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Abstract 

Wrist worn raw-data accelerometers are used increasingly in large scale population research. 

We examined whether sleep parameters can be estimated from these data in the absence of 

sleep diaries, which are common in sleep actigraphy. Our heuristic algorithm uses the 

variance in estimated z-axis angle and makes basic assumptions about sleep interruptions. 

Detected sleep period time window (SPT-window), was compared against sleep diary in 3752 

participants (range=60-82years) and polysomnography in sleep clinic patients (N=28) and in 

healthy good sleepers (N=22). The SPT-window derived from the algorithm was 12.9 and 3.2 

minutes longer compared with sleep diary in men and women, respectively. Average c-

statistic to detect the SPT-window compared to polysomnography was 0.86 and 0.83 in clinic 

and healthy sleepers, respectively. We demonstrated the accuracy of our algorithm to detect 

the SPT-window. The value of this algorithm lies in studies such as UK Biobank where a 

sleep diary was not used.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2018. ; https://doi.org/10.1101/257972doi: bioRxiv preprint 

https://doi.org/10.1101/257972
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Wrist-worn raw-data accelerometers are increasingly used for the assessment of 

physical activity in large population studies such as the Whitehall II study or mega-cohorts 

such as UK Biobank 1–3. The decision to use raw-data accelerometers is motivated by the 

improved comparability of output across different sensor brands 4,5, and increased control 

over all steps in the data processing6. Accelerometers are commonly worn for 24 hours per 

day, thus providing information over the day and night; making them potentially valuable for 

sleep research. 

A major challenge in accelerometer-based sleep measurement is to derive sleep 

parameters without additional information from sleep diaries 1,3,7. Standard methods for sleep 

detection based on conventional accelerometers (actigraphy) involves asking the participant 

to record their time in bed, sleep onset and waking up time8–10. In a previous paper we 

developed a method to detect sleep guided by sleep diary records 11. However, the increasing 

use of accelerometry in studies worldwide without sleep diaries necessitates the development 

of novel methods to derive indicators of sleep behaviour, in the absence of sleep diary 

records. A crucial step is the detection of the sleep period time window (SPT-window), which 

is the time window starting at sleep onset and ending when waking up after the last sleep 

episode of the night. Once the SPT-window can be detected without diary, our previously 

published method can be used to detect sleep episodes within this window 11. 

Polysomnography (PSG) is considered the gold-standard measure of sleep parameters, 

making it an ideal methodology to validate sleep detection methods using an accelerometer 

algorithm. Additionally, experiments in real life can be used to establish concurrent validity 

with sleep diary. 

This study aims to develop and evaluate a heuristic algorithm for the detection of the 

SPT-window from raw data accelerometers unaided by a sleep diary and to compare sleep 

parameter estimates (waking up, sleep onset time and SPT-window duration) with sleep diary 

records assessed in the daily life of a large cohort of older adults, and with PSG data collected 

in a sleep clinic and a group of healthy good sleepers.  
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Methods 

 

Study population 

Full details on data collection were previously described 11. Briefly, data are drawn 

from the Whitehall II Study 12, where accelerometer measurement was added to the study at 

the 2012/2013 wave of data collection for participants seen at the central London clinic and 

for those living in the South-Eastern regions of England who underwent a clinical evaluation 

at home 2. Of the 4879 participants to whom the accelerometer was proposed in the Whitehall 

II Study, 388 did not consent and 210 had contraindications (allergies to plastic or metal, 

travelling abroad the following week). Of the remaining 4281 participants who wore the 

accelerometer, 4204 (98.2%) had valid accelerometer data (a readable data file). Among 

them, sleep diary data were missing for 80 participants and 30 additional participants did not 

meet criteria for accelerometer wear time (at least one night defined as noon-noon with >16h 

of wear time). Of the remaining 4094 participants (jointly 27957 nights) 342 did not have 

complete demographic data (age, BMI and sex). Therefore, the main assessment of 

discrepancies between the accelerometer and the sleep diary was undertaken in 3752 

participants (76.9.9% of those invited) with jointly 25644 nights 11. The resulting participants 

(75.2% men) were on average 69.1 (standard deviation (SD) = 5.6) years old and had a mean 

body mass index (BMI) of 26.4 (SD = 4.2) kg/m2. 

We conducted a second study on sleep clinic patients in order to validate our sleep 

detection algorithm against polysomnography. These data come from 28 adult patients who 

were scheduled for a one-night polysomnography (PSG) assessment at the Freeman Hospital, 

Newcastle upon Tyne, UK, as part of their routine clinical assessment and were subsequently 

invited to participate in the study 11. All 28 patients recruited for the polysomnography study 

(11 female) had complete accelerometer data for the left wrist and 27 had complete data for 

the right wrist and were aged between 21 and 72 years (mean±sd: 45±15 years). Diagnosed 

sleep disorders included: hypersomnia (N=2), insomnia (N=2), REM behaviour disorder 

(N=3), sleep apnoea (N=5), narcolepsy (N=1), sleep apnoea (N=4), parasomnia (N=1), 

restless leg syndrome (N=5), and sleep paralysis (N=1), and nocturnia (N=1). Three patients 

had more than one sleep disorder. 

