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Abstract 24 

Developing rice varieties adapted to alternate wetting and drying water management is crucial 25 

for the sustainability of irrigated rice cropping systems. Here we report the first study exploring 26 

the feasibility of breeding rice for adaptation to alternate wetting and drying using genomic 27 

prediction methods that account for genotype by environment interactions. Two breeding 28 

populations (a reference panel of 284 accessions and a progeny population of 97 advanced lines) 29 

were evaluated under alternate wetting and drying and continuous flooding management 30 

systems. The accuracy of genomic prediction for response variables (index of relative 31 

performance and the slope of the joint regression) and for multi-environment genomic 32 

prediction models were compared. For the three traits considered (days to flowering, panicle 33 

weight and nitrogen-balance index), significant genotype by environment interactions were 34 

observed in both populations. In cross validation, prediction accuracy for the index was on 35 

average lower (0.31) than that of the slope of the joint regression (0.64) whatever the trait 36 

considered. Similar results were found for across population validation (progeny validation). 37 

Both cross-validation and progeny validation experiments showed that the performance of 38 

multi-environment models predicting unobserved phenotypes of untested entrees was similar 39 

to the performance of single environment models with differences in accuracy ranging from -40 

6% to 4% depending on the trait and on the statistical model concerned. The accuracy of multi-41 

environment models predicting unobserved phenotypes of entrees evaluated under both water 42 

management systems outperformed single environment models by an average of 30%. Practical 43 

implications for breeding rice for adaptation to AWD are discussed. 44 

 45 
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Introduction 47 

Rice is the world’s most important staple food and will continue to be so in the coming 48 

decades. In the future, the necessary increases in rice production to meet demand will have to 49 

come mainly from an increase in yield per unit of land, water and other resources (CGIAR 50 

Research Program on Rice 2016). At the same time, 15–20 million ha of rice lands will suffer 51 

some degree of water scarcity (Tuong and Bouman 2003; Mekonnen and Hoekstra 2016). The 52 

predicted increase in water scarcity threatens the sustainability of rice production (Rijsberman 53 

2006). It is thus crucial to develop agronomic practices that reduce water use while maintaining 54 

or increasing yields. A concomitant challenge is to adapt rice varieties to these water-saving 55 

agronomic practices by improving their performance under water-limited conditions.  56 

In recent decades, different water management systems have been developed with the aim 57 

of reducing water consumption by irrigated rice (Tuong et al. 2005; Yang et al. 2007). Among 58 

them, the alternate wetting and drying (AWD) system, in which paddy fields are subjected to 59 

intermittent flooding with dry periods managed by soil water potential measurements, is one of 60 

the most widely used (Linquist et al. 2015; Lampayan et al. 2015). A meta-analysis of 56 studies 61 

comparing AWD with continuous flooding (CF) reported an overall decrease in yield of about 62 

5% (Carrijo et al. 2017). However, marked variations were observed mainly depending on the 63 

severity of the drying phase (i.e. the soil moisture at the end of each drying cycle) and on soil 64 

characteristics (Lampayan et al. 2015; Carrijo et al. 2017). Significant differences in genotypic 65 

responses to AWD, measured by changes in grain yield, have also been reported and attributed 66 

to modified biomass partitioning (Bueno et al. 2010). Root architectural traits such as the 67 

number of nodal roots and root dry weight at a depth of 10-20 cm 22-30 days after transplanting 68 

also significantly contribute to yield stability under AWD (Sandhu et al. 2017). Genome wide 69 

association analysis using a diversity panel revealed AWD-specific associations for several 70 
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agronomic traits including days to flowering, plant height, tillering, and panicle and seed 71 

characteristics (Volante et al. 2017). Thus, rice adaptation to AWD appears to involve typical 72 

complex traits, whose improvement requires genome-wide breeding approaches that account 73 

for genotype by environment (G×E) interactions, i.e. the amplitude of the response of the 74 

genotypes to a shift from CF management to the AWD system.  75 

In plant breeding, G×E interactions are usually assessed in multi-environment trials and 76 

expressed as a change in the relative performance of genotypes in different environments, with 77 

or without change in the ranking of the genotypes (Freeman 1973). G×E analysis plays a 78 

fundamental role in assessing genotype stability, in predicting the performance of untested 79 

genotypes and in maximizing response to selection. Statistical methods for assessing G×E 80 

interactions and estimating their sizes and opportunities to exploit them are widely discussed in 81 

the literature (Freeman 1973; Cooper et al. 1993;; Malosetti et al. 2013; Elias et al. 2016; de 82 

Leon et al. 2016). One of the earliest and most widely used methods is linear regression of the 83 

performance (often of yield) of the individual genotype on the mean performances of all 84 

genotypes evaluated in each test environment (Yates and Cochran 1938). The method, known 85 

as joint regression analysis, was further formalized by Eberhart and Russel (1966) to enable 86 

testing of the significance of deviation of individual regression from the general linear 87 

component of G×E. Most evaluations of the effect of the environment on performance 88 

undertaken for the purpose of plant breeding rely on multi-environmental field testing that 89 

represents target production environments or a target population of environments (Cooper and 90 

Hammer 1996). One specific case of G×E experiments is managed-environment trials that aim 91 

to assess the effect of particular environmental variables (e.g., abiotic stresses) or cropping 92 

practices (e.g. fertilizer, irrigation, etc.) that influence crop performance in the production 93 

environment concerned (Cooper and Hammer 1996). A still more specific case of G×E 94 

experiments is managed abiotic stress trials that aim to provide a measure of genotypic response 95 
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to stress based on yield loss under stress compared with under normal conditions. Several indexes 96 

have been proposed to evaluate the stress intensity and genotypic response in such experiments, 97 

mainly in the context of selection for drought tolerance (Fischer and Maurer 1978; Rosielle and 98 

Hamblin 1981; Fischer et al. 2003).  99 

With the advent of molecular markers, new G×E analysis methods have been developed 100 

based on linear mixed models that connect the differential sensitivity of genotypes to 101 

environments to particular regions of the plant genome and to specific biological mechanisms 102 

( Malosetti et al. 2004; Boer et al. 2007; van Eeuwijk et al. 2010). More recently, the potential 103 

of genomic selection (GS) to accelerate the pace of genetic gains in major field crops has 104 

encouraged the development of multi-environment models for genomic prediction. The first 105 

statistical framework using a linear mixed model to model G×E for the purpose of genomic 106 

prediction was proposed by Burgueño et al. (2012). It extended the single-trait, single-107 

environment genomic best linear unbiased prediction (GBLUP) model to a multi-environment 108 

context. Jarquín et al. (2014) proposed a method of modeling interactions between a high-109 

dimensional set of markers and environmental that incorporates genetic and environmental 110 

gradients, as random linear functions (reaction norm) of markers and environmental covariates, 111 

respectively. Lopez-Cruz et al. (2015) proposed a marker × environment interaction (M×E) GS 112 

model that can be implemented using regression of phenotypes on markers or using co-variance 113 

structures (a GBLUP-type model). Cuevas et al. (2016) further developed this approach by 114 

using a non-linear (Gaussian) kernel to model the G×E: the reproducing kernel Hilbert space 115 

with kernel averaging and the Gaussian kernel with the bandwidth estimated using an empirical 116 

Bayesian method. Crossa et al. (2016) extended the M×E model using priors that produce 117 

shrinkage (Bayesian ridge regression) or variable selection (BayesB), and reported better 118 

prediction performances for these models compared to single environment and across-119 

environment models. The latest multi-environment genomic prediction models fall back on a 120 
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Bayesian approach (Cuevas et al. 2017). Application of these methods to one maize and four 121 

wheat CIMMYT data sets showed that models with G×E always have higher prediction ability 122 

than single-environment models, regardless of the genetic correlation between environments. 123 

