1 Genetic basis of transgressive segregation in rice heading phenotypes

- 2
- ³ Yohei Koide,^{*,1} Takashi Uchiyama,^{*,1} Yuya Ota,^{*,1} Shuntaro Sakaguchi,* Ayumi
- 4 Tezuka,[†] Atsushi J. Nagano,[†] Seiya Ishiguro,* Itsuro Takamure,* and Yuji Kishima*,²
- 5
- ⁶ * Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku,
- 7 Sapporo, 060-8589, Japan
- ⁸ [†] Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga
- 9 520-2194, Japan
- ¹⁰ ¹ These authors contributed equally.
- 11

- 13
- 14

15	Running	Title:	Rice	heading	transgre	ssive s	egregat	ion

16	
17	Key words: rice; transgressive segregation; extreme phenotype; days to heading; QTL
18	
19	² Corresponding author: Research Faculty of Agriculture, Hokkaido University, Kita-9
20	Nishi-9, Kita-ku, Sapporo, 060-8589, Japan. E-mail: kishima@abs.agr.hokudai.ac.jp
21	
22	ABSTRACT
23	Transgressive segregation produces hybrid progeny phenotypes that exceed parental
24	phenotypes. Unlike heterosis, extreme phenotypes caused by transgressive segregation
25	are heritably stable. We examined transgressive phenotypes of flowering time in rice.
26	Our previous study examined days to flowering (heading; DTH) in six F2 populations
27	for which the parents had distal DTH, and found very few transgressive phenotypes.
28	Here, we demonstrate that transgressive segregation in F2 populations occurred between
29	parents with proximal DTH. DTH phenotypes of the A58 \times Kitaake F2 progenies
30	frequently exceeded those of both parents. Both A58 and Kitaake are japonica rice
31	cultivars adapted to Hokkaido, Japan, which is a high-latitude region, and have short
32	DTH. Among the four known loci required for short DTH, three loci had common

33	alleles in A58 and Kitaake, and only the one locus had different alleles. This result
34	indicates that there is a similar genetic basis for DTH between the two varieties. We
35	identified five new quantitative trait loci (QTLs) associated with transgressive DTH
36	phenotypes by genome-wide single nucleotide polymorphism (SNP) analysis. Each of
37	these QTLs showed different degrees of additive effects on DTH, and two QTLs had
38	epistatic effect on each other. These results demonstrated that genome-wide SNP
39	analysis facilitated detection of genetic loci associated with the extreme phenotypes and
40	revealed that the transgressive phenotypes were produced by exchanging
41	complementary alleles of a few minor QTLs in the similar parental genotypes.
42	
42 43	INTRODUCTION
	INTRODUCTION The range of phenotypic variation in a quantitative trait depends on its genetic
43	
43 44	The range of phenotypic variation in a quantitative trait depends on its genetic
43 44 45	The range of phenotypic variation in a quantitative trait depends on its genetic complexity (ALONSO-BLANCO AND MENDEZ-VIGO 2014; HUANG AND HAN 2014). Cross
43 44 45 46	The range of phenotypic variation in a quantitative trait depends on its genetic complexity (ALONSO-BLANCO AND MENDEZ-VIGO 2014; HUANG AND HAN 2014). Cross hybridizations often produce progenies with wider phenotypic variation than their
 43 44 45 46 47 	The range of phenotypic variation in a quantitative trait depends on its genetic complexity (ALONSO-BLANCO AND MENDEZ-VIGO 2014; HUANG AND HAN 2014). Cross hybridizations often produce progenies with wider phenotypic variation than their parents, which is referred to as transgressive segregation (RICK AND SMITH 1953;

51	evolution (RIESEBERG et al. 2002; DITTRICH-REED AND FITZPATRICK 2013). From a
52	breeding perspective, this phenomenon has also strongly contributed to crop and animal
53	improvements (VEGA AND FREY 1980; TANKSLEY AND MCCOUCH 1997). However,
54	little is known about the genetic basis of transgressive segregations, which are
55	associated with phenotypic improvement of useful traits in crops.
56	
57	Days to heading (DTH) determines the regional adaptability of rice (Oryza sativa L.),
58	which is cultivated widely in tropical and temperate regions (HORI et al. 2016). DTH is
59	an important agronomic trait that controls flowering time in rice. Flowering time is a
60	complicated trait in many crops, and the genetic basis of DTH has been well studied in
61	rice; to date, 14 quantitative trait loci (QTLs) were identified based on natural variation
62	and isolated by map-based cloning strategies (EBANA et al. 2011; HORI et al. 2016;
63	BRAMBILLA et al. 2017). We previously examined DTH in rice using six different F2
64	populations derived from crosses between Kokusyokuto-2 (a Hokkaido landrace
65	denoted as A58) with a short DTH (81 days) used as the seed parent and six varieties
66	with long DTH (114–126 days) used as the pollen parents (OTA et al. 2014). Most F2
67	plants from all six crosses showed intermediate DTH that fell within the parental ranges.
68	OTA <i>et al.</i> (2014) found some plants with shorter DTH than A58 from the A58 \times

69	Kasalath F2 population; only this F2 population had some individuals with shorter DTH
70	relative to those of the parents, and the other five F2 populations did not exhibit such
71	extreme phenotypes. In the plants with shorter DTH, we identified a genetic interaction
72	(Ghd7 from A58 and Ehd1 from Kasalath) that contributed to the extreme phenotypes
73	produced by the cross of the distantly related parents (OTA et al. 2014).
74	
75	Here, we were interested in determining how the range of phenotypic variation is
76	produced and whether extreme phenotypes can be produced when both parents used in
77	the cross have proximal phenotypes. The progenies from parents with the same
78	genotypes would have very narrow phenotypic variation, while certain range of the
79	phenotypic variation like transgressive phenotypes should be expected in the F2
80	generation from parents with different genotypes that could coincidentally cause similar
81	phenotypes. By testing these predictions, we may be able to identify the unknown
82	genetic entities that produce extreme phenotypes.
83	
84	We specifically focused on phenotypic variations in DTH of a population derived from
85	a cross between two closely related varieties, A58 and Kitaake (an improved variety),
86	both of which are adapted to Hokkaido, a northernmost rice cultivation area. Compared

87	with the progenies of distantly related parents with distal DTH phenotypes, more A58 \times
88	Kitaake progenies had extreme short or long DTH phenotypes relative to the parents.
89	We evaluated the genetic causes of transgressive segregations of both early and late
90	DTH observed in this segregating population. First, known genes associated with short
91	DTH were evaluated in A58, Kitaake, and their progenies to determine if transgressive
92	phenotypes were produced. Subsequently, we performed genome-wide single
93	nucleotide polymorphism (SNP) analysis to detect unknown QTLs associated with
94	extremely short or long DTH. The results obtained here demonstrated that a relatively
95	small number of minor QTLs and their epistatic interactions produced transgressive
96	segregation in DTH. Important genetic properties of the extreme heading phenotypes
97	caused by transgressive segregation are discussed.
98	
99	MATERIALS AND METHODS
100	Genetic stocks
101	A rice landrace from Hokkaido, A58, and an improved variety of Hokkaido, Kitaake,
102	were used as parents. A58 seeds were obtained from seed stocks at the Plant Breeding
103	Laboratory in Hokkaido University. Kitaake seeds were obtained from the genebank at
104	the Agricultural Research Department of Hokkaido Research Organization. A58 was