We conducted a third study on health good sleepers to validate our sleep detection 

algorithm against polysomnography using a different accelerometer brand. These data come 

from 22 adults who underwent a one-night PSG assessment at the University of Pennsylvania 
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Center for Sleep. Twenty-two participants recruited for the polysomnography study (68% 

female) had complete accelerometer data for the non-dominant wrist and were aged between 

18 and 35 years (mean±sd: 22.8±4.5 years). 

 

 

Ethics Statement 

In both studies participants were provided with instructions and an information sheet 

about the study and were given time to ask questions prior to providing written informed 

consent. The studies were approved by the University College London ethics committee and 

the NRES Committee North East Sunderland ethics committee, and University of 

Pennsylvania ethics committee respectively. 

 

Data availability 

 

Whitehall II data, protocols, and other metadata are available to the scientific community. 

Please refer to the Whitehall II data sharing policy at https://www.ucl.ac.uk/whitehallII/data-

sharing. Raw data from the polysomnography study has been made open access available in 

anonymized format on zenodo.org13. Data from the University of Pennsylvania are available 

through the National Institute of Mental Health data archive. 

 

Instrumentation 

Participants in the Whitehall II Study were asked to wear a tri-axial accelerometer 

(GENEActiv, Activinsights Ltd, Kimbolton, UK) on their non-dominant wrist for nine (24-h) 

consecutive days. They were asked to complete a simple sleep diary every morning which 

consisted of two questions: ‘what time did you first fall asleep last night?’ and ‘what time did 

you wake up today (eyes open, ready to get up)?’ The accelerometer was configured to 

collect data at 85.70 Hz with a ±8g dynamic range. A more complete description of the 

accelerometer protocol can be found in our earlier publication 2. 

In the second and third study, polysomnography (Embletta®, Denver) was performed 

using a standard procedure, including video recording, a sleep electroencephalogram (leads 

C4-A1 and C3-A2), bilateral eye movements, submental EMG, and bilateral anterior tibialis 

EMG to record leg movements during sleep. Respiratory movements were detected with 

chest and abdominal bands measuring inductance, airflow was detected with nasal cannulae 

measuring pressure, and oxygen saturation of arterial blood was measured. Airflow limitation 
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and changes in respiratory movement were used to detect increased upper-airway resistance. 

All respiratory events and sleep stages were scored according to standard criteria so that EEG 

determined total sleep time could be measured 9. Participants in the second study (PSG in 

sleep clinic) were asked to wear the same brand of accelerometer as in the first study 

(GENEActiv, Activinsights Ltd, Kimbolton, UK) on both wrists throughout the one-night 

polysomnography assessment. Here, the accelerometer was also configured to record at 85.70 

Hz. We collected accelerometer data on both wrist to assess the role of sensor location on 

classification performance, unfortunately no information on handedness was recorded. 

Participants in the third study (PSG in healthy good sleepers) were asked to wear an 

accelerometer of the brand Axivity (Axivity Ltd, Hoults Yard, UK) on the non-dominant 

wrist throughout the one-night polysomnography assessment. Here, the accelerometer was 

configured to record at 100 Hz. 

 

 

Accelerometer data preparation 

A previously published method was used to minimize sensor calibration error 14 and 

to detect and impute accelerometer non-wear periods 2,15. Arm angle was estimated as 

follows: ����� � �tan�� ��

��
����

�
� · 180/�, where �� , ��, and ��  are the median values of 

the three orthogonally positioned raw acceleration sensors in gravitational (g) units (1g = 

1000 mg) derived based on a rolling five second time window. Here, the z-axis corresponds 

to the axis positioned perpendicular to the skin surface (dorsal-ventral direction when the 

wrist is in the anatomical position). Next, estimated arm angles were averaged per 5 second 

epoch and used as input for our algorithms for detecting sleep period time (SPT-window) and 

sleep episodes. 

 

Heuristic algorithm to detect the SPT-window  

There are several challenges in the development of an algorithm to detect the SPT-

window: absence of hard data labels to train a classifier under real life conditions (not in a 

clinic), consideration of real life behaviour, e.g. how to handle sleep scattered across the full 

24-hour day and ensuring that the algorithm is not over fitted to a specific population or 

accelerometer brand. Thus an algorithm was built by visually inspecting twenty random 

accelerometer multi-day recordings from different studies and accelerometer brands (ten from 

the Whitehall II Study as reported in this paper and ten from UK Biobank study 1) while 
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iteratively enhancing the algorithm to best detect the visible data segment of no movement 

without using or looking at sleep diary data. 