The predictive ability of these Bayesian methods was also generally better than that obtained 124 

with the G×E models proposed by Lopez-Cruz et al. (2015) and Cuevas et al. (2016), when 125 

applied to the same datasets. 126 

In the present study, we evaluated the effect of AWD on the performance of two rice 127 

breeding populations: a reference panel and a population of advanced lines both genotyped with 128 

32 k SNP markers. Our general objective was to explore the feasibility of genomic selection for 129 

the adaptation of rice to AWD in the framework of a pedigree breeding scheme. Our specific 130 

objectives were to: (i) access expression of the response of the above-mentioned populations to 131 

AWD compared to the CF irrigation system, and (ii) compare the performance of different 132 

genomic prediction models that include G×E interactions in answering the two well-known 133 

issues relevant in breeding programs: predicting unobserved phenotypes of untested lines and 134 

predicting unobserved phenotypes of lines that have been evaluated in some environments but 135 

not others. The two issues are analyzed in the context of intra-population prediction (cross-136 

validation experiments), and across-populations prediction (progeny-validation), as the 137 

population of advanced lines was derived from biparental crosses between some of the members 138 

of the diversity panel. 139 

Material and method 140 

Field trial and phenotyping 141 

The plant material used in this study comprised a reference population (RP) of 284 142 

accessions belonging to the rice japonica subspecies, and a progeny population (PP) of 97 143 
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advanced (F5-F7) inbred lines. The RP is representative of the working collection of the 144 

Research Centre for Cereal and Industrial Crops (CREA), Vercelli, Italy. The PP was derived 145 

from bi-parental crosses involving 31 accessions of RP, using a pedigree breeding scheme. 146 

More information on the two populations is provided in Ben Hassen et al. (2017). The two 147 

populations were phenotyped separately for two consecutive years at the experimental station 148 

of the CREA (45°19’24.00”N; 8°22’26.28”E; 134 m asl.): in 2012 and 2013 for RP and in 2014 149 

and 2015 for PP. In each year, the phenotyping experiment included two independent trials 150 

corresponding to the two water management systems tested: CF and AWD. For the 151 

conventional CF water management system, rice was dry seeded and the field was flooded with 152 

10-15 cm of water at the 3-4 leaf stage (typically 30 days after sowing) and maintained flooded 153 

until mid-maturity. For the AWD, after initial flooding at the 3-4 leaf stage, the field was 154 

subjected to intermittent drying periods. The soil water potential was maintained above -30 kPa 155 

by gravity irrigation whenever the soil moisture reached this threshold. The soil water potential 156 

was monitored by a set of six tensiometers distributed throughout the field and inserted to a 157 

depth of 20 cm. For each population and each year, the two water management systems were 158 

conducted in two fields separated by a distance of about 100 m to avoid interference with 159 

respect to the water regime. The other soil characteristics were identical (sand 47.8%, loam 160 

42.8%, clay 9.4%; pH-H2O 6.4). The experimental design, which was identical in the two 161 

conditions, was a complete randomized design with three replicates for RP and a complete 162 

randomized block design with three replicates for the PP. The target traits for both RP and PP 163 

were days to flowering (FL), panicle weight (PW), and the nitrogen balance index (NI) as 164 

described in Ben Hassen et al. (2017).  165 

Modeling of phenotypic data 166 

Phenotypic data for each condition in the RP and the PP were analyzed using mixed models. 167 

In order to identify possible outliers among individual data points, a diagnostic analysis based 168 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 31, 2018. ; https://doi.org/10.1101/257808doi: bioRxiv preprint 

https://doi.org/10.1101/257808
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ben Hassen et al., Genomic prediction accounting for genotype by environment interaction 

9 / 44 

on restricted likelihood distance was implemented, for details see Ben Hassen et al. (2017). 169 

This analysis led to the elimination of one accession in the RP in AWD 2012 and 2013 170 

experiments, one data point for FL in AWD-2012, and one data point for PW in AWD-2013. 171 

The discarded data were considered as missing in the following steps of the analysis. The 172 

following mixed models were applied to obtain adjusted means per genotype: 173 

Yijk
𝑚 = µ𝑚 + y𝑖

𝑚 + 𝑔𝑗
𝑚 + 𝑔𝑦𝑗𝑖

𝑚 + 𝜀𝑖𝑗𝑘
𝑚    (RP model 1) 174 

Yijkl
𝑚 = µ𝑚 + y𝑖

𝑚 + yr𝑖𝑘
𝑚 + 𝑔𝑗

𝑚 + 𝑔𝑦𝑗𝑖
𝑚 + 𝜀𝑖𝑗𝑘𝑙

𝑚   (PP model 1) 175 

where Y𝑚 is the observed phenotype for the water management system m; µ𝑚 the overall mean; 176 

y𝑚 the year as fixed effect; yr𝑚 the within year replication as fixed effect; 𝑔𝑚 the genotype as 177 

random effect, 𝑔𝑦𝑚 the interaction between genotype and year as random effect; and 𝜀𝑚 the 178 

residual. The analysis was performed with the proc mixed procedure of SAS 9.2 (SAS Institute, 179 

Cary NC, USA); the method of estimation for the variance components was the restricted 180 

maximum likelihood (REML). The formula by Holland et al. (2003) was used to estimate broad 181 

sense heritability (𝐻2) as well as the corresponding standard error (SE) for each trait and each 182 

water management system in each population:  183 

𝐻2 =
𝜎𝑔

2

𝜎𝑔
2+

𝜎𝑔𝑦
2

𝑛𝑦
+

𝜎𝑒
2

𝑛𝑟

 , 184 

where 𝜎𝑔
2, 𝜎𝑔𝑦

2  and 𝜎𝑒
2 are the variance components associated with the genotype, the interaction 185 

between genotype and year and the residual, respectively. 𝑛𝑦 is the harmonic mean of the 186 

number of years per accession and 𝑛𝑟, the harmonic mean of the number of plots across years 187 

per accession. Conditional coefficients of determination (R²) were also computed using the 188 

methodology described by Nakagawa and Schielzeth (2013). The adjusted means per water 189 

management system (Ŷj
m = µ̂𝑚 + 𝑔̂𝑗

𝑚 + 𝑔𝑦̂𝑗𝑖
𝑚) extracted from the model were used as 190 

phenotypes in the following steps.  191 
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For each trait, genetic correlations (𝑟𝐺) between values measured under the two water 192 

management systems were calculated (Cooper and DeLacy 1994; Cooper and Hammer 1996). 193 

The confidence interval of 𝑟𝐺 was obtained by using Fisher transformation of the estimated 194 

correlation (𝑍̂ = 0.5 (ln(1 + 𝑟̂𝐺) − ln(1 − 𝑟̂𝐺)), estimating the lower and upper bounds of 𝑍̂ 195 

