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Abstract 

A recent study proposing a new LDAK method (Speed et al. 2017 Nat Genet) reported that functional 

enrichments (e.g. coding, conserved, regulatory) estimated by LDAK (largest significant enrichment: 2.51x) 

were much lower than previous estimates obtained using stratified LD score regression (S-LDSC). To 

investigate this, we developed a method (S-LDSC+LDAK) that combines our S-LDSC method with annotations 

constructed from LDAK model weights, and determined that this method produced unbiased estimates both in 

simulations under the S-LDSC model and in simulations under the LDAK model, unlike existing methods. We 

applied S-LDSC+LDAK to 16 independent UK Biobank traits, and determined that S-LDSC+LDAK 

enrichment estimates (largest enrichment: 7.51x) were nearly identical to S-LDSC estimates across 28 main 

annotations. On the other hand, LDAK enrichment estimates (largest enrichment: 3.96x) were substantially 

lower than S-LDSC estimates (although the discrepancy was smaller than reported by Speed et al., who did not 

compare the two methods on the same data set). Our results advocate for using S-LDSC in preference to LDAK 

to infer functional enrichment and confirm the existence of functional annotations that are highly enriched 

(>>2.51x) for complex trait heritability, providing strong caveats to the LDAK results reported by Speed et al.  
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Partitioning heritability by functional annotation can inform disease and trait biology. We previously developed 

the stratified LD score regression (S-LDSC) method for partitioning heritability by functional annotation using 

summary association statistics and applied it to a broad set of diseases and complex traits using a “baseline 

model” that includes coding, conserved and regulatory annotations1. A recent study of Speed et al.2 proposed a 

new LDAK method that relies on the very strong assumption that marginal association statistics (which include 

the effects of linked SNPs) are independent of a SNP’s linkage disequilibrium (LD) with other SNPs. This study 

reported that functional enrichments of our baseline model annotations estimated by LDAK (19 diseases; 

average N = 7K) were much lower than our published estimates from S-LDSC (9 independent diseases and 

traits; average N = 96K); the largest significant enrichment was 2.51x for LDAK vs. 13.32x for S-LDSC, 

decreasing to 9.35x for S-LDSC when using a “baseline-LD model” that accounts for LD-dependent 

architectures3. We sought to understand the discrepancy between S-LDSC and LDAK estimates; the reason for 

this discrepancy was not clear from ref. 2, which did not perform any functional enrichment simulations. 

We developed a method (S-LDSC+LDAK) that combines our S-LDSC method with annotations 

constructed from LDAK model weights (see Supplementary Note). To verify that S-LDSC+LDAK was 

unbiased under both S-LDSC and LDAK models, we performed simulations in which we simulated effect sizes 

using either (a) the baseline-LD model with previously estimated parameters3, including coding enrichment, or 

(b) coding enrichment under the LDAK model (see Supplementary Note). We compared 4 methods for 

estimating the proportion of heritability explained by coding variants: S-LDSC using the baseline-LD model (S-

LDSC), LDAK using all SNPs (LDAK-nofilters), LDAK with default SNP filtering2 (LDAK), and S-

LDSC+LDAK. Results are reported in Figure 1a-b and Table S1. As expected, S-LDSC and LDAK-nofilters 

were unbiased when we simulated coding enrichment under their corresponding models. S-LDSC produced 

unstable estimates under the LDAK model (although S-LDSC with constrained intercept produced stable 

estimates, see Figure S1; this inconsistency between S-LDSC and S-LDSC with constrained intercept was not 

observed in analyses of real phenotypes, see Supplementary Note). LDAK was downward biased under its own 

model (as it restricted analyses to well-imputed SNPs), even more downward biased under the S-LDSC model, 
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and upward biased in simulations under its own model with no functional enrichment (unlike LDAK-nofilters 

and S-LDSC+LDAK; Figure S1). Notably, S-LDSC+LDAK was unbiased in simulations under both S-LDSC 

and LDAK models. We obtained similar results in simulations using conserved and DNase I hypersensitive sites 

(DHS) (Figure S1). We thus defined the S-LDSC+LDAK method as a “gold standard” for further analyses. 