The resulting heuristic algorithm, which we will refer to as Heuristic algorithm 

looking at Distribution of Change in Z-Angle (HDCZA), applied per participant is illustrated 

in Figure 1 and works as follows. Step 1-2: Calculate the z-angle per 5 seconds. Steps 3-5: 

Calculate a 5-minute rolling median of the absolute differences between successive 5 second 

averages of the z-angle. This step makes the algorithm invariant to the potentially 

unstandardized orientation of the accelerometer relative to the wrist. Step 6-7: Calculate the 

10th percentile from the output of step 5 over an individual day (noon-noon), and multiply by 

15. This is used as a critical individual night derived threshold to distinguish periods of time 

involving many and few posture changes. Detect the observation blocks for which the output 

from step 5 was below the critical threshold, and keep the ones lasting longer than 30 

minutes. Step 8: Evaluate the length of the time gaps between the observation blocks 

identified by step 7, if the duration is less than 60 minutes then count these gaps towards the 

identified blocks. Step 9: The longest block in the day (noon-noon) will be the main SPT-

window, defined as the time elapsed between sleep onset (start of the block) and waking time 

(end of the block). 

Our motivation for the design of the algorithm is as follows. By visually inspecting 

the angle-z values over a day some individuals seemed inactive or sleeping throughout the 

day with minimal variation in angle, while other individuals had more distinct inactive (night 

time) and active (daytime) periods. These differences presumably reflect the degree of 

sedentary lifestyle and amount of sleep in a day. Using a percentile as part of the threshold 

calculation allows the threshold to account for between individual differences in z-angle 

distribution. The factor 15 in step 6 of the algorithm was derived iteratively using visual 

inspection of the classification. The 30-minute time period is motivated by the assumption 

that people are typically not in bed for less than 30 minutes for their nocturnal time in bed, as 

opposed to daytime napping, and the 60-minute time period is motivated by the assumption 

that sleep separated by awake periods greater than 60 minutes ought to be treated as two 

distinct sleep episodes to avoid adding early evening naps or afternoon naps to the SPT-

window. 

 

Second algorithm for reference 

When comparing our algorithm to the sleep diary we also considered a second, but 

more naïve heuristic algorithm, which we will refer to as L5±6. The algorithm is based on the 
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the raw signal metric Euclidian Norm (vector magnitude) Minus One with negative values 

rounded to zero (ENMO), which in formula corresponds to 

����������� � ����� � ����� � 1�, 0�, with accx, accy, and accz referring to the three 

orthogonal acceleration axes pointing in the lateral, distal, and ventral directions, respectively 
15. Metric ENMO has previously been demonstrated to be correlated with magnitude of 

acceleration as well as human energy expenditure in the present generation of wearable 

acceleration sensors15. L5±6 takes the 12 hour window centred around L5 (least active five 

hours in the day based on metric ENMO) and then searches within this window for sustained 

inactivity periods which were previously described 11. In short, sustained inactivity periods 

are calculated as the absence of change in arm elevation angle (same angle-z as used above) 

larger than 5 degrees for more than 5 minutes 11. Next, the SPT-window is defined from the 

start of the first to the end of the last occurrence of a sustained period of inactivity in the 12-

hour window.  

 

Sleep episodes within the SPT-window  

Sleep episodes were defined as the sustained periods of inactivity within the SPT-

window, as defined in the previous section 11. From this, the number of sleep episodes within 

each SPT-window detected (HDCZA, L5±6) was calculated as well as sleep efficiency within 

the SPT-window calculated as the percentage of time asleep within the SPT-window 11.  

 

Statistical analysis 

 

Comparison with sleep diary 

The SPT-window derived from both the HDCZA and L5±6 were compared separately 

with sleep diary records with a multi-level regression to account for the variation in 

availability of night time data and to include both night and person level predictors. For SPT-

window duration (difference between sleep onset and waking time), sleep onset and waking 

time, the difference between diary and accelerometer-based detection was used as the 

dependent variable, while population demographics (sex, age, BMI), season (winter or 

summer) and weekend versus weekday were used as predictors. Here, we used function lme 

from R package nlme. Further, correlation coefficients and mean absolute error (MAE) 

between sleep onset, waking time, and SPT-window duration were calculated. Additionally, 

the c-statistic, also known as the Area Under the Curve (ROC), was calculated from the 
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epoch-level binary classifications of SPT-window <1> or not <0> by diary and the HDCZA 

and L5±6, first calculated per day and then aggregated as average per participant. 