(𝑍1,2 = 𝑍̂  ± 𝑢1−𝛼
2
  √

1

𝑁𝑃−3
, with 𝛼 = 0.05, and 𝑁𝑃 = 284 and 97, for RP and PP respectively), 196 

and back transforming the 𝑧̂1 and 𝑧̂2 bounds into 𝑟̂1 and 𝑟̂2. The ratio of correlated response to 197 

selection under continued flooding (CRCF) and the direct response under alternate watering and 198 

drying (DRAWD) was calculated as: 199 

CR𝐶𝐹

DR𝐴𝑊𝐷
=  𝑟𝐺 √

𝐻𝐶𝐹
2

𝐻𝐴𝑊𝐷
2    (Falconer 1989) where 𝑟𝐺 is the genotypic correlation defined above, 200 

and 𝐻𝐴𝑊𝐷
2  and 𝐻𝐶𝐹

2  represent the heritability of the trait under AWD and CF, respectively.  201 

In addition to models for each condition, a model gathering data from the two water 202 

management systems was also adjusted in order to test the significance of the interaction 203 

between water management and genotypes: 204 

Y𝑖𝑗𝑘𝑙 = µ + m𝑖 + y𝑗 + my𝑖𝑗 + 𝑔𝑘 + 𝑔𝑚𝑖𝑘 + 𝑔𝑦𝑗𝑘 + 𝑔𝑚𝑦𝑖𝑗𝑘 +  𝜀𝑖𝑗𝑘𝑙 (RP model 2) 205 

Y𝑖𝑗𝑘𝑙𝑛 = µ + m𝑖 + y𝑗 + my𝑖𝑗 + myr𝑖𝑗𝑙 + 𝑔𝑘 + 𝑔𝑚𝑖𝑘 + 𝑔𝑦𝑗𝑘 + 𝑔𝑚𝑦𝑖𝑗𝑘 +  𝜀𝑖𝑗𝑘𝑙𝑛 (PP model 2) 206 

The same notation was used as for the model for each condition with additional fixed and 207 

random effects: m the water management as fixed effect; my the water management and year 208 

interaction as fixed effect; myr the replication within water management and year as fixed 209 

effect; 𝑔𝑚 the interaction between genotype and water management as random effect; and 𝑔𝑚𝑦 210 

the interaction between genotype, water management and year as random effect. The analyses 211 

were performed with the proc mixed procedure of SAS 9.2 (SAS Institute, Cary NC, USA) with 212 

REML.  213 

 214 
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Evaluation of genotypic response to water management systems 215 

The genotypic response to AWD water management was estimated in two ways using 216 

adjusted means. First, an index of relative performance was computed as follows: 217 

𝐼𝑗 =
𝑌̂𝑗

𝐴𝑊𝐷−𝑌̂𝑗
𝐶𝐹

𝑌̂𝑗
𝐶𝐹 , where 𝑌̂𝑗

𝐴𝑊𝐷 and 𝑌̂𝑗
𝐶𝐹 correspond to the adjusted means of accession j under 218 

AWD and CF water managements, respectively. This index was also calculated at population 219 

level to assess the intensity of stress caused by AWD water management compared to CF: 𝐼 =220 

𝑌̂𝐴𝑊𝐷−𝑌̂𝐶𝐹

𝑌̂𝐶𝐹̅̅ ̅̅ ̅̅  were 𝑌̂
𝐴𝑊𝐷

 and 𝑌̂
𝐶𝐹

 are the average performances of all genotypes within each 221 

population under AWD and CF, respectively. Second, the slope βj was computed as defined in 222 

the joint regression equation: 𝑌̂𝑗
𝑚 = µj + βj 𝑚 + εjm, where 𝑌̂𝑗

𝑚 is the adjusted mean of the 223 

genotype j in the water management m; 𝑚 is the environmental index calculated as the mean 224 

value of all genotypes in water management m; 𝜇𝑗 is the intercept of the regression line of 225 

genotype j; and εjm is the residual. 226 

Genotypic data  227 

The method used to genotype both RP and PP populations is detailed in Ben Hassen et al. 228 

(2017). It relies on the genotyping by sequencing protocol developed by Elshire et al. (2011). 229 

Sequencing was performed with a Genome Analyzer II (Illumina, Inc., San Diego, USA). The 230 

different steps of analysis (raw data filtering, sequence alignment, SNP calling and imputation) 231 

were performed with TASSEL v3.0 and the associated GBS pipeline (Glaubitz et al. 2014). A 232 

working set of 32,066 SNPs was obtained with a heterozygosity rate < 5% and minor allele 233 

frequency (MAF) > 5%.  234 
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Statistical models for genomic prediction 235 

Single environment models 236 

To predict the genomic estimated breeding values within each water management system, 237 

hereafter referred to as single environment, two different kernel regression models were used. 238 

The first model, which relies on a linear kernel, was the GBLUP as it is one of the most popular 239 

methods for genomic prediction (Van Raden 2008). For this model, the kernel matrix (𝐾) was 240 

computed as 𝐾 = 𝑋𝑋’, 𝑋 being the centered genotype matrix (-1, 0, 1) with N×P dimension, 241 

where N is the number of genotypes and P the number of markers. The second model, which is 242 

based on reproducing kernel Hilbert space (RKHS) approaches, used a Gaussian kernel 243 

𝐾(𝑥𝑖, 𝑥𝑗) = exp (−ℎ ∥ 𝑥𝑖 − 𝑥𝑗 ∥2) to build the kernel matrix between the marker genotype 244 

vectors 𝑥𝑖 and 𝑥𝑗, where (𝑖, 𝑗) ∈ {1, … , 𝑁}². The bandwidth parameter ℎ was estimated using 245 

the method described by Pérez-Elizalde et al. (2015) based on a Bayesian method that relies on 246 

the estimation of the mode of the joint posterior distribution of ℎ and a form parameter φ. We 247 

used the R function margh.fun provided by Pérez-Elizalde et al. (2015) with a gamma prior 248 

distribution for ℎ, with a shape parameter equal to 3, and a scale parameter equal to 1.5.  249 

Multi-environment models 250 

To predict the genomic estimated breeding values with data from the two water management 251 

systems, hereafter referred to as multi-environment prediction, we used the statistical models 252 

described above with extensions that integrate environmental effects. In the extended GBLUP 253 

model, the effects of m environments, and the effects of the P markers are separated into two 254 

components: the main effect of the markers for all the environments and the effect of the 255 

markers for each environment (Lopez-Cruz et al. 2015). For RKHS, we used two extended 256 

models incorporating G×E: RKHS-1 corresponding to the “Empirical Bayesian–Genotype × 257 

Environment Interaction Model” proposed by Cuevas et al. (2016), and RKHS-2 corresponding 258 
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to the environmental model (3) proposed by Cuevas et al. (2017). Like the extended GBLUP, 259 

the first model (RKHS-1) considers the effects of m environments, and the effects of the 260 

markers are separated into a main effect for all the environments and an effect specific to each 261 

environment:  262 

𝑦 =  𝜇 + uo + uE + 𝜀 263 

In this mixed model, 𝑦 is the response vector, 𝜇 is the overall intercept, uo captures the 264 

marker information among environments, and uE accounts for the marker information in each 265 

environment. The random effects uo follow a multivariate normal distribution with mean zero 266 

and a variance–covariance matrix 𝜎
uo

2𝐾0, 𝐾0 constructed with the Gaussian kernel from the 267 

marker matrix 𝑋0.  268 

The latter model (RKHS-2), considers that the performances of accessions in different 269 

environments are correlated such that there is a genetic correlation between environments that 270 

can be modeled with matrices of order m×m, m being the number of environments: 271 

𝑦 =  𝜇 + 𝑢 + 𝑓 +  𝜀 272 

In this mixed model, y is the response vector, 𝜇 is the vector with the intercept of each 273 

environment, 𝑢 the random vector of individual genetic values, 𝑓 the genetic effects associated 274 

with individuals that were not accounted for in component 𝑢, and  𝜀 the random vector of the 275 

error. 𝑢, 𝑓 and 𝜀 are independent and normally distributed. For more methodological details 276 

concerning the extended GBLUP, RKHS-1 and RKHS-2 statistical models please refer to 277 

Lopez-Cruz et al. (2015), Cuevas et al. (2016) and to Cuevas et al. (2017), respectively.  278 

