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Abstract 

Background: Meta-analysis is increasingly used to summarise the findings identified in systematic 

reviews of animal studies modelling human disease. Such reviews typically identify a large number of 

individually small studies, testing efficacy under a variety of conditions. This leads to substantial 

heterogeneity, and identifying potential sources of this heterogeneity is an important function of such 

analyses. However, the statistical performance of different approaches (normalised compared with 

standardised mean difference estimates of effect size; stratified meta-analysis compared with meta-

regression) is not known. 

Methods: Using data from 3116 experiments in focal cerebral ischaemia to construct a linear model 

predicting observed improvement in outcome contingent on 25 independent variables. We used 

stochastic simulation to attribute these variables to simulated studies according to their prevalence. To 

ascertain the ability to detect an effect of a given variable we introduced in addition this “variable of 

interest” of given prevalence and effect. To establish any impact of a latent variable on the apparent 

influence of the variable of interest we also introduced a “latent confounding variable” with given 

prevalence and effect, and allowed the prevalence of the variable of interest to be different in the 

presence and absence of the latent variable. 

Results: Generally, the normalised mean difference (NMD) approach had higher statistical power than 

the standardised mean difference (SMD) approach. Even when the effect size and the number of studies 

contributing to the meta-analysis was small, there was good statistical power to detect the overall effect, 

with a low false positive rate. For detecting an effect of the variable of interest, stratified meta-analysis 

was associated with a substantial false positive rate with NMD estimates of effect size, while using an 

SMD estimate of effect size had very low statistical power. Univariate and multivariable meta-regression 

performed substantially better, with low false positive rate for both NMD and SMD approaches; power 

was higher for NMD than for SMD. The presence or absence of a latent confounding variables only 

introduced an apparent effect of the variable of interest when there was substantial asymmetry in the 

prevalence of the variable of interest in the presence or absence of the confounding variable. 

Conclusions: In meta-analysis of data from animal studies, NMD estimates of effect size should be used 

in preference to SMD estimates, and meta-regression should, where possible, be chosen over stratified 

meta-analysis. The power to detect the influence of the variable of interest depends on the effect of the 

variable of interest and its prevalence, but unless effects are very large adequate power is only achieved 

once at least 100 experiments are included in the meta-analysis.  
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Introduction 

Meta-analysis is increasingly used to summarise information from animal studies which relate to a 

particular question relevant to human health. In this context a fundamental question is not just whether a 

given intervention improves outcome in animal models (they usually do); but also what the characteristics 

of that efficacy are, which might help guide the application of those findings to for instance clinical trial 

design. For instance, the design of the EuroHYP-1 trial (1), in particular the depth and duration of cooling, 

was based in part on findings of a systematic review of animal experiments (2). A large number of factors 

might influence the effects observed, for instance the species, age and sex of the experimental animal; 

the mode of induction and the duration of the cerebral ischaemia; the intervention, its dose and route of 

delivery; the means by which the outcome was measured; and risks of bias in the contributing 

experiments which might be addressed by randomisation, blinding etc. It is important to know how well 

the different approaches to meta-analysis perform in identifying the impact of these factors, both to inform 

the analytical choice and to form a judgement of how likely it is that an important modifying effect has 

been identified. Since the number of studies contributing to a meta-analysis is not an issue of investigator 

choice but of the amount of primary research available, such power considerations are important both to 

design (one might decide that if fewer than a certain number of studies were identified, meta-analysis 

would not be performed) and to interpretation (the absence of a significant finding in a large meta-analysis 

would be more compelling than if the meta-analysis included a small number of studies).  

