 
the observed DI values (barplot) and the HMM biased states (arrows). Positive true DI and negative true 
DI in the legend refer to downstream and upstream biased states respectively. According to the HMM state 
shifts, six topological domains and seven topological domain boundaries are shown. Topological domains 
show up as triangles along the diagonal of the heatmap and they are highlighted in blue. Here the heatmap 
is represented only as the triangular part laying on the diagonal. GEO accession number: GSM862723. 
 
Processed data module 
 
The processed data module is a collection of standardized processed datasets using HiCtool. As shown 
in Table 1, we have already run 19 datasets of Homo Sapiens (hg38 reference genome), taken from the 
library on the 4D Nucleome Web Portal (www.4dnucl.org) [32], and 2 datasets of Mus Musculus (mm10 
reference genome). The 4DN library is a collection of genome interaction papers related to the 
Chromosome Conformation Capture based assays (3C, 4C, 5C and Hi-C). Specifically, here we referred 
only to Hi-C derived datasets.  
Four different outputs for each chromosome of a processed dataset are computed and saved with HiCtool: 
contact matrices, DI values, HMM biased states (“true” DI) and topological domain coordinates. For contact 
matrices, observed contacts, expected contacts (fend, enrichment) and normalized contacts (fend, 
enrichment) are computed. All the outputs are in txt format, and the functions to save and load the data 
are given. To reduce storage usage and computing time, we used an efficient data format to store contact 
matrices, exploiting that they are symmetric and sparse (see Materials and Methods). For the normalized 
contact data of the human cell line hESC line H1 (GEO accession number: GSM862723) at the resolution 
of 40 kb, ~1.3 GB of storage is required if the full contact data are saved, only ~97 MB using our method. 
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This means that storage usage is reduced of ~92% (~58% if the files are compressed). About the 
computing time, saving and loading full contact matrices with 16 GB of RAM require respectively ~6 
minutes and ~3 minutes. Saving and loading our parsed data require 1 minute for both. This means ~83% 
and ~67% of data saving and loading time reduction respectively. 
Conversely, domain coordinates are in a format to be read directly. Each line of the txt file refers to a 
topological domain, with tab separated start and end coordinates, allowing easy access and readability. 
 
 
GEO Accession 
Number 

Restriction 
enzyme Species Cell Line Reference 

GSM455133 HindIII Homo Sapiens EBV-transformed lymphoblastoid GM06990 [4] 

GSM862723 HindIII Homo Sapiens Human Embryonic Stem Cells H1 [30] 

GSM862724 HindIII Homo Sapiens Fetal lung fibroblast IMR90 [30] 

GSM862720 HindIII Mus Musculus Mouse Embryonic Stem Cells J1 [30] 

GSM1551633 MboI Mus Musculus B-lymphoblasts CH12-LX [31] 

GSM1551550 MboI Homo Sapiens B-lymphoblastoids GM12878 [31] 

GSM1551599 MboI Homo Sapiens Lung Fibroblast IMR90 (CCL-186) [31] 

GSM927075 HindIII Homo Sapiens ERG prostate epithelial cell line RWPE-1 [33] 

GSM1055800 HindIII Homo Sapiens Fetal lung fibroblast IMR90 [34] 

GSM1055805 HindIII Homo Sapiens Embryonic stem cells H1 [34] 

GSM1906332 HindIII Homo Sapiens B-cell Follicular Lymphoma RL [35] 

GSM1906333 HindIII Homo Sapiens Primary TumorB-cell acute lymphocytic 
leukemia B-ALL [35] 

GSM1906334 HindIII Homo Sapiens MHH-CALL- 4 B-cell acute lymphocytic 
leukemia CALL4 [35] 

GSM1250485 HindIII Homo Sapiens Breast cancer cells MCF-7 [36] 

GSM1294038 HindIII Homo Sapiens Breast cancer cell line T47D-MTVL, 
unstimulated [37] 

GSM1294039 HindIII Homo Sapiens Breast cancer cell line T47D-MTVL, 
progestin R5020-stimulated [37] 

GSM1267200 HindIII Homo Sapiens Mesenchymal stem cells H1 [38] 

GSM1267196 HindIII Homo Sapiens Embryonic stem cells H1 [38] 

GSM1718021 HindIII Homo Sapiens Human Embryonic Stem Cells H9 [39] 

GSM1909121 HindIII Homo Sapiens Haploid fibroblast-like Hap1 [40] 

GSM1081530 HindIII Homo Sapiens HEK293T [41] 

 
Table 1. GITAR processed data. Datasets processed using HiCtool and available for downloading at 
data.genomegitar.org. 
 
 
DISCUSSION 
 
As we presented above, GITAR is a comprehensive tool, which consists of a pipeline to analyze genomic 
interaction data (HiCtool) and a large collection of processed datasets. HiCtool establishes a standardized, 
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flexible and easy way to work with Hi-C data, and it integrates all the software needed for the analysis. 
This allows users to work on different datasets and make comparisons in a consistent way. For each 
section, a tutorial leads through each of the analysis steps, making the entire procedure simple, clear and 
user-friendly, with the key advantage that no programming expertise or additional software documentation 
are required. Besides the tutorial part, the API documentation in each section shows the syntax of all the 
functions that are used. In such a way, the main difference with the other available packages is that HiCtool 
is a comprehensive solution which integrates Hi-C data pre-processing, normalization, visualization and 
topological domains computation, instead of focusing only on a part of the analysis. Having one 
comprehensive tool has the key advantage of avoiding the difficulty related to data integration, when 
different tasks are performed by different packages and the input data needs to be supplied in the format 
required by each specific software. In addition, HiCtool was built with a pipeline structure to make it easy 
to use, flexible and suitable to every kind of user. This gives full control over the analysis instead of 
generating output of processes that especially beginners would not be able to clearly understand or 
manage. 
We built also a large library, to provide a collection of standardized processed datasets from several cell 
lines ready for downloading. Contact matrices, Directionality Index, HMM biased states and topological 
domain coordinates are available for each cell line. Since contact matrices may be really big, especially 
with the increasing of the resolution, they are saved in a parsed format to reduce memory usage and allow 
quick data access even with a personal laptop computer. Having a collection of datasets processed with 
the same workflow is crucial to perform consistent comparisons and it provides data directly ready for 
further analyses. 
 