105	crossed with Kitaake to obtain F1 seeds. A total of 248 F2 plants were obtained from
106	self-pollination of the F1 plants. From the 248 F2 plants, 132 were randomly selected to
107	obtain F3 populations. These F3 populations were used for genetic analysis of DTH
108	using DNA markers in the Hdl locus, which is a major locus that affects DTH in rice
109	(YANO et al. 2000). Of the 132 F3 populations, 15 individuals that showed early DTH
110	and had a fixed <i>Hd1</i> genotype were selected as early-heading populations. Similarly, 15
111	individuals that showed late DTH and had a fixed Hd1 genotype were selected as
112	late-heading populations. Plants in these two selected populations were self-pollinated
113	to produce F4 lines. The genotypes of the 15 early and 15 late lines in the F4 generation
114	were determined by genome-wide SNP analysis (Figure S1).
115	
116	DTH analysis
117	Plants were grown in an experimental paddy field at Hokkaido University, Sapporo,
118	Japan (43.1 N). For F2 and F3 populations, DTH was measured in 2013 and 2014,
119	respectively. DTH for the F4 generation was measured in 2015 and 2016 as the number
120	of days from sowing to emergence of the first panicle of a plant. Average DTH of the
121	F3 and F4 populations were calculated from the values of five or six plants.
122	

Genotyping and sequencing

124	Genomic DNA was extracted from leaf samples using Plant DNAzol (Invitrogen,
125	Carlsbad, CA, USA). To genotype the Hdl locus, two primers, Hd1L (5'-CGA CGT
126	GCA GGT GTA CTC CG-3') and Hd1R (5'-AAT CTG TGT AAG CAC TG ACG-3'),
127	were used based on the Hd1 sequence. Genome-wide SNPs were detected by double
128	digest restriction site-associated DNA sequencing (ddRAD-Seq) (BAIRD et al. 2008;
129	PETERSON et al. 2012), which began with DNA library preparation using the restriction
130	enzymes BglII and EcoRI. Sequencing was performed with 51 bp single-end reads in
131	one lane of a HiSeq2000 Sequencer (Illumina, San Diego, CA, USA) by Macrogen
132	(Seoul, South Korea). The ddRAD-sequencing reads were trimmed with Trimmomatic
133	ver 0.33 (BOLGER et al. 2014) with the following parameters: LEADING:19
134	TRAILING:19 SLIDINGWINDOW:30:20 AVGQUAL:20 MINLEN:51. The trimmed
135	reads were mapped to a RAD reference for the Os-Nipponbare-Reference-IRGSP-1.0
136	using Bowtie 2 (LANGMEAD AND SALZBERG 2012) with a default parameter setting. To
137	build RAD loci, we used the ref_map.pl pipeline in Stacks ver. 1.29 (CATCHEN et al.
138	2011). All RAD-Seq procedures were carried out by Clockmics, Inc. (Izumi, Osaka,
139	Japan). A total of 1,402 SNPs between parental varieties were detected by ddRAD-Seq;
140	among these SNPs, 634 were considered reliable after filtering SNPs that appeared in

141 more than 80% of F4 plants.

142

143	PCR amplicons for the four previously identified genes involved in DTH (<i>Hd1</i> ,
144	Hd2/OsPRR37, E1/Hd4/Ghd7, and Hd5/DTH8) were purified using a NucleoSpin Gel
145	and PCR Clean-up kit (Macherey-Nagel, Düren, Germany). Purified samples were
146	sequenced in both directions using a Big Dye Terminator Cycle Sequencing kit
147	(Applied Biosystems, Foster City, CA, USA) on an ABI310 automatic sequencer
148	(Applied Biosystems). Sequence alignment was performed using CLUSTAL W 2.1
149	(THOMPSON et al. 1994). The primers used for sequencing the four genes were as
150	follows: Se1/Hd1 [5'-CGA CGT GCA GGT GTA CTC CG-3' and 5'-AAT CTG TGT
151	AAG CAC TG ACG-3'], <i>Hd2/OsPRR37</i> [5'-TCT TTC TGA TGG CTG TCT GC-3'
152	and 5'-GCC ATC GCG TAG GTA GGT AG-3'], E1/Hd4/Ghd [5'-GCT GGC TGG
153	ACT TCA CTA CC-3' and 5'-CAT GGG CCA CTT CTA AGA TCA-3'], and
154	Hd5/DTH8 [5'-CGG AGT TCA TCA GCT TCG TT-3' and 5'-TGA CCA TGG TGT
155	GAG TGT GA-3'].
156	

157 *Transgressive index*

158 We defined the transgressive index, which indicates the proportion of phenotypic

159	differences between both parents and the phenotypic range in the F2 population. The
160	transgressive index was calculated by dividing the width of the distribution of DTH in
161	the F2 population by the parental DTH difference.
162	
163	Marker genotype value
164	Allelic effects of each of the six loci that influenced DTH of the A58 \times Kitaake hybrid
165	progenies were evaluated as marker genotype values (GODDARD AND HAYES 2007).
166	Average DTH for each allele was calculated based on DTH data collected from all
167	homozygous alleles in the 30 F4 population lines from 2016. Then, the central value
168	was determined based on the two phenotypic averages obtained from each of both
169	alleles at the same locus. The marker genotype value was equivalent to the difference
170	between the central value and either allelic average DTH in the same locus.
171	
172	Data availability
173	All genetic stocks and sequence data are available on request. Sequence data for this
174	study were deposited in DDBJ (DDBJ accession number XXXXX).
175	

RESULTS

 $1 \ 0$

177 *Variation and transgressive phenotypes of DTH in A58 × Kitaake progenies*

178	Both A58 and Kitaake are adapted to the high-latitude area between 41.2 N and 45.4 N
179	in Hokkaido, Japan, and consequently have photoperiod-insensitive, short DTH and are
180	cold-resistant (ISHIGURO et al. 2014; OTA et al. 2014). There was no significant DTH
181	difference between these two varieties (t-test: A58, 81.2 ± 0.38 ; Kitaake, 80.5 ± 0.66 ; P
182	= 0.19) (Figure 1A). DTH of these F2 plants were widely distributed from 69 to 87 days
183	(Figure 1A), and the earliest plant DTH was equivalent to that of an extreme
184	early-heading variety (Figure 1A).
185	
186	The transgressive index of the A58 \times Kitaake progenies was 25.7 (Figure 1A). In the six
187	crosses between A58 and the other varieties that were more genetically distant from
188	A58 than Kitaake (OTA et al. 2014), the transgressive indexes ranged from 0.91 to 2.12
189	(Figure 1B). The transgressive index of DTH indicated that the DTH of A58 \times Kitaake
190	F2 plants exceeded DTH of either parent, but such a strong transgressive segregation
191	was not observed in the previously published crosses.
192	
193	The DTH distribution in the A58 \times Kitaake-derived F3 populations was similar to that
194	of the F2 population (Figure S2). For further analysis, we selected 15 early- and