Additionally, to investigate whether more wakefulness time within the SPT-window 

corresponds to a larger HDCZA-sleep diary difference in SPT-window duration we 

calculated the amount of wakefulness categorised as [0-1), [1-2), [2-3), [3-4), and at least 4 

hours, and compared this with the difference in SPT-window duration between sleep diary 

and the HDCZA. The notation [a-b) is used to denote an interval that is inclusive of ‘a’ but 

exclusive of ‘b’. 

 

Evaluation with polysomnography 

The recording time of PSG is typically constrained to the time in bed window, which 

means that our heuristic algorithm (HDCZA) may not detect sufficient data corresponding to 

time out of bed to derive its critical threshold and accurately detect the SPT-window. We 

addressed this concern by adding simulated wakefulness data to the beginning and ending of 

the accelerometer and PSG recording. The PSG and accelerometer data were expanded with 

90 minutes of simulated data at the beginning and ending that would not trigger the SPT-

window detection: simply the class wakefulness for PSG, and a sine wave with amplitude 40 

degrees and period 15 minutes complemented with random numbers (mean=0, standard 

deviation=10) for accelerometer-based angle-z. Note that the specific shape of the simulated 

values is not critical as long as it does not trigger the detection of sleep and the 10th percentile 

of all the data (step 6 of HDCZA) reflects real and not simulated data. The addition of 

simulated data is needed because the heuristic detection algorithm effectively searches for the 

beginning and end of a large time period without body movement, if the full PSG represents 

sleep then the algorithm would not be able to detect such a transition in movement level. 

Additionally, the algorithm’s threshold that scales with the variance in the data was 

constrained to a range corresponding to the 2.5th and 97.5th percentile of the distribution of 

the threshold value observed in a sample of real life accelerometer recordings, 0.13 and 0.50, 

respectively. This was done because the in-clinic PSG does not provide a full 24-hour cycle 

of body movement to derive this threshold. In the PSG evaluation we did not evaluate L5±6, 

because it requires more than 12 hours of (non-simulated) data, which most PSG recordings 

do not offer.  After sleep classification with HDCZA and before running the comparison 

between HDCZA and PSG, 60 minutes of simulated data were removed at the beginning and 

end. 
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The following performance metrics for SPT-window detection were used: Difference 

in onset, waking time, and duration, accuracy, c-statistic, t-test, and mean absolute error 

(MAE). Performance estimates accuracy and c-statistic were derived from both the data, as 

well as from the data expanded with wakefulness time to simulate performance estimates in a 

24 hour recording. Sleep classification within the SPT-window was evaluated as difference in 

duration (t-test) and as the percentage of time spent in sleep stages REM, and non-REM 

stages 1, 2, and 3 (N1, N2, and N3) correctly classified by the algorithm as part of SPT-

window. Sleep efficiency within the SPT-window by PSG and algorithm was compared via t-

test and MAE. A P-value of < .005 was considered significant16. Further, method agreement 

was evaluated with modified Bland-Altman plots17 with PSG criterion values on the 

horizontal axis.  

 

Code availability 

Both SPT-window detection algorithms are implemented and available in open source 

R package GGIR version 1.5-16 (https://cran.r-project.org/web/packages/GGIR/)18, see the 

software’s documentation on input arguments ‘loglocation’ and ‘def.noc.sleep’ for further 

details on the use of L5±6 and HDCZA. The R code used for our comparisons with sleep 

diary can be found at: https://github.com/wadpac/whitehall-acc-spt-detection-eval. The R 

code used for our comparisons with polysomnography can be found at: 

https://github.com/wadpac/psg-ncl-acc-spt-detection-eval, with the code used for the 

Newcastle data in the master branch of the repository and its adaptation for the differently 

formatted Pennsylvanian data in the psg-penn branch. 

 

 

Results 

 

Comparison between accelerometer results and that from sleep diary 

Demographics of the three study cohorts are described in Table 1. The probability 

density distribution for the difference between sleep parameter estimates from algorithm and 

sleep diary is more symmetrical around zero compared with the L5±6 approach, see Figure 2. 

The heuristic algorithm HDCZA estimates sleep onset on average 13.8 and 7.7 minutes 
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earlier than that reported in the sleep diaries by men and women, respectively, and 3.5 

minutes per ten years of age relative to mean age, see Table 2. Difference between sleep diary 

estimates and HDCZA estimates in waking time were associated with sex, age, and BMI, 

while differences in SPT-window duration were associated with sex and age, see Table 2. 

