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Abstract 12	
  
The odorant receptor (OR) gene family encodes the major olfactory receptors of insects. It 13	
  
evolved from a lineage of the older gustatory receptor (GR) family, and in most insects consists 14	
  
of a single gene encoding a conserved odorant receptor co-receptor (Orco) and several to 15	
  
hundreds of specific ORs that mediate the specificity and sensitivity of most of insect olfaction. 16	
  
Previous work has suggested that the family originated within the wingless insects or 17	
  
Apterygota, between the Archaeognatha (a bristletail with no expressed ORs) and the Zygentoma 18	
  
(a firebrat with at least three apparent Orco relatives - TdomOrco1-3). Examination of the OR 19	
  
family in the dragonfly Ladona fulva and the mayfly Ephemera danica, along with the published 20	
  
damselfly Calopteryx splendens, reveals that both of these paleopteran lineages have a single 21	
  
Orco gene. The odonates only have a few specific ORs, while the mayfly has about 50 ORs. 22	
  
Phylogenetic analysis reveals that the specific ORs in these two paleopteran lineages form two 23	
  
major clades, and that TdomOrco3 belongs in one of these clades. TdomOrco1 might also be a 24	
  
specific OR, leaving TdomOrco2 as the sole Orco ortholog in the firebrat. This finding implies 25	
  
that the entire Orco/OR system evolved before zygentomans. 26	
  
 27	
  
Introduction 28	
  
The odorant receptor (OR) family in insects was first recognized in the fledgling Drosophila 29	
  
melanogaster genome sequence (Clyne et al. 1999; Vosshall et al. 1999), and soon extended to 30	
  
the full complement of 60 genes encoding 62 receptors with completion of the genome sequence 31	
  
(Vosshall et al. 2000; Robertson et al. 2003). Enormous progress has been made since then in 32	
  
understanding this ecologically important gene family in insects, including their likely structure, 33	
  
gene family expansions and contractions in diverse insects, their diverse ligands, and their roles 34	
  
in fly and other insect biology (Leal 2013; Benton 2015; Hopf et al. 2015; Joseph and Carlson 35	
  
2015; Haverkamp et al. 2018). Scott et al. (2001) suggested that the OR family was related to the 36	
  
gustatory receptor (GR) family (Clyne et al. 2000), an observation confirmed by Robertson et al. 37	
  
(2003). On the basis of the pattern of molecular evolution in D. melanogaster, Robertson et al. 38	
  
(2003) suggested that the OR family might have evolved from within the much older GR family 39	
  
concomitant with the evolution of terrestriality in insects. The GR family extends back to basal 40	
  
animals (Saina et al. 2015; Robertson 2015; Eyun et al. 2017), but the ORs are clearly much 41	
  
younger because they have not been found in non-insect arthropods. Thus the genome sequences 42	
  
of the crustaceans Daphnia pulex (Penalva-Arana et al. 2009) and Eurytemora affinis (Eyun et al. 43	
  
2017), the centipede Strigamia maritima (Chipman et al. 2014; Almeida et al. 2015), and the 44	
  
chelicerates  Metaseiulus occidentalis (Hoy et al. 2016), Ixodes scapularis (Gulia-Nuss et al. 45	
  
2016), and Tetranychus urticae (Ngoc et al. 2016) reveal only members of the GR family, and 46	
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the unrelated and similarly ancient Ionotropic Receptor (IR) family (Rytz et al. 2013; Eyun et al. 47	
  
2017; Rimal and Lee 2018). 48	
  
 49	
  
Efforts to understand more precisely the origin of the OR family within hexapods were greatly 50	
  
advanced by the findings of Missbach et al. (2014) who sequenced chemosensory organ 51	
  
transcriptomes for two basal apterygotes, the bristletail Lepismachilis y-signata (Archaeognatha) 52	
  
and the firebrat Thermobia domestica (Zygentoma). From the firebrat they obtained transcripts 53	
  
encoding three proteins they named TdomOrco1-3 for their apparent relationship to the odorant 54	
  
receptor co-receptor protein of neopteran insects, known as Orco (Vosshall and Hansson 2011). 55	
  
Orco is present in all other studied insects to date as a single gene and the protein is a partner 56	
  
with each of the other “specific” ORs (Benton et al. 2006). However, they could not find ORs or 57	
  
Orco relatives in the bristletail, instead finding only members of the IR family. Given evidence 58	
  
that IRs serve olfactory roles in terrestrial crustaceans (Groh-Lunow 2015), they argued that 59	
  
basal terrestrial hexapods and insects used IRs for all of their olfaction, as all studied insects still 60	
  
do for a subset of olfactory sensitivities (Rytz et al. 2013; Rimal and Lee 2017), with these three 61	
  
Orco relatives evolving from a GR lineage between the Archaeognatha and Zygentoma. 62	
  