Such meta-analyses can use different approaches to representing the effect size and to accounting for 

heterogeneity (3). For example, a change in the volume of brain tissue damaged can either be expressed 

as a proportion of the damage seen in untreated controls (the "normalised mean difference" approach, 

NMD); or the difference between groups can be expressed in units relating to the observed variance, on 

the basis that the population variance should be constant across studies (the "standardised mean 

difference" approach, SMD). One concern is that, when group size is small, the sampled variance will 

depart more from the underlying population variance, introducing a measurement error which will reduce 

the precision of the estimate of effect size. Indeed, we have previously shown that, in seeking evidence 

for small study effects such as publication bias, the use of SMD estimates of effect size leads to funnel 

plot asymmetry even in the absence of publication bias (4). 

The influence of study characteristics (independent variables) on the observed effect size can be 

determined by two methods. In the first, partitioning of heterogeneity, the sum of the heterogeneity 

observed within groups defined by certain characteristics is subtracted from the total heterogeneity, with 

the residual interpreted as the heterogeneity explained by the categorisation, tested against the Chi 
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squared distribution with n-1 degrees of freedom, where n is the number of categories. A potential 

problem is that, due to sampling, some effect sizes may appear to be very precise, and therefore given 

substantial weight in the meta-analysis. Since the heterogeneity is the sum of the weighted squared 

deviations from the fixed effects estimate, any categorisation which places an influential (highly weighted) 

study closer to the fixed effect estimate in that category than it is to the global estimate will "explain" some 

of the observed heterogeneity; and since the fixed effect estimate is most sensitive to the most influential 

studies, this is likely to occur. The second approach to investigating differences between groups of 

studies is to seek to fit the findings to a meta-regression model, testing whether any of the characteristics 

are associated with regression coefficients significantly different from zero.  

These considerations are relevant to meta-analysis of both clinical and preclinical (animal) data, but we 

have been concerned that because individual animal experiments are generally smaller than clinical trial 

cohorts, the error in sampling of variance may weaken the SMD approach to calculating effect sizes and 

the use of partitioning of heterogeneity to explore differences between groups of studies. 

We therefore undertook simulation studies, based on models derived from our large number of systematic 

reviews of the focal cerebral ischaemia literature, to better understand the weaknesses and any strengths 

of these approaches. Given that meta-regression can involve different approaches to the estimation of 

tau, we also compared these approaches. 

 

Methods 

Development of model for simulation 

We identified 3116 experiments in focal cerebral ischaemia involving 48119 animals, identified in the 

context of systematic reviews and curated in the CAMARADES dataset. As well as the mean and 

variance for control and treatment groups the dataset included ten discrete, two continuous and thirteen 

binary variables. For discrete and binary variables the proportion of experiments in each category was 

calculated. The two continuous variables (time of treatment administration and time of assessment) did 

not show any linear relationship with outcome (Supplementary Table 1.1), so we divided these into 

quintiles, took the median value for each group and considered these as discrete variables. For time of 

outcome assessment, 10% of studies measured outcome at less than 24 hours and 29% of studies 

measured outcome at 24 hours, and so the first two quintiles were collapsed into one. The 25 variables, 

including their type, possible values and corresponding proportion are listed in Table 1. 
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Table 1: Variables offered to meta-analysis 