We compared the S-LDSC+LDAK and S-LDSC methods on real data by meta-analyzing their 

enrichment estimates for 28 main functional annotations from the baseline model (Table S2) across 16 

independent UK Biobank quantitative traits4–6 (average N = 434K; see Supplementary Note and Table S3). S-

LDSC+LDAK and S-LDSC estimates were nearly identical (normalized mean square error (nMSE) = 0.002, no 

annotation significantly different; see Supplementary Note), with consistent high enrichment for the conserved 

annotation (7.51x, s.e. = 0.49 and 8.11x, s.e. = 0.54x, respectively; Figure 1c and Table S4). These results imply 

that adding annotations constructed from LDAK model weights did not significantly change S-LDSC estimates.  

We next compared LDAK and S-LDSC enrichments (using N = 20K for LDAK due to computational 

limitations; see Supplementary Note), analogous to the comparison in Speed et al.2. Although Speed et al. 

reported a very large discrepancy for S-LDSC vs. LDAK (nMSE = 1.32 across 28 annotations; Figure S2), our 

analysis produced a smaller discrepancy (nMSE = 0.23; Figure 1d), including 10 annotations with significant 

LDAK enrichments larger than 2.51x (largest significant enrichment: 3.96x). We hypothesize that our 

discrepancy was smaller than reported by Speed et al. because (unlike Speed et al.) we compared these two 

methods on the same set of traits. Despite the smaller discrepancy, LDAK estimates were consistently lower 

than S-LDSC estimates (regression slope = 0.71x), with 14 annotations having a nominally significant 

difference in enrichment (P < 0.05), including a large difference for conserved variants (2.62x, s.e. = 0.17x for 

LDAK; P = 2.2 x 10-22 for difference vs. S-LDSC); these results are consistent with the LDAK downward bias 

observed in simulations under the S-LDSC model (Figure 1a).  Likewise, LDAK estimates were consistently 

lower than S-LDSC+LDAK estimates (see Supplementary Note and Figure S3). We note that the LDAK 
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method uses a different enrichment estimand than S-LDSC (and analyses lower sample sizes), but these 

differences had little impact on our results (see Supplementary Note and Figures S4-S7). 

Misspecification of heritability models can bias functional enrichment estimates. The S-LDSC approach 

of adding degrees of freedom to the model reduces the potential for model misspecification; in particular, the 

baseline-LD model3 infers the extent of LD-dependent architectures directly from the data. On the other hand, 

LDAK relies on the very strong assumption that marginal association statistics (which include the effects of 

linked SNPs) are independent of a SNP’s linkage disequilibrium (LD) with other SNPs (see Supplementary 

Note), without providing a biological justification for this assumption; in particular, this assumption implies that 

recent population bottlenecks and founder events (which increase LD) should greatly reduce causal effect sizes, 

but we are unaware of any reason why this should be the case. Here, we developed and evaluated a method (S-

LDSC+LDAK) that flexibly incorporates both S-LDSC and LDAK-based annotations, serving as a “gold 

standard” for comparison. In analyses of 16 UK Biobank traits, the results of S-LDSC+LDAK closely match 

the results of S-LDSC; we recommend using S-LDSC in preference to S-LDSC+LDAK in most settings, due to 

the complexities of computing LDAK model weights and running S-LDSC+LDAK (see Supplementary Note).  

In conclusion, our results advocate for using S-LDSC with the baseline-LD model3 in preference to LDAK to 

infer functional enrichment (as LDAK enrichment results do not match the S-LDSC+LDAK gold standard) and 

confirm the existence of functional annotations that are highly enriched (>>2.51x) for complex trait heritability, 

providing strong caveats to the LDAK results reported by Speed et al.2. 
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Code and data availability. S-LDSC is available at https://github.com/bulik/ldsc. Baseline-LD model 

annotations are available at https://data.broadinstitute.org/alkesgroup/LDSCORE/. LDAK version 5 is available 

at http://dougspeed.com/downloads/. UK Biobank association statistics, computed using BOLT-LMM v2.3 (ref. 
6), are available at http://data.broadinstitute.org/alkesgroup/UKBB/.  
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Figures 

 