Missbach et al. (2014) left off with the observation that “the existence of three Orco types 63	
  
remains mysterious”. 64	
  
 65	
  
Recently the genome of an odonate, the damselfly Calopteryx splendens, revealed that this 66	
  
insect, belonging to an order previously thought to be anosmic but now known to be capable of 67	
  
olfaction (Piersanti et al. 2014), encodes a single Orco protein and five specific ORs (Ioannidis et 68	
  
al. 2017). Phylogenetic analysis of the OR family suggested that one of the three named Orco 69	
  
proteins from T. domestica, TdomOrco3, might be a specific OR. If this is correct, then the entire 70	
  
Orco/OR system evolved before the Zygentoma, which would explain the “mystery” of three 71	
  
apparent Orco types. In an effort to illuminate this issue further I examined the OR families in 72	
  
the genome sequences of another odonate, the dragonfly Ladona fulva, and a mayfly Ephemera 73	
  
danica 74	
  
 75	
  
Materials and Methods 76	
  
TBLASTN searches of the dragonfly L. fulva and mayfly E. danica genome sequences available 77	
  
from the i5k pilot project at the Human Genome Sequencing Center at Baylor College of 78	
  
Medicine and available at the i5k Workspace@NAL website (Poelchau et al. 2014) were 79	
  
performed using the C. splendens ORs and the T. domestica Orcos as queries, along with diverse 80	
  
ORs from other insects. These odonate and mayfly ORs are particularly divergent, so for 81	
  
exhaustive searches, E values were raised to 1000 and word size reduced to 2, and the amino 82	
  
acid sequences of the last two most-conserved exons were augmented with LQ before them, and 83	
  
when appropriate VS after, to mimic consensus splice site sequences of flanking phase-0 introns. 84	
  
Gene models were built in the Apollo browser available at the i5k Workspace@NAL, with 85	
  
problematic models and pseudogenes worked up in a text editor. Pseudogenes were translated as 86	
  
best possible, employing Z for stop codons and X for frameshifts, and only included if they 87	
  
encoded at least half the amino acids of a typical OR, and the same criterion was used to exclude 88	
  
short gene fragments. All protein sequences are available in the supplementary file, and 89	
  
transcripts of intact gene models are available from the i5k Workspace@NAL. Proteins were 90	
  
aligned in ClustalX v2.1 (Larkin et al. 2007) and the alignment was trimmed with TrimAl v1.4 91	
  
(Capella-Gutierrez et al. 2009) using the “gappyout” option. Phylogenetic analysis was 92	
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conducted using maximum likelihood in PHyML v3.0 (Guindon et al. 2010), and the resultant 93	
  
tree organized and colored in FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). 94	
  
 95	
  
Results 96	
  
The dragonfly L. fulva genome contains a single Orco gene, and three genes encoding specific 97	
  
ORs (LfulOr1-3), the smallest known OR family repertoire for an insect with a genome sequence 98	
  
and comparable to that of C. splendens (Ioannidis et al. 2017). All four genes have full-length 99	
  
models, although in the absence of transcript support their confidence is solely based on 100	
  
comparative evidence of gene structures and sequence similarity. The Orco protein shares some 101	
  
features with the C. splendens protein compared with neopteran Orco proteins, specifically a 102	
  
slightly longer N-terminus and a longer first intracellular loop. LfulOr1/2 have gene structures 103	
  
similar to those of CsplOr1-5, specifically they have introns in phases 2-2-0-0-0, with the second 104	
  
exon being the longest. The last four introns are in shared locations and phases as those of 105	
  
CsplOr1-5, as well as the entire OR family as originally inferred from D. melanogaster 106	
  
(Robertson et al. 2003). In contrast, LfulOr3 is rather divergent and has a gene structure with 107	
  
introns in phases 0-0-1-2-0-0-0, the last four again being apparently ancestral. C. splendens does 108	
  
not have a comparable OR gene, so appears to have lost this OR lineage. 109	
  
 110	
  
In contrast, the E. danica genome encodes an OR family ten times larger than these two 111	
  
odonates, with a single Orco gene and at least 46 specific ORs. The gene models for these ORs 112	
  
were sometimes difficult to build, because they are sometimes highly divergent, some exons are 113	
  
missing in gaps in the assembly, and some genes, much like LfulOr3, have eight or even nine 114	
  
short exons. Ten of these 46 models are apparent pseudogenes with obvious pseudogenizing 115	
  
mutations like stop codons and/or frameshifting insertions or deletions. Another four models 116	
  
required repair of the genome assembly, while eight remain as partial models with exons 117	
  
missing. Approximately six gene fragments remain in the assembly that might represent intact 118	
  
genes in the genome. Given the divergence and small size of most exons, it is also possible that 119	
  
some highly divergent genes have evaded detection, although the phylogenetic analysis below 120	
  
suggests that the major clades have been discovered. Most genes share the ancestral 2-0-0-0 121	
  
intron locations. EdanOr1-34 have only those four introns, while EdanOr35-46 have three 122	
  
additional introns splitting up the usually long first exon, in phases 1-2-1. 123	
  