Implementation of the models 279 

Analyses were performed in the R 3.4.2 environment (R Core Team 2017) with the R 280 

packages BGLR 1.0.5 (Pérez and de los Campos 2014) and MTM 1.0.0 (De los Campos and 281 
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Grüneberg 2018). For both packages, 35,000 iterations for the Gibbs sampler were used. For 282 

the inference, 3,000 samples were used after removing the first 5,000 samples (burn-in) and 283 

keeping one in ten samples to avoid auto-correlation (thinning). Convergence of Markov chain 284 

Monte Carlo algorithm was assessed for all parameters of the models with Gelman-Rubin tests 285 

(Gelman and Rubin 1992) using the R-package coda 0.19-1 (Plummer et al. 2006). 286 

Assessing genomic prediction accuracy 287 

Prediction accuracy for the three traits and their related response to water management 288 

(index and slope) were assessed with two different validation schemes. The first scheme used 289 

only the RP with random partitions and is referred to hereafter as cross-validation. The second 290 

validation scheme used information from the RP to predict the performance of the PP (referred 291 

as progeny validation). The details of these two validation schemes are explained below. 292 

Cross-validation within the reference population 293 

Different types of random partitions were performed depending on the phenotypic and the 294 

genotypic information used in the statistical model. For traits in a single environment and for 295 

response variables, 80% of the 284 accessions (i.e. 227 accessions) of the RP were used as the 296 

training set and the remaining 20% (57 accessions) was used as the validation set. For multi-297 

environment models, two different methods of cross-validation were applied. The first method 298 

(M1), which resembled what was done in the single environment, used 80% of the observations 299 

as a training set and the remaining 20% as the validation set and assumed that phenotypic 300 

observations for the two environments are available for the individuals composing the training 301 

set while no phenotypic data are available for the individuals in the validation set. M1 302 

corresponds to the situation when the phenotypes of newly generated individuals have to be 303 

predicted based only on their genotypic information (Burgueño et al., 2012). The second 304 

method (M2) also used 80% of the observations as a training set and the remaining 20% as the 305 
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validation set but assumed that at least one observation in one environment was available for 306 

the individuals in both the training set and the validation set. M2 corresponds to the situation 307 

when phenotypes in one environment have to be predicted with genotypic information and 308 

phenotypes from the other environment (Burgueño et al. 2012).  309 

One hundred replicates were computed for all random partitioning in the training and 310 

validation sets. The prediction accuracy of each partition was calculated as the Pearson 311 

correlation coefficient between predictions and phenotypes in the validation set. For multi-312 

environment models, the correlation was calculated within each environment. For each trait 313 

(FL, NI and PW) and each statistical model (GBLUP, RKHS-1 and RKHS-2), the same 314 

partitions were used to compute the prediction accuracy. The resulting estimates of prediction 315 

accuracy were averaged and the associated standard error was calculated. 316 

To analyze the sources of variation of the prediction accuracy, the accuracy (r) of each 317 

prediction experiment was transformed into a Z-statistic using the equation: 𝑍 =318 

0.5 [ln(1 + 𝑟) − ln(1 − 𝑟)] and used as a dependent variable in an analysis of variance. A 319 

separate analysis was performed for each trait. After estimating the confidence limits and means 320 

for Z, these were transformed back to r variables.  321 

Progeny validation across populations 322 

For progeny validation, the model was trained on the RP in order to predict the performance 323 

of the PP based on genotypic information. Three validation scenarios were evaluated. In the 324 

first scenario (S1) only the 31 parental lines were used as the training set. In the second scenario 325 

(S2), the CDmean method (Rincent et al. 2012) was used to select 100 accessions in the RP for 326 

the training set. In the third scenario (S3), all the RP accessions were included in the training 327 

set. In all three scenarios, the validation set was made up of all the PP lines. Like for cross-328 
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validation, prediction accuracy was calculated as the Pearson correlation coefficient between 329 

predictions and phenotypes in the validation set.  330 

Data Availability 331 

The genotypic and phenotypic data are available in the TropGene database in the tab “Studies” 332 

as “GS-Ruse”: To access the TropGene database go to 333 

http://tropgenedb.cirad.fr/tropgene/JSP/interface.jsp?module=RICE).  334 

 335 

Results 336 

Analysis of the phenotypic variations and responses to water management  337 

The partitioning of the observed phenotypic variation into different sources of variation via 338 

the mixed model analysis is shown in Table S1. Models were adjusted separately for each 339 

population (RP and PP) and each water management system (CF and AWD). Conditional R² 340 

ranged from 0.33 to 0.96, indicating moderate to good fit of the model (Table 1). The lowest R² 341 

values were obtained for NI trait in both populations and both conditions. The highest R² values 342 

were obtained for FL. Whatever the trait or water management system considered, the genotype 343 

contributed significantly to the phenotypic variation in each population. A higher contribution 344 

of the genotype effect to the phenotypic variation was observed for FL compared to NI and to 345 

a lesser extent to PW. Broad-sense heritability (𝐻2) tended to confirm this trend (Table 1). 346 

Indeed, depending on the population and the condition, 𝐻2 ranged from 0.85 to 0.94 for FL, 347 

from 0.75 to 0.90 for PW, and from 0.56 to 0.77 for NI. A slight increase in 𝐻2 was observed 348 

in CF water management compared to in AWD for FL and PW in RP. There was no significant 349 

difference in PP.  350 
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The three traits investigated exhibited normal distribution in the RP and PP under both AWD 351 

and FC (Figure 1). The AWD water management resulted in medium intensity stress for FL 352 

(7.4% and 10.8% for RP and PP, respectively) and NI (-15.6% and -7.6%), and in rather severe 353 

stress intensity for PW (-26.6% and -27.9%). On average, both populations flowered 354 

significantly later under AWD than CF. The average FL values were 100.3 (102.8) in AWD 355 

and 93.4 (92.9) in CF, for RP and (PP). Conversely, significantly lower NI and PW values were 356 

observed in AWD compared to CF in both populations. For PW, the average differences 357 

between the two water management systems were 89.4 g for RP and 77.7 g for PP. For NI, in 358 

addition to differences in the average performance  of the two water management systems, 359 

significant differences in distribution were also observed between RP and PP, for the extent of 360 

diversity, much larger for the RP, and for the frequency of individuals with low NI, much higher 361 

in the PP (Figure S1). 362 

Partitioning of the phenotypic variation from the two water management systems into 363 

different sources of variation revealed the existence of significant interactions between 364 

genotypes and water management systems in both RP and PP, for all traits except FL in RP 365 

(Table S2). For all traits and populations, the ranking of the individuals was affected by water 366 

management and the Spearman’s rank correlation coefficients between traits values under the 367 

two water management systems were medium to high (Figure 2). As a result, for each trait the 368 

ratio of correlated response to selection under FC, relative to direct response to selection under 369 

AWD, ranged from medium (0.56 and 0.75 for NI) to very high (0.98 and 0.90 for FL), 370 

suggesting indirect selection for adaptation to AWD is feasible (Table 1).  371 

The two computed variables (index and slope) characterizing the accessions’ response to 372 

AWD, revealed a Gaussian distribution for the three phenotypic traits considered (Figure S1). 373 

An ANOVA of these computed variables revealed significant genotype effects on the three 374 

traits in both RP and PP populations (Table S3). By construction, the correlations between 375 
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phenotypic values per condition and the slope were higher than those with the index whatever 376 

the trait and the population considered. Interestingly, the index behaved differently in each trait 377 