Figure 1: Comparison of S-LDSC and LDAK functional enrichment estimates. (a,b) We report the 
estimated proportion of heritability explained by coding variants in simulations in which we simulated effect 
sizes based on coding enrichment under S-LDSC with the baseline-LD model (a) or under the LDAK model 
(b). We report the proportion of heritability explained rather than enrichment due to the different S-LDSC and 
LDAK enrichment estimands (see Supplementary Note). Dashed red lines indicate the true simulated value. 
Results are averaged across 500 simulations. Error bars represent 95% confidence intervals. See Figure S1 for 
other simulation scenarios and Table S1 for numerical results. (c,d) We report the enrichment of S-LDSC vs. S-
LDSC+LDAK (c) and S-LDSC vs. LDAK (d) for 28 functional annotations, meta-analyzed across 16 
independent UK Biobank traits. In each case we report the normalized mean square error (nMSE; see 
Supplementary Note). Grey lines represent y = x. Error bars represent 95% confidence intervals for annotations 
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for which the estimated enrichment is significantly different (P < 0.05) between the two methods. See Table S4 
for numerical results.   
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Supplementary Note 

1. S-LDSC, LDAK, and S-LDSC+LDAK methods 

S-LDSC method. Stratified LD score regression (S-LDSC)1,2  is a method for partitioning heritability causally 

explained by common variants (minor allele frequency (MAF) ≥5%) across overlapping discrete or continuous 

annotations using genome-wide association study (GWAS) summary statistics and a linkage disequilibrium 

(LD) reference panel containing both common and low-frequency variants. The method rests on the idea that if 

an annotation a is associated to increased heritability, LD to variants with large values of a will increase the 𝜒! 

statistic of a variant more than LD to variants with small values of a. More precisely, S-LDSC models the 

vector 𝛽 of per normalized genotype effect sizes as a mean-0 vector whose variance depends on 𝐷 continuous-

valued annotations 𝑎!,… ,𝑎!: 

 
𝑉𝑎𝑟 𝛽! = 𝑎!(𝑗)𝜏!

!

!!!

 (1) 

where 𝑎!(𝑗) is the value of annotation 𝑎! at variant 𝑗, and 𝜏! represents the per-variant contribution of one unit 

of the annotation 𝑎! to heritability. We can thus estimate the vector 𝜏 using the following relationship with the 

expected 𝜒! statistic of variant 𝑗:  

 
𝐸 𝜒!! = 𝑁 𝜏!𝑙 𝑗,𝑑

!

!!!

+ 𝑁𝑏 + 1 (2) 

where 𝑙 𝑗,𝑑 = 𝑎!(𝑘)𝑟!"!!  is the LD score of variant 𝑗 with respect to continuous values 𝑎!(𝑘) of annotation 

𝑎!, 𝑟!" is the correlation between variant 𝑗 and 𝑘 in an LD reference panel, 𝑁 is the sample size of the GWAS 

study, and 𝑏 is a term that measures the contribution of confounding biases3. Then, the heritability causally 

explained by a subset of variants S can be estimated as ℎ!! = 𝑎!,!𝜏!!!∈! . 

The baseline and baseline-LD models. The original set of D functional annotations used by S-LDSC is called 

the baseline model1, and contains D = 53 binary functional annotations including 28 main functional 

annotations such as coding, conserved, and DHS (see Table S2). More recently, we extended this baseline 

model to the baseline-LD model2, which contains D = 75 functional annotations including the 53 annotations 

from the baseline model, 6 new functional annotations, 10 MAF bins to account for MAF-dependent 

architectures, and 6 LD related annotations to account for LD-dependent architectures (see Table S2). 

Application of the S-LDSC method. Previous applications of S-LDSC1,2 used all SNPs with minor allele count 

≥5 in unrelated whole genome sequenced individuals from the 1000 Genomes project4 as reference data to 

compute LD scores, estimated 𝜏 values using HapMap 3 regression SNPs as a proxy for well-imputed SNPs1, 
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and estimated heritability and enrichment values using the set of all reference SNPs with MAF ≥5%. However, 

here we used UK10K5 as reference data, owing to its larger sample size (3,567 unrelated individuals) and closer 

match to the ancestry of UK Biobank samples.  In our main S-LDSC analyses of UK Biobank data, we used all 

SNPs with minor allele count ≥5 as reference SNPs and estimated heritability and enrichment values using the 

set of all reference SNPs with MAF ≥5% (Table S5), to match previous applications of S-LDSC1,2.  In all 

simulations, and in analyses of UK Biobank data using the LDAK estimand, we used all SNPs with MAF ≥1% 

as reference data and estimated heritability and enrichment values using the set of all reference SNPs with MAF 

≥1% (Table S5), to match LDAK6. We also ran constrained-intercept S-LDSC7 (which constrains the intercept, 

i.e. the 𝑁𝑏 + 1 term from equation (1), to equal 1) in the regression step when estimating 𝜏 values (S-LDSC-

nointercept). 