The L5±6 method estimates sleep onset on average 86 and 78.2 minutes earlier than that 

reported in the sleep diary for men and women, respectively, see Table 2. Difference between 

sleep diary and L5±6 estimates of SPT-window, sleep onset, and waking time were all 

associated with sex and BMI. Additionally, an association was found with weekend day for 

SPT-window duration and sleep onset, see Table 2. The Pearson’s correlation coefficients 

and c-statistics between accelerometer derived sleep parameters, and sleep diary, are higher 

for HDCZA compared with L5±6, see Table 3. The combined MAE from onset and waking 

time was 35.7 and 76.7 minutes for HDCZA and L5±6, respectively. 

For nights with [0-1), [1-2), [2-3), [3-4), and at least 4 hours of accumulated 

wakefulness an average difference in SPT-window duration between sleep diary records and 

our heuristic algorithm (HDCZA) was observed as 27, 4, -53, -136, and -147 minutes 

corresponding to 57.8, 32.0, 7.6, 1.7, and 0.8% of 27,957 recorded nights, respectively. Here, 

the last two categories, corresponding to at least 2 hours of accumulated wakefulness, reflect 

8.9% of the participants.  

 

Comparison between accelerometer results and that from polysomnography 

In the PSG study in sleep clinic patients, on average 9.4 (standard deviation 1.6) hours 

of matching data from PSG and accelerometer were retrieved per participant, with no 

difference in recording duration between left and right wrist (P = 0.75). Sleep onset time, 

waking time, SPT-window duration, and sleep duration within the SPT-window derived from 

the HDCZA algorithm differed all non-significantly from polysomnography and MAE ranged 

from 31 minutes for sleep onset to 71 minutes for SPT-window duration, see Table 4. The 

combined MAE from onset and waking time was 38.9 and 36.7 minutes for the left and right 

wrist, respectively. SPT-window duration was estimated for the left wrist within 2 hours for 

the majority of individuals (75 %) but deviated by more than 2 hours in seven individuals, six 

of which had a sleep disorder, as shown in Figure 3 (right wrist: 81%, five, and four, 

respectively). On average, the accuracy and c-statistic for SPT-window classification were 

87% and 0.86 in the PSG recording window, and 94% and 0.94 when expanded with 

simulated wakefulness as an estimate of 24 hour performance, see Table 4. Further, the 

average sensitivity to detect sleep as part of the SPT-window was above 91% in both wrists, 
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see Table 4. Results for the PSG study carried out in healthy good sleepers indicated better 

overall performance as shown in Table 5 and Figure 4. The classifications of the HDCZA 

algorithm in comparison with the PSG sleep stage classification for all participants are 

provided in the Supplementary material 1 and 2 to this manuscript.  

 

 

Discussion 

In this paper we present a heuristic algorithm, referred to as HDCZA, for detecting the 

Sleep Period Time-window (SPT-window) from accelerometer data. Raw data 

accelerometers are increasingly used in population research, and the value of this algorithm 

lies in studies such as the UK Biobank where a sleep diary was not used 1.  Although the 

focus of our analysis is sleep, the present findings are equally valuable for physical activity 

research as it will help to split observation period between night sleep and daytime inactivity. 

In our comparison with sleep diary records in a large cohort of older adults (60-83 

years) a small systematic difference was found in sleep duration and sleep onset time, with 

significant but small associations with sex and age, and no association with BMI. Here, the 

average difference and the Akaike Information Coefficients indicated that the algorithm is 

better than our naïve reference method L5±6. Furthermore, the c-statistic was on average 

95% for HDCZA. We acknowledge that the sleep diary cannot be considered a gold standard 

criterion method, but it is reassuring to see that differences between algorithm and sleep diary 

in a large cohort of elderly individuals are on average within a quarter of an hour.  

An important limitation of the sleep diary study data is that no information is 

available on daytime sleep or daytime inactivity behaviour to help better understand the 

misclassifications in SPT-window by our algorithm. To facilitate such research future studies 

are warranted to consider implementing daytime sleep diaries, and possibly additional sensor 

technologies such wearable cameras19, RFID proximity sensors20 or additional wearable 

movement sensors to better capture a lying posture21,22. 

When compared against polysomnography in 28 sleep clinic patients, accuracy and c-

statistic values indicate good agreement on an epoch by epoch level. Estimated SPT-window 

duration by HDCZA deviated by more than 2 hours from PSG in seven individuals (six of 

which has a sleep disorder) as shown in figure 3. Inspection of the PSG results indicated that 

poor classification typically occurs in patients with absence of deep sleep or who have long 
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periods of wakefulness (> 1 hour) in the middle of the night, e.g. pages 10 and 26 in the 

Supplementary material, respectively (see Supplement 1). However, the interpretation of the 

results was complicated in case of SPT-window split into several periods separated by long 

waking periods. For example, one particular individual had a short sleep episode at the 

beginning of the PSG recording followed by several hours of wakefulness, see page 9 of the 

Supplementary material (Supplement 1), indicating a possible ambiguity in the correct 

definition of the SPT-window by both PSG and HDCZA. 

