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Abstract (250 words) – Cells are fundamental functional units of multicellular organisms, with 13 

different cell types playing distinct physiological roles in the body.  The recent advent of single 14 

cell transcriptional profiling using RNA sequencing is producing “big data”, enabling the 15 

identification of novel human cell types at an unprecedented rate.  In this review, we summarize 16 

recent work characterizing cell types in the human central nervous and immune systems using 17 

single cell and single nuclei RNA sequencing, and discuss the implications that these discoveries 18 

are having on the representation of cell types in the reference Cell Ontology (CL).  We propose a 19 

method based on random forest machine learning for identifying sets of necessary and sufficient 20 

marker genes that can be used to assemble consistent and reproducible cell type definitions for 21 
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incorporation into the CL.  The representation of defined cell type classes and their relationships 22 

in the CL using this strategy will make the cell type classes findable, accessible, interoperable, and 23 

reusable (FAIR), allowing the CL to serve as a reference knowledgebase of information about the 24 

role that distinct cellular phenotypes play in human health and disease. 25 

 26 

Introduction – Cells are probably the most important fundamental functional units of 27 

multicellular organisms, since different cell types play different physiological roles in the body. 28 

Although every cell of an individual organism has essentially the same genome structure, different 29 

cells realize diverse functions due to differences in their expressed genome.  In many cases, 30 

abnormalities in gene expression form the physical basis of disease dispositions.  Thus, 31 

understanding and representing normal and abnormal cellular phenotypes can lead to the 32 

development of biomarkers for diagnosing disease and the identification of critical targets for 33 

therapeutic interventions. 34 

Previous approaches used to characterize cell phenotypes have several drawbacks that limited their 35 

ability to comprehensively identify the cellular complexity of human tissues.  Transcriptional 36 

profiling of bulk cell sample mixtures by microarray or RNA sequencing can simultaneously 37 

assess gene expression levels and proportions of abundant known cell types, but precludes 38 

identification of novel cell types and obscures the contributions of rare cell subsets to the gene 39 

expression patterns present in the bulk samples.  Flow cytometry provides phenotype information 40 

at the single cell level, but is limited by the number of discrete markers that can be assessed, and 41 

relies on prior knowledge of marker expression patterns.  The recent establishment of methods for 42 

single cell transcriptional profiling (1, 2) is revolutionizing our ability to understand complex cell 43 
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mixtures, avoiding the averaging phenomenon inherent in the analysis of bulk cell mixtures and 44 

providing for an unbiased assessment of phenotypic markers within the expressed genome. 45 

In order to compare experimental results and other information about cell types, a standard 46 

reference nomenclature that includes consistent cell type names and definitions is required.  The 47 

Cell Ontology (CL) is a biomedical ontology developed to provide this standard reference 48 

nomenclature for in vivo cell types in humans and major model organisms (3).  However, the 49 

advent of high-content single cell transcriptomics for cell type characterization has resulted in a 50 

number of challenges for their representation in the CL (discussed in Bakken 2017 (4)).  In this 51 

paper, we review some of the recent discoveries that have resulted from the application of single 52 

cell transcriptomics to human samples, and propose a strategy for defining cell types within the 53 

CL based on the identification of necessary and sufficient marker genes, to support interoperable 54 

and reproducible research. 55 

 56 

Application to the human brain - Initial progress in neuronal cell type discovery by single cell 57 

RNA sequencing (scRNAseq) focused on mouse cerebral, visual, and somatosensory cortices (5, 58 

6, 7, 8, 9).  More recently, technological advances, including RNAseq using single nuclei 59 

(snRNAseq) instead of single cells (10, 11, 12), have extended these investigations into human 60 

neuronal cell type discovery (13, 14). Comprehensive reviews of these recent advances have been 61 

reported recently (15, 16).  62 

Initial efforts toward human neuronal cell type discovery focused on identifying broad lineages. 63 