Variables Levels Proportion 

Drug group 

Other 18% 

Stem Cells 18% 

Growth factor 16% 

Thrombolytic 12% 

Antidepressant 6% 

NOS Inhibitor 6% 

Anti-Inflammatory 5% 

PPAR-gamma agonist 5% 

Antioxidant 9% 

Vitamin 4% 

Animal 
Rat 80% 

Mouse 14% 

Other 6% 

Sex 

Male 82% 

Unknown 9% 

Female 7% 

Both 3% 

Type of Ischaemia 
Temporary 57% 

Permanent 29% 

Other 14% 

Anaesthetic 

Halothane 39% 

Isoflurane 17% 

Unknown 11% 

Chloral Hydrate 9% 

Ketamine 9% 

Other 15% 

Method of Induction of Injury 

Intraluminal filament 52% 

Electrocoagulation 9% 

Microvascular clip 8% 

Donor clot 6% 

Autologous embolism 6% 

Photochemical 
thrombosis 

4% 

Cauterisation 4% 

Other 13% 

Method of Quantification of Injury 

TTC 46% 

H & E 22% 

Cresyl Violet 6% 

Unknown 5% 

MRI 5% 

Other 15% 

Ventilation 
Unknown 64% 

Spontaneous 22% 

Other 13% 

Route of Drug Delivery 

IVenous 42% 

IPeritoneal 20% 

SubCut 11% 

ICerebVentricular 8% 

Stereotactic 8% 

Other 10% 
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Comorbidity 
None 91% 

Other 9% 

Cotreatment in both Groups 
TRUE 8% 

FALSE 92% 

Cotreatment in Treatment Group Only 
TRUE 4% 

FALSE 96% 

Peer Review Publication 
TRUE 98% 

FALSE 2% 

Control of Temperature 
TRUE 76% 

FALSE 24% 

Monitoring of Physiological Variables 
TRUE 52% 

FALSE 48% 

Random Allocation to Group 
TRUE 48% 

FALSE 52% 

Blinded Induction of Ischaemia 
TRUE 24% 

FALSE 76% 

Blinded Assessment of Outcome 
TRUE 47% 

FALSE 53% 

Anaesthetic without marked intrinsic 
neuroprotective activity 

TRUE 73% 

FALSE 27% 

Use of Comorbid Animals 
TRUE 11% 

FALSE 89% 

Sample Size Calculation 
TRUE 2% 

FALSE 98% 

Compliance with Animal Welfare 
Regulations 

TRUE 72% 

FALSE 28% 

Statement of Potential Conflicts of 
Interest 

TRUE 12% 

FALSE 88% 

Time of Administration (hrs) 

-2 20% 

0.17 20% 

2 20% 

6 20% 

24 20% 

Time of Assessment (hrs) 

24 40% 

72 20% 

168 20% 

672 20% 

 

For each of 23 nominal variables with m categories, we created m-1 dummy variables to represent these 

categories. These 23 categorical variables are represented in our analysis as 54 dummy variables. We 

built a weighted linear regression model with 54 dummy variables and two continuous variables where 

the effect size (response variable) and weight of each study were calculated using the normalised mean 

difference method (3). The resulting regression coefficients are shown in Supplementary Table 1.1. 

Simulation of studies to be used in meta-analysis 

The purpose of the simulation was to observe the statistical power to detect the influence of a variable of 

interest; and whether the influence of a latent (unobserved) confounding variable might be misconstrued 
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as representing an effect of the variable of interest. For instance, the ambient noise in an animal house 

might be an important determinant of outcome, but may be unreported. If randomisation were more 

commonly performed by investigators who had quieter animal houses, the effect of animal house noise 

might be misconstrued as an effect of randomisation. 

There are 10 parameters for the simulation: (i) the number of studies simulated in the meta-analysis; (ii) 

the effect of the variable of interest; (iii) the prevalence of the variable of interest when the confounding 

variable is also present; (iv) the prevalence of the variable of interest when the confounding variable is 

absent; (v)  the effect of the confounding variable; (vi) the prevalence of the confounding variable; (vii) 

the effect size in the absence of the variable of interest and the confounding variable; (viii) the pooled 

standard deviation (ix) the significance threshold (set to 0.05); and (x) the method used in estimating tau.  

The choice of these variables was informed by our prior meta-analyses. For instance, in systematic 

reviews in focal cerebral ischaemia models the number of included experiments ranges from very low (5) 

to over 300 (2;6) . In such reviews the overall effect size reported is around 25%; that is, a reversal of the 

disease phenotype to 75% of the response seen in untreated controls. Detecting an effect of less than 

10% (i.e. 0.1 NMD) might not be practical. We set the pooled standard deviation to 20% of the modelled 

infarct volume for control animals (i.e. 0.2 NMD), based on the variance observed in the studies used to 

construct the model. The impact of aspects of study design such as randomisation or blinding or the 

choice of anaesthetic can also be expressed in this way, and we consider that, while many such factors 

will have some importance, those which shifted the estimate of efficacy by 10% (0.1 NMD, absolute, not 

relative) would be important to detect. Because of concerns about the number of subjects per variable 

(7) we did not perform meta-regression unless the number of studies (k) was 70 or higher, and we set 

our default value of k to 70. 