LDAK method. LDAK is a method for estimating heritability and functional enrichment from raw genotype-

phenotype data6, modifying the LDAK method of a previous study, which made an important contribution to 

the literature by highlighting the potential ramifications of LD-dependent architectures8. LDAK models the 

variance of per normalized genotype effect size 𝛽 as  

 𝑉𝑎𝑟 𝛽! ∝ 𝑝! 1− 𝑝!
!!!

𝑤! (3) 

where 𝑝! is the allele frequency of SNP j, 𝛼 is a parameter determining the relationship between MAF and 

heritability (recommended to be fixed at -0.25), and 𝑤! is the LDAK weight defined by minimizing the L1 or 

L2 norm of  

 
1− 𝑟!"!

!

!!!

𝑤!
!

 (4) 

The heritability of a binary annotation d is modeled as 

 𝑉𝑎𝑟 𝛽! ∝ 1! ∈!𝑐 + 1 𝑝! 1− 𝑝!
!!!

𝑤! (5) 

where 1! ∈! is an indicator function with value 1 if SNP j belongs to annotation d and 0 otherwise, and c a 

constant estimated by restricted maximum likelihood (REML). The enrichment of annotation d is estimated as 

the proportion of heritability explained by SNPs in annotation d divided by proportion of heritability expected 

for these SNPs under the LDAK model. 

LDAK assumption of equal marginal effect size variance.	Both S-LDSC and LDAK are based on a linear 

model for phenotype, with the causal effect size of SNP j modeled as random and denoted 𝛽!. As described 

above, under the LDAK model,	
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 𝑉𝑎𝑟 𝛽! ∝ 𝑝! 1− 𝑝!
!!!

𝑤! (3) 

where 𝑝! is the allele frequency of SNP j, 𝛼 is a parameter determining the relationship between MAF and 

heritability (recommended to be fixed at -0.25), and 𝑤! is the LDAK weight defined by minimizing the L1 or 

L2 norm of  

 
1− 𝑟!"!

!

!!!

𝑤!
!

. (4) 

If w could be chosen so that (4) was equal to the zero vector, then when 𝛼 = -1, we would have 𝑉𝑎𝑟 𝛽! ∝ 𝑤! 

with 𝑟!"!!
!!! 𝑤! = 1 for all j.  

 The marginal effect size of SNP j – i.e., the effect size estimated by a marginal regression as is 

performed in standard GWAS – is 𝑟!"!
!!! 𝛽!, which, assuming independence of SNP effects, has variance 

𝑟!"!!
!!! 𝑉𝑎𝑟(𝛽!). Thus, 𝑉𝑎𝑟 𝛽! ∝ 𝑤! with 𝑟!"!!

!!! 𝑤! = 1 for all j if and only if the variance of the marginal 

effect sizes is constant. However, the marginal effect size of a SNP has been shown to have a strong linear 

dependency on its LD score3,9. This strong linear dependency is predicted by the S-LDSC model, in which it is 

the causal effects, rather than the marginal effects, that have equal variance. The effect of LD, which the LDAK 

weights are designed to undo, is a well-established empirical phenomenon3. 

We note that we have previously inferred LD-dependent architectures and showed that they are 

consistent with the action of negative selection2.  Although the direction of effect that we inferred is the same as 

the direction of effect in the LDAK model (SNPs with lower levels of LD have larger per-SNP heritability), the 

LD-dependent architectures that we inferred do not imply that marginal SNP effects are independent of LD.  In 

particular, our model uses LD in Africans (LLD-AFR), avoiding the implication (as in the LDAK model) that 

recent population bottlenecks and founder events (which increase LD) should greatly reduce causal effect sizes.   

Application of the LDAK method. The LDAK method recommends that users restrict their analyses to well-

imputed SNPs (INFO score10 ≥0.99) with MAF ≥1% (ref. 6) and then restrict their analyses to a thinned set of 

SNPs by removing SNPs in strong LD to each other (default r2 threshold: 0.99). To investigate the impact of 

these SNP filtering steps, we performed simulations assessing the performance of LDAK using all SNPs 

(LDAK-nofilters), as well as LDAK using all well-imputed SNPs with MAF ≥1% (LDAK-noLDthinning).  