Pollen et al. profiled 65 neuronal cells into six categories - neural progenitor cells, radial glia, 64 

newborn neurons, inhibitory interneurons, and maturing neurons (17), while Darmanis et al. 65 

sequenced 466 cells, also identifying six broad, but distinct, categories - oligodendrocytes, 66 
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astrocytes, microglia, endothelial cells, oligodendrocyte precursor cells (OPCs), and neurons (18). 67 

Darmanis et al. further subtyped the adult neurons into 2 excitatory and 5 inhibitory types. More 68 

recent single nuclei RNAseq investigations are attempting more comprehensive cell typing. Lake 69 

et al. sampled 3,227 nuclei from 6 Brodmann areas, from which the neurons were classified into 70 

8 excitatory and 8 inhibitory subtypes (13). Similarly, Boldog et al. sampled 769 nuclei from layer 71 

1 of the Middle Temporal Gyrus (MTG) and identified 11 distinct inhibitory cell types (14).  72 

Comparing results between these studies has been challenging given the different areas and layers 73 

of cortex sampled. Many of the studies leveraged classical cell type markers derived from the 74 

mouse scRNAseq literature. For example, SNAP25 expression was used to broadly define 75 

neuronal cells, while GAD1 expression defined inhibitory interneurons. Additional classical 76 

markers have then been used to subdivide the excitatory and inhibitory classes, such as CUX2 or 77 

VIP respectively; however, these markers individually are still not specific enough to define 78 

discrete cell type classes at the level of granularity revealed by clustering of the sc/snRNAseq data. 79 

In fact, there has been surprisingly limited overlap in gene sets specific for individual cell type 80 

clusters between studies, as the genes found in each study appear to be sensitive to both the context 81 

and methodology used. For example, Lake et al. found that cluster In1 had CNR1 (Table S5 in 82 

reference 13) as the highest ranked marker, while Boldog et al. found 7 distinct inhibitory types 83 

that expressed this marker (Figure 3 in reference 14). Without a standardized methodology for 84 

determining the necessary and sufficient marker genes and a corresponding marker gene reference 85 

database, comparison of newly-identified cell types to those reported in previous studies requires 86 

a complete reprocessing of the data.  87 

 88 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2018. ; https://doi.org/10.1101/257352doi: bioRxiv preprint 

https://doi.org/10.1101/257352
http://creativecommons.org/licenses/by/4.0/


Application to the human immune system - Single cell transcriptomic analysis has also been 89 

applied to study the functional cell type diversity of the human immune system (reviewed in 90 

Stubbington 2017 (19)).  Bjorklund et al. used scRNAseq to explore the subtype diversity of 91 

CD127+ innate lymphoid cells isolated from human tonsil, providing an in-depth transcriptional 92 

characterization of the three major subtypes – ILC1, ILC2, and ILC3, and three additional subtypes 93 

within the ILC3 class, by comparing their single cell transcriptional profiles (20).   94 

Two recent studies explored the subtype diversity of dendritic cells in human blood.  In addition 95 

to identifying two conventional dendritic cell subtypes (cDC1 and cDC2) and one plasmacytoid 96 

dendritic cell subtype, See et al. identified several subtypes that appear to correspond to precursor 97 

cells, including one early uncommitted CD123+ pre-DC subset and two CD45RA+CD123lo 98 

lineage-committed subsets (pre-cDC1 and pre-cDC2), using cell sorting, scRNAseq, and in vitro 99 

differentiation assays (21).  Villani et al. used fluorescence-activated cell sorting and scRNAseq 100 

to delineate six different dendritic cell subtypes (DC1 – 6) and four different monocyte subtypes 101 

(Mono1 – 4), and showed that these different subtypes, which were defined based on their 102 

transcriptional profiles, exhibited different functional capabilities for allogeneic T cell stimulation 103 

and for cytokine production following TLR agonist stimulation (22). 104 

Two recent studies have explored the phenotypes of immune cells infiltrating tumor specimens 105 

using scRNAseq.  In melanoma, Tirosh et al. found that the non-malignant tumor 106 

microenvironment was composed of T cell, B cell, NK cell, endothelial cell, macrophage and 107 

cancer-associated fibroblast (CAF) subsets (23).  In contrast to the distinct transcriptional 108 

phenotypes of the malignant component across individual melanoma specimens, common features 109 

could be observed in the non-malignant components, with important therapeutic implications.  110 