 

Table 2: Parameters provided in the simulation  

Parameter Default value 

Number of studies (k) 100 

Effect of Variable of Interest (VoI) 10 (NMD 0.1) 

Prevalence of VoI within group with CF 0.4 

Prevalence of VoI within group without CF 0.2 

Effect of confounding variable (CF) 10 (NMD 0.1) 

Prevalence of confounding variable 0.4 

Base effect size 10 (NMD 0.1) 

Pooled standard deviation 20 (NMD 0.2) 

Heterogeneity estimator Restricted maximum likelihood 

Significance level 0.05 
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We modelled experiments with characteristics determined by stochastic simulation using random number 

generation from the frequency of independent variables included in the regression model. The size of 

experimental cohorts was again determined by stochastic simulation based on the observed distribution 

of sample sizes, with a simplification that group sizes in the treatment and control groups be equal. For 

ease of modelling we assumed equal variance across all studies. We then used that regression equation 

to calculate a predicted "true" effect size for each simulated study. We then sampled individual animals 

from a control group population with mean infarct size of 100, and from a treatment group with a mean 

infarct size determined by the regression equation according to the modelled characteristics.  

For each single simulated study we calculated the observed means and standard deviations for the 

control and treatment groups and calculated both NMD and SMD estimates of effect size and variance. 

For the NMD estimates of effect size and, separately, for the SMD estimates, we then combined the k 

studies using a random effects meta-analysis to provide a global estimate of efficacy, calculated the z-

value, and recorded whether this was significantly different from the null using the significance threshold 

determined above (Table 2). Next, we performed stratified meta-analysis by partitioning the heterogeneity 

due to the presence or absence of the variable of interest, and recorded whether the heterogeneity 

explained by the partitioning reached the threshold for significance, using the chi squared test, 

determined above. Next we performed univariate meta-regression where the response variable was the 

effect size and the covariate was the variable of interest, and recorded whether the coefficient of the 

variable of interest was significantly different from zero. Finally, we performed multivariable meta-

regression where the response variable was the effect size, and the covariates included the previous 

described variables along with the variable of interest, but not of the unknown (latent) confounding 

variable; and recorded whether the coefficient of the variable of interest was significantly different from 

zero. 

To generate stable estimates of power and false positive rates we ran these simulations 1000 times for 

each of NMD and SMD effect size measures, and repeated this while varying baseline assumptions 

described in Table 2. For each set of 1000 simulations, for each analysis, we calculated the number of 

simulations in which a statistically significant effect was observed. Where we had modelled an effect, this 

gave us an estimate of the statistical power to detect that effect. Where we modelled that there was no 

effect, this gave us an estimate of the false positive rate. If the test was performing as desired, we would 

expect this to be close to the threshold of significance determined in the modelling. The process is 

illustrated in a flow diagram in Supplementary Figure 1.1. The R code for these simulations, which uses 

the metafor package, is available at GitHub (https://github.com/qianyingw/power-simulation). We set the 
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random seed generator in R from 1 to 1000 in each replication to allow others to repeat our work using 

the same parameters. 

We ran the simulations under the Windows 8.1 x64 system, with core i705500U, CPU 2.40 GHz and 

2.39 GHz, RAM 8.00 GB. Interestingly, there was no major improvement when running the simulations 

on a high performance Linux compute infrastructure consisting of 7000 Intel® Xeon® cores with up 

to 3 TB of memory available per compute node, perhaps because we did not optimise our code for a 

parallel computing environment. 