195	late-heading F3 plants and developed two F4 populations (early and late) by
196	self-pollination. Average DTH of early- and late-heading F4 populations were $63.8 \pm$
197	1.32 and 74.6 \pm 0.99, respectively, in 2015, and 72.2 \pm 1.32 and 80.0 \pm 1.00,
198	respectively, in 2016 (Figure 2). These differences between DTH of the early and late
199	populations were significant (t-test, $P < 0.001$) throughout 2015 and 2016, and it was
200	predicted that these two distinct populations were generated by new genetic interactions
201	derived from the A58 \times Kitaake cross.
202	
203	Sequence analysis of genes that control DTH, and the effect of Hd1 on DTH
204	Four loci (E1/Hd4/Ghd7, Hd2/OsPRR37, Se1/Hd1, and Hd5/DTH8) control DTH in
205	varieties from Hokkaido, and their specific alleles facilitated adaptation by producing
206	photoperiod-insensitive varieties with short DTH (ICHITANI et al. 1997; FUJINO AND
207	SEKIGUCHI 2005a; FUJINO AND SEKIGUCHI 2005b; NONOUE <i>et al.</i> 2008; FUJINO <i>et al.</i>
208	2013; Koo et al. 2013). To confirm whether these four loci are related to the DTH
209	differences observed in the A58 \times Kitaake F2 population, we compared nucleotide
210	sequences of these loci (Figure 3). Sequence analysis of <i>Hd1</i> showed the presence of
211	polymorphisms, including a 312-bp insertion/deletion in A58 and Kitaake. This
212	polymorphism in <i>Hd1</i> might have produced the DTH differences observed in the F2

213	population. In contrast to <i>Hd1</i> , no polymorphisms were detected in the other three loci
214	(E1/Hd4/Ghd7, Hd2/OsPRR37, and Hd5/DTH8) in A58 and Kitaake (Figure 3).
215	
216	In terms of the effect of the <i>Hd1</i> locus on the A58 \times Kitaake F2 population, the average
217	DTH in A58-type homozygous, heterozygous, and Kitaake-homozygous populations
218	were 81.3 ± 0.36 , 79.5 ± 0.38 , and 78.8 ± 0.46 , respectively (Table 1). The results
219	showed that <i>Hd1</i> had a significant but small effect on DTH in this population (P $<$
220	0.001), which revealed that the extremely early phenotype of progenies was not fully
221	explainable by only <i>Hd1</i> , and another factor(s) may be involved.
222	
222 223	Detection of SNPs associated with extreme DTH phenotypes
	<i>Detection of SNPs associated with extreme DTH phenotypes</i> If a QTL for DTH was located near an SNP, the SNP alleles tended to be associated
223	
223 224	If a QTL for DTH was located near an SNP, the SNP alleles tended to be associated
223 224 225	If a QTL for DTH was located near an SNP, the SNP alleles tended to be associated with early- or late-heading populations. Genome-wide SNP analysis using ddRAD-Seq
223 224 225 226	If a QTL for DTH was located near an SNP, the SNP alleles tended to be associated with early- or late-heading populations. Genome-wide SNP analysis using ddRAD-Seq provided us a total of 634 reliable SNPs for 15 early and 15 late lines in the F4
223 224 225 226 227	If a QTL for DTH was located near an SNP, the SNP alleles tended to be associated with early- or late-heading populations. Genome-wide SNP analysis using ddRAD-Seq provided us a total of 634 reliable SNPs for 15 early and 15 late lines in the F4 populations (Figure 4). Among the 634 SNPs, 27 were detected as loci where the

Figure 4); these SNP clusters represented the chromosomal regions where QTLs for
 DTH were present.

233

234 Validation of relationships between SNP genotypes and DTH

Table 2 shows average DTH between two alleles of each of the five SNP clusters in the

- F4 lines examined in 2015 and 2016. Significant differences (P < 0.001) in DTH
- between A58- and Kitaake-type homozygous alleles were observed in SNPs on Ch 4 in

both 2015 and 2016 (Table 2 and Figure S3). In the SNP cluster on Ch 10, significant

- differences in DTH between the two alleles were also observed, although the difference
- was small in 2016. SNPs on Chs 1 and 6 weakly significantly differed between the two
- alleles that were only observed in 2015. Among the five clusters, the weakest effect was

detected in the Ch 2 cluster, which was not significant (P = 0.14), but still clearly

discriminated the two alleles by 3 to 4 days. Overall, the order of the five SNP clusters

based on additive effects on DTH was: Ch 4 > (Hd1) > 10 > 6 > 1 > 2. The

- Kitaake-derived alleles in the SNPs on Chs 4, 10, and 6 produced shorter DTH than the
- A58-derived alleles; alternatively, the A58-derived alleles on Chs 1 and 2 produced
- shorter DTH than the Kitaake-derived alleles.

249	Among the selected chromosomal regions (Chs 1, 4, 6, and 10), genetic interactions
250	were tested using the F2 population (Figure 1). Among several combinations of possible
251	epistatic interactions, a strong genetic interaction was identified in the SNPs on Chs 1
252	and 10 (Figures 5 and S4). The A58-derived alleles in the SNPs on Ch1 decreased DTH
253	when they were combined with Kitaake-derived alleles in SNPs on Ch 10, but increased
254	DTH when combined with A58-derived alleles in SNPs on Ch 10 (Figure 5). No known
255	genes associated with DTH are located around these two chromosomal regions. These
256	findings revealed that unknown genes from A58 and Kitaake caused epistatic
257	interactions responsible for the transgressive early phenotype.
258	
258 259	Loci weighted by marker genotype values based on DTH data from 2016 are shown in
	Loci weighted by marker genotype values based on DTH data from 2016 are shown in Figure 6. Among a total of 30 F4 lines, nine harbored homozygous alleles at all six loci
259	
259 260	Figure 6. Among a total of 30 F4 lines, nine harbored homozygous alleles at all six loci
259 260 261	Figure 6. Among a total of 30 F4 lines, nine harbored homozygous alleles at all six loci (the five QTLs and <i>Hd1</i>). These nine lines were sorted by DTH (Figure 6). Based on
259 260 261 262	Figure 6. Among a total of 30 F4 lines, nine harbored homozygous alleles at all six loci (the five QTLs and <i>Hd1</i>). These nine lines were sorted by DTH (Figure 6). Based on marker genotype values, direction of allelic effect, and the numbers of the alleles with
259 260 261 262 263	Figure 6. Among a total of 30 F4 lines, nine harbored homozygous alleles at all six loci (the five QTLs and <i>Hd1</i>). These nine lines were sorted by DTH (Figure 6). Based on marker genotype values, direction of allelic effect, and the numbers of the alleles with an effect, the order based on DTH was reasonable, although it was not identical to the

267	produced by transgressive segregation might be defined by allelic composition with
268	different phenotypic effects occurring in either direction.

269

270

DISCUSSION

271	Here, we showed that transgressive segregation occurred in the hybrid progenies of two
272	rice varieties, A58 and Kitaake, both of which have short DTH as an adaptation to
273	high-latitude region. Phenotypic variation beyond the parental range was observed in
274	this segregating population and facilitated uncovering of the genetic basis of
275	transgressive segregation and extreme DTH phenotypes. The two parental varieties
276	shared the same genotypes for three known major QTLs (E1/Hd4/Ghd7, Hd2/OsPRR37,
277	and <i>Hd5/DTH8</i>) (Figure 3), but different alleles for <i>Se1/Hd1</i> and several unknown
278	minor QTLs. Such different genotypes in minor QTLs produced new genetic
279	combinations that resulted in transgressive phenotypes of the progenies. QTLs direct
280	either positive or negative actions based on the effect of parental alleles. If negative
281	QTL alleles in either parent are replaced by the positive alleles of the other parent, the
282	progeny could obtain the desired phenotype because of the presence of more positive
283	alleles (DE VICENTE AND TANKSLEY 1993; RIESEBERG et al. 1999). Our results appeared
284	to demonstrate this scenario, because we observed allelic complementation at QTLs,

285	and indicate the importance of such "hidder	" genetic variations despite close genetic
286	relationships (HAGIWARA et al. 2006).	