To investigate the extent to which the larger differences in individuals with long 

periods of wakefulness observed in the PSG study occur in the general population we went 

back to the free-living data. In the free-living data, more wakefulness during the night 

corresponded to larger differences between sleep diary and algorithm derived SPT-window 

duration, indicating that more wakefulness time is indeed a challenge in a daily life recording 

setting. However, it was reassuring to see that only a small fraction (2.5%) of all the nights 

scattered across 8.9% of the participants were affected by one hour or more. Differences and 

mean absolute error were better in the evaluation with healthy good sleepers (Pennsylvania), 

indicating that SPT-window detection primarily forms a challenge in those with sleep 

disorders. The expansion of PSG data with daytime wakefulness to simulate algorithm 

performance in a full day has to our knowledge not been done before. We think this can help 

the comparison and interpretation of the c-statistic between the night time only PSG and full 

day sleep diary studies. A downside of this approach is that it comes with the assumption that 

daytime is always correctly classified. Therefore, we presented both performance estimates 

with and without the additional simulated data. 

In the absence of a gold standard criterion method that can be applied in a 

representative part of the population under daily life conditions to train and test a classifier, 

we consider the heuristic approach the most promising for detecting the SPT-window. The 

heuristic approach comes with the following advantages: (i) It is not optimized with 

subjective and therefore potential erroneous sleep diary records, (ii) It avoids potentially 

overfitting towards a small patient population in a PSG study unrepresentative for the general 

population, (iii) It does not make assumptions about the timing or duration of the SPT-

window, and (iv) It is computationally simple which will facilitate easy replication.  

Only one other study was found in the literature that compared SPT-window extracted 

from accelerometry (or actigraphy) unaided by sleep diary and sleep diary to facilitate further 

interpretation of our current findings. Recently, O’Donnell and colleagues also investigated 

possible approaches to SPT-window detection 23. To compare algorithm performance, we 
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replicated their main performance metric: the mean absolute error (MAE) in sleep onset and 

waking time. Our HDCZA algorithm has a MAE of 35.7 minutes when compared against 

sleep diary (N=3752), which is slightly higher and equal compared with the 33.3, 34.4, and 

35.9 minutes reported for the three algorithms investigated by O’Donnell (N=14)22. Although 

the age range is similar between the studies, the substantial difference in sample size and 

unknown differences in the prevalence of disturbed sleep warrants a future standardized 

comparison between the algorithms. Further, the MAE estimates in our PSG studies are 38.9, 

36.7, and 26.9 minutes in the left- and right wrist sleep clinic patient data, and health good 

sleepers, respectively. When we consider the design of our and their approach, we observe a 

couple of differences: Their change-point and random forest approaches were optimized on a 

trained data set with sleep diary data as criterion, which our approach avoids following 

aforementioned point (i). Further, O’Donnell’s thresholding approach relies on the 

assumption that the average SPT-window duration is 8 hours, which our approach also avoids 

following aforementioned point (iii). Other strengths of our approach are the evaluation with 

sleep diary in much larger cohort than theirs and we evaluated our approach against PSG in 

sleep clinic patients arguably a challenging subpopulation to classify sleep in. Neither our nor 

their approach currently uses the available temperature or light sensor information, in our 

case because of concerns about measurement bias from environmental conditions. Therefore, 

future research is needed to explore the potential of temperature and light information to 

enhance the SPT-window classification.  

It should be noted that the historical studies like the one by Cole-Kripke24 and later 

studies 25,26 focussed on automatic distinction of sleep and wakefulness aided by the 

boundaries of time in bed, lights off, or diary records of the SPT-window. These studies then 

focussed on correct classification of Wake After Sleep Onset (WASO), Total Sleep Time 

(TST), and Sleep Efficiency. Therefore, these historical studies represent a different 

methodological challenge than discussed in the present work and can therefore not be used as 

a reference point. 

Our algorithm does not facilitate the detection of sleep latency. To derive sleep 

latency, one would need diary records of time in bed or the lights out period. Future research 

is warranted to investigate how sleep latency, time in bed, and the lights out period may 

reliably be detected from wearable accelerometer data without asking the participant to 

record their sleep behaviour using a diary or marker button. 