(Figure S1). For FL, low correlations were found either with AWD or CF. For NI, higher 378 

correlations were found with CF (- 0.51 for RP and - 0.58 for PP) than with AWD (0.39 for RP 379 

and 0.13 for PP). For PW, correlations were higher with AWD (0.42 for RP and 0.71 for PP) 380 

than with CF (- 0.23 for RP and 0.24 for PP). For the three traits considered, there was almost 381 

no correlation between the index and the slope variables (Figure S1): FL (0.12 for RP and 0.17 382 

for PP), NI (0.-0.16 for RP and -0.31 for PP) and PW (-0.03 for RP and 0.04 for PP).  383 

Accuracy of genomic prediction for the response variables  384 

Prediction accuracy in the reference population 385 

The average prediction accuracies obtained for the two response variables were compared 386 

with those obtained for the observed variables in each water management system considered as 387 

references (Table 2). The overall mean accuracy for the observed variables (the three traits 388 

under the two water management systems), and for the response variables, was 0.54 but the 389 

range extended from -0.12 to 0.88, depending on the prediction model, the trait and the type of 390 

variable (Erreur ! Source du renvoi introuvable., Table S4). The most significant factor 391 

influencing accuracy was the type of variable (Table 2). Indeed, regardless of the trait or the 392 

statistical model, accuracy for the index was lower than for the slope: 0.31 against versus 0.64 393 

on average (Erreur ! Source du renvoi introuvable.). Interestingly, NI, which presented the 394 

highest G×E, was the trait with the lowest accuracy for the index (0.17 and 0.21). However, 395 

index predictions were less accurate for FL, the trait with the lowest G×E, (0.29 and 0.30) than 396 

for PW (0.43 and 0.48) with intermediate G×E. In agreement with the medium to high 397 

correlations at phenotypic level, the prediction accuracies for the slope and the variables under 398 

each condition were comparable. However, different trends were observed depending on the 399 
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trait. For FL and PW, accuracies for the slope were closer to accuracies under AWD than under 400 

CF. For NI, the opposite was observed. In all cases, slope prediction was as accurate as the best 401 

single-environment prediction. The level of accuracy depended secondly on the trait (Table 2). 402 

On average, accuracy was higher for FL (0.6) than for PW (0.58) and NI (0.45). The statistical 403 

models differed significantly from each other although the effect was small. RKHS performed 404 

better than GBLUP in almost all cases with differences in accuracy of up to 0.05. The 405 

interactions between factors influencing prediction accuracy were not important, except for the 406 

one between the response variable and the trait (Table 2).    407 

Prediction accuracy across populations  408 

On average, across generation prediction for both observed and computed response variables 409 

was less accurate (0.28) than prediction within the reference population (Table S5). Accuracies 410 

ranged from -0.01 to 0.38, with an average of 0.25 for FL, from -0.1 to 0.45, with an average 411 

of 0.22, for NI, and from 0.14 to 0.56, with an average of 0.38 for PW, depending on the type 412 

of variables (observed variables, index and slope), the scenario and the model (Figure 4). 413 

Among these factors, the most influential was again the type of response (Table S5), with the 414 

lowest average accuracy of 0.12 for index and the highest average accuracy of 0.35 for slope. 415 

The prediction accuracy under the single environment AWD and CF averaged 0.34 and 0.32, 416 

respectively. The effect of the scenario came in second, with an average accuracy of 0.27 for 417 

S1, 0.22 for S2, and 0.35 for S3. The statistical models GBLUP and RKHS performed similarly 418 

on average (accuracy of 0.28) but the range of variation was slightly wider in RKHS (-0.1 to 419 

0.56) than in GBLUP (-0.01 to 0.51). 420 
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Accuracy of genomic prediction using multi-environment models  421 

Prediction accuracy in the reference population 422 

The focus here was on multi-environment models and the two different cross-validation 423 

methods (M1 and M2), using single environment models as the baseline. Average accuracies 424 

ranged from 0.47 to 0.96, depending on (in decreasing importance): the trait, the type of model 425 

(i.e. single versus multi-environment), the cross-validation strategy, the statistical model and 426 

the water management system (Figure 5, Table S6). The average accuracy was of 0.79, 0.56 427 

and 0.69 for FL, NI and PW respectively. Whatever the trait or the water management system, 428 

multi-environment models with the M1 strategy performed similarly to the single environment 429 

model with a decrease of up to 0.02 for GBLUP and up to 0.03 for RKHS-1 and RKHS-2. As 430 

expected, the multi-environment models with the M2 strategy outperformed single environment 431 

models with an average gain of 0.23 and 0.27 for FL, 0.14 and 0.10 for NI and 0.20 and 0.20 432 

for PW in AWD and CF, respectively. These gains in accuracy were in agreement with the level 433 

of G×E found for each trait. Among the significant interactions between factors, the trait × cross 434 

validation strategy interaction was the most important and corresponded to a scale interaction 435 

(Table 3). Among the multi-environment prediction models, RKHS-1 and RKHS-2 performed 436 

similarly, with average accuracy of 0.72 and 0.71, respectively, and performed systematically 437 

slightly better than GBLUP, with a gain in accuracy of up to 0.04.  438 

Prediction accuracy across populations 439 

The overall mean accuracy was 0.33, with values ranging from -0.03 up to 0.58 (Figure 6, 440 

Table S7), mainly depending on traits and scenarios for the composition of the training set. The 441 

average accuracy was of 0.30, 0.27, and 0.44 for FL, NI and PW, respectively. The average 442 

accuracy of the three scenarios was 0.32, 0.28 and 0.40 for S1, S2 and S3, respectively. The 443 

range of variation in accuracy for the remaining factors (single versus multiple environment, 444 
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target environment and prediction model) did not exceed 0.03. These latter factors influenced 445 

the accuracy mainly in interactive mode.  446 

  447 

Discussion 448 

Impact of AWD water management system on rice performance 449 

The AWD water management implemented in this study (a new cycle of irrigation was 450 

triggered when soil water potential reached -30 kPa) resulted in medium intensity stress for FL 451 

and NI traits, rather severe stress intensity for PW when evaluated in terms of relative 452 

performance. The effects of AWD we observed on PW (-27% on average), are similar to those 453 

reported by Carrijo et al. (2017) on yield, in their review of 56 studies with 528 side-by-side 454 

comparisons of yield under AWD and CF. These authors reported an average decrease in yields 455 

of 5.4%, almost no yield losses under mild AWD (i.e. when soil water potential was kept ≥ −20 456 

kPa), and yield losses of 22.6% relative to CF under severe AWD, when the soil water potential 457 

went beyond −20 kPa. However, in contrast with our experiment, which pioneered the analysis 458 

of genotypic responses to AWD within a diversity panel representing a large share of diversity 459 

of one of the sub-species of rice (O. sativa, japonica), the majority of the studies included in 460 

Carrijo et al.'s (2017) meta-analysis used only a small number of rice varieties and the crop was 461 

established by transplanting. Among the few studies reporting on traits other than grain yield, 462 

Sudhir et al. (2011) reported crop maturity delay of 5-10% under severe AWD, similar to our 463 

results (9% on  average). 464 

Genomic prediction of response to AWD 465 

The two computed variables (response index and slope of the joint regression) were intended 466 

to provide a measurement of G×E for each accession of RP and PP, which could be used as the 467 
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entry phenotype for genomic prediction. The index, which evaluates tolerance to AWD water 468 

management, was very closely correlated with the stress sensitivity and tolerance index 469 

proposed by Fischer and Maurer (1978) and  (Rosielle and Hamblin 1981), respectively (data 470 

not shown). The slope provides a measurement of stability of breeding material along 471 

environmental gradients in multi-environment trials (Eberhart and Russell 1966; Lin et al. 472 