288	We employed SNP analysis with deep sequencing to obtain a sufficient number of
289	markers for the closely related varieties. This was a powerful approach that detected
290	more than 600 genome-wide SNPs between both Hokkaido-adapted varieties (Figure 4).
291	In addition, such similar genetic backgrounds of the two varieties, A58 and Kitaake,
292	facilitated identification of the minor QTLs that shape transgressive early heading by
293	genome-wide SNP analysis.
294	
295	Our analysis detected five SNP clusters that corresponded to QTLs and the Hd1 locus,
296	which contributed to DTH differences in the A58 \times Kitaake progenies (Table 1 and 2).
297	These QTLs were involved in both the additive and epistatic effects on extreme heading
298	phenotypes (Table 2 and Figure 5). Among the SNP clusters, the strongest effect was
299	explained by the Ch 4 cluster, in which the Kitaake-derived allele(s) caused decreased
300	DTH (Table 2). The Ch 4 cluster was located from 29.8 to 32.4 Mb on Ch 4 (Figure 4),
301	where only one gene, Rice FLO-LFY homolog (RFL) (KYOZUKA et al. 1998), is
302	functionally characterized as a flowering-related gene by the QTL Annotation Rice

303	Online (Q-TARO) database (http://qtaro.abr.affrc.go.jp/). Similarly, the Ch 6 cluster
304	(from 24.5 to 25.5 Mb) included a gene for photoperiod sensitivity, Se5 (IZAWA et al.
305	2000). However, no functional polymorphisms in A58 and Kitaake were detected in
306	either RFL or Se5. In the other QTLs found in the SNP clusters on Chs 1, 2, and 10, no
307	known DTH-related genes were identified. These results demonstrated that some
308	unknown genes present in these SNP clusters affected DTH of the Hokkaido varieties.
309	Interestingly, our analysis also showed possible epistatic interactions between genes in
310	SNP clusters on Chs 1 and 10 that shortened DTH (Figure 5). It was previously thought
311	that epistasis is unlikely to be a major cause of transgressive phenotypes (DE VICENTE
312	AND TANKSLEY 1993; RIESEBERG et al. 1999); however, in our study, epistatic
313	interactions explained the transgressive phenotypes observed in the segregating
314	populations (Figure 5).
315	
316	To date, four genes (E1/Hd4/Ghd7, Hd2/OsPRR37, Se1/Hd1, and Hd5/DTH8) were
317	reported to control DTH in improved rice varieties in Hokkaido (ICHITANI et al. 1997;
318	Fujino and Sekiguchi 2005a; Fujino and Sekiguchi 2005b; Nonoue <i>et al.</i> 2008;
319	FUJINO et al. 2013; KOO et al. 2013). Among the four genes, loss of functional alleles in
320	E1/Hd4/Ghd7 and Hd2/OsPRR37 are necessary to obtain photoperiod insensitivity in

321	rice varieties in northern areas (FUJINO AND SEKIGUCHI 2005a; FUJINO AND SEKIGUCHI
322	2005b; XUE et al. 2008; KOO et al. 2013). Alternatively, the other two genes (Se1/Hd1
323	and Hd5/DTH8) have small effects on photoperiod insensitivity among the varieties in
324	Hokkaido (Ichitani <i>et al.</i> 1997; Fujino and Sekiguchi 2005b; Nonoue <i>et al.</i> 2008). In
325	this study, Se1/Hd1 sequences revealed differences between A58 and Kitaake; A58 has
326	insertion/deletion mutations, whereas Kitaake has the functional allele (Figure 3). Both
327	varieties had the same loss-of-function alleles in the <i>E1/Hd4/Ghd7</i> and <i>Hd2/OsPRR37</i>
328	loci and had the same functional allele in the <i>Hd5/DTH8</i> locus (Figure 3). These results
329	indicated that the improved varieties in Hokkaido might have inherited the same
330	E1/Hd4/Ghd7, Hd2/OsPRR37, and Hd5/DTH8 alleles from a landrace similar to A58,
331	which facilitated adaptation, because photoperiod insensitivity was essential for
332	adaptation. In addition to these four loci, newly identified minor QTLs were identified
333	for DTH on Chs 1, 2, 4, 6 and 10 (Table 2 and Figure 4). These QTLs likely contribute
334	to extreme phenotypes of short and long DTH produced by transgressive segregation
335	based on the composition of their complementary alleles (Figure 6).
336	
337	RIESEBERG et al. (1999) made several predictions regarding the cause of transgressive
338	segregation, one of which was consistent with our results: transgressive segregation

339	would likely be observed in the F2 population of parents with more proximal
340	phenotypes (Figure 7). Among the known alleles at the four known loci that are
341	necessary for DTH adaptation to Hokkaido, A58 and Kitaake shared the same alleles at
342	three loci, but not <i>Hd1</i> , which indicates that these two varieties possess a considerable
343	amount of common alleles that shorten DTH. Our results demonstrate that transgressive
344	segregation mainly occurred as a result of a few unknown QTLs, in which alleles
345	combined in a complementary manner (Figure 7).
346	
347	According to RIESEBERG et al. (1999), transgressive segregation tends to occur more
348	frequently in intraspecific crosses, inbred populations, and domesticated populations
349	compared with interspecific crosses, outbred populations, and wild populations,
350	respectively. The lack of a strong positive correlation was observed between parental
351	genetic divergence and transgression frequency (RIESEBERG et al. 1999; RIESEBERG et
352	al. 2003). Our previous study (OTA et al. 2014) showed that the hybrid progenies of two
353	varieties with distal DTH adapted to different environments exhibited few instances of
354	transgressive DTH phenotypes (Figure 1). Because the parents were adapted to different
355	environments with different genetic backgrounds (e.g., interspecies), a number of the
356	new allelic combinations were generated in the hybrid progenies (Figure 7). Such

357	complex allelic combinations might generate positive and negative genetic interactions,
358	and offset allelic effects. Stochastically, if there is a large number of segregating loci,
359	individuals rarely accumulate only the alleles with positive effects, but most usually
360	contain alleles with negative effects (Figure 7).
361	
362	This study showed that a few genes and their combinations expanded variation of the
363	DTH phenotype despite similar genetic backgrounds. Consequently, it might be useful
364	to identify QTLs or allelic interactions associated with the transgressive DTH
365	phenotypes in progenies of other varieties with proximal phenotypes. Similarly, to
366	integrate other transgressive phenotypes into breeding programs, alleles with additive
367	effects of minor QTLs should be targeted in varieties with proximal phenotypes.
368	
369	ACKNOWLEDGMENTS
370	We are grateful to Ms. K. Aoyama (Lab. Plant Breeding, Hokkaido University) for her
371	help conducting this study. Kitaake seeds were kindly supplied by the Agricultural
372	Research Department of Hokkaido Research Organization. This work was supported by
373	Takano Life Science Research Foundation and JSPS KAKENHI Grant Number
374	23658001 (to Y. Kishima), and the Program for Fostering Researchers for the Next