 

Results 

The simulations took several days to run. As well as being dependent on the number of studies in each 

meta-analysis and the number of simulations run, computation time was influenced by the choice of tau 

estimation, being longer for the iterative methods (maximum likelihood, restricted maximum likelihood, 

Empirical Bayes) and shorter for the other methods (DerSimonian-Laird, Hedges, Hunter-Schmidt or 

Sidik-Jonkman). 

 

Table 3: Performance of the simulation 

                      Number of replications 
Number of studies 

10 100 1000 

10 3 s 11 s 2 mins 

65 4 s 35 s 5.8 mins 

100 7 s 30 s 5 mins 

200 26 s 1.5 mins 17 mins 

500 4.8 mins 17 mins 2.5 hrs 

 

For 1000 simulations of a meta-analysis involving 100 studies, we recorded the “true” (i.e. predicted)  

effect size in the absence of the variable of interest or the confounding variable and with the base effect 

size set to 0; this followed a normal distribution (Kolmogorov-Smirnov test, p=0.4526) with mean 0.0002 

and standard deviation 2.383.  
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Detecting overall effects and effects in subgroups  

1. Sensitivity to number of studies 

We studied the power of the global meta-analysis to detect an effect size either when there was no effect 

present (blue in Fig 1a) or under the baseline assumptions of Table 2 (red in Fig 1a). The baseline true 

effect size is 16 (10 from the base assumption, 4 from the effect of the confounding variable (effect of 10 

in 40% of studies), and 2.8 from the effect of the variable of interest (effect of 10 in 28% of studies). We 

varied the number of studies from 10 to 200. With no true effect present, the false positive rate remained 

at around 5%, as expected, for both NMD and SMD analyses. There was a difference between NMD and 

SMD when an effect was present, with 80% power to detect an effect seen with around 30 included 

studies for NMD, but requiring over 50 included studies for SMD. 

In seeking to detect effects in subgroups, we first used partitioning of heterogeneity (Fig 1b). In 

combination with the use of an SMD estimate of effect size the false positive rate was constant at around 

5%, and the power to detect the modelled difference in efficacy between subgroups increased as the 

number of studies increased. However, this power was only 31% with 100 studies in the meta-analysis 

and even with 200 studies was only around 49%. In contrast, the use of an NMD estimate of effect size 

was associated with a false positive rate which increased with the number of included studies: around 

60% with 40 included studies and more than 80% with 200 included studies. The statistical power was 

only around 10% higher than the false positive rate across the range of study sizes studied. 

Next, we tested univariate meta-regression. For both NMD and SMD measures of effect size the false 

positive rate was constant at around 5% (Fig 1c). Power to detect the modelled difference in efficacy 

between subgroups increased as the number of studies increased, but was always substantially greater 

for NMD (44% with 100 studies, 75% with 200 studies) than with SMD (24% with 100 studies, 42% with 

200 studies). 

Finally, we used multivariable meta-regression. For SMD the false positive rate was around 0.4%, and 

with NMD estimates of effect size it was higher, but independent of study size, at around 6%. Power to 

detect the modelled difference in efficacy between subgroups increased as the number of studies 

increased, but was always substantially greater for NMD (50% with 100 studies, 94% with 200 studies) 

than with SMD (7% with 100 studies, 44% with 200 studies). 
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Figure 1: Sensitivity to the number of studies using (a) Global meta-analysis; (b) Stratified meta-analysis; 

(c) Univariate meta-regression; (d) Multivariate meta-regression. In each case the x-axis represents the 

number of studies and the y-axis represents the observed statistical power. Solid lines represent NMD 

estimates of effect size and the dashed lines an SMD estimate. Blue lines represent meta-analyses in 

which the modelled effect is zero, and red lines represent meta-analyses where an effect is present.  