1986). However, the fact that the environmental index is not independent of the performances 473 

of the studied genotypes can introduce a bias in the estimate of the regression parameters 474 

(Crossa 1990). Moreover, the percentage of G×E variance explained is often very low, below 475 

25% (for a review, see Brancourt-Hulmel et al. 1997). In our case, the number of environments 476 

considered, two, was probably too few for a precise estimate of the regression slope for each 477 

genotype. On the other hand, the large number of genotypes involved in the estimate of the 478 

environmental index (284 for RP and 97 for PP) limited the above-mentioned risk of bias. Given 479 

the very high correlations between the computed slopes and the measured phenotypes for the 480 

three traits under AWD and CF in both RP and PP populations (r > 0.9, except for PW under 481 

AWD in PP (r = 0.73), it represents a reasonably good single entry phenotype to consider for 482 

breeding both for adaptation to AWD and performance under CF. 483 

The accuracy of genomic prediction for the response index was significantly lower than for 484 

the slope and for the corresponding measured traits under AWD and CF, suggesting limited 485 

genetic control of variation for the response index. Similar results were reported by (Huang et 486 

al. 2016) for trait stability in wheat. Nevertheless, given the loose correlations between the 487 

response index and the measured traits, genomic prediction for the index and the measured trait 488 

in CF could be used to select for good performance in both systems. 489 
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Genomic prediction using multi-environment data  490 

The potential of GS to accelerate the pace of genetic gains in major field crops has been 491 

documented by a large number of studies using a simulation approach or experimental data 492 

(Crossa et al. 2017; Hickey et al. 2017). In the case of rice, several empirical studies, 493 

summarized in Ben Hassen et al. (2017), confirmed this potential. However, the focus of most 494 

previous crop genomic prediction studies was on within-environment prediction, based on 495 

single environment models. It was recently demonstrated that the accuracy of genomic 496 

prediction models that account for G×E is significantly greater than that attained by single 497 

environment models (Cuevas et al. 2016; Cuevas et al. 2017; Burgueño et al. 2012; Jarquín et 498 

al. 2014; Lopez-Cruz et al. 2015; Heslot et al. 2014). The empirical component of almost all of 499 

these studies was based on data from unmanaged multi-environment trials of genotypes across 500 

several locations (and often several years), mainly conducted to study G×E and the general 501 

stability of the genotype across environments. The multi-environment genomic prediction 502 

results we present here stand out among the aforementioned ones because we used data from 503 

managed bi-environment trials undertaken to study G×E and genotype adaptation to a specific 504 

abiotic constraint, i.e. AWD water management. 505 

The level of prediction accuracy obtained in our cross validation experiments in the reference 506 

population under the M1 prediction strategy with the multi-environment GBLUP, RKHS-1 and 507 

RKHS-2 models, calibrated with data from both AWD and CF water management, was similar 508 

to that obtained with their single environment counterparts, calibrated with data from either 509 

AWD or CF. These results confirm the power of multi-environment genomic models to predict 510 

the performances of untested genotypes using data from multiple trials. Under the M2 511 

prediction strategy, the three multi-environment models provided significantly higher 512 

prediction accuracy for genotypes that had not been tested in one of the two water management 513 

systems than their single-environment counterparts, further confirming the advantages of multi-514 
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environment prediction models. In order to challenge the performance of the multi-environment 515 

models further, we ran the M1 and M2 strategies with a larger number of untested entrees (40% 516 

instead of 20%) in both AWD and CF for M1, in AWD or CF for M2. The results in Figure S2 517 

show a very small reduction in prediction accuracy. The average prediction accuracy for the 518 

three traits, the two water managements and the three prediction models was 0.59 instead of 519 

0.61 for M1, and 0.79 instead of 0.81 for M2. These results suggest the possibility of optimizing 520 

the method of evaluation of the lines by targeting a specific set of lines for each condition 521 

(Rincent et al. 2017). 522 

Lopez-Cruz et al. (2015) reported gains in prediction accuracy of up to 30% with the 523 

GBLUP-type multi-environment model compared to an across-environment analysis that 524 

ignores G×E, when applied to the wheat grain yield of three sets of advanced lines recorded in 525 

three different years under three irrigation regimes. In our case, significant gains in accuracy 526 

were observed only with the M2 strategy, and ranged from 17% for NI to 29% for FL. Using 527 

wheat and maize data, Cuevas et al. (2016) reported up to 68% higher accuracy for RKHS-1 528 

models compared to single environment models and up to 17% compared to GBLUP-G×E. 529 

These authors hypothesized that the superiority of the Gaussian kernel models over the linear 530 

kernel was due to more flexible kernels that account for small, more complex marker main 531 

effects and marker specific interaction effects. In our experiments, RKHS-1 was up to 35% 532 

more accurate than single environment GBLUP and up to 10% more accurate than GBLUP-533 

G×E model. On the other hand, we did not observe any notable differences in the prediction 534 

accuracy of the RKHS-2 model compared to GBLUP-G×E and RKHS-1, as already reported 535 

by Cuevas et al. (2017). This is probably due to the positive correlation between performances 536 

under AWD and CF water management systems in our experiments, while the most favorable 537 

context for the application the approach developed by Cuevas et al. (2017) is said to be when 538 
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different types of correlation (positive, zero, or negative) between the environments considered, 539 

coexist.  540 

The results of our progeny validation experiments did not question the higher prediction 541 

accuracy of multi-environment models compared to single environment ones observed in our 542 

cross validation experiments in the reference population. However, in progeny validation 543 

experiments, the multi-environment models affected prediction accuracy mainly in interaction 544 

with other factors, such as the composition of the training set and the trait considered. These 545 

results also confirmed the important role of relatedness between the training and the validation 546 

set in prediction accuracy. It also confirmed the fact that relatively high accuracy could be 547 

achieved using only a rather small share of the RP, the most closely related to the PP as the 548 

training set, as reported by Ben Hassen et al. (2017).  549 

Finally yet importantly, in both cross validation and progeny validation experiments, the 550 

multi-environment approach achieved higher prediction accuracy than the genomic prediction 551 

for the response index and the slope of the joint regression. For instance, compared to prediction 552 

for slope, the mean advantage of multi-environment prediction was 8% and 10% with GBLUP-553 

G×E and RKHS-1 models, respectively. The advantage reached 25% under the M2 strategy of 554 

predicting unobserved phenotypes. In the progeny-validation experiments, the mean advantage 555 

was 20% and reached 30% under the S2 scenario of composition of the training set. To our 556 

knowledge, this finding has not yet been reported in the literature. It opens new perspectives in 557 

breeding for adaptation to AWD and to other abiotic stresses. 558 

Practical implications for breeding rice for adaptation to AWD 559 

“More rice with less water” is vital for food security and for the sustainability of irrigated 560 

rice cropping systems (Tuong et al. 2005). AWD water management is one of the most widely 561 

used water-saving techniques practiced today (Carrijo et al. 2017). The development of rice 562 
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varieties adapted to AWD, i.e. with as high yields as the best high yielding variety under CF, 563 

would greatly contribute to wider adoption of AWD water management by farmers (Price et al. 564 

2013; Volante et al. 2017). Given the genetic diversity we observed for response to AWD within 565 

the working collection of the CREA, which represents only a share of the genetic diversity of 566 

the rice japonica sub-species, one can expect large genetic diversity at the whole species level.  567 