- 375 Generation of the Consortium Office for Fostering of Researchers in Future Generations
- 376 (COFRe), Hokkaido University (to Y. Koide). We thank Mallory Eckstut, PhD, from
- Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

379

FIGURE LEGENDS

380	Figure 1 Transgressive segregation and genetic relationships between parental varieties.
381	(A) Frequency distribution of DTH from A58 × Kitaake F2 plants. The transgressive
382	index represents the ratio of the of the F2 population DTH distribution to the parental
383	difference. The DTH difference between A58 and Kitaake was 0.7 days, and the DTH
384	range in the F2 population was 18.0 days, which resulted in a transgressive index of
385	25.7. Standard DTH values of 11 varieties in Hokkaido are indicated by gray
386	arrowheads: (a) Kitaibuki, (b) Hakucho-mochi, (c) Daichinohoshi (d) Hatsushizuku, (e)
387	Hoshinoyume, (f) Kuiku180, (g) Hokuiku-mochi, (h) Nanatsuboshi, (i) Kirara397, (j)
388	Hoshimaru, and (k) Gimpu. (B) Transgressive indexes of crosses between A58 and each
389	of five other varieties. The phylogenetic relationships and the associated dendrogram
390	for the five O. sativa varieties, Nipponbare (japonica), T65 (japonica), IR36 (indica),
391	#108 (indica), and Kasalath (indica, Aus), are presented based on information provided
392	in TAKATA et al. (2005). To calculate the transgressive index, DTH of parental varieties
393	and F2 plants were calculated based on data from OTA et al. (2014).
394	
395	Figure 2 Frequency distribution of DTH in early- and late-heading F4 lines derived

396 from the A58 \times Kitaake cross in 2015 and 2016.

397	DTH of the 15 early- and 15 late-heading F4 lines selected in the F3 population was
398	examined in the two years, 2015 and 2016. Early- and late-heading lines are indicated
399	by white and black, respectively. Kitaake and A58 DTH are indicated by white and
400	black arrowheads, respectively, with bars indicating S. E.
401	
402	Figure 3 Comparisons of partial nucleotide sequences from Nipponbare, A58, and
403	Kitaake for the four major loci that affect DTH in Hokkaido.
404	The sequenced positions (based on Nipponbare) were selected using known
405	polymorphisms among varieties in Hokkaido that were observed in previous studies
406	(Ichitani <i>et al.</i> 1997; Fujino and Sekiguchi 2005a; Fujino and Sekiguchi 2005b;
407	NONOUE et al. 2008; FUJINO et al. 2013; KOO et al. 2013). Hdl showed multiple
408	differences between A58 and Kitaake; Kitaake possesses a functional allele that is also
409	found in Nipponbare. In DTH8, a 19-bp segment (indicated by a rectangle) was deleted
410	in most of the other Hokkaido varieties, but not in Nipponbare, A58, and Kitaake, from
411	which we could not detect any polymorphisms. For Ghd7 and OsPRR37, SNPs
412	observed in Nipponbare and the other two varieties are indicated by boxes.
413	

Figure 4 Chromosomal positions of five SNP clusters.

415	Physical map positions of each SNP detected by ddRAD-Seq are shown by horizontal
416	bars in each chromosome. Positions of SNP clusters that showed significant differences
417	in allele frequency between early- and late-heading populations are indicated by vertical
418	bars on the right side of each chromosome.
419	
420	Figure 5 Epistatic interaction between SNPs on chromosomes 1 and 10 on DTH
421	observed in 2015 and 2016.
422	Average DTH values for the four combinations of genotypes with central SNPs
423	(C1_2301 and C10_43613) in the clusters on Chs 1 and 10, which are indicated by
424	squares. The case of Chs 1 and 10 were selected from all the combinations with Chs 1, 4,
425	6 and 10 (Figure S4). When the A58 SNP on Ch 10 (black line) and Kitaake SNP on Ch
426	10 (gray line) were respectively coupled with the different parental SNPs, epistatic
427	(allelic) interactions occurred; in particular, the combination of the A58 allele on Ch 1
428	and Kitaake allele on Ch 10 resulted in the shortest DTH.
429	
430	Figure 6 Phenotypic relationships with combinations of six marker genotype values.
431	Among the 30 F4 lines, nine retained the homozygous alleles in the six loci that
432	corresponded to the SNP clusters with QTLs for DTH and Hd1. The effect of each locus

433	on DTH was weighted according to marker genotype values (see Materials and
434	Methods) based on DTH in 2016. Larger values indicate a stronger effect on DTH.
435	Empty squares indicate shorter DTH effects relative to black squares. Kitaake contained
436	four shorter DTH alleles in Ch 4, Hd1, Ch 10, and Ch 6, whereas A58 possessed two
437	shorter DTH alleles in Ch 2 and Ch 1. The two parental cultivars, Kitaake and A58, had
438	DTH of 74.1 and 75.1 days, respectively. DTH in the selected F4 lines ranged from 60.6
439	to 79.0 days. Each marker name indicates the central SNP in the cluster.
440	
441	Figure 7 Model of different segregation patterns that occurred in the F2 populations
442	derived from two parental combinations of proximal and distal DTH phenotypes.
443	The left panel represents the segregation pattern of the F2 population between parent-a
444	and -b with proximal DTH phenotypes due to the similar genotypes with a few
445	differences. Because of differences in a few alleles with minor effects on DTH, the F2
446	progenies produced transgressive phenotypes. The right panel represents the F2
447	population produced by parents with distal phenotypes and opposite genotypes shows
448	intermediate segregation between both parents. Most of the F2 progenies with mixed
449	genotypes of the parental alleles did not have DTH phenotypes that exceeded those of
450	the parental phenotypes. There are seven loci involved in DTH, and their effects on

451	DTH are ordered as $1 >>> 7$. S and L indicate the effect of an allele at each locus that
452	makes DTH shorter or longer, respectively.
453	
454	Figure S1 Experimental scheme of this study. ddRAD-Seq was carried out to detect
455	differences in allele frequency of genome-wide SNPs between early- and late-heading
456	F4 lines.
457	
458	Figure S2 Frequency distribution of DTH in the F3 population derived from the A58 \times
459	Kitaake cross.
460	
461	Figure S3 Effect of the Ch 4 SNP cluster on DTH in 2015 and 2016.
462	Average DTH values of F4 lines with homozygous A58- and Kitaake-type alleles of the
463	SNP cluster on Ch 4, which is represented by the central SNP in the cluster, C4_19396.
464	Significant differences (P < 0.01) between average DTH values were observed in both
465	2015 and 2016.
466	
467	Figure S4 Genetic interactions between SNP clusters on Chs 1, 4, 6, and 10 relative to
468	DTH in 2015.