 

2. Sensitivity to effect of the variable of interest 

We were interested to see the effect of a variable of interest on the statistical power and the false positive 

rate. Figure 2 shows these findings for NMD (solid lines) and SMD (dashed lines) in the absence (blue) 

or presence (red) of a confounding variable of interest. As before, partitioning heterogeneity was 

associated with a very high false positive rate with NMD but not SMD estimates of effect size (Fig 2a). 

For univariate meta-regression (Fig 2b) false positive rates were around 5%, and NMD estimates of effect 

size had power of 44% to detect an effect of the variable of interest of 10, and around 90% to detect an 

effect of the variable of interest of 20. SMD estimates of effect size had power of around 24% to detect 

an effect of the variable of interest of 10, and around 63% to detect an effect of the variable of interest of 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/256776doi: bioRxiv preprint 

https://doi.org/10.1101/256776


- 12 - 

 

20. For multivariable meta-regression (Fig 2c), false positive rates were substantially lower than 5% for 

SMD estimates of effect size, compared with around 6% for NMD. NMD estimates of effect size had 

power of around 50% to detect an effect of the variable of interest of 10, and around 93% to detect an 

effect of the variable of interest of 20. SMD estimates of effect size had power of around 7% to detect an 

effect of the variable of interest of 10, and around 28% to detect an effect of the variable of interest of 20. 

 

 

Figure 2: Sensitivity to the effect of the variable of interest using (a) Stratified meta-analysis; (b) 

Univariate meta-regression; (c) Multivariate meta-regression. In each case the x-axis represents the 

effect of the variable of interest and the y-axis represents the observed statistical power. Solid lines 

represent NMD estimates of effect size and the dashed lines an SMD estimate. Blue lines represent 

meta-analyses in which the modelled base and confounding variable effects are zero, and red lines 

represent meta-analyses where these effects are present. 

 

3. Sensitivity to effect of confounding variable  

One of the main criticisms of meta-analyses of data from animal studies is that differences observed 

between groups of studies might not be due to the factor which defines those groups, but rather to some 

other, latent confounding variable which is present to a different extent in the separate groups. To 

establish how much of a problem this might be, we have simulated the situation where the group defining 

variable has no effect, but another variable asymmetrically present in the groups does have an effect. In 

our main scenario, based on our observations form focal ischaemia literature, the variable of interest is 

present in 28% of studies and the confounding variable is present in 40% of studies. We allow the 

representation of these to be asymmetrical such that when the variable of interest is present the 

prevalence of the confounding variable is 57%, and when the variable of interest is absent the prevalence 

of the confounding variable is 33%.  
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Here we now simulate the effect of varying the prevalence of the variable of interest in the presence or 

in the absence of the confounding variable, from 5% to 95% in increments of 5%. These are shown in 

Figure 3. In each case the left panel shows the proportion of tests called as being significant using an 

NMD estimate of effect size and the right when using an SMD estimate of effect size. The first pair of 

columns show results when no effect is modelled; the second when only a base effect (with no effect of 

the variable of interest or confounding variable) is modelled; the third when only the effect of a variable 

of interest is modelled, and finally when only an effect of a confounding variable is modelled. The colour 

represents the proportions of 1000 simulations where a statistically significant effect was reported, 

ranging from 0% (dark blue) to 100% (dark red); where no effect is modelled this represents the false 

positive rate, and where an effect was modelled this represents the statistical power. 

Each square summarises the findings of 1000 simulations each of 361 different combinations of the 

prevalence of the variable of interest when the confounding variable is present (0.05 to 0.95, y-axis) or 

when it is absent (0.05 to 0.95, x-axis). Therefore the diagonal from bottom left to top right represents the 

situation where the prevalence of the variable of interest is independent of the prevalence of the 

confounding variable; and the top left and bottom right corners represents maximum asymmetry in 

prevalence. We present findings for effects of the base effect, or the variable of interest, or the 

confounding variable, of 10 (0.1 NMD), 20 (0.2 NMD) and 40 (0.4 NMD).  