Expression of multiple complement factors by CAFs correlated with the extent of T cell 111 
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infiltration.  T cells with activation-independent exhaustion profiles, characterized by expression 112 

of co-inhibitory receptors (e.g. PD1 and TIM3), could be distinguished from cytotoxic T cell 113 

profiles.  Potential biomarkers that distinguish between exhausted and cytotoxic T cells could aid 114 

in selecting patients for immune checkpoint blockade.  In hepatocellular carcinoma, Zheng at al. 115 

found clonal enrichment of both regulatory T cells and exhausted CD8 T cells using scRNAseq 116 

and T cell receptor repertoire analysis (24).  The diagnostic and prognostic significance of these 117 

findings remain to be explored. 118 

While these studies illustrate the power of single cell genomics in identifying important functional 119 

cell subtypes, they also illuminate a major challenge in comparing the results from different 120 

studies, due to the lack of a consistent, reusable approach for naming, defining, and comparing 121 

new cell types being identified by these high content phenotyping technologies.  For example, in 122 

the two studies focused on the identification of dendritic cell subtypes, it is unclear if the cDC1 123 

and cDC2 subtypes identified by See et al. correspond to the DC1 and DC2 subtypes identified by 124 

Villani et al.  Indeed, the only way to make this determination would be to perform a de novo 125 

comparative analysis of the transcriptional profiles from both studies.  For these studies to truly 126 

comply with the newly emerging FAIR principles of open data (25), a robust reproducible strategy 127 

for defining and representing new cell types will be essential to support their broad interoperability. 128 

 129 

Ontological representation - Biomedical ontologies, as promoted by the Open Biomedical 130 

Ontology (OBO) Foundry (26), provide a framework to name and define the types, properties and 131 

relationships of entities in the biomedical domain.  The Cell Ontology (CL) was established in 132 

2005 to provide a standard reference nomenclature for in vivo cell types, including those observed 133 

in specific developmental stages in humans and different model organisms (3).  The semantic 134 
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hierarchy of CL is mainly constructed using two core relations – is_a and develops_from.  Masci 135 

et al. proposed a major revision to the CL using dendritic cells as the driving biological use case 136 

in which the expression of specific marker proteins on the cell surface (e.g. receptor proteins) or 137 

internally (e.g. transcription factors) would be used as the main differentia for the asserted 138 

hierarchy (27).  Diehl et al. applied this approach first to cell types of the hematopoietic system 139 

and then later to the full CL (28, 29, 30).  As of December 2017, the CL contained 2199 cell type 140 

classes, with 583 classes within the hematopoietic cell branch alone.   141 

We recently discussed the challenges faced by the CL in the era of high-throughput, high-content 142 

single cell phenotyping technologies, including sc/snRNAseq (4).  One of the key 143 

recommendations was to establish a standard strategy for defining cell type classes that combine 144 

three essential components: 145 

• the minimum set of necessary and sufficient marker genes selectively expressed by the 146 

cell type, 147 

• a parent cell class in the Cell Ontology, and  148 

• a specimen source description (anatomic structure + species). 149 

In order to identify the set of necessary and sufficient marker genes from an sc/snRNAseq 150 

experiment, we have developed a method – NSforest – that utilizes a random forest of decision 151 

trees machine learning approach.   152 

To illustrate how this approach can produce standard cell type definitions, we have applied the 153 

method to a transcriptomic dataset derived from single nuclei isolated from the middle temporal 154 

gyrus, cortical layer 1 of a post-mortem human brain specimen (Figure 1a in reference 14).  155 