S-LDSC and LDAK enrichment estimands. The S-LDSC and LDAK methods use different enrichment 

estimands, which must be carefully accounted for when comparing the two methods. S-LDSC defines the 

enrichment of a binary annotation as the proportion of heritability causally explained by reference SNPs with 
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MAF ≥5% (not including tagging of low-frequency SNPs from the reference data) divided by proportion of 

SNPs in the annotation. LDAK defines enrichment as the proportion of heritability tagged by a thinned set of 

well-imputed SNPs with MAF ≥1% divided by proportion of heritability expected for these SNPs under the 

LDAK model. Overall, both the numerator and denominator of S-LDSC and LDAK enrichment estimands 

capture different information, complicating the direct comparison of these two methods (see Table S5 for the set 

of SNPs included in S-LDSC and LDAK enrichment estimands in our simulations and UK Biobank analyses). 

However, the difference between the two estimands has little impact on our UK Biobank results (see below). 

S-LDSC+LDAK method. In order to compare S-LDSC and LDAK methods, we developed S-LDSC+LDAK, a 

method that extends the model fit by S-LDSC to include two annotations constructed using LDAK weights. 

More precisely, S-LDSC+LDAK partitions heritability of a binary annotation 𝑑′ ∈ 𝐷 as 

 
𝑉𝑎𝑟 𝛽! = 𝑎!(𝑗)𝜏!

!

!!!

+ 1! ∈!!𝐿𝐷𝐴𝐾! . 𝜏!! + 1!∉!!𝐿𝐷𝐴𝐾! . 𝜏!!  (6) 

where 𝐿𝐷𝐴𝐾! = 𝑝! 1− 𝑝!
!!!

𝑤!, with 𝑝! and 𝑤! the allele frequency and LDAK weight of SNP j computed 

on the reference sample, and 1! ∈!! (resp. 1!∉!!) is an indicator function with value 1 if SNP j belongs (resp. 

does not belong) to annotation d’, and 0 otherwise; 1! ∈!!𝐿𝐷𝐴𝐾!  and 1!∉!!𝐿𝐷𝐴𝐾!  represent the two new 

annotations added to the S-LDSC model.  We note that our use of this method contradicts the statement of 

Speed et al.6 that they cannot envisage how the (S-LDSC) method could be modified to accommodate the LDAK 

SNP weights. 

Application of the S-LDSC+LDAK method. In order to ensure a thorough comparison of S-LDSC+LDAK, S-

LDSC and LDAK on real data (see UK Biobank analyses below), we ran two versions of S-LDSC+LDAK, 

estimating S-LDSC and LDAK estimands, respectively. When comparing S-LDSC+LDAK with S-LDSC, we 

used default S-LDSC options for S-LDSC+LDAK. When comparing S-LDSC+LDAK with LDAK, we 

restricted the S-LDSC+LDAK reference panel to SNPs with MAF ≥1%, partitioned the heritability of SNPs 

with MAF ≥1%, and estimated enrichment using the LDAK enrichment estimand (see Table S5 for the set of 

SNPs included in S-LDSC+LDAK enrichment estimands in our simulations and UK Biobank analyses). In 

order to produce the most informative LDAK annotations we used UK10K5 (3,567 unrelated individuals) rather 

than 1000 Genomes4 (489 unrelated individuals) as the reference data for all S-LDSC analyses of UK Biobank 

data. To investigate the effect of the baseline-LD annotations2 compared to the two LDAK-derived annotations, 

we also ran S-LDSC using only the two LDAK-derived annotations (LDAK-sumstats).  
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2. Simulations 

We performed simulations to investigate whether S-LDSC+LDAK was unbiased under both S-LDSC and 

LDAK models. To overcome the issue of different S-LDSC and LDAK enrichment estimands (see above), we 

restricted our simulations to SNPs with MAF ≥1%, and modified S-LDSC to partition the heritability of SNPs 

with MAF ≥1% (see Table S5). We focused on the proportion of heritability explained by the annotations of 

interest rather than their enrichment, so that S-LDSC, LDAK and S-LDSC+LDAK estimate the same quantity 

(i.e. the proportion of heritability causally explained by SNPs with MAF ≥1%). 