The almost identical and high level of broad-sense heritability observed under AWD and CF 568 

water management systems demonstrates the feasibility of direct selection for AWD. Such high 569 

heritability under managed abiotic stress has already been reported in rice for grain yield under 570 

drought stress (Venuprasad et al. 2007; Kumar et al. 2008). However, the adoption of the direct 571 

selection option may not be practicable for breeding programs with limited resources, if they 572 

also need to continue to breed for CF water management. Moreover, this option would not take 573 

full advantage of historical data produced by the breeding program for CF. The high accuracy 574 

of multi-environment genomic prediction we observed in the present study, especially in across-575 

environment prediction, paves the way for a new breeding option: conducting simultaneously 576 

direct and indirect selection for both AWD and CF. Indeed, as we saw in our M2 strategy, the 577 

multi-environment genomic models can boost the predictive power of across-environment 578 

predictions, i.e. from CF to AWD and vice versa. In this context, the practical question would 579 

be the number of selection candidates that need to be phenotyped under the two water 580 

management systems relative to the number of candidates that need to be phenotyped under one 581 

water management system only. Our results suggest that, for the germplasm and environmental 582 

conditions we used and the traits we considered, the percentage of untested candidates under 583 

AWD can go up to 40% with no significant negative effect on prediction accuracy as long as 584 

they are tested under CF, or vice versa. Considering the additional cost reductions that could be 585 

obtained by optimizing the size of the training set, as shown by the S1 scenario in our across-586 

generations prediction experiments, it seems possible to add the objective of adaptation to AWD 587 
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to an existing GS based rice breeding program for CF, with rather limited additional costs. Ben 588 

Hassen et al. (2017) showed that rice breeding programs based on pedigree schemes can use a 589 

genomic model trained with data from their working collection to predict performances of 590 

progenies produced by the conventional pedigree breeding program. Breeding for adaptation to 591 

AWD can be integrated in this general scheme. The feasibility of application of this breeding 592 

approach to other abiotic stresses deserves further exploration.  593 
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Supplementary figures and tables 754 

Figure S1: Correlation matrix between performance in each condition (AWD: alternate wetting 755 

and drying and CF: continuous flooding) and response variables (response index and slope of 756 

the joint regression) for the three traits considered: days to flowering (FL), nitrogen-balance 757 

index (NI), and panicle weight (PW). The reference (RP) and progeny (PP) populations are in 758 

green and grey, respectively. 759 

Figure S2: Single environment and multi-environment (M1 and M2) prediction accuracies in 760 

cross validation experiments with 40% of untested entries in the reference population obtained 761 

with three statistical models (GBLUP, RKHS-1, RKHS-2). Continuous flooding and alternate 762 

wetting and drying water management conditions are in blue and orange, respectively. Three 763 

traits are presented: days to flowering (FL), nitrogen balance index (NI) panicle weight (PW). 764 

The letters in each panel represent the results of Tukey’s HSD comparison of means and apply 765 

to each panel independently. The means differ significantly (p-value < 0·05) if two boxplots 766 

have no letter in common. 767 

 768 

Table S1: Variance components and the associated statistic (F-value for fixed effects and Z-769 

value for random effects) of days to flowering (FL), nitrogen balance index (NI), and panicle 770 

weight (PW). Separate analysis of each population and each water management system 771 

(alternate wetting and drying – AWD and continuous flooding – CF). 772 

Table S2: Variance components and the associated statistic: F-value for fixed effects and Z-773 

value for random effects) of days to flowering (FL), nitrogen balance index (NI), and panicle 774 

weight (PW). Separate analysis of each population pooled over water management conditions. 775 

Table S3: Variance components for the joint regression for days to flowering (FL), nitrogen 776 

balance index (NI), and panicle weight (PW). Results are shown for the reference and progeny 777 

populations. 778 

Table S4: Mean genomic prediction accuracies in the reference population for the response 779 

variables (index and slope) and the performance within each condition (AWD and CF). The 780 

results for days to flowering (FL), nitrogen balance index (NI) and panicle weight (PW) are 781 

presented. Two statistical models (GBLUP and RKHS) were used. 782 

Table S5: Genomic prediction accuracies for across population validation for the response 783 

variables (index and slope) and the performance within each condition (AWD and CF). The 784 

scenarios used to define the training set are S1 (only the parents), S2 (100 individuals of the RP 785 

selected with CDmean) and S3 (the whole RP). Results for days to flowering (FL), nitrogen 786 

balance index (NI) and panicles weight (PW) are presented. Two statistical models (GBLUP 787 

and RKHS) were used. 788 
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Table S6: Mean genomic prediction accuracy of the performance within each condition (AWD 789 

and CF) using single or multi-environment models in the reference population. For multi-790 

environment models, two methods of cross-validation were used: M1 and M2. Results for days 791 

to flowering (FL), nitrogen balance index (NI) and panicle weight (PW) are presented. Two 792 

statistical models (GBLUP, RKHS) were used in single environment prediction and three 793 

(GBLUP, RKHS-1 and RKHS-2) in multi-environment prediction.   794 

Table S7: Genomic prediction accuracies of the performance within each condition (AWD and 795 

CF) using single or multi-environment models for across population validation. The scenarios 796 

used to define the training set are S1 (only the parents), S2 (100 individuals of the RP selected 797 

with CDmean) and S3 (the whole RP). Results for days to flowering (FL), nitrogen balance 798 

index (NI) and panicle weight (PW) are presented. Two statistical models (GBLUP, RKHS) 799 

were used in single environment prediction and three (GBLUP, RKHS-1 and RKHS-2) in multi-800 

environment prediction.  801 
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Figures and Tables 802 

 803 

Figure 1: Distribution of adjusted phenotypic values of days to flowering (FL), nitrogen 804 

balance index (NI) and panicle weight (PW) within the reference and progeny populations in 805 

continuous flooding (blue) and alternate wetting and drying (orange) conditions. 806 

  807 
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 808 

Figure 2: Reaction norm between the two conditions (AWD: alternate wetting and drying and 809 

CF: continuous flooding) for all the genotypes of the two populations (the reference population 810 

and the progeny population).The three traits are represented: days to flowering (FL), nitrogen 811 

balance index (NI) and panicle weight (PW). Spearman's rank correlation coefficient (ρ) is 812 

indicated in each panel. 813 
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 815 

 816 

Figure 3: Accuracy of genomic prediction in cross validation experiments within the reference 817 

population obtained with two statistical models (GBLUP, RKHS) for the response variables 818 

(index and slope) and the performance within each condition (AWD and CF). The three traits 819 

are presented: days to flowering (FL), nitrogen balance index (NI) and panicle weight (PW). 820 

The letters in each panel represent the results of Tukey’s HSD comparison of means and apply 821 

to each panel independently. The means differ significantly (p-value < 0·05) if two boxplots 822 

have no letter in common. 823 
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 825 

Figure 4: Accuracy of genomic prediction in across population validation for the response 826 

variables (index and slope) and the performance within each condition (AWD and CF) obtained. 827 

Two statistical models (GBLUP, RKHS) and three traits (days to flowering (FL), nitrogen 828 

balance index (NI) and 100 panicle weight (PW)) were studied. The scenarios used to define 829 

the training set are in color: orange (S1: only the parents), green (S2: 100 individuals of the RP 830 

selected with CDmean) and blue (S3: the whole RP). 831 

 832 
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 834 

 835 

Figure 5: Single environment and multi-environment (M1 and M2) prediction accuracy in cross 836 

validation experiments in the reference population obtained with three statistical models 837 

(GBLUP, RKHS-1, RKHS-2). Continuous flooding and alternate wetting and drying water 838 

management conditions are in blue and orange, respectively. The three studied traits are 839 

presented: days to flowering (FL), nitrogen balance index (NI) and panicle weight (PW). The 840 

letters in each panel represent the results of Tukey’s HSD comparison of means and apply to 841 

each panel independently. The means differ significantly (p-value < 0·05) if two boxplots have 842 

no letter in common. 843 
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 845 