469	Average DTH values (y-axis) of F4 lines with each genotype are shown in squares. Six
470	combinations of any two loci among the SNP clusters on Chs 1, 4, 6 and 10 are depicted.
471	A58-type alleles (black line) and Kitaake-type alleles (gray line) are paired with another
472	locus corresponding to A58-type alleles (the left side) or Kitaake-type alleles (the right
473	side) in x-axis, respectively. An allelic interaction (non-additive interaction) was
474	detectable where the black line crossed the gray line.
475	
476	
477	Literature Cited
478	
479	
480	Alonso-Blanco, C., and B. Mendez-Vigo, 2014 Genetic architecture of naturally
481	occurring quantitative traits in plants: an updated synthesis. Current Opinion in
482	Plant Biology 18: 37-43.
483	Baird, N. A., P. D. Etter, T. S. Atwood, M. C. Currey, A. L. Shiver et al., 2008 Rapid
484	SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. Plos One
485	3.

486	Bolger, A. M., M. Lohse and B. Usadel, 2014 Trimmomatic: a flexible trimmer for
487	Illumina sequence data. Bioinformatics 30: 2114-2120.
488	Brambilla, V., J. Gomez-Ariza, M. Cerise and F. Fornara, 2017 The Importance of
489	Being on Time: Regulatory Networks Controlling Photoperiodic Flowering in
490	Cereals. Frontiers in Plant Science 8.
491	Catchen, J. M., A. Amores, P. Hohenlohe, W. Cresko and J. H. Postlethwait, 2011
492	Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences.
493	G3-Genes Genetics 1: 171-182.
494	de Vicente, M. C., and S. D. Tanksley, 1993 Qtl Analysis of Transgressive Segregation
495	in an Interspecific Tomato Cross. Genetics 134: 585-596.
496	Dittrich-Reed, D. R., and B. M. Fitzpatrick, 2013 Transgressive Hybrids as Hopeful
497	Monsters. Evol Biol 40: 310-315.
498	Ebana, K., T. Shibaya, J. Z. Wu, K. Matsubara, H. Kanamori et al., 2011 Uncovering of
499	major genetic factors generating naturally occurring variation in heading date
500	among Asian rice cultivars. Theoretical and Applied Genetics 122: 1199-1210.
501	Fujino, K., and H. Sekiguchi, 2005a Mapping of QTLs conferring extremely early

502	heading in rice (Oryza sativa L.). Theoretical and Applied Genetics 111:
503	393-398.
504	Fujino, K., and H. Sekiguchi, 2005b Identification of QTLs conferring genetic variation
505	for heading date among rice varieties at the northern-limit of rice cultivation.
506	Breeding Science 55: 141-146.
507	Fujino, K., U. Yamanouchi and M. Yano, 2013 Roles of the Hd5 gene controlling
508	heading date for adaptation to the northern limits of rice cultivation. Theoretical
509	and Applied Genetics 126: 611-618.
510	Goddard, M. E., and B. J. Hayes, 2007 Genomic selection. Journal of Animal Breeding
511	and Genetics 124: 323-330.
512	Hagiwara, W. E., K. Onishi, I. Takamure and Y. Sano, 2006 Transgressive segregation
513	due to linked QTLs for grain characteristics of rice. Euphytica 150: 27-35.
514	Harlan, J. R., 1976 Genetic Resources in Wild Relatives of Crops. Crop Science 16:
515	329-333.
516	Hori, K., K. Matsubara and M. Yano, 2016 Genetic control of flowering time in rice:
517	integration of Mendelian genetics and genomics. Theoretical and Applied

518 Genetics 129: 2241-2252.

519	Huang, X. H., and B. Han, 2014 Natural Variations and Genome-Wide Association
520	Studies in Crop Plants. Annual Review of Plant Biology, Vol 65 65: 531-551.
521	Ichitani, K., Y. Okumoto and T. Tanisaka, 1997 Photoperiod sensitivity gene of Se-1
522	locus found in photoperiod insensitive rice cultivars of the northern limit region
523	of rice cultivation. Breeding Science 47: 145-152.
524	Ishiguro, S., K. Ogasawara, K. Fujino, Y. Sato and Y. Kishima, 2014 Low
525	Temperature-Responsive Changes in the Anther Transcriptome's Repeat
526	Sequences Are Indicative of Stress Sensitivity and Pollen Sterility in Rice
527	Strains. Plant Physiology 164: 671-682.
528	Izawa, T., T. Oikawa, S. Tokutomi, K. Okuno and K. Shimamoto, 2000 Phytochromes
529	confer the photoperiodic control of flowering in rice (a short-day plant). Plant
530	Journal 22: 391-399.
531	Koo, B. H., S. C. Yoo, J. W. Park, C. T. Kwon, B. D. Lee et al., 2013 Natural Variation
532	in OsPRR37 Regulates Heading Date and Contributes to Rice Cultivation at a
533	Wide Range of Latitudes. Molecular Plant 6: 1877-1888.

534	Kyozuka, J., S. Konishi, K. Nemoto, T. Izawa and K. Shimamoto, 1	998
-----	--	-----

- 535 Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with
- ⁵³⁶ panicle branch initiation. Proceedings of the National Academy of Sciences of
- the United States of America 95: 1979-1982.
- Langmead, B., and S. L. Salzberg, 2012 Fast gapped-read alignment with Bowtie 2.
- 539 Nature Methods 9: 357-U354.
- Nonoue, Y., K. Fujino, Y. Hirayama, U. Yamanouchi, S. Y. Lin et al., 2008 Detection
- of quantitative trait loci controlling extremely early heading in rice. Theoretical
 and Applied Genetics 116: 715-722.
- Ota, Y., S. Ishiguro, E. Aoyama, R. Aiba, R. Iwashiro *et al.*, 2014 Isolation of a major
- 544 genetic interaction associated with an extreme phenotype using assorted F2

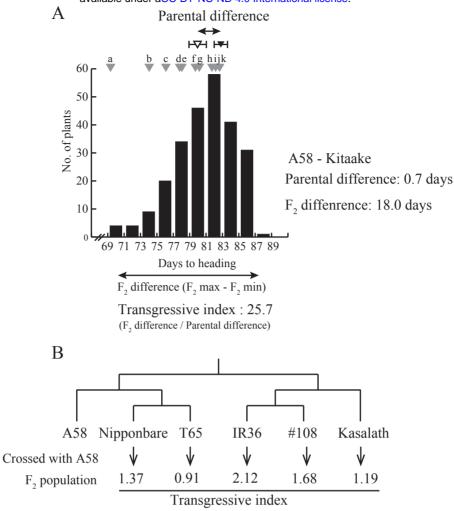
545 populations in rice. Molecular Breeding 33: 997-1003.

546 Peterson, B. K., J. N. Weber, E. H. Kay, H. S. Fisher and H. E. Hoekstra, 2012 Double

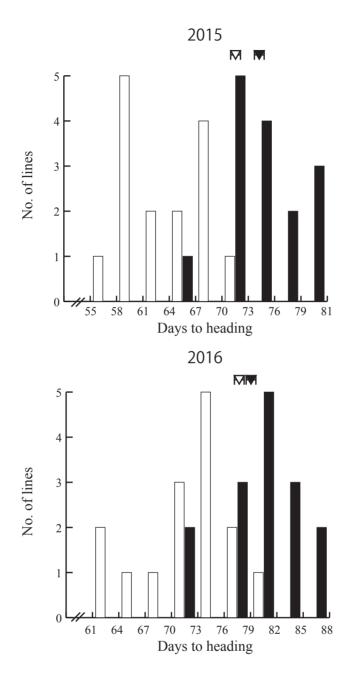
- 547 Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and
- 548 Genotyping in Model and Non-Model Species. Plos One 7.
- Rick, C. M., and P. G. Smith, 1953 Novel Variation in Tomato Species Hybrids.