We performed simulations using chromosome 1 of the UK Biobank interim release data set11 with 

imputed variants from 1000 Genomes and UK10K. We restricted our simulations to 10,000 unrelated 

individuals, due to the computational limitations of the LDAK method. We sampled integer-valued genotypes 

from UK Biobank imputed dosages, restricting to 578,876 SNPs on chromosome 1 with MAF ≥1%. We set trait 

heritability to ℎ! = 0.5 for all simulations. 

We first simulated effect sizes using the baseline-LD model (including coding, conserved and DHS 

enrichment) with per-SNP heritability derived from the 𝜏 coefficients estimated across 31 independent traits2. 

SNPs with negative per-SNP heritability were set to 0. Second, we performed simulations under LDAK model 

by selecting M = 100,000 causal variants and simulating effect sizes using a coding or conserved or DHS 

enriched architecture. Effect sizes were simulated using 𝛼 = -0.25 (as recommended by LDAK authors6) and 

LDAK weights were computed (in all SNPs polymorphic in the 10,000 individuals) using the LDAK option --

cut-weights --no-thin YES (to avoid the default LDAK thinning option). We simulated enrichment either 

by simulating larger effect sizes in the enriched annotation (and the same proportion of causal variants inside 

and outside the enriched annotation), or by simulating a larger proportion of causal variants in the enriched 

annotation (and same effect sizes for causal variants inside and outside the enriched annotation). We also 

performed null simulations without any enrichment. Third, we repeated all LDAK simulations without using 

LDAK weights by simulating effect sizes using 𝑉𝑎𝑟 𝛽! ∝ 𝑝! 1− 𝑝!
!!!

 (instead of 𝑉𝑎𝑟 𝛽! ∝ 𝑝! 1−

𝑝!
!!!

𝑤!) to investigate the impact of LDAK weights on the different methods. We refer to this generative 

model as the “alpha model”. For each simulation scenario, we performed 500 simulations. 

 S-LDSC was run on summary statistics generated for HapMap3 SNPs (94,467 chromosome 1 SNPs), 

and by using the baseline-LD model and UK10K5 (restricting to SNPs with MAF ≥1%) as the reference data (S-

LDSC). To overcome the issue of unstable S-LDSC estimates under the LDAK generative model, we also ran 

S-LDSC with constrained intercept (S-LDSC-nointercept). We ran 3 versions of LDAK on each simulation. 

First, we ran LDAK on all 578,876 SNPs (LDAK-nofilters). Second, we ran LDAK on the subset of 295,968 
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well-imputed SNPs (INFO score10 ≥ 0.99) in all UK Biobank individuals (LDAK-noLDthinning). Third, we ran 

LDAK on the subset of 89,246 thinned well-imputed SNPs, as recommended6 (LDAK). To address the 

complexity of LDAK and S-LDSC models, we also ran S-LDSC using only two LDAK coding-derived 

annotations (resp. conserved-derived or DHS-derived), with frequency and weights estimated from UK10K 

(LDAK-sumstats). Finally, we also ran S-LDSC+LDAK by adding the two LDAK coding-derived annotations 

(resp. conserved-derived or DHS-derived) to the baseline-LD model. 

 Results for all simulation scenarios and methods are reported Figure S1 and Table S1, and are consistent 

across coding vs. conserved vs. DHS annotations. As expected, S-LDSC and LDAK-nofilters were unbiased 

when we simulated coding enrichment under their corresponding models. S-LDSC produced unstable estimates 

under the LDAK model, although S-LDSC-nointercept produced stable estimates (with a downward bias) and 

S-LDSC produced stable estimates when we performed simulations with no LDAK weights (Figure S1c). 

LDAK and LDAK-noLDthinning were downward biased under simulations with functional enrichment under 

their own model (as they restricted analyses to well-imputed SNPs), and even more downward biased under the 

S-LDSC model. In addition, LDAK and LDAK-noLDthinning were upward biased in simulations under their 

own model with no functional enrichment. 

 

3. UK Biobank analyses 

UK Biobank data and choice of independent traits. We analyzed data from the full UK Biobank release12 

consisting of 487,409 samples genotyped on ~800,000 markers and imputed to ~93 million SNPs using the 

Haplotype Reference Consortium dataset13 (N = 64,976 haplotypes from WGS data). We selected 16 

quantitative traits that are heritable and independent, defined as having a heritability Z score >7 with S-LDSC 

and pairwise phenotypic correlations below 0.1 (Table S3). We restricted our S-LDSC analyses to the set of 

459,327 individuals of European ancestry (based on self-reported white ethnicity; average N = 433,751 for the 

16 traits), and to the set of 1,187,057 HapMap 3 SNPs with no filter based on imputation accuracy (as 

recommended1,2). We restricted our LDAK analyses to a set of 20,000 unrelated individuals with UK ancestry14 

(due to the computational limitations of LDAK at larger sample sizes) and with no missing information for the 

16 selected traits, and to the set of 4,783,589 SNPs with MAF ≥1% and INFO score ≥0.99 (as recommended6). 