Figure 6: Single environment and multi-environment prediction accuracy in across population 846 

validation experiments obtained with three statistical models (GBLUP, RKHS-1, RKHS-2). 847 

Continuous flooding and alternate wetting and drying water management conditions are in blue 848 

and orange, respectively. The scenarios used to define the training set are represented by the 849 

different shades of orange or blue: light (S1: only the parents), intermediate (S2: 100 individuals 850 

of the RP selected with CDmean) and dark (S3: the whole RP).The three studied traits are 851 

presented: days to flowering (FL), nitrogen balance index (NI) and panicle weight (PW). 852 
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Table 1: Sources of phenotypic variation and derived summary statistics of days to flowering 854 

(FL), nitrogen balance index (NI) and panicle weight (PW) in two populations of rice (reference 855 

RP and progeny PP) conducted in two consecutive seasons under two water management 856 

systems (AWD and CF).  857 

Pop Trait System Mean SD 
𝐹𝑖𝑥𝑒

2  
(1) 

Variances accounted by 

the random effects(2) 
Total 

phenotypic 

variance 
𝑅𝐶𝑜𝑛𝑑

2 (3) 𝐻²(𝑆𝐸) (4) 𝑟̂𝐺[ 𝑟̂1; 𝑟̂2] (5) 
𝐶𝑅

𝐷𝑅
(6) 

G Y x G R 

RP 

FL 
AWD 100.3 7.8 44.12 57.68 10.90 11.28 123.98 0.91 0.89 (0.01) 

0.955 [0.943;0.964] 0.98 
CF 93.4 7.0 8.43 47.78 4.36 5.95 66.52 0.91 0.94 (0.01) 

NI 
AWD 20.1 2.0 0.91 4.99 1.22 14.71 21.83 0.33 0.61 (0.05) 

0.589 [0.508;0.661] 0.56 
CF 23.7 2.5 1.50 6.17 4.09 16.75 28.50 0.41 0.56 (0.05) 

PW 
AWD 252.9 57.9 720.96 3435.39 949.48 3142.66 8248.49 0.62 0.76 (0.03) 

0.773 [0.722;0.816] 0.82 
CF 342.3 71.1 119.98 5088.95 850.38 2437.24 8496.55 0.71 0.85 (0.02) 

PP 

FL 
AWD 102.8 6.1 40.94 35.15 8.17 11.78 96.04 0.88 0.85 (0.03) 

0.897 [0.850;0.930] 0.90 
CF 92.9 5.2 27.97 23.20 7.38 2.27 60.81 0.96 0.85 (0.03) 

NI 
AWD 17.1 1.5 1.55 3.03 0.00 5.32 9.90 0.46 0.76 (0.04) 

0.731 [0.622;0.812] 0.75 
CF 18.4 2.0 2.63 4.12 0.70 3.72 11.16 0.67 0.80 (0.04) 

PW 
AWD 199.9 51.3 889.23 2487.80 466.32 522.24 4365.59 0.88 0.88 (0.02) 

0.848 [0.781;0.896] 0.86 
CF 277.6 53.0 258.26 2698.52 415.49 554.00 3926.27 0.86 0.90 (0.02) 

(1) Variance accounted for by the season effect: Season effect: 2012 versus 2013 for the reference population and 858 
2014 versus 2015 for the progeny population. 859 
(2) Random effects: G: accession, Y x G: Season x Accession, R: Residual 860 
(3) 𝑅𝐶𝑜𝑛𝑑

2  : Conditional coefficient of determination  861 
(4) 𝐻²(𝑆𝐸) : Broad sense heritability for single environment analysis  862 
(5) Pearson correlations between adjusted means of accessions under AWD and CF.    863 
(6) Ratio of correlated response in CF to direct response in AWD. 864 
  865 
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Table 2: Analysis of factors that influence the prediction accuracy of response variables in the 866 

reference population. The effects of the type of response (index, slope, AWD, CF), the trait 867 

(FL, NI and PW), the statistical model (GBLUP and RKHS) and their interactions were 868 

evaluated.  869 

R² CV RMSE Mean Source DF SS MS FValue ProbF 

Model 1: Only main effects 

0.648 23.617 0.152 0.642 Model 6 101.489 16.915 734.86 <0.0001 

    Error 2393 55.082 0.023   

    Corrected Total 2399 156.570 
 

  

    Response 3 77.532 25.844 1122.78 <0.0001 

    Trait 2 23.571 11.785 512.01 <0.0001 

    S model 1 0.386 0.386 16.76 <0.0001 

Model 2: Main effects and interactions  

0.732 20.681 0.133 0.642 Model 23 114.633 4.984 282.38 <0.0001 

    Error 2376 41.937 0.018   

    Corrected Total 2399 156.570    

    Response 3 77.532 25.844 1464.21 <0.0001 

    Trait 2 23.571 11.785 667.71 <0.0001 

    S model 1 0.386 0.386 21.86 <0.0001 

    Response*Trait 6 12.456 2.076 117.61 <0.0001 

    Trait*S model 2 0.433 0.217 12.27 <0.0001 

    Response*S model 3 0.073 0.024 1.38 0.2459 

    Response*Trait*S model 6 0.182 0.030 1.72 0.1126 

R²: Coefficient of determination; CV: Coefficient of variation; RMSE: Root mean square error; Mean: Intercept 870 
value of the transformed accuracy (Z); DF: Degree of freedom; SS: Sum of squares; MS: Mean square. 871 

 872 

  873 
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Table 3: Analysis of factors that influence the variation in prediction accuracy in the reference 874 

population using multi-environment models. The effects of the statistical model (GBLUP, 875 

RKHS-1 and RKHS-2), the trait (FL, NI and PW), the cross-validation strategy (M1 and M2) 876 

and the target condition (AWD and CF) and their interactions were evaluated.  877 

R² CV RMSE Mean Source DF SS MS FValue ProbF 

Analysis with only main effects 

0.723 24.163 0.221 0.914 Model 7 687.496 98.214 2014.66 <0.0001 

    Error 5392 262.858 0.049   

    Corrected Total 5399 950.354    

    CV strategy 2 362.879 181.439 3721.86 <.0001 

    Trait 2 320.946 160.473 3291.78 <.0001 

    S model 2 3.352 1.676 34.38 <.0001 

    Target condition 1 0.319 0.319 6.55 0.0105 

Analysis with main effects and all first-order interactions 

0.899 14.640 0.134 0.914 Model 25 854.176 34.167 1909.11 <.0001 

    Error 5374 96.178 0.018   

    Corrected Total 5399 950.354    

    CV strategy 2 362.879 181.440 10138.0 <.0001 

    Trait 2 320.946 160.473 8966.54 <.0001 

    S model 2 3.352 1.676 93.65 <.0001 

    Target condition 1 0.319 0.319 17.83 <.0001 

    CV strategy*Trait 4 157.483 39.371 2199.87 <.0001 

    Target condition*Trait 2 7.811 3.906 218.23 <.0001 

    Trait*S model 4 0.783 0.196 10.94 <.0001 

    Target condition*CV strategy 2 0.300 0.150 8.37 0.0002 

    CV strategy*S model 4 0.300 0.075 4.20 0.0022 

    Target condition*S model 2 0.003 0.002 0.09 0.9169 

R²: Coefficient of determination; CV: Coefficient of variation; RMSE: Root mean square error; Mean: Intercept 878 
value of the transformed accuracy (Z); DF: Degree of freedom; SS: Sum of squares; MS: Mean square. 879 
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