550 American Naturalist 87: 359-373.

551	Rieseberg, L. H., M. A. Archer and R. K. Wayne, 1999 Transgressive segregation,
552	adaptation and speciation. Heredity 83: 363-372.
553	Rieseberg, L. H., A. Widmer, A. M. Arntz and J. M. Burke, 2002 Directional selection
554	is the primary cause of phenotypic diversification. Proceedings of the National
555	Academy of Sciences of the United States of America 99: 12242-12245.
556	Rieseberg, L. H., A. Widmer, A. M. Arntz and J. M. Burke, 2003 The genetic
557	architecture necessary for transgressive segregation is common in both natural
558	and domesticated populations. Philosophical Transactions of the Royal Society
559	of London Series B-Biological Sciences 358: 1141-1147.
560	Takata, M., Y. Kishima and Y. Sano, 2005 DNA methylation polymorphisms in rice
561	and wild rice strains: Detection of epigenetic markers. Breeding Science 55:
562	57-63.
563	Tanksley, S. D., and S. R. McCouch, 1997 Seed banks and molecular maps: Unlocking
564	genetic potential from the wild. Science 277: 1063-1066.
565	Thompson, J. D., D. G. Higgins and T. J. Gibson, 1994 Clustal-W - Improving the


566	Sensitivity of Progressive Multiple Sequence Alignment through Sequence
567	Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic
568	Acids Research 22: 4673-4680.
569	Vega, U., and K. J. Frey, 1980 Transgressive Segregation in Inter and Intraspecific
570	Crosses of Barley. Euphytica 29: 585-594.
571	Xue, W. Y., Y. Z. Xing, X. Y. Weng, Y. Zhao, W. J. Tang et al., 2008 Natural variation
572	in Ghd7 is an important regulator of heading date and yield potential in rice.
573	Nature Genetics 40: 761-767.
574	Yano, M., Y. Katayose, M. Ashikari, U. Yamanouchi, L. Monna et al., 2000 Hd1, a
575	major photoperiod sensitivity quantitative trait locus in rice, is closely related to
576	the arabidopsis flowering time gene CONSTANS. Plant Cell 12: 2473-2483.
577	

Marker			No. of plants			Average DTH			
name	Chr.	Position	A58-type	Heterozygous	Kitaake-type	A58-type	Heterozygous	Kitaake-type	Р
Hd1	6		56	103	73	81.3	79.5	78.8	4 x 10 ⁻⁴


 Table 1 The effect of Hd1 locus on days to heading in F2 population derived from A58 x Kitaake cross

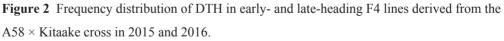

			DTH (2015)			DTH (2016))	
Marker name	Chr.	Position	A58-type	Kitaake-type	P	A58-type	Kitaake-type	Р
C1_2292	1	25,250,821	68.5±2.02	73.6±1.78	0.07856	75.9±1.72	79.3±1.72	0.1745
C1_2301	1	25,270,205	68.5±2.02	73.6±1.78	0.07856	75.9±1.72	79.3±1.72	0.1745
C1_2745	1	28,608,975	68.1±1.85	73.4±1.54	0.03627 *	75.3±1.59	79.0±1.52	0.1095
C1_2968	1	30,128,355	66.9±1.96	72.7±1.66	0.03616 *	74.1±1.94	78.1±1.46	0.1195
C2_10782	2	790,734	68.1±1.83	71.8±1.59	0.139	74.8±1.65	78.1±1.47	0.1461
C2_10784	2	790,866	68.1±1.83	71.8±1.59	0.139	74.8±1.65	78.1±1.47	0.1461
C4_19210	4	29,823,605	74.8±1.14	66.6±1.61	0.0003583 ***	81.9±0.65	73.7±1.34	0.000012 ***
C4_19304	4	30,511,751	76.3±1.03	66.1±1.61	0.0000237 ***	82.1±0.72	73.2±1.43	0.0000162 ***
C4_19390	4	31,264,195	76.9±1.08	65.1±1.39	1.13E-06 ***	82.5±0.74	72.5±1.3	1.07E-06 ***
C4_19586	4	32,438,249	75.5±1.21	65.7±1.43	0.0000955 ***	81.6±0.68	72.9±1.31	9.34E-06 ***
C6_27238	6	24,515,347	66.5±1.72	70.3±1.91	0.2326	73.5±1.78	76.6±1.62	0.1031
C6_27270	6	24,574,372	71.9±1.64	65.7±2.03	0.02257 *	77.2±1.78	73.8±1.51	0.1675
C6_27338	6	24,978,329	71.1±1.78	66.6±2.16	0.09858	76.5±1.67	75.1±1.92	0.5787
C6_27340	6	24,985,031	71.3±1.57	65.2±2.24	0.04015 *	76.9±1.53	73.3±1.74	0.178
C6_27365	6	25,230,125	71.7±1.67	66.0±2.21	0.0532	77.6±1.59	74.5±1.67	0.1907
C6_27415	6	25,515,786	71.5±1.67	66.9±2.03	0.1137	77.3±1.59	75.1±1.51	0.3546
C10_43613	10	593,246	71.9±1.68	64.4±1.93	0.008726 ***	77.3±1.42	72.1±1.9	0.04205 *
C10_43829	10	709,525	72.5±1.4	65.7±2.28	0.022 *	78.1±1.22	73.3±2.42	0.09918
C10_43830	10	709,622	72.8±1.47	65.7±2.06	0.01105 *	78.2±1.3	73.5±2.2	0.08329

 Table 2 The effect of SNP clusters on days to heading in F4 lines derived from the cross between A58 and Kitaake

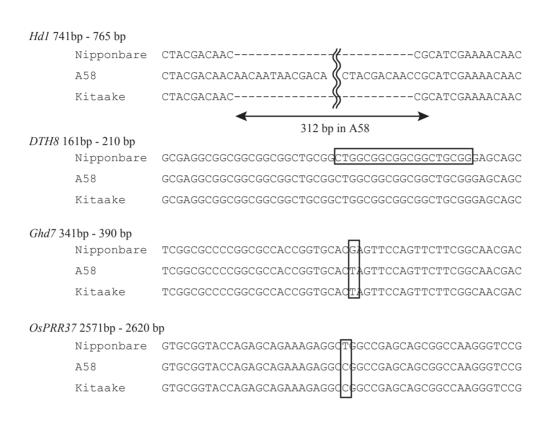


Figure 1 Transgressive segregation and genetic relationships between parental varieties. (A) Frequency distribution of DTH from A58 × Kitaake F2 plants. The transgressive index represents the ratio of the of the F2 population DTH distribution to the parental difference. The DTH difference between A58 and Kitaake was 0.7 days, and the DTH range in the F2 population was 18.0 days, which resulted in a transgressive index of 25.7. Standard DTH values of 11 varieties in Hokkaido are indicated by gray arrowheads: (a) Kitaibuki, (b) Hakucho-mochi, (c) Daichinohoshi (d) Hatsushizuku, (e) Hoshinoyume, (f) Kuiku180, (g) Hokuiku-mochi, (h) Nanatsuboshi, (i) Kirara397, (j) Hoshimaru, and (k) Gimpu. (B) Transgressive indexes of crosses between A58 and each of five other varieties. The phylogenetic relationships and the associated dendrogram for the five O. sativa varieties, Nipponbare (japonica), T65 (japonica), IR36 (indica), #108 (indica), and Kasalath (indica, Aus), are presented based on information provided in TAKATA et al. (2005). To calculate the transgressive index, DTH of parental varieties and F2 plants were calculated based on data from OTA et al. (2014).