Transcriptional profiles obtained from RNA sequencing of a collection of single sorted nuclei was 156 

used to identify 16 discrete cell types using an iterative data clustering approach.  Based on the 157 
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expression of the previously charaterized marker genes SNAP25 and GAD1 for broad classes, 11 158 

inhibitory interneurons, 1 excitatory neuron and 4 glial cell type clusters were identified.   159 

In the first step (Figure 1b), NSforest takes the gene expression data matrix of single nuclei with 160 

their cell type cluster membership as input, and develops a classification model for each cell type 161 

cluster by comparing each Cluster X versus all non-Cluster X profiles using the random forest 162 

algorithm (31).  In addition to the classification model itself, NSforest produces a ranked list of 163 

features (genes) that are most informative for distinguishing between Cluster X and all of the other 164 

clusters.   165 

In the second step, NSforest constructs single decision trees using first the top gene, then the top 166 

two genes, top three genes, etc., until a stable tree topology and optimal classification accuracy is 167 

achieved.  The minimum number of genes necessary to obtain this stable classification result 168 

corresponds to the necessary and sufficient set of marker genes defining each cell type cluster 169 

within this experimental context. 170 

The expression of the complete set of marker genes obtained from applying NSforest to the single 171 

nuclei dataset is illustrated in Figure 2.  In most cases, the expression of three marker genes is 172 

sufficient to define a cell type cluster, with a range of one to five necessary and sufficient marker 173 

genes per cluster.  Glial cell subtypes appear to be more distinct from each other, requiring 174 

relatively few genes to sufficiently define the cell type.  In contrast, neuronal subtypes appear to 175 

be more similar, requiring more genes to achieve specificity.  In some cases, a combination of both 176 

positive and negative expression optimally defines a cell type cluster. 177 

For one of the inhibitory interneuron cell types defined in this study (i5), we were able to connect 178 

the distinct transcriptional profile with a previous cell type defined based on its unique cellular 179 

morphology – the Rosehip cell (14).  This then allows us to construct an ontological representation 180 
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that includes both a colloquial name, an alternative name, and a definition combining the necessary 181 

and sufficient marker genes, a CL parent cell class, and specimen source information, as follows: 182 

• Colloquial name – rosehip neuron 183 

• Alternative name - KIT-expressing MTG cortical layer 1 GABAergic interneuron, 184 

human 185 

• Definition - A human middle temporal gyrus cortical layer 1 GABAergic interneuron 186 

that selectively expresses KIT, NTNG1, and POU6F2 mRNAs 187 

A complete set of cell type names and definitions for all cell type clusters identified in this 188 

experiment is provided in Table 1. 189 

These informal textual definitions can then be converted into formal ontological definitions, 190 

represented in OWL as equivalent classes, using a set of logical axioms that combine assertions 191 

about the parent cell class (interneuron), anatomic locations of the neuron cell body (soma), 192 

functional capacity of the cell type (gamma-aminobutyric acid secretion), and marker gene 193 

expression (expresses some KIT) requirements (Figure 3).  Using semantic reasoners, these logical 194 

axioms can then be used to infer novel characteristics, e.g. SubClass Of ‘cerebral cortex 195 

GABAergic interneuron’. 196 

The challenge remains of ensuring that these cell type definitions, whose necessary and sufficient 197 

conditions are derived from analysis of data from one particular methodology (scRNAseq), are 198 

compatible with both existing cell type classes in the CL and cell types defined using alternative 199 

experimental methods and data analysis approaches.  Working with CL developers, we are now 200 

establishing an extension ontology module containing provisional definitions for novel cell types 201 

that we and other research groups will contribute.  Ontological reasoners will be used to link these 202 

cell types to more general classes in the CL proper, structure them into an extended hierarchy, and 203 
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determine when separate research groups have defined similar or identical cell types. CL 204 

developers will review these provisional cell types periodically to determine when multiple lines 205 

of evidence provide sufficient support to promote particular cell type classes to the CL proper.  In 206 

this way we will ensure the integrity of the CL reference, while still allowing for the rapid 207 

expansion of its content to accommodate cell types defined via these new technologies. 208 