Application of S-LDSC and S-LDSC+LDAK. For each of the 16 selected traits, we computed mixed model 

association statistics using BOLT-LMM v2.315,16 (see URLs) with genotyping array (UK BiLEVE / UK 

Biobank), assessment center, sex, age, and age squared as covariates. We also included 20 principal components 

(included with the UK Biobank data release12) to correct for ancestry, as recommended by ref. 16. We included 

672,292 directly genotyped SNPs in the mixed model (all autosomal biallelic SNPs with <10% missing data). 
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S-LDSC and S-LDSC+LDAK were run using 3,567 whole genome sequenced UK10K5 samples (ALSPAC and 

TWINSUK cohorts) as the reference data. S-LDSC and S-LDSC+LDAK (with S-LDSC estimand) restricted 

their analyses to the 13,326,465 SNPs with minor allele count ≥5 (including 5,353,593 SNPs with MAF ≥5%) 

(Table S5). LDAK annotations for S-LDSC+LDAK (with S-LDSC estimand) were constructed using UK10K 

allele frequencies and LDAK weights computed for all 13,326,465 UK10K SNPs with allele count ≥5, using 

LDAK option --cut-weights --no-thin YES to avoid the default LDAK thinning option. S-LDSC+LDAK 

(with LDAK estimand) restricted its analyses to the 7,659,089 SNPs with MAF ≥1% (Table S5). LDAK 

annotations for S-LDSC+LDAK (with LDAK estimand) were constructed using UK10K allele frequencies and 

LDAK weights computed for all 7,659,089 UK10K SNPs with MAF ≥1%, using LDAK option --cut-weights 

--no-thin YES. For each trait, S-LDSC was run once using the baseline-LD model version 1.1 (ref. 17), while 

S-LDSC+LDAK was run 28 times in turn for each of the functional annotations of interest. We also performed 

S-LDSC analyses using the baseline model (instead of the baseline-LD model) and using phase 3 of 1000 

Genomes4 (489 individuals) as the reference data (instead of UK10K) to match methods of Finucane et al.1 

(Figure S2 and Table S4).  

Application of LDAK. LDAK was run as recommended by Speed et al.6. We started our analyses with 

4,783,589 SNPs with MAF ≥ 1% and INFO score ≥ 0.99, and computed LDAK weights for a thinned set of 

1,282,302 SNPs. We used 𝛼 = -0.25 to compute kinship matrixes for each of the 28 functional annotations of 

interest. We ran restricted maximum likelihood (REML) using genotyping array (UK BiLEVE / UK Biobank), 

assessment center, sex, age and 20 principal components as fixed effect. We also included SNPs with P < 1 × 

10−20 from single-SNP analysis (conditioned on the same covariates) and their correlated SNPs as fixed effects. 

We limited our LDAK analyses to N = 20K individuals due to the computational limitations of LDAK at larger 

sample sizes.  

Comparison of S-LDSC+LDAK, S-LDSC and LDAK results using the nMSE metric. We partitioned the 

heritability of 16 UK Biobank traits across 28 main functional annotations from the baseline model using S-

LDSC+LDAK, S-LDSC and LDAK. We meta-analyzed enrichments using random-effects meta-analyses 

implemented in the R package rmeta. We performed pairwise comparisons of the S-LDSC+LDAK, S-LDSC 

and LDAK methods by computing the normalized mean square error (nMSE) across the 28 annotations as 

 
𝑛𝑀𝑆𝐸 𝑥,𝑦 =

𝑥! − 𝑦! !
!