DTH of the 15 early- and 15 late-heading F4 lines selected in the F3 population was examined in the two years, 2015 and 2016. Early- and late-heading lines are indicated by white and black, respectively. Kitaake and A58 DTH are indicated by white and black arrowheads, respectively, with bars indicating S. E.

Figure 3 Comparisons of partial nucleotide sequences from Nipponbare, A58, and Kitaake for the four major loci that affect DTH in Hokkaido.

The sequenced positions (based on Nipponbare) were selected using known polymorphisms among varieties in Hokkaido that were observed in previous studies (ICHITANI et al. 1997; FUJINO AND SEKIGUCHI 2005a; FUJINO AND SEKIGUCHI 2005b; NONOUE et al. 2008; FUJINO et al. 2013; KOO et al. 2013). Hd1 showed multiple differences between A58 and Kitaake; Kitaake possesses a functional allele that is also found in Nipponbare. In DTH8, a 19-bp segment (indicated by a rectangle) was deleted in most of the other Hokkaido varieties, but not in Nipponbare, A58, and Kitaake, from which we could not detect any polymorphisms. For Ghd7 and OsPRR37, SNPs observed in Nipponbare and the other two varieties are indicated by boxes.

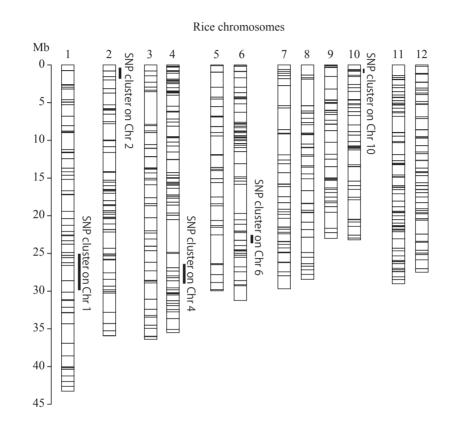
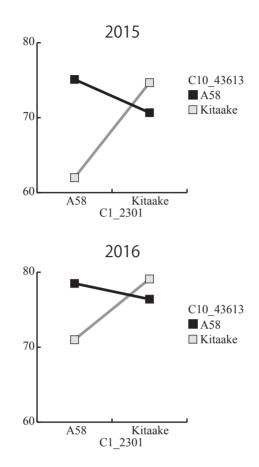



Figure 4 Chromosomal positions of five SNP clusters.

Physical map positions of each SNP detected by ddRAD-Seq are shown by horizontal bars in each chromosome. Positions of SNP clusters that showed significant differences in allele frequency between early- and late-heading populations are indicated by vertical bars on the right side of each chromosome.

Figure 5 Epistatic interaction between SNPs on chromosomes 1 and 10 on DTH observed in 2015 and 2016.

Average DTH values for the four combinations of genotypes with central SNPs (C1_2301 and C10_43613) in the clusters on Chs 1 and 10, which are indicated by squares. The case of Chs 1 and 10 were selected from all the combinations with Chs 1, 4, 6 and 10 (Figure S5). When the A58 SNP on Ch 10 (black line) and Kitaake SNP on Ch 10 (gray line) were respectively coupled with the different parental SNPs, epistatic (allelic) interactions occurred; in particular, the combination of the A58 allele on Ch 1 and Kitaake allele on Ch 10 resulted in the shortest DTH.

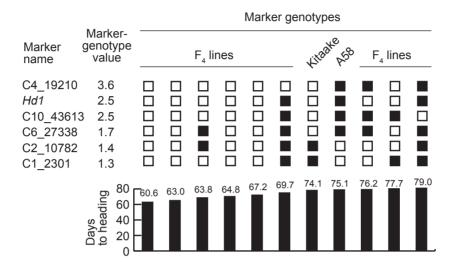
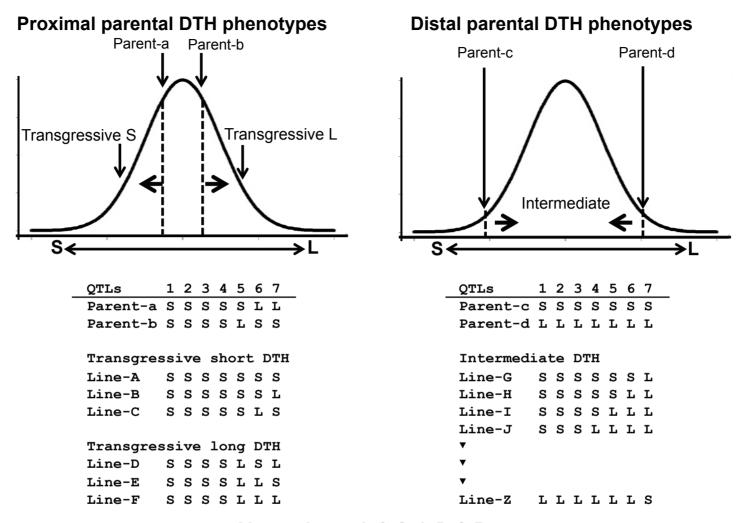



Figure 6 Phenotypic relationships with combinations of six marker genotype values.

Among the 30 F4 lines, nine retained the homozygous alleles in the six loci that corresponded to the SNP clusters with QTLs for DTH and Hd1. The effect of each locus on DTH was weighted according to marker genotype values (see Materials and Methods) based on DTH in 2016. Larger values indicate a stronger effect on DTH. Empty squares indicate shorter DTH effects relative to black squares. Kitaake contained four shorter DTH alleles in Ch 4, Hd1, Ch 10, and Ch 6, whereas A58 possessed two shorter DTH alleles in Ch 2 and Ch 1. The two parental cultivars, Kitaake and A58, had DTH of 74.1 and 75.1 days, respectively. DTH in the selected F4 lines ranged from 60.6 to 79.0 days. Each marker name indicates the central SNP in the cluster.

Effect of QTL 1>2>3>4>5>6>7

Figure 7 Model of different segregation patterns that occurred in the F2 populations derived from two parental combinations of proximal and distal DTH phenotypes. The left panel represents the segregation pattern of the F2 population between parent-a and -b with proximal DTH phenotypes due to the similar genotypes with a few differences. Because of differences in a few alleles with minor effects on DTH, the F2 progenies produced transgressive phenotypes. The right panel represents the F2 population produced by parents with distal phenotypes and opposite genotypes shows intermediate segregation between both parents. Most of the F2 progenies with mixed genotypes of the parental alleles did not have DTH phenotypes that exceeded those of the parental phenotypes. There are seven loci involved in DTH, and their effects on DTH are ordered as 1 >>> 7. S and L indicate the effect of an allele at each locus that makes DTH shorter or longer, respectively.