The analysis presented in this paper will facilitate feasible large-scale population 

research on sleep and physical activity. In addition to the proof of validity as provided in this 
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paper additional support for the credibility of the algorithm was found in our separate study 

identifying genome wide associations with sleep parameters derived from our algorithm in 

UK Biobank [REF: Lane et al. bioRxiv 2018, REF Jones et al. bioRxiv 2018], replicating 

signals previously associated with self-reported sleep duration and chronotype 27–30. Our 

algorithm can be applied to data from the three most widely used accelerometer brands: 

Actigraph, Axivity, and GENEActiv, and is available as part of open source R package GGIR 

(https://cran.r-project.org/web/packages/GGIR/). 
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Figures 

 
 
Figure 1: Steps of the heuristic algorithm HDCZA for SPT-window detection. 

 
 
 

Figure 2: Probability density distributions for accelerometer-based estimates of sleep 
duration, sleep onset, and waking up time using dots to indicate the 5th, 25th, 75th and 95th 
percentile. 
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Figure 3: Modified Bland-Altman plots with 95% limits of agreement (LoA) for SPT-window 
duration and sleep duration relative to polysomnography (PSG) in sleep clinic patients, with 
dashed lines indicating LoA and straight line indicating the mean. Open bullets reflect 
individuals with a sleep disorder, while closed bullets reflect normal sleepers. 
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Figure 4: Modified Bland-Altman plots with 95% limits of agreement (LoA) for SPT-window 
duration and sleep duration relative to polysomnography (PSG) in healthy good sleepers, 
with dashed lines indicating LoA and straight line indicating the mean. 
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Tables 
 
Table 1: Participant characteristics used for the analyses 
Study Daily life (diary) PSG sleep clinic PSG healthy good 

sleepers 

N 3752 28 22 

Age (mean ± standard deviation in years) 69.1 ± 5.6 44.9 ± 14.9 22.8 ± 4.5 

Sex 2822 males, 930 females 17 males and 11 females 7 males and 15 females 

SPT-window duration (mean ± standard 

deviation) 

7.6 ± 0.9 hours 8.4 ± 1.6 hours 6.7 ± 0.9 hours 

Sleep onset time (mean in hh:mm ± 

standard deviation) 

23:49 ± 59 minutes 22:32 ± 69 minutes 23:24 ± 54 minutes 

Waking time (mean in hh:mm ± standard 

deviation) 

7:28 ± 58 minutes 06:58 ± 76 minutes 06:09 ± 32 minutes 
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Table 2: Sleep parameter differences (minutes) between estimates from sleep diary and two accelerometer-based methods (N=25,644 nights) 
Sleep parameters HDCZA L5±6 

Method Sleep onset 

time 
Waking time 

SPT-window 

duration 
Sleep onset time Waking time 

SPT-window 

duration 

Y-intercept (SE) -13.8 (0.9) ** -0.9 (0.7) 12.9 (1.1) ** -86 (1.0) ** 48.0 (0.9) ** 134 (1.2) ** 

Betas (SE)       

Women  6.1 (1.1) ** -3.6(0.9) ** -9.7 (1.3) ** 7.8 (1.3) ** -9.7 (1.2) ** -17.5 (1.6) ** 

Ten years of age † 3.5 (0.8) ** -2.2 (0.7) * -5.7 (1.0) ** 0.4 (1.0) -0.3 (0.9) -0.7(1.2) 

Five BMI index points ‡ 0.1 (0.5) -1.3 (0.5) * -1.4 (0.7) -3.1 (0.7) ** 1.9 (0.6) ** 5.0 (0.8) ** 

Weekend 3.3 (1.0) ** 1.9 (0.9) -1.3 (1.2) 6.1 (1.2) ** 0.0 (1.1) -6.1 (1.4) ** 

Winter 0.6 (0.9) -1.6 (0.8) -2.2 (1.1) -1.0 (1.1) 0.9 (1.0) 1.8 (1.4) 

Within individual residual SD 25 18.7 30.9 17.8 13.3 20.7 

Between individual residual SD 66.6 58.4 82.4 86.1 76.5 102.6 

AIC 81583 73985 92467 92440 86067 101364 

[Degrees of freedom=25,632; † relative to mean age of 69.4 years; ‡ relative to mean BMI of 26.4 kg / m2; SE: Standard Error; SD: Standard Deviation; AIC 

= Akaike information coefficient, * P < .005, ** P < .0005] 
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Table 3: Correlation, mean absolute error, and concordance between sleep diary and accelerometer estimates (N=4,094) 

Parameter Metric HDCZA L5±6 

  Value t; DF P Value t; DF P 

sleep onset time Correlation in timing 0.76 (95% CI: 0.74 – 0.77) 74; 4092 ** 0.68 (95% CI: 0.67 – 0.70) 60; 4092 ** 

 MAE (min) 29.9   85.3   

waking time Correlation in timing 0.80 (95% CI: 0.79 – 0.81) 86; 4092 ** 0.74 (95% CI: 0.72 – 0.75) 69; 4092 ** 