 209 

Conclusions – The application of high-throughput/high-content cytometry and single cell genomic 210 

techniques is producing an explosion in the number of distinct cellular phenotypes being identified 211 

in human specimens.  For biomedical ontologies to stay relevant, it will be critical for ontology 212 

developers to establish procedures for the processing and incorporation of representations derived 213 

from these data-intensive technologies into reference ontologies in a timely fashion.  The 214 

representation of defined cell types and their relationships in the CL will serve as a reference 215 

knowledgebase to support interoperability of information about the role of cellular phenotypes in 216 

human health and disease. 217 
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 324 

 325 

Figure legends 326 

Figure 1. Identification of necessary and sufficient marker genes using NSforest – a) A typical 327 

single cell/single nuclei RNA sequencing workflow in which a tissue specimen is obtained, single 328 

cells/nuclei isolated by fluorescence activated cell sorting, amplified cDNA quantified by 329 

sequencing, and cell types identified by clustering the resultant transcriptional profiles.  b) The 330 

NSforest approach takes a data matrix of expression values (e.g. transcripts per million reads) of 331 

genes (rows) in single cell/nuclei samples (columns) grouped by cell type cluster membership.  In 332 

the first step, the expression levels of genes are used as features in the random forest machine 333 

learning procedure to train classification models comparing single cell/nuclei expression data in 334 

one cell type cluster against single cell/nuclei expression data in all other clusters, for every cell 335 

type cluster separately, using the Random Forest Learner in KNIME v3.1.2.  Each cell type cluster 336 
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classification model is constructed from one hundred thousand trees using Information Gain Ratio 337 

as the splitting criteria, where each decision tree is generated using the default bagging parameters 338 

- the square root of the number of features and a bootstrap of samples equal to the training set size. 339 

For each cell type cluster classification model, the method outputs usage statistics, including how 340 

often each gene is used as a branching criterion and the number of times it was a candidate across 341 

all random decision trees. By summing the frequency of use when a candidate across the first three 342 

branching levels, the list of genes can be ranked by their usefulness in distinguishing one cell type 343 

clusters from the other clusters. In the second step, single decision trees are constructed using the 344 

first gene from the ranked list, the first two genes, the first three genes, etc.  Each individual tree 345 

is then assessed for classification accuracy and tree topology using the training data. Given the 346 

objective of determining the necessary and sufficient marker genes, we apply additional criteria in 347 

scoring the trees - we restrict each gene to being used in only one branch per tree, and find the 348 

optimal classification for the target cluster only, rather than the overall classification score. The 349 

addition of genes from the ranked list is stopped when an optimal classification or stable tree 350 

topology is achieved.  The minimum number of genes used to produce this optimal result 351 

corresponds to the set of necessary and sufficient marker genes required to define the cell type 352 

cluster. 353 

 354 

Figure 2. Marker gene expression patterns in single nuclei grouped by cluster – A heatmap of 355 

expression levels for the necessary and sufficient marker genes identified for all 16 clusters across 356 

all single nuclei grouped by cell type cluster is shown, including 1 excitatory (e1), 11 inhibitory 357 

(i1 – i11), and 4 glial (g1 – g4) cell type clusters.  In total, 49 markers genes were selected as being 358 
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necessary and sufficient to distinguish these 16 different cell type clusters from cortical layer 1 of 359 

the human brain middle temporal gyrus region. 360 

 361 

Figure 3. Formal rosehip neuron definition using logical axioms – A set of logical axioms about 362 

the anatomic local of the cell body (soma), the functional capacity, and the necessary and sufficient 363 

marker gene expressions are combined to construct an equivalent class cell type definition for the 364 

rosehip neuron interneuron cluster – i4 (see Boldog 2017 (14) for more information about how this 365 

cell type was characterized). 366 

  367 
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Table 1.  Cell types identified in cortical layer 1 of the human middle temporal gyrus 368 