𝑥!!! ∗ 𝑦!!!
 (7) 

where 𝑥! (resp. 𝑦!) is the estimated enrichment of annotation i for method x (resp. y). (The normalization is 

analogous to a correlation, but nMSE can account for highly correlated variables with different magnitudes; we 

note that nMSE can be larger than 1 when x and y have very different magnitudes or are negatively correlated.)  
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We tested whether two different enrichment estimates for the same annotation were significantly different by 

computing a Z score based on the respective estimates and standard errors. We note that it is possible for errors 

to be correlated, as they are computed using the same data; if this is the case, our test for significantly different 

enrichment estimates is conservative.  We describe our pairwise comparisons in greater detail below: 

S-LDSC vs. S-LDSC-nointercept: We determined that S-LDSC with constrained intercept (S-LDSC-

nointercept) obtained results similar to S-LDSC (Figure S8 and Table S4).  This stands in contrast to the 

inconsistency between the two methods in simulations under the LDAK model (Figure S1). 

S-LDSC+LDAK vs. S-LDSC: We compared S-LDSC enrichments to the “gold-standard” S-LDSC+LDAK 

estimates (using the S-LDSC estimand; Figure 1c and Table S4). Estimates were very similar (nMSE = 0.002, 

no annotation significantly different), implying that adding annotations constructed from LDAK model weights 

did not change S-LDSC estimates. We observed significant standardized effect sizes2 for the LDAK annotations 

included within the S-LDSC+LDAK model, but these were much lower than the standardized effect sizes for 

the same annotations when including only the LDAK annotations via LDAK-sumstats (Table S6).  On the other 

hand, including the LDAK annotations only slightly decreased the standardized effect sizes of the LD-related 

annotations within the baseline-LD model (Figure S9) and slightly increased the proportion of variance in 𝜒! 

statistics (Table S7), suggesting that S-LDSC (using the baseline-LD model) sufficiently models LD-dependent 

and MAF-dependent architectures.  We recommend S-LDSC in preference to S-LDSC+LDAK in most settings, 

due to the complexities of computing LDAK model weights and running S-LDSC+LDAK. 

S-LDSC and LDAK enrichments reported by ref. 1,2,6: The original S-LDSC analysis of Finucane et al.1 using 

the baseline model reported a largest significant enrichment of 13.32x for the conserved annotation (9 

independent diseases and traits; average N = 96K). The S-LDSC analysis of Gazal et al.2 using the baseline-LD 

model (which accounts for LD-dependent architectures) reported a largest significant enrichment of 9.35x 

(versus 14.12x using the baseline model) for the conserved annotation (31 independent diseases and traits; 

average N = 85K). The LDAK analysis of Speed et al.6 using the annotations from the baseline model reported a 

largest significant enrichment of 2.51x for the transcription starting site (TSS) annotation and a largest non-

significant enrichment of 2.88x for the 5’UTR annotation (19 diseases; average N = 7K). Surprisingly, they also 

reported non-significant enrichment of 1.34x for the conserved annotation and non-significant enrichment of 

2.13x for the coding annotation (conserved and coding not among annotations with green labels in Figure S16 

of Speed et al.6 denoting significant enrichment), despite a considerable body of evidence in the published 

literature in favor of coding variant enrichment for common diseases and complex traits5,18. Speed et al.6 thus 

reported a very large discrepancy for S-LDSC vs. LDAK (nMSE = 1.32 across 28 annotations; see Figure S2a 

and Table S4a). 
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S-LDSC vs. LDAK: We next compared S-LDSC and LDAK on the same dataset (UK Biobank), and observed a 

smaller discrepancy (nMSE = 0.23; Figure 1d) than reported by Speed et al.6. In addition, we observed 10 

annotations with significant LDAK enrichment (P < 0.05/28 using a Wald test as in Speed et al.6) and with 

LDAK enrichment estimates larger than 2.51x, including a significant enrichment of 2.62x for conserved 

variants and a largest significant enrichment of 3.96x for coding variants (Table S4). We hypothesize that our 

relative results were very different from Speed et al.6 because (unlike Speed et al.6) we compared these two 

methods on the same set of traits. We also used the baseline-LD model instead of the baseline model (nMSE = 

0.44; Figure S2c), and UK10K as the reference data instead of 1000 Genomes (nMSE = 0.54; Figure S2d), two 

other contributing factors. Despite the nMSE = 0.23 in our main analysis, we observed that LDAK estimates 

were consistently lower than S-LDSC estimates (regression slope = 0.71x; consistent with the downward bias 

observed in simulations under the baseline-LD model, Figure 1a), and that 14 annotations had a nominally 

significant difference in enrichment (P < 0.05), including a large difference for conserved variants (2.62x, s.e. = 

0.17x for LDAK vs. 8.11