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Abstract 
 
Individual people differ in their ability to reason, solve problems, think abstractly, plan and learn. 
A reliable measure of this general ability, also known as intelligence, can be derived from scores 
across a diverse set of cognitive tasks. There is great interest in understanding the neural 
underpinnings of individual differences in intelligence, since it is the single best predictor of 
long-term life success, and since individual differences in a similar broad ability are found 
across animal species. The most replicated neural correlate of human intelligence to date is 
total brain volume. However, this coarse morphometric correlate gives no insights into 
mechanisms; it says little about function.  Here we ask whether measurements of the activity of 
the resting brain (resting-state fMRI) might also carry information about intelligence. We used 
the final release of the Young Adult Human Connectome Project dataset (N=884 subjects after 
exclusions), providing a full hour of resting-state fMRI per subject; controlled for gender, age, 
and brain volume; and derived a reliable estimate of general intelligence from scores on multiple 
cognitive tasks. Using a cross-validated predictive framework, we predicted 20% of the variance 
in general intelligence in the sampled population from their resting-state fMRI data. Interestingly, 
no single anatomical structure or network was responsible or necessary for this prediction, 
which instead relied on redundant information distributed across the brain.  
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Introduction 
Most psychologists agree that there is, in addition to specific cognitive abilities, a very general 
mental capability to reason, think abstractly, solve problems, plan, and learn across domains ​[1]​. 
This ability, intelligence, does not refer to a person’s  sheer amount of knowledge but rather to 
their ability to recognize, acquire, organize, update, select and apply this knowledge ​[2]​, to 
reason and make comparisons ​[3]​. There are large and reliable individual differences in 
intelligence across species: some people are smarter than others, and some rats are smarter 
than others ​[4]​.  
 
What’s more, these differences matter. Intelligence is one of the most robust predictors of 
conventional measures of educational achievement ​[5]​, job performance ​[6]​, socio-economic 
success ​[7]​, social mobility ​[8]​, health ​[9]​ and longevity ​[10,11]​; and as life becomes increasingly 
complex, intelligence may play an ever increased role in life outcome ​[2]​. Despite this 
overwhelming convergence of evidence for the construct of “intelligence” there is considerable 
debate about what it really is, how best to measure it, and in particular what predictors and 
mechanisms for it we could find in the brain. 

Measuring intelligence: the structure of cognitive abilities 
Although apparent in its consequences in everyday life, this is not how intelligence has been 
operationalized psychometrically. Instead, it is tied to performance on very specific tests, or 
factor analyses derived from tests. Intelligence tests are among the most reliable, and valid, of 
all psychological tests and assessments ​[1]​. Psychologists are so confident in the psychometric 
properties of intelligence tests that, almost 100 years ago, Edwin G. Boring infamously wrote: 
“Intelligence is what the tests test.” ​[12]​.  
A comprehensive modern intelligence assessment (such as the Wechsler Adult Intelligence 
Scale, Fourth Edition or WAIS-IV ​[13]​) comprises tasks that assess several aspects of 
intelligence: some assess verbal comprehension (e.g. word definition, general knowledge, 
verbal reasoning), some assess visuo-spatial reasoning  (e.g., puzzle construction, matrix 
reasoning, visual perception), some assess working memory (e.g., digit span, mental arithmetic, 
mental manipulation), and some some assess mental processing speed (e.g., reaction time for 
detection). The scores on all of these tasks are tallied and compared to a normative, 
age-matched sample to calculate a standardized Full Scale Intelligence Quotient (FSIQ) score. 
One of the most important findings in intelligence research is that performances on all these 
seemingly disparate tasks -- and many other cognitive tasks -- are positively correlated - 
individuals who perform above average on, say, visual perception, also tend to perform above 
average on, say, word definition. Spearman ​[14]​ discovered this phenomenon and described it 
as the ​positive manifold​, and since then it has been described in a number of species ​[15]​. To 
explain this empirical observation, he posited the existence of a general factor of intelligence, 
the ‘g-factor’, or simply ‘ ​g​’, which no single task can perfectly measure, but which can be derived 
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from performance on several cognitive tasks through factor analysis. The g-factor explains 
around half of people’s intellectual differences ​[16]​ and shows good reliability across sets of 
cognitive tasks ​[17]​.  
The empirical observation of the positive manifold is well-established ​[18]​ (it is sometimes 
referred to as the most replicated result in all of psychology ​[19]​). The descriptive value of 
Spearman’s ​g​ is beyond doubt, however its interpretation -- that psychometric ​g​ reflects a 
general aspect of brain functioning -- was challenged early on ​[20]​ and remains a topic of 
debate to this day among intelligence researchers ​[21–23]​. The leading alternative theory posits 
that each cognitive test involves several mental processes, and that the sampled mental 
processes overlap across tests; in this situation, performance on all tests appears to be 
positively correlated. The common factor, in this framework, is a consequence of the positive 
manifold, rather than its cause. The most recent formulation of this view was coined “Process 
Overlap Theory” ​[19]​, and the response it received demonstrates the division in the field ​[24]​. 
The main issue, in this ongoing debate, is that there is no statistical means of distinguishing 
between alternate theories on the basis of the psychometric data alone ​[22]​. Thus the 
interpretation of g as general intelligence may be sufficient, but it is not a necessary explanation 
of the positive manifold. 
Beyond the debate on the nature of the ​g​-factor, the structure of intelligence is often described 
in terms of broad abilities, the exact nature of which is also still debated. Prominent theories 
provide differing descriptions of those broad abilities. The Cattell–Horn–Carroll (CHC) theory 
[25]​ recognizes 9 broad domains of ability: Gf (fluid reasoning), Gc (comprehension/knowledge), 
Gv (visual-spatial processing), Ga (auditory processing), Gsm (short-term memory), Glr 
(long-term storage and retrieval), Gs (cognitive processing speed), Gq (quantitative knowledge), 
and Grw (reading and writing). At the root of the CHC theory is the distinction between a “fluid” 
intelligence, which reflects the capacity to reason and solve problems without using knowledge; 
and a “crystallized” intelligence, which reflects the ability to use knowledge and experience ​[26]​. 
The main contending theory is the verbal–perceptual–image rotation (VPR) theory ​[27,28]​, 
which simply posits three broad abilities and does not distinguish whether prior knowledge is 
used or not. There is one major finding that supports a distinction between fluid and crystallized 
intelligence ​[29]​: though the two are highly correlated, they change differentially with age 
[30,31]​. Fluid intelligence starts declining around age 25, whereas crystallized intelligence 
increases until about age 50 and then shows little decline. 