 124	
  
Phylogenetic analysis of these OR families along with the three named Orco proteins from T. 125	
  
domestica and Orco proteins from representative neopterans reveals that the specific ORs from 126	
  
these two odonates and the mayfly form two major clades (Figure 1). LfulOr1 and 2 are related 127	
  
to CsplOr1-5 along with EdanOr1-12. LfulOr3 is the sole odonate specific OR in the other major 128	
  
clade with EdanOr13-46. As suggested in Ioannidis et al. (2017), TdomOrco3 belongs 129	
  
confidently with these specific ORs, having strong support for clustering with them, and 130	
  
specifically with the first clade. Missbach et al. (2014) noted that TdomOrco3 has several amino 131	
  
acid changes from those conserved in Orcos. Given that this “division-of-labor” between a single 132	
  
Orco and a set of specific ORs had already originated by the time of the firebrat, TdomOrco1 133	
  
might also be a specific OR. Missbach et al. (2014) performed in situ hybridizations to antennal 134	
  
sections with TdomOrco1, and found that it was expressed in only one or two olfactory sensory 135	
  
neurons per antennal segment, a pattern consistent with it being a “specific” OR. This would 136	
  
leave TdomOrco2 as the sole true Orco ortholog. 137	
  
 138	
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Discussion 139	
  
The OR family plays a major role in the biology of insects so its evolutionary origins are of 140	
  
particular interest. While the observations of Missbach et al. (2014) appear to set the evolution of 141	
  
the family within the basal wingless insects, this conclusion is not ironclad. First, the findings 142	
  
here, confirming the proposal of Ioannidis et al. (2017) that at least one of the three named Orco 143	
  
proteins in the firebrat is a specific OR, leaving TdomOrco2 as the single true Orco ortholog, 144	
  
mean that this Orco/OR system had already evolved by the time of the firebrat, representing the 145	
  
Zygentoma. Second, the conclusion of Missbach et al. (2014) that the more ancient 146	
  
archaegnathan bristletail lineage does not have Orco or ORs, but instead relies entirely on IRs for 147	
  
olfaction, was based on a transcriptome. Until at least one and preferably several archaegnathan 148	
  
genomes are obtained it will remain an open question as to whether they indeed predate the 149	
  
origin of the OR family. Even then it remains possible that bristletails lost their Orco/OR genes, 150	
  
perhaps due to a shift in their chemical ecology that made them redundant. 151	
  
 152	
  
There are several more basal hexapod lineages that might harbor the origins of the OR family if 153	
  
it indeed predates wingless insects, specifically the Collembola, Diplura, and Protura. Like a 154	
  
proposed bristletail genome project, projects on the genomes of representatives of each of these 155	
  
groups unfortunately had to be abandoned by the pilot i5k project 156	
  
(https://www.hgsc.bcm.edu/arthropods/i5k) because of their large size and complexity (S. 157	
  
Richards, personal communication). Nevertheless, genome sequences for three other 158	
  
collembolans, Orchesella cincta, Folsomia candida, and Holacanthella duospinosa, reveal GRs 159	
  
and IRs but do not contain Orco/OR genes (Faddeeva-Vakhrusheva et al. 2016, 2017; Wu et al. 160	
  
2017), making it likely that the IR family, and perhaps some GRs, provided the first olfactory 161	
  
receptors in terrestrial hexapods, followed later by the evolution of the OR family. While this 162	
  
study confirms that the Orco/OR functional split predates the Zygentoma, it remains unclear 163	
  
precisely when this gene family of important olfactory receptors arose in insect evolution. The 164	
  
availability of third generation sequencing methods capable of generating long reads that allow 165	
  
improved assembly of difficult genomes such as other basal hexapod and insect lineages will 166	
  
hopefully soon further illuminate this question. 167	
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 300	
  
 301	
  
Figure 1. Phylogenetic tree of the OR family in basal insects. The tree was rooted by 302	
  
declaring the Orco proteins from neopterans, along with TdomOrco2, as the outgroup. Protein 303	
  
names are colored by species, T. domestica, C. splendens, L. fulva, and E. danica in brown, 304	
  
green, teal, and blue, respectively, as are the branches to them. Orco proteins from neopteran 305	
  
insects are in black. The suffix P after a name indicates a pseudogene. Support levels at nodes 306	
  
are indicated as filled circles representing approximate Likelihood Ratio Tests (aLRT) from 307	
  
PHyML v3.0 ranging from 0-1. The scale bar is substitutions per site. 308	
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