 MAE (min) 22.1   50.5   

SPT-window Correlation in duration 0.51 (95% CI: 0.49 – 0.54) 38; 4092 ** 0.25 (95% CI: 0.22 – 0.28) 17; 4092 ** 

 MAE (min) 41.0   131.2   

 c-statistic 0.95 (IQR: 0.94 – 0.98) - - 0.92 (IQR: 0.90 – 0.94) † - - 

[DF: Degrees of freedom; MAE: mean absolute error; min: minutes; * P < 0.005; ** P < 0.0005; † -0.03 difference (95% CI for difference: -0.032; -0.029), 
t=47, DF=4,093, P < .0005]  
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Table 4: Comparison algorithm with polysomnography in sleep clinic patients (Newcastle study) 
Parameters Metric Left wrist (N=28) Right wrist (N=27) 

  Value t; DF P Value t; DF P 

Sleep onset Difference (min) -10 (95% CI: -30; -9) -1.08; 27 0.29 0 (95% CI: -27; 27) 0.02; 26 0.98 

 MAE (min) 30.8 - - 40.2   

Sleep wake Difference (min) -37 (95% CI: -75; 1) -2.00; 27 0.06 -31 (95% CI: -57; -6) -2.54; 26 0.02 

 MAE (min) 47.1 - - 33.2   

SPT-window Difference in duration (min) -27 (95% CI: -73; 19) -1.21; 27 0.23 -32 (95% CI: -71; 6) -1.72; 26 0.10 

 MAE (min) 70.9 - - 63.5 - - 

 c-statistic 0.86 (IQR: 0.81-0.98) - - 0.87 (IQR: 0. 81-0.95) - - 

 c-statistic 24 hour† 0.93 (IQR: 0.94-0.99) - - 0.94 (IQR: 0.94-0.99) - - 

 Accuracy (%) 87 (IQR: 81-98) - - 88 (IQR: 84-97) - - 

 Accuracy 24 hour† (%) 94 (IQR: 92-99) - - 94 (IQR: 93-99) - - 

Sleep within SPT Difference in duration (min) 30 (95% CI: 1; 58) 2.11; 27 0.04 18 (95% CI: -12; 48) 1.24; 26 0.23 

 Sensitivity (%) 92 (IQR: 97-100) - - 91 (IQR: 98-100) - - 

Sleep efficiency 

within SPT 

Difference (percent point) 8.7 (95% CI: 3.63 – 13.82) 3.51; 27 * 9.4 (95% CI: 3.76 – 15.06) 3.42; 26 * 

 MAE (percent point) 10.1 - - 10.6 - - 

[* P < .005; MAE: mean absolute error; min: minutes; SPT-window: Sleep period time window; CI: Confidence Interval; DF: degrees of freedom; t: t-
statistic; IQR: Inter quartile range; † recording expanded with simulated data of wakefulness to resemble 24 hours] 
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Table 5: Comparison algorithm with polysomnography in healthy good sleepers (N=22, Pennsylvania) 
Parameters Metric Value t; DF P 

Sleep onset Difference (min) -20 (95% CI: -39; -2) -2.30; 21 0.03 

 MAE (min) 32.9 - - 

Sleep wake Difference (min) -17 (95% CI: -39; 4) -1.67; 21 0.11 

 MAE (min) 21.0 - - 

SPT-window Difference in duration (min) 2 (95% CI: -24; 27) 0.14; 21 0.89 

 MAE in duration (min) 37.7 - - 

 c-statistic 0.83 (IQR: 0.80-0.90) - - 

 c-statistic 24 hour† 0.95 (IQR: 0.95-0.99) - - 

 Accuracy (%) 89 (IQR: 86-97) - - 

 Accuracy 24 hour† (%) 96 (IQR: 95-99) - - 

Sleep within SPT Difference in duration (min) -6 (95% CI: -27; 15) -0.59; 21 0.56 

 Sensitivity (%) 93 (IQR: 94-100) - - 

Sleep efficiency 
within SPT 

Difference (percent point) -1.74 (95% CI: -4.46; 0.98) -1.33; 21 0.20 

 MAE (min) 4.8 - - 

[* P < .005; MAE: mean absolute error; min: minutes; SPT-window: Sleep period time window; CI: Confidence Interval; DF: degrees of freedom; t: t-
statistic; IQR: Inter quartile range; † recording expanded with simulated data of wakefulness to resemble 24 hours] 
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Supplementary materials 

Supplement 1 sleep clinic - shows classifications of the algorithm (blue line) in comparison with the PSG sleep stage classification for all 

participants in the sleep clinic study (Newcastle). 

 

Supplement 2 healthy good sleepers - shows classifications of the algorithm (blue line) in comparison with the PSG sleep stage classification for 

all participants in the health good sleepers study (Pennsylvania). 
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