As expected from the analyses above, heat maps under NMD were lighter or more close to deep red, 

which means the statistical power of NMD was, generally higher, compared with SMD. The false positive 

rate of stratified meta-analysis with NMD was particularly high (75% on average).  

The heat maps show a number of other features. Firstly, when the base effect is zero but the variable of 

interest or the confounding variable do have an effect, the global estimate reports a significant difference, 

particularly as the prevalence of the variable of interest increases. Secondly, the ability of univariate and 

multivariable meta-regressions to detect an effect of the variable of interest are least powerful when the 

prevalence is very low (bottom left) or very high (top right), and most powerful when it is around 50%. 

Finally, the presence of a confounding variable can indeed lead to a spurious finding from univariate or 

multivariate meta-regression that a variable of interest is associated with differences in outcome, but for 

this effect to be pronounced the confounding variable needs to have a substantial impact, or the 

asymmetry of representation of the confounding variable in the populations defined by the variable of 

interest needs to be substantial, or both. Interestingly, this effect seems to be more pronounced for 

univariate than for multivariate meta-regression.  
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Figure 3: Sensitivity to the effect size of the confounding variable using NMD and SMD, and global meta-

analysis, stratified meta-analysis, univariate meta-regression, and multivariate meta-regression. X/X/X 

represents base effect size, effect of the variable of interest and effect of a confounding variable 

separately. Dark blue represents zero power with lighter colours indicating increasing power up to 100% 

in dark red. The axes represent the prevalence of the variable of interest when a confounding variable is 

present (0.05 to 0.95, y-axis) or when it is absent (0.05 to 0.95, x-axis). 

 

4. Sensitivity to method of estimating tau squared 

Since the method of estimating tau squared can influence the weight assigned to individual studies, it 

might also have an impact on the power. In the multivariate meta-regression, Hunter-Schmidt’s method 

and maximum-likelihood method showed a slight advantage (18.2% and 9.0% higher than the average) 

under the NMD method (Fig 4). For the global estimate of effect, partitioning heterogeneity and univariate 

meta-regression, there was not much difference among the seven methods of estimating tau squared. 
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Figure 4: Sensitivity of the observed statistical power (y-axis) to the method of estimating tau squared 

(x-axis) using (a) Global meta-analysis; (b) Stratified meta-analysis; (c) Univariate meta-regression; (d) 

Multivariate meta-regression. REML (restricted maximum likelihood); ML (maximum likelihood); EB 

(Empirical Bayes); SJ (Sidik-Jonkman); HS (Hunter-Schmidt ); HE (Hedges); DL (DerSimonian-Laird). 

Solid bars represent NMD estimates of effect size and the dashed bars an SMD estimate. Blue bars 

represent meta-analyses in which the modelled effect is zero, and red bars represent meta-analyses 

where an effect is present. 

 

Discussion 

Our simulations provide some guidance for those conducting meta-analyses of data from animal 

studies in focal cerebral ischaemia. Firstly, given a choice between using NMD or SMD as an estimate 

of effect size, it is preferable to use the NMD approach. Where only a proportion of a dataset are 

amenable to such an approach a judgement should be made about the best approach, and this will 

depend on the number of studies that would be excluded from analysis. For global estimates of efficacy 

it seems that perhaps one third of studies can be lost before the power for an NMD analysis of the 

remainder falls below that of an SMD analysis of the entire dataset. If the main interest is in the impact 

of variables of interest on the observed efficacy then for both univariate and multivariable meta-analysis 

it appears that at least one half of studies can be lost from the NMD analysis before power falls to that 

obtained under SMD.  

Coupled with our previous demonstration of the weakness of SMD in the ascertainment of small study 

effects (4)  we believe that SMD measures of effect size in meta-analyses of data from animal studies 

should be avoided if at all possible. 