 
MATERIALS AND METHODS 
 
HiCtool is an open source software and the source code is available for downloading at 
doc.genomegitar.org. The pre-processing (Figure 1, left) is based on several applications (SRA Toolkit, 
Bowtie 2, SAMTools and Bedtools), hence it consists of a pipeline where each command is performed 
through UNIX lines of code. The rest of the analysis (Figure 1, center and right) is based on Python 
functions, therefore tasks can be performed with simple function calls after running the scripts. 
 
Data normalization and heatmaps 
 
Contact data are normalized using the Binning algorithm of the Python package HiFive (v1.2.1) [13]. 
Heatmaps are plotted using the Python Image Library (PIL). Colorbar and histogram are generated using 
the Python libraries Matplotlib and Matplotlib.pyplot. 
 
Directionality Index and Hidden Markov Model 
 
Given a division of the genome into 40 kb bins, we quantified the observed Directionality Index (DI) using 
the following formula from Dixon et al. [30]: 
 

𝐷𝐼 = -
𝐵 − 𝐴
|𝐵 − 𝐴|

2	3
(𝐴 − 𝐸)6

𝐸
+	
(𝐵 − 𝐸)6

𝐸
8 

 
where A is the number of reads that map from a given 40 kb bin to the upstream 2 Mb region, B is the 
number of reads that map from a given 40 kb bin to the downstream 2 Mb region and E is the expected 
number of contacts for each bin and it equals to 9:;

6
. Therefore, the fend normalized contact data at a bin 

size of 40 kb is needed to compute the DI. The detection region of 2 Mb for upstream or downstream 
biases corresponds to 50 bins (2 Mb / 40 kb = 50 bins). 
We used a Hidden Markov Model (HMM) based on the Directionality Index to identify biased states.  To 
perform the HMM we used the Python package hmmlearn. Specifically, we built a model with three biased 
states corresponding to downstream bias, upstream bias and no bias. The sequence of emissions 
corresponds to the observed DI values and transition matrix, emission matrix and initial state 
sequence are unknown. We have three types of emissions named as 1, 2, 0 in the model 
and corresponding to a positive (1), negative (2) or zero (0) value of the observed DI. In our analysis, we 
associated to the emission ‘0’ all the absolute DI values under a threshold of 0.4. We initialized transition 
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and emission matrices with the same values of 0.3 for the probabilities to transit to a different state or 
emission respectively (values outside the diagonal), and 0.4 for the probabilities of remaining in the same 
state or observing the same emission (values in the diagonal). So, first we estimated the model parameters 
and then the most probable sequence of states using the Viterbi algorithm. Biased states were then 
exploited to calculate topological domain coordinates. According to Dixon et al. [30], a domain is initiated 
at the beginning of a single downstream biased state. The domain is continuous throughout any 
consecutive downstream biased states and ends when the last in a series of upstream biased states is 
reached. 
 
Contact map storage 
 
HiCtool allows to generate and save contact matrices at the resolution defined by the user. In our pipeline, 
we processed Hi-C data with a bin size of 40 kb to allow topological domains analysis according to Dixon 
et al. [30]. Already at this resolution, contact matrices contain several million of elements per each 
chromosome, requiring big storage space and relatively high data saving and loading time. To address 
this problem, we proposed a way to parse the data based on the fact that contact maps are symmetric 
(contacts between loci i and j are the same than those between loci j and i) and usually sparse, since most 
of the elements are zeros, and this property is stronger with the decreasing of the bin size. Given these 
two properties, it is not needed to save mirrored data and moreover it would be useful to “compress” the 
zero data within the matrices. To accomplish this, first we selected only the upper-triangular part of the 
contact matrices (including the diagonal) and we reshaped the data by rows to form a vector. After that, 
we replaced all the consecutive zeros in the vector with a “0” followed by the number of zeros that are 
repeated consecutively; all the non-zero elements are left as they are. Finally, the data are saved in a txt 
file (see Figure 4). As mentioned before, at higher resolutions (low bin sizes) contact matrices show more 
zeros, meaning that the advantage given by this data format would be more remarkable in terms of storage 
usage and computation time. 
 
 

 
 
Figure 4. Contact map storage workflow. This is a simplified example where an intra-chromosomal 
contact matrix is represented by a 4x4 symmetric and sparse matrix. 1) The upper-triangular part of the 
matrix is selected (including the diagonal). 2) Data are reshaped to form a vector. 3) All the consecutive 
zeros are replaced with a “0” followed by the number of zeros that are repeated consecutively. 4) Data are 
saved into a txt file. 
 
Software requirements 
 
This is the list of software that are required to use GITAR: Python (>2.7), Bowtie 2, Bedtools, SAMTools, 
SRA Toolkit. The Python libraries needed are: Numpy, Scipy, Math, Matplotlib, Matplotlib.pyplot, PIL, csv. 
Additional Python packages are: HiFive and hmmlearn. HiFive is used to normalize contact data, while 
hmmlearn serves for the Hidden Markov Model to calculate the biased states used to extract topological 
domain coordinates. 
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