Cluster ID Cell Type Name Cell Type Definition 

e1 TESPA1-expressing MTG 

cortical layer 1 excitatory 

neuron, human 

A human middle temporal gyrus cortical layer 1 excitatory neuron that 

selectively expresses TESPA1, LINC00507, and SLC17A7 mRNAs, and 

lacks expression of KCNIP1 mRNA 

i1 COL5A2-expressing MTG 

cortical layer 1 interneuron, 

human 

A human middle temporal gyrus cortical layer 2 GABAergic 

interneuron that selectively expresses COL5A2 and NDNF and FAT1 

mRNAs 

i2 LHX6-expressing MTG cortical 

layer 2 interneuron, human 

A human middle temporal gyrus cortical layer 2 GABAergic 

interneuron that selectively expresses LHX6, GRIK3, and FLT3, while 

of lacking expression of COBL and CALB2 mRNAs 

i3 BAGE2 expressing MTG cortical 

layer 1 interneuron, human 

A human middle temporal gyrus cortical layer 1 GABAergic 

interneuron that selectively expresses BAGE2 and SEMA3C and SYT10 

and CALB2 and COL21A1 mRNAs  

i4 ARHGAP36 expressing MTG 

cortical layer 1 interneuron, 

human 

A human middle temporal gyrus cortical layer 1 GABAergic 

interneuron that selectively expresses ARHGAP36 and ADAM33 and 

LINC01435 and MC4R mRNAs 

i5 KIT-expressing MTG cortical 

layer 1 interneuron, human 

A human middle temporal gyrus cortical layer 1 GABAergic 

interneuron that selectively expresses KIT and NTNG1 and POU6F2 

mRNAs 

i6 GPR149-expressing MTG 

cortical layer 1 interneuron, 

human 

A human middle temporal gyrus cortical layer 1 GABAergic 

interneuron that selectively expresses GPR149 and VIP and PLCE1 

mRNAs  

i7 TGFBR2 -expressing MTG 

cortical layer 1 interneuron, 

human 

A human middle temporal gyrus cortical layer 1 GABAergic 

interneuron that selectively expresses TGFBR2 and HCRTR2 and PAX6 

mRNAs  

i8 SNCG-expressing MTG cortical A human middle temporal gyrus cortical layer 1 GABAergic 
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layer 1 interneuron, human interneuron that selectively expresses SNCG and EDNRA and KCNK2 

and ARHGAP18 mRNAs   

i9 VIP-expressing MTG cortical 

layer 1 interneuron, human 

A human middle temporal gyrus cortical layer 1 GABAergic 

interneuron that selectively expresses VIP and IQGAP2 and TAC3 

mRNAs  

i10 TSPAN12-expressing MTG 

cortical layer 1 interneuron, 

human 

A human middle temporal gyrus cortical layer 1 GABAergic 

interneuron that selectively expresses TSPAN12 and CHRNB3 and 

FAM46A and DCN mRNAs 

i11 EGF-expressing MTG cortical 

layer 1 interneuron, human 

A human middle temporal gyrus cortical layer 1 GABAergic 

interneuron that selectively expresses EGF and NRG1-IT1 mRNAs  

g1 Linc00499-expression MTG 

cortical layer 1 glial cell, human 

A human middle temporal gyrus cortical layer 1 glial cell that 

selectively expresses Linc00499 and ATP1A2 mRNAs  

g2 APBB1IP-expressing MTG 

cortical layer 1 glial cell, human 

A human middle temporal gyrus cortical layer 1 glial cell that 

selectively expresses APBB1IP mRNAs 

g3 PTPRZ1-expressing MTG 

cortical layer 1 glial cell, human 

A human middle temporal gyrus cortical layer 1 glial cell that 

selectively expresses PTPRZ1 and XYLT1 mRNAs  

g4 ST18 expressing MTG cortical 

layer 1 glial cell, human 

A human middle temporal gyrus cortical layer 1 glial cell that 

selectively expresses ST18 mRNAs 

 369 
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