Secondly, our findings suggest that the reporting of differences between sub groups on the basis of 

partitioning of heterogeneity is not appropriate, and investigators should use univariate or multivariate 

meta-regression instead. Since a series of univariate analysis will require some correction for 

multiplicity of testing, whereas multivariate meta-regression will not, the latter will usually be the 

preferred approach if sufficient studies are available. We appreciate that our advice regarding 

partitioning of heterogeneity runs counter to that given in the past by ourselves and others about the 

optimal statistical approach, but we believe that the problems with partitioning heterogeneity which we 

have shown are sufficient to mandate a change in practice. However, we also appreciate that many 

investigators will have established a statistical analysis plan in an a priori systematic review protocol, 

which may describe the use of NMD and partitioning of heterogeneity. We recommend that they 
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continue with their statistical analysis plan as described, but that they also present, as a sensitivity 

analysis, an analysis using a meta-regression approach. 

Thirdly, our data support the utility of assembling ensemble datasets of similar studies to explore the 

impact of aspects of study design, where it can reasonably be assumed that such factors will have 

similar impact across for instance different drugs being tested, or where interactions can be explored 

using the meta-regression approach. This is one motivation for our efforts to secure a common 

ontology for such datasets, that they might be made available to the community in a form that facilitates 

their re-use (8;9). For many drugs it may be that the totality of the research conducted to date is not 

able reliably to detect the effects of variables of interest, which is clearly of concern in decisions about 

whether there is sufficient evidence of efficacy in different circumstances to justify the decision to 

proceed to clinical trial. A meta-analysis with fewer than 100 contributing experiments is unlikely reliably 

to be able to exclude important effects of for instance gender or co-morbidity unless these effects are 

large. 

Additionally, for the method of estimating tau squared, the iterative methods (maximum-likelihood, 

restricted maximum-likelihood and Empirical Bayes) did not perform substantially better than the non-

iterative methods. Only for the multivariate meta-regression, Hunter-Schmidt’s method and maximum-

likelihood had a slight advantage. Non-iterative methods are therefore recommended for simulations 

such as this, because they save substantial time when running the program; for the conduct of meta-

analysis where multivariable meta-regression will be performed, we recommend either the Hunter-

Schmidt or maximum likelihood approaches. 

Finally, we are keen to explore the possibility of enabling this simulation tool online, so that 

researchers, knowing the number of studies likely to be available to them, can decide what is the most 

efficient and informative statistical approach for their data. Our code is available on GitHub but has not 

yet been optimised for a parallel computing environment, and we are actively exploring the possibility of 

hosting the code on a server with sufficient processing power to render the simulations in a timely 

fashion. 

Our approach has some weaknesses. Firstly, because our simulation was derived from studies in focal 

cerebral ischaemia, it is not clear whether they will also be relevant to meta-analyses of other disease 

models. It is our experience that datasets collected in systematic reviews of findings from animal studies 

modelling Parkinson’s disease (10), Alzheimer’s disease (11), multiple sclerosis (12), spinal cord injury 

(13),  and glioma (14)  are broadly similar, and we believe the same problems may arise. Where the 

number of individual studies is smaller and those studies are individually larger (as with meta-analyses 
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of human studies), we do not know if this is important. Secondly, the coefficients which we derived from 

real data to build the regression model (used for calculating true effect size and generating mean and 

standard deviation for simulated studies) were derived using the NMD approach. To compare the 

approaches we had to use the same model, and since our variables were selected from the NMD model 

this may have advantaged this approach. Thirdly, we treated two continuous variables as discrete 

variables. The median of each group was taken as a representative value to aid computation, but it may 

have influenced the precision of our approach. Finally, our simulations have explored the effect of a binary 

variable of interest (i.e. the presence or absence of a factor); we have not explored performance when 

the variable of interest can take more than 2 values.  
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