The search for biological substrates of intelligence 
Differential psychology -- the psychological discipline that studies individual differences between 
people -- has three main aims: to describe the trait of interest accurately, to establish its impact 
in real life, and to understand its aetiology, including its biological basis ​[32]​. Much headway has 
been made with respect to the first two aims for intelligence, as described above. The third aim, 
despite much effort, has remained elusive.  
Individual differences in intelligence are relatively stable: one of the best predictors of 
intelligence in old age is - perhaps unsurprisingly - intelligence in childhood ​[33]​. Intelligence has 
a strong genetic component; heritability estimates from twin studies range between .20 (for 
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children) and .80 (for adults) ​[5]​ (see also ​[34]​ for data from adoption studies). Genome-Wide 
Association Studies (GWAS) yield similar heritability estimates ​[35]​, and suggest that 
intelligence is highly polygenic (no single gene accounts for a large fraction of the variance) 
[36,37]​.  
While high heritability points to genes as an undeniable distal cause of intelligence differences, 
the proximal cause for individual differences in cognitive ability is to be found in brain function. 
Arguably, studying the proximal cause may yield more direct insight about the actual 
mechanisms of intelligence than genetic studies have so far. Since intelligence is a relatively 
stable trait, one might reason that its aetiology should be found in stable aspects of brain 
function, and hence also predicted by aspects of brain structure. Most of the data on the neural 
basis of intelligence comes from neuroimaging and from lesion studies. There are several 
in-depth reviews of the neurobiological substrates of intelligence, to which the interested reader 
is referred for a more complete treatment ​[32,38–40]​. Kievit et al. ​[41]​ recently described the 
current state of the neuroscience of intelligence as “an embarrassment of riches” -- a plethora of 
neuroimaging-derived properties of the brain, structural and functional, have been linked to 
intelligence over the years. However, many of these claims may not replicate, due to 
methodological concerns such as data overfitting in small subject samples. Here we briefly 
highlight some key results to help set the stage for our study.  
It is worth noting, from the outset, that the naive search for a simple neurobiological correlate of 
intelligence faces a major theoretical hurdle, which is best understood through analogy ​[41]​. 
Imagine a researcher trying to find the biological basis of the construct of “physical fitness”. If 
they search for a single physical property, they would likely fall short of their goal. Indeed, 
physical fitness is a composite of several physical properties (cardiorespiratory endurance, 
muscular strength, muscular endurance, body composition, flexibility), and cannot be equated 
with any single one, or even any specific combination of these factors. It is very likely that 
intelligence is of a similar composite nature, as suggested by genetic data ​[36]​. Furthermore, 
individuals may score identically on an IQ test by using different cognitive strategies, or different 
brain structures ​[32]​. This is an important picture to hold in mind as one searches for neural 
correlates of intelligence. 

Structural studies  
The best replicated brain correlate of intelligence is a fairly simple one: size matters ​[42]​. People 
who score higher on IQ tests tend to also have bigger brains, as assessed nowadays using total 
brain volume derived from structural MRI scans; the correlation coefficient is about r=0.24 
according to the meta-analytical estimates ​[43]​ (or maybe as much as r=0.40 ​[44]​). Initial 
correlation estimates using small sample sizes were as high as 0.51 ​[45]​, and were revised 
down multiple times ​[46]​. The volume of gray-matter seems slightly more strongly related to 
intelligence than the volume of white matter ​[47]​.  
Finer-grained measures, such as cortical thickness or volume of specific regions across the 
whole brain, have also been shown to correlate positively with intelligence ​[47]​, though usually 
with small sample sizes which may undermine statistical power and replicability.  
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Recent studies with larger sample sizes have reported associations between intelligence and 
white matter tract structure (from diffusion imaging ​[48,49]​) as well as white matter integrity 
(volume of white matter hyperintensities, number of microbleeds, number of iron deposits) ​[50]​; 
a combination of these with brain volume and cortical thickness has been shown to account for 
as much as 20% of the variance in g ​[51]​. The role of white matter is further corroborated by 
several MR spectroscopy studies which find a relationship between N-acetyl aspartate, a 
metabolite of the oligodendrocytes that constitute the myelin sheath ​[52]​, and IQ scores. 
Neuroimaging studies remain correlative in nature, and causal inference is limited. Lesion 
studies in humans are an opportunity to establish causation ​[53]​, although they come with their 
own set of limitations ​[54]​. A recent study using a large sample of patients (N=241) used 
voxel-based lesion mapping and found specific lesion-deficit relationships for the g-factor and 
several broad ability domains, in frontal and parietal cortices ​[55]​. 

Functional studies 
Extant functional neuroimaging studies (using EEG, PET, rCBF and fMRI) have been 
summarized as supporting the notion that intelligence is a network property of the brain, related 
to neural efficiency ​[38,56]​. While this may generally be correct, foundational studies had very 
low sample sizes ​[56]​, and so did a recent study making a similar claim using graph analysis in 
N=19 subjects ​[57]​. More recent, better powered studies have found correlations between 
intelligence and the global connectivity of a small region in lateral prefrontal cortex (N=78) ​[58]​; 
the nodal efficiency of hub regions in the salience network (N=54) ​[59]​; the modularity of frontal 
and parietal networks (N=309) ​[60]​; and several other seemingly disparate reports.  

A neurobiological model of intelligence 
A 2007 review of existing structural and functional studies lead to the Parieto-Frontal Integration 
Theory (P-FIT) of intelligence ​[38]​, regarded as “the best available answer to the question of 
where in the brain intelligence resides” ​[32]​. There aren’t many detractors of the P-FIT model, 
yet it is a very generic model, and falls short of a mechanistic understanding. Because the brain 
regions discussed in the model include most of the cortex, it seems difficult to falsify the theory 
experimentally -- leaving most studies little choice but to “generally support” the P-FIT model.  

The current study 
Current literature on the fMRI-derived substrates of intelligence suffers from the same caveats 
as most fMRI-based individual differences research to date ​[61]​: small sample sizes, and lack of 
out-of-sample generalization. A predictive framework was first used in a recent study ​[62]​, which 
found that fluid intelligence could be predicted from functional connectivity matrices in an early 
release (N=118) of the Human Connectome Project (HCP) dataset ​[63]​, with a correlation 
r​LOSO​=0.50 between observed and predicted scores (the LOSO subscript denotes the use of a 
leave-one-subject-out cross-validation framework). Since this early report, the authors revised 
the effect size down to r​LOSO​=0.22 using later data releases (N=606) ​[64]​. Recent work in our 
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group, in which we further control for confounding effects of age, gender, brain size and motion, 
as well as use a leave-one-family-out cross-validation framework (LOFO) instead of the original 
leave-one-subject-out framework (thus accounting for the family structure of the HCP dataset), 
further revised the effect size down to about r​LOFO​=0.09 using methods matched as closely as 
possible to the original study ​[62]​; yet, using improvements including better inter-subject 
alignment and multivariate modeling, we found r​LOFO​=0.263 (N=884) ​[65]​. Note that this effect 
size is comparable to recent estimates of the relationship between brain size and intelligence 
[43]​. Though the explained variance is small, it would in fact fall around the 65 ​th ​percentile of 
correlations observed in individual differences research ​[66]​ (with the caveat that r​LOFO 
correlation is derived from a cross-validation procedure, which breaks the assumption of 
independence between individual data points).  
According to recent guidelines ​[44]​, the assessment of general intelligence with HCP’s 24-item 
Progressive Matrices would be considered of “fair” quality (1 test, 1 cognitive dimension, testing 
time less than 19 minutes), and would be expected to correlate with general intelligence in the 
range 0.50 to 0.71. This rather low measurement quality of intelligence itself is likely to 
attenuate the magnitude of the relationship between neural data and general intelligence. 
Fortunately, there are several other measures of cognition in the HCP, which we here decided 
to leverage to derive a better estimate of general intelligence -- one that would meet criteria for 
an “excellent” quality measurement (more than 9 tests, more than 3 dimensions, testing time 
more than 40 minutes), and thus be expected to correlate with the general factor of intelligence 
above 0.95.  
Our main aims in this study were to: i) predict an excellent estimate of general intelligence from 
resting-state functional connectivity in a large sample of subjects from the HCP; ii) depending on 
the success of i), gain some anatomical insight on which functional connections matter for these 
predictions. The current study paves the way for a reliable neuroimaging-based science of 
intelligence differences (large sample size; predictive framework; valid, reliable psychometric 
construct). 

Methods  
Many of the methods, in particular the preprocessing of fMRI data and the predictive analyses, 
were developed and described in our recent publication ​[65]​. Consequently, some sections here 
were reproduced verbatim from the previous paper.  

Dataset 
We used data from a public repository, the 1200 subjects release of the Human 

Connectome Project (HCP) ​[63]​.  The HCP provides MRI data and extensive behavioral 
assessment from almost 1200 subjects. ​Acquisition parameters and “minimal” preprocessing of 
the resting-state fMRI data is described in the original publication ​[67]​. Briefly, each subject 
underwent two sessions of resting-state fMRI on separate days, each session with two separate 
15 minute acquisitions generating 1200 volumes (customized Siemens Skyra 3 Tesla MRI 
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scanner, TR = 720 ms, TE = 33 ms, flip angle= 52°, voxel size = 2 mm isotropic, 72 slices, 
matrix = 104 x 90, FOV = 208 mm x 180 mm, multiband acceleration factor = 8). The two runs 
acquired on the same day differed in the phase encoding direction, left-right and right-left (which 
leads to differential signal intensity especially in ventral temporal and frontal structures). The 
HCP data was downloaded in its minimally preprocessed form, i.e. after motion correction, B​0 
distortion correction, coregistration to T​1​-weighted images and normalization to MNI space. 

Cognitive ability tasks 
Previous studies of the neural correlates of intelligence in the HCP ​[62,64]​ have relied on the 
number of correct responses on form A of the 24(+3 bonus)-item Penn Matrix Reasoning Test 
(PMAT), a test of non-verbal reasoning ability which can be administered in under 10 minutes 
(mean=4.6, std= 3 min; ​[68]​), and is included in the University of Pennsylvania Computerized 
Neurocognitive Battery (Penn CNB, ​[69–71]​). The PMAT is designed to parallel many of the 
psychometric properties of the Raven’s Standard Progressive Matrices test (RSPM, originally 
published in 1938), which comprises 60 items ​[72]​. A computerized version of RSPM takes 
approximately 17 minutes to administer ​[73]​, which is too long for large-scale studies requiring 
an efficient assessment of all major neurocognitive domains. Bilker and colleagues developed 
an abbreviated 9-item version of the RSPM test which achieves similar item- and test-level 
characteristics to 60-item based scores, with an administration time of about 4 minutes ​[74]​. 
This paved the way for the development of the computerized, adaptive PMAT test, whose items 
were designed from scratch to have similar psychometric characteristics as RSPM items, while 
limiting learning effects and expanding the representation of the abstract reasoning construct 
(Ruben Gur, personal communication).  
Assessment of cognitive ability in the HCP ​[75]​ also includes several tasks from the 
Blueprint-funded NIH Toolbox for Assessment of Neurological and Behavioral function 
(​http://www.nihtoolbox.org ​), as well as other tasks from the Penn computerized neurocognitive 
battery ​[70]​. These other tasks can be leveraged to derive a better measure of the general 
intelligence factor ​[44]​. We included all cognitive tasks listed in the HCP Data Dictionary, except 
for: i) the delay discounting task, which is not a measure of ability (i.e. there is not a correct 
response); and ii) the Short Penn Continuous Performance Test which is about sustained 
attention rather than cognitive ability, and whose distribution departed too much from normality 
(data not shown) . Our initial selection thus consisted of 10 tasks, which are listed in ​Table 1 
along with a brief description (the descriptions are copied almost word for word from the HCP 
Data Dictionary). When several outcome measures were available for a given task, we selected 
the one that best captured ability; when both age-adjusted and unadjusted scores were 
available, we included the unadjusted scores. Though some of the NIH toolbox scores combine 
accuracy and reaction time, we only considered accuracies for the Penn CNB tasks (to avoid 
confounding ability and processing speed; but, see ​[71]​). 
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Table 1. List of cognitive measures included in our analyses.  
 

Subject selection 
The total number of subjects in the 1200-subject release of the HCP dataset is N=1206. 

We applied the following criteria to include/exclude subjects from our analyses (listing in 
parentheses the HCP database field codes). i) Complete neuropsychological datasets. Subjects 
must have completed all relevant neuropsychological testing (PMAT_Compl=True, 
NEO-FFI_Compl=True, Non-TB_Compl=True, VisProc_Compl=True, SCPT_Compl=True, 
IWRD_Compl=True, VSPLOT_Compl=True) and the ​Mini Mental Status Exam 
(MMSE_Compl=True). Any subjects with missing values in any of the tests or test items were 
discarded. This left us with N = 1183 subjects.​ ​ii) Cognitive compromise.  We excluded subjects 
with a score of 26 or below on the MMSE, which could indicate marked cognitive impairment in 
this highly educated sample of adults under age 40 ​[76]​. This left us with N =​ ​1181 subjects ​(638 
females, 28.8 +/- 3.7 y.o., range 22-37 y.o). ​This is the sample of subjects available for factor 
analyses. 

Furthermore, iii) subjects must have completed all resting-state fMRI scans 
(3T_RS-fMRI_PctCompl=100), which leaves us with N = 988 subjects. Finally, iv) we further 
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excluded subjects with a root-mean-squared frame-to-frame head motion estimate 
(Movement_Relative_RMS.txt) exceeding 0.15mm in any of the 4 resting-state runs (threshold 
similar to ​[62]​). This left us with the final sample of N = 884 subjects (475 females, ​28.6 +/- 3.7 
y.o., range ​22-36 y.o.) for predictive analyses based on resting-state data. 

Deriving the general factor of intelligence, ​g 
There are several methods in the literature to derive a general factor of intelligence from 

scores on a set of cognitive tasks. The simplest consists in using a standardized sum score 
composite -- simply summing the standardized scores from all selected cognitive tasks. This is 
the conventional approach when all scores come from a well-validated battery. However, since 
we are here including scores from two different cognitive batteries (NIH toolbox and Penn CNB), 
we sought to characterize the structure of cognitive abilities in our sample using factor analysis, 
and then derive the scores for the general factor. We conducted an exploratory factor analysis 
(EFA), specifying the bi-factor model of intelligence -- a common factor g which loads on all test 
scores, and several group factors that each load on subsets of the test scores; all latent factors 
are orthogonal to one another -- using the ​psych​ (v​1.7.8 ​) package ​[77]​ in ​R​ (v3.4.2). We 
specifically used the ​omega​ function, which conducts a factor analysis (with maximum likelihood 
estimation) of the data set, rotates the factors obliquely (using “oblimin” rotation), factors the 
resulting correlation matrix, then does a Schmid-Leiman transformation ​[78]​ to find general 
factor loadings. Model fit is assessed using several commonly used statistics in factor analysis 
[79]​: the Comparative Fit Index (CFI; should be as close to 1 as possible; values >0.95 are 
considered a good fit); the Root Mean Squared Error of Approximation (RMSEA; should be as 
close to 0 as possible; values <0.06 are considered a good fit); the Standardized Root Mean 
Squared Residual (SRMR; should be as close to 0 as possible; values <0.08 are considered a 
good fit); and the Bayesian Information Criterion (BIC; better models have lower values, can be 
negative). Factor scores can be derived using different methods ​[80]​, for example the 
regression method. This approach mimics the one taken by ​[55]​. It is however usually preferable 
to derive scores from a confirmatory factor analysis (CFA). The main difference between EFA 
and CFA is that in EFA, observed task scores are allowed to cross-load freely on several group 
factors, while in CFA such cross-loadings can be forbidden. For the purpose of deriving the 
general factor of intelligence, there is little difference between using CFA and EFA in practice; 
we conducted a CFA using the ​lavaan​ (v​0.5-23.1097) ​package ​[81]​ in ​R​ to verify this (see 
Supplementary Material​).  
 

Assessment and removal of potential confounds 
We computed the correlation of the general factor of intelligence ​g​  with Gender (HCP 

variable: ​Gender​), Handedness and Age (restricted HCP variables: ​Handedness​, ​Age_in_Yrs​). 
We also looked for differences in ​g​ in our subject sample with variables that are likely to affect 
FC matrices, such as brain size (we used ​FS_BrainSeg_Vol​), motion (we computed the sum of 
framewise displacement in each run), and the multiband reconstruction algorithm which 
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changed in the third quarter of HCP data collection (​fMRI_3T_ReconVrs​). We then used 
multiple linear regression to regress these variables from g scores and remove their 
confounding effects. 

Note that we do not control for differences in cortical thickness and other morphometric 
features, which have been reported to be correlated with intelligence (e.g. ​[82]​). These likely 
interact with FC measures and should eventually be accounted for in a full model, yet this was 
deemed outside the scope of the present study. 

Data preprocessing 
Resting-state data must be preprocessed beyond “minimal preprocessing”, due to the           

presence of multiple noise components, such as subject motion and physiological fluctuations.            
Several approaches have been proposed to remove these noise components and clean the             
data, however the community has not yet reached a consensus on the “best” denoising pipeline               
for resting-state fMRI data ​[83–86]​. Most of the steps taken to denoise resting-state data have               
limitations, and it is unlikely that there is a set of denoising steps that can completely remove                 
noise without also discarding some of the signal of interest. Categories of denoising operations              
that have been proposed comprise tissue regression, motion regression, noise component           
regression, temporal filtering and volume censoring. Each of these categories may be            
implemented in several ways. There exist several excellent reviews of the pros and cons of               
various denoising steps ​[84,87–89]​.  

We recently explored the effects of several preprocessing pipeline on the prediction of             
personality factors and PMAT scores in the HCP dataset ​[65]​. Here we adopt a preprocessing               
pipeline which was found to perform well in that study. The pipeline reproduces as closely as                
possible the strategy described in ​[62] and consists of seven consecutive steps: 1) the signal at                
each voxel is z-score normalized; 2) using tissue masks, temporal drifts from cerebrospinal fluid              
(CSF) and white matter (WM) are removed with third-degree Legendre polynomial regressors;            
3) the mean signals of CSF and WM are computed and regressed from gray matter voxels; 4)                 
translational and rotational realignment parameters and their temporal derivatives are used as            
explanatory variables in motion regression; 5) signals are low-pass filtered with a Gaussian             
kernel with a standard deviation of 1 TR, i.e. 720ms in the HCP dataset; 6) the temporal drift                  
from gray matter signal is removed using a third-degree Legendre polynomial regressor; 7)             
global signal regression is performed. These operations were performed using an in-house,            
Python (v2.7.14)-based pipeline (mostly based on open source libraries and frameworks for            
scientific computing, including SciPy (v0.19.0), Numpy (v1.11.3), NiLearn (v0.2.6), NiBabel          
(v2.1.0), Scikit-learn (v0.18.1)  ​[90–94]​).  

Inter-subject alignment, parcellation, and functional connectivity 
matrix generation 

We use surface-based multi-modally aligned cortical data (MSM-All ​[95]​), together with a 
parcellation that was derived from this data using an objective semi-automated neuroanatomical 
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approach ​[96]​. The parcellation has 360 nodes, 180 for each hemisphere. These nodes can be 
attributed to the major resting state networks ​[97]​ (​Figure 4a ​). 

Time series extraction simply consisted in averaging data from vertices within each 
parcel, and matrix generation in pairwise correlating parcel time series (Pearson correlation 
coefficient). We concatenated time series across runs to derive average FC matrices (REST1: 
from concatenated REST1_LR and REST1_RL time series; REST2: from concatenated 
REST2_LR and REST2_RL time series; REST12: from concatenated REST1_LR, REST1_RL, 
REST2_LR and REST2_RL time series). 

There are (360 * 359)/2 = 64620 undirected edges in a network of 360 nodes. This is the 
dimensionality of the feature space for prediction.  

Prediction models 
We use a univariate feature filtering approach to reduce the number of features,             

discarding edges for which the p-value of the correlation with the behavioral score is greater               
than a set threshold, for example p<0.01 (as in ​[62]​).We then use Elastic Net regression to learn                 
the relationship with behavior. Elastic Net is a regularized regression method that linearly             
combines L1- (lasso) and L2- (ridge) penalties to shrink some of the regressor coefficients              
toward zero, thus retaining just a subset of features. The lasso model performs continuous              
shrinkage and automatic variable selection simultaneously, but in the presence of a group of              
highly correlated features, it tends to arbitrarily select one feature from the group. With              
high-dimensional data and few examples, the ridge model has been shown to outperform lasso;              
yet it cannot produce a sparse model since all the predictors are retained. Combining the two                
approaches, elastic net is able to do variable selection and coefficient shrinkage while retaining              
groups of correlated variables. Here however, based on preliminary experiments and on the fact              
that it is unlikely that just a few edges contribute to prediction, we fixed the L1 ratio (which                  
weights the L1- and L2- regularizations) to 0.01, which amounts to almost pure ridge regression.               
We used 3-fold nested cross-validation (with balanced “classes”, based on a partitioning of the              
training data into quartiles) to choose the alpha parameter (among 50 possible values) that              
weighs the penalty term.  

Cross-validation scheme 
In the HCP dataset, several subjects are genetically related (in our final subject sample 

there were 410 unique families). To avoid biasing the results due to this family structure (e.g., 
perhaps having a sibling in the training set would facilitate prediction for a test subject, if both 
intelligence and functional connectivity are heritable), we implemented a leave-one-family-out 
cross-validation scheme for all predictive analyses.  

Statistical assessment of predictions 
Several measures can be used to assess the quality of prediction. A typical approach is 

to plot observed vs. predicted values (rather than predicted vs. observed ​[98]​). The Pearson 
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correlation coefficient between observed scores and predicted scores is often reported as a 
measure of prediction (e.g. ​[62]​), given its clear graphical interpretation. However, in the context 
of cross-validation, it is incorrect to square this correlation coefficient to obtain the coefficient of 
determination R​2​, which is often taken to reflect the proportion of variance explained by the 
model ​[99]​; instead, the coefficient of determination R​2 ​should be calculated as:  

                                 ​                                                         (1)1 R2 =  −  
∑
n

i = 1
( y  − y  )i i

2

∑
n

i = 1
( y  − y  )i

︿

i
2

 

where ​n​ is the number of observations (subjects), y is the observed response variable, y̅ is its 
mean, and ŷ is the corresponding predicted value. Equation (1) therefore measures the size of 
the residuals from the model compared with the size of the residuals for a null model where all 
of the predictions are the same, i.e., the mean value y̅. In a cross-validated prediction context, 
R​2 ​can actually take negative values (in cases when the denominator is larger than the 
numerator, i.e. when the sum of squared errors is larger than that of the null model)! Yet 
another, related statistic to evaluate prediction outcome is the Root Mean Square Deviation 
(RMSD), defined in ​[98]​ as:  

                                                       ​(2)MSD  R =  √ 1
n − 1 ∑

n

i = 1
( y  y )i −  

︿

i
2

 

 
RMSD as defined in (2) represents the standard deviation of the residuals. To facilitate 
interpretation, it can be normalized by dividing it by the standard deviation of the observed 
values: 
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nRMSD thus has a very direct link to R​2​ (3); it is interpretable as the average deviation of each 
predicted value to the corresponding observed value, and is expressed as a fraction of the 
standard deviation of the observed values. 

In a cross-validation scheme, the folds are not independent of each other. This means 
that statistical assessment of the cross-validated performance using parametric statistical tests 
is problematic ​[100,101]​. Proper statistical assessment should thus be done using permutation 
testing on the actual data. To establish the empirical distribution of chance, we ran our 
predictive analysis using 1000 random permutations of the scores (shuffling scores randomly 
between subjects, keeping everything else exactly the same, including the family structure).  

 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 31, 2018. ; https://doi.org/10.1101/257865doi: bioRxiv preprint 

https://paperpile.com/c/OdmlvE/5MF3
https://paperpile.com/c/OdmlvE/TJqk
https://paperpile.com/c/OdmlvE/5H2j
https://paperpile.com/c/OdmlvE/yDh2l+sTxtP
https://doi.org/10.1101/257865


Results 

A general factor accounts for 58% of the covariance structure of 
cognitive tasks in the HCP sample 

All selected cognitive task scores (​Table 1 ​) correlate positively with one another, as 
expected from the well-known positive manifold (​Figure 1a)​. A parallel analysis suggests an 
underlying 4-factor structure ​(Figure 1b)​. An exploratory bifactor analysis with a general factor ​g 
and 4 group factors fits the data very well (​CFI=0.990; RMSEA=0.0311; SRMR=0.0201; 
BIC=-0.519), much better than a single factor model (CFI=0.719; RMSEA=0.1398; SRMR=0.0887; 
BIC=591.172). The solution is depicted in ​Figure 1c​. The four factors can naturally be interpreted 
as: 1) Crystallized Ability [cry] (PicVocab_Unadj + ReadEng_Unadj); 2) Processing Speed [spd] 
(CardSort_Unadj + Flanker_Unadj + ProcSpeed_Unadj); 3) Visuospatial Ability [vis] 
(PMAT24_A_CR + VSPLOT_TC); and 4) Memory [mem] (IWRD_TOT + PicSeq_Unadj + 
ListSort_Unadj).  

Across all cognitive task scores, the general factor accounts for 58.5% of the variance 
(coefficient omega_hierarc​hical ω​h ​[102–104]​), while g ​roup factors account for 18.2% of the 
variance (with 15.5% of the variance unaccounted for). Another important metric is coefficient 
omega_sub​scale ω​s​ ​[105]​ which quantifies the reliable variance across the tasks accounted for 
by each subscale, beyond that accounted for by the general factor; we find ω​s​

cry​=38.7%, 
ω​s​

spd​=57.4%, ω​s​
vis​=9.9% and ω​s​

mem​=27.8%. While some of these subscale factors account for a 
substantive proportion of the variance across their respective tasks, their measurement quality 
is at most fair ​[44]​ due to the limited number of constituent tasks;  thus we choose to focus on 
the general factor ​g​ only.  

Factor scores are indeterminate, and several alternate methods exist to derive them 
from a structural model ​[80]​. To avoid this issue, most researchers prefer to remain in latent 
space for further analyses ​[41]​. However, for subsequent analyses we require factor scores for 
g, which we derive using regression-based weights (“Thurstone” method). 

We compare the general factor score derived from this exploratory factor analysis (EFA) 
with a simple composite score consisting of the sum of standardized observed test scores. As 
expected, we find that the simple composite score correlates highly with the EFA-derived g 
(r=0.91).  

Though deriving factor scores from an EFA is often done by empirical researchers ​[106]​, 
it is theoretically preferable to use a confirmatory factor analysis (CFA) framework. A major 
difference is that a CFA model typically restricts cross-loadings (an observed variable loading on 
several latent factors), while the EFA allows them; this can reduce the size of the ​g​ factor in the 
EFA. We conduct a CFA (see ​ Supplementary Material​), and find that the ​g ​ factor extracted 
from the CFA model correlates almost perfectly with the ​g​ factor extracted from the EFA model 
(r=.99). Therefore, we simply proceed with the EFA-derived ​g​-factor in the following (in keeping 
with previous literature ​[55]​). 
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Figure 1.​ ​Exploratory factor analysis of select cognitive tasks (Table 1) in the Human 
Connectome Project (HCP) dataset, using N=1181 subjects. a) ​ All cognitive task scores correlate 
positively with one another, reflecting the well-established positive manifold (see also 
Supplementary Figure 2 ​for scatter plots). ​b) ​A parallel analysis suggests the presence of 4 latent 
factors from the covariance structure of cognitive task scores. Note that the simulated and 
resampled data lines are nearly indistinguishable. ​c) ​ A bifactor analysis fits the data well (see fit 
statistics in text), and yields a theoretically plausible solution with a general factor (​g​) and four group 
factors which can be interpreted as crystallized ability (​cry​), processing speed (​spd​), visuospatial 
ability ( ​vis​) and memory ( ​mem​). Loadings less than 0.2 are not displayed.  
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Brain size, gender, and motion are correlated with g 
There are known effects of gender ​[107,108]​, age ​[109,110]​, in-scanner motion ​[111–113]​ and 
brain size ​[114]​ on the functional connectivity patterns measured in the resting-state with fMRI. 
It is thus necessary to control for these variables ​[115]​: indeed, if intelligence is correlated with 
gender, one would be able to predict some of the variance in intelligence solely from functional 
connections that are related to gender. The easiest way to control for these confounds is to 
remove any relationship between the confounding variables and the score of interest in our 
sample of subjects, which can be done using multiple regression. Note that this approach may 
be too conservative, and that more work remains to be done on dealing with such confounds 
(see ​Discussion​). 

We characterize the relationship between intelligence and each of the confounding 
variables listed above in our subject sample (​Figure 2 ​). Intelligence is correlated with gender 
(men scored higher in our sample), age (younger scored higher in our sample -- note the limited 
age range 22-36 y.o.), and brain size (larger brains score higher) ​[43,44]​. There is no 
relationship between handedness and intelligence in our sample (r=2x10 ​-6​). Motion, quantified 
as the sum of frame-to-frame displacement over the course of a run (and averaged separately 
for REST1 and REST2) is correlated with intelligence: subjects scoring lower on intelligence 
moved more during the resting-state. Note that motion in REST1 is highly correlated (r=0.72) 
with motion in REST2, indicating that motion itself may be a stable trait, and correlated with 
other traits. While the interpretation of these complex relationships would require further work 
outside the scope of this study (using partial correlations, and mediation models, to disentangle 
effects), it is critical to remove shared variance between intelligence and the primary 
confounding variables before proceeding further. This ensures that our model is trained 
specifically to predict intelligence, rather than confounds that covary with it in our subject sample 
[115]​. However there are several other variables that we do not explicitly account for here, for 
example the Openness personality trait which we previously found to be correlated with 
intelligence ​[65]​. 

Another possible confound, specific to the HCP dataset, is a difference in the image 
reconstruction algorithm between subjects collected prior to and after April 2013. The 
reconstruction version leaves a notable signature on the data that can make a large difference 
in the final analyses produced ​[116]​. We find a small, but significant correlation with the 
intelligence in our sample (indicating that subjects imaged with the old reconstruction version 
are, on average, less intelligent than the ones imaged with the newer reconstruction version). 
This confound is, of course, a simple sampling bias artifact with no meaning. Yet, this significant 
artifactual correlation must be removed, by including the reconstruction factor as a confound 
variable. 

Importantly, the multiple linear regression used for removing the variance shared with 
confounds is fitted on the training data (in each cross-validation fold during the prediction 
analysis), and then the fitted weights are applied to remove the effects of confounds in both the 
training and test data. This is critical to avoid any leakage of information, however negligible, 
from the test data into the training data. 
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Authors of the HCP-MegaTrawl have used transformed variables (Age ​2​) and interaction 
terms (Gender x Age, Gender x Age ​2​) as further confounds ​[117]​. After accounting for the 
confounds described above, we do not find sizeable correlations with these additional terms (all 
correlations <0.011), and thus we do not use these additional terms in our confound regression. 

 

 
Figure 2. Correlation of the general intelligence factor scores with PMAT24_A_CR scores, 
and with potential confounds, in the sample of subjects used for prediction analyses 
(N=884).  All of these variables except for PMAT24_A_CR scores were regressed out of 
the training set data to obtain an unconfounded measure of g. 
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Resting-state FC predicts 20% of the variance in ​g ​across 
subjects 

We compute a resting-state functional connectivity matrix for each subject from 1 hour of 
resting-state data (REST12), yielding a very reliable estimate of the stable functional network of 
each individual -- with 60 minutes of scan time, the test-retest reliability of the FC matrix is 
above r=.96 ​[118]​.  

We use a leave-one-family-out cross-validation scheme to train a regularized linear 
model and predict general intelligence from functional connectivity matrices (features are the 
64620 undirected edges), in our sample of 884 subjects. We find a significant correlation 
between observed and predicted ​g​ scores (r=0.457, p ​1000​<0.001, based on 1000 permutations), 
a coefficient of determination that differs significantly from chance (R​2​=0.206; p ​1000​<0.001), and 
a normalized root mean square deviation that is significantly lower than its null distribution 
(nRMSD=0.892;p ​1000​<0.001) (​Figure 3 ​).  

For comparison, we find that the prediction of PMAT24_A_CR captures less variance 
(r=0.263,p ​1000​<0.001; R​2​=0.047, p ​1000​<0.001; nRMSD=0.977, p ​1000​<0.001). It is likely that the 
moderating effect of measurement quality ​[44]​ limits prediction performance.  

Similarly, using only 30min of resting-state data to derive the functional connectivity 
matrices has a moderating effect on prediction performance. With 30 minutes of scan time, 
test-retest reliability of FC matrices falls to about r=.92 ​[118]​. Predicting ​g​ using REST1, we find 
r=0.419, R​2​=0.170, nRMSD=0.912; using REST2, we find r=0.312, R​2​=0.067, nRMSD=0.966. 
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Figure 3. Prediction of the general factor of intelligence ​g ​ from resting-state functional 
connectivity, averaging all resting-state runs for each subject (REST12, totaling 1h of 
fMRI data)​. ​a) ​Observed vs. predicted values of the general factor of intelligence. The 
regression line has a slope close to 1, as expected theoretically ​[98]​. The correlation coefficient 
is r=0.457 (REST1 only, r=0.419; REST2 only, r=0.312). ​b) ​Evaluation of prediction 
performance according to several statistics and their distributions under the null hypothesis, as 
simulated through permutation testing (with 1000 surrogate datasets). All fit statistics fall far out 
of the confidence intervals under the null hypothesis. ​Left:​ the correlation between observed and 
predicted values; ​Center:​ the coefficient of determination R​2​, interpretable as the proportion of 
explained variance; ​Right:​ the normalized Root Mean Square Deviation nRMSD, which 
indicates the average difference between observed and predicted scores.  Faint gray shade: 
p<0.05; darker gray shade: p<0.01, permutation tests. 
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Predictive edges are distributed in FPN, CON, DMN, and VIS 
networks 

We have demonstrated that a substantial and statistically highly significant amount of 
variance (about 20%) in general intelligence ​g​ across our sample of subjects can be predicted 
from resting-state functional connectivity. Is there a specific set of edges (connectivity between 
specific anatomical parcels) in the brain that carry most of the information? The Parieto-Frontal 
Integration Theory (P-FIT) of intelligence ​[38]​ postulates roles for cortical regions in the 
prefrontal (BA 6, 9–10, 45–47), parietal (BA 7, 39–40), occipital (BA 18–19), and temporal 
association cortex (BA 21, 37).  

To address this question, we use a descriptive network selection/elimination approach. 
We focus on the 7 major resting-state networks ​[119]​; Ito and colleagues recently assigned 
each region of the parcellation used here to these functional networks using the Generalized 
Louvain method for community detection with resting-state fMRI data ​[97]​ (​Figure 4a ​). This 
network assignment indeed groups regions that have similar connectivity patterns, at the level of 
single subjects (​Figure 4b​). First, we ask how well we can predict ​g​ keeping edges within only 
one network (  combinations, ​Figure 4c ​), or within/between two networks (  ( 7

1) = 7 1   ( 7
2) = 2

combinations, ​Figure 4d​). For all these analyses we carried out exactly the same methods as 
described above (including the univariate feature selection step), but training and testing on a 
reduced feature space (corresponding to only those features (edges) under investigation for 
questions about the specific networks).  Prediction performance within a single network, or with 
two networks, is much impaired compared to performance with the full set of edges (one 
network, maximum performance r=0.327; two networks, maximum performance r=0.373); 
however, some networks carry more information than others: the most informative networks are 
CON, DMN, FPN and VIS, while DAN, AUD and SMN carry very little information. These results 
are in good agreement with the P-FIT; in particular, in addition to the eponymous frontal and 
parietal regions which have been reported in other studies already ​[55,62]​, we evidence 
information in the VIS network as postulated by P-FIT. We next explore how the virtual lesioning 
of networks affects prediction: we lesion a single network ( , ​Figure 4f​) or two networks  ( 7

6) = 7  

( , ​Figure 4e ​). We find that lesioning one or two networks has a very small effect on1   ( 7
5) = 2  

the prediction of ​g ​(lesion one network, minimum performance r=0.409; lesion two networks, 
minimum performance r=0.373), indicating there is distributed and redundant information about 
g​ in functional connectivity patterns across several brain networks.  
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Figure 4. A distributed neural basis for g.​ ​a)​ Assignment of parcels to major resting-state 
networks, reproduced from Ito et al. ​[97]​. ​b)​ Example REST12 functional connectivity matrix 
ordered by network, for an individual subject (id=100307).​ c)​ Prediction performance for 
REST12 matrices (as Pearson correlation between observed and predicted scores) using only 
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within network edges, for the 7 main resting-state networks listed in ​a ​. DMN, FPN, CON and VIS 
carry the most information about ​g​. The three shades of green correspond to three univariate 
thresholds for initial feature selection (we used p<0.01 as in the main analysis; as well as 
p<0.05 and p<0.1 to make sure that the results were not limited by the inclusion of too few 
edges). The dashed cyan line shows for comparison the prediction performance for the 
whole-brain connectivity matrix (same data as in Figure 3). ​d) ​Prediction performance with two 
networks only (univariate feature selection with p<0.01). ​e)​ Prediction performance for REST12 
matrices after “lesioning” two networks  (univariate feature selection with p<0.01). ​f)​ Prediction 
performance after lesioning one network  (univariate feature selection with p<0.01).  

Discussion 
Deary et al. recently wrote ​[120]​: “the effort to understand the psychobiology of 

intelligence has a resemblance with digging the tunnel between England and France: We hope, 
with workers on both sides having a good sense of direction, that we can meet and marry brain 
biology and cognitive differences.” The present study is a step in this direction, offering to our 
knowledge the to-date most robust investigation specifically focused on predicting intelligence 
from resting-state fMRI data.  Here we used factor analysis of the scores on 10 cognitive tasks 
to derive a bi-factor model of intelligence, including a common g-factor and broad ability factors, 
which is the standard in the field of intelligence research ​[28,44]​. We used reliable estimates of 
functional connectivity in a large sample of subjects, from one hour of high-quality resting-state 
fMRI data per subject. We used the best available inter-subject alignment algorithm (MSM-All), 
a stringent control for confounding variables, and out-of-sample prediction. With these 
state-of-the-art methods on both ends of the tunnel, we demonstrated a strong relationship 
between general intelligence ​g​ and resting-state functional connectivity (at least as strong as the 
well established relationship of intelligence with brain size ​[43,44]​). We further established that 
predictive network edges were fairly distributed through the brain, though they mostly fell within 
4 of the 7 major resting-state networks: the fronto-parietal network, the default mode network, 
the control network, and the visual network. These findings are in general agreement with the 
parieto-frontal integration theory (P-FIT) of intelligence. They considerably extend a previous 
report ​[62]​ which had hinted at a relationship between resting-state functional connectivity and 
intelligence using a much smaller subject sample (N=117), no account of potential confounding 
variables, a cross-validation scheme that did not respect family structure, a less functionally 
accurate inter-subject alignment, and a lower quality measure of intelligence.  

We indeed found evidence that measurement quality, both on the behavioral and on the 
neural side, moderated the effect size of the relationship between brain and behavior ​[44]​. We 
achieved better prediction performance using ​g​ rather than the number of correct responses on 
the PMAT24_A test; and we achieved better performance using REST12 matrices (1h of data 
per subject) rather than REST1 or REST2 matrices (30min of data per subject). Though this is 
of course expected statistically -- the noise ceiling gets lower as noise increases for the two 
variables that are correlated -- this is an important observation for future explorations in other 
datasets. In many aspects the neural and behavioral data in the HCP are of higher quality than 
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most other large-scale neuroimaging projects; conducting similar analyses in other datasets 
may yield smaller effect sizes solely because of lower data quality and, just as importantly, 
quantity. 

The general factor of intelligence ​g​ that we derived from 10 cognitive task scores is as 
reliable as it can be in this dataset, and would be unlikely to improve substantially even if 
additional measures were available. An interesting question for future studies will be to look at 
the predictability of the subscales: crystallized ability, processing speed, visuospatial reasoning, 
and memory. Addition of tasks in each of these subdomains would increase the reliability of 
these specific ability factors, and allow for a more precise exploration of their neural bases. This 
would require a much longer assessment and many more ability tests. Rather than build an 
entirely new dataset from scratch, the possibility of testing all HCP subjects again on a lengthier, 
diverse cognitive ability battery should be considered ​[121]​.  

Another factor that can moderate the relationship between variables is range restriction 
of variables ​[122]​. Here, there is some concern that the range of intelligence scores in the HCP 
subject sample may be restricted to the higher end of the distribution. While published 
normative data is currently unavailable for the Penn matrix reasoning test and other Penn CNB 
tests in the age range of our subjects, the NIH toolbox tests provide age-normed scores. 
Inspection of these scores indicates that the HCP subject sample is indeed biased towards 
higher scores (in particular for crystallized abilities; see ​Supplementary Figure 3 ​). This 
sampling bias is a well-known, systemic issue in experimental psychology ​[123]​, and one that is 
difficult to avoid despite efforts to recruit from the entire population. A natural question to ask is 
whether the neural bases of mental retardation, and of genius at the other end of the spectrum, 
lie in the same continuum as what we describe in this study.  Future studies in samples with a 
larger range of intelligence should explore this important question. 

Though we qualified our approach as state-of-the-art on the behavioral side, intelligence 
researchers would likely object that deriving factor scores is a thing of the past, and that 
analyses should be conducted in latent space (in part because of factor indeterminacy). This 
objection can mostly be ignored in our situation, where we only looked at the general factor ​g​, 
given that it can be so precisely estimated in our dataset. However to study specific factors, it 
would be advisable to overhaul our predictive analysis so it can be performed in latent space, 
within a structural equation model. Others have explored such a  framework in the study of 
brain-behavior relationships ​[41]​. 

We were very careful to regress out several potential confounds ​[115]​, such as brain 
size, gender and age, before performing predictions. While this gives us some comfort that the 
results reported here are indeed specific to general intelligence, the confound regression 
approach could certainly be improved further. There are two main concerns: one the one hand, 
we may be throwing out relevant variance and injecting noise into the ​g​ scores by bluntly 
regressing out confounding variables -- a more careful cleanup should be attempted, for 
example using a well-specified structural equation model ​[124]​. However, the approach we took 
is superior to ignoring the issue of potential confounds altogether, which is likely to inflate 
predictability and compromise interpretation. On the other hand, the list of confounding variables 
that we considered was not exhaustive: for example, we did not regress out variance in the 
Openness factor of personality, which we have previously found to be correlated with 
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intelligence ​[65]​, and there are certain to be other confounds that were not measured at all. 
Furthermore, it is very likely that regressing out the mean framewise displacement does not 
properly account for non-linear effects of motion. Cleaning resting-state fMRI data of the effects 
of motion remains a very intense topic of research for studies of brain-behavior relationships 
[83,85,125]​. While we are confident that our current results are not solely explained by motion in 
the scanner, a full quantification of this issue remains warranted. 

It is worth mentioning a related, entirely data-driven study that was recently conducted 
by Smith and colleagues on an earlier release of the same HCP dataset (N=461) ​[126]​. Using 
canonical correlation analysis, the authors demonstrated that a network of brain regions that 
closely resembled the default mode network was highly related to a linear combination of 
behavioral scores that they label a “positive-negative mode of population covariation”. In 
essence, this combination is a neurally derived general factor, encompassing cognitive and 
other behavioral tasks. Our study is in good agreement with these results, as we found high 
predictability of general intelligence ​g​ from connections within the default mode network. 

Where do we go from here? As we know that task functional MRI ​[38,56]​ and structural 
MRI data (brain size ​[43]​, as well as morphometric features ​[82]​) also hold information that is 
predictive of cognitive ability, a natural question is whether combining functional and structural 
data will allow us to account for more variance in the general intelligence factor ​g​. The more 
variance we can account for, the more trustworthy and thus interpretable our models become, 
and we can hope to further refine our understanding of the neural bases of general intelligence.  

Of course, mere prediction does not yet illuminate mechanisms, and we would ultimately 
wish to have a much more detailed causal model that explains how genetic factors, brain 
structure, brain function, and individual differences in variables such as​ g​ and personality relate 
to real-life outcomes. Given that ​g​ is already known to predict outcomes such as lifespan and 
salary, a structural model incorporating all of these variables should provide us with the most 
comprehensive understanding of the mechanisms, and the most effective information for 
targeted interventions.  

Finally, we would like to situate this paper in the broader context of this special issue. 
Intelligence can be quantified across species and is highly heritable.  Are similar brain networks 
the most predictive of variability in intelligence across mammals?  Are there measures of 
heritability or brain structure, as compared to brain function, that might be better predictors in 
some species than others?  It would be intriguing to find that humans share with other species a 
core set of genetically specified constraints on intelligence, but that humans are unique in the 
extent to which education and learning can modify intelligence through the incorporation of 
additional variability in brain function. 
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Supplementary material 

Confirmatory factor analysis 
Using the EFA solution, we specify a bi-factor model, including a general factor (loading on all 
tasks) and four group factors (loading on subsets of tasks), in a confirmatory factor analysis. 
The model does not allow for any cross-loadings of a task on several factors, and group factors 
are orthogonal to one another and to the general factor. As some of the group factors are only 
defined by only two indicators, it is necessary to impose a constraint for the purposes of 
identification. We fix the unstandardized loadings for both tasks to 1.0 in this case. We initially 
find that the lavaan model does not converge, and identify that the issue lies with the 
ListSort_Unadj task score. We run the CFA without ListSort_Unadj, with the following lavaan 
syntax: 
 
    ​#g-factor 
    g        =~ CardSort_Unadj + Flanker_Unadj + ProcSpeed_Unadj + PicVocab_Unadj +   
          ReadEng_Unadj + PMAT24_A_CR + VSPLOT_TC + IWRD_TOT + PicSeq_Unadj 
    #Domain factors 
    spd    =~ CardSort_Unadj + Flanker_Unadj + ProcSpeed_Unadj 
    cry     =~ 1*PicVocab_Unadj + 1*ReadEng_Unadj 
    vis     =~ 1*PMAT24_A_CR    + 1*VSPLOT_TC   
    mem =~ 1*IWRD_TOT       + 1*PicSeq_Unadj 
    #Domain factors are not correlated with g 
    g ~~ 0*spd 
    g ~~ 0*cry 
    g ~~ 0*vis 
    g ~~ 0*mem 
    #Domain factors are not correlated with one another 
    spd ~~ 0*cry 
    spd ~~ 0*vis 
    spd ~~ 0*mem 
    cry ~~ 0*vis 
    cry ~~ 0*mem 
    vis ~~ 0*mem 
 
This CFA model converges after 49 iterations, and the fit is very good with CFI=0.974, 
RMSEA=0.052, SRMR=0.032, BIC = 27820.2. The standardized solution is depicted in 
Supplementary Figure 1 ​. ​The general factor is found to account for 64.0% of the variance 
(coefficient omega_hierarc​hical ω​h​), while g ​roup factors account for 17.2% of the variance.  
We derive the factor scores for ​g​ using the regression method; we find that the scores derived from 
the CFA are almost perfectly correlated with the scores derived from the EFA (Figure 1), r=0.99.  
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Supplementary Figure 1. Standardized solution for our confirmatory factor analysis of the 
HCP cognitive task scores.​ The CFA omits ListSort_Unadj which prevent the model from 
converging.  
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Supplementary Figure 2. Correlations between (z-scored) HCP cognitive task scores. ​On 
the diagonal, the distribution of each of the 11 cognitive variables in shown. Below the diagonal, 
the Pearson correlation is displayed, together with a color visualizing the strength of the 
relationship. Above the diagonal, a scatter plot is displayed for each pair of variables, with x- 
and y- axes between -4 and 4 (standard deviation of all variables is 1 due to z-scoring). 
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Supplementary Figure 3. Distributions of the age-normed scores of HCP subjects on 
NIH-toolbox cognitive tasks. ​The blue line shows the mean score in our subject sample, which 
is greater than 100 for all tests, while the black dashed line shows the mean in the normative 
population. For all tests, a 1-sample Student’s t-test indicates that the mean is significantly 
higher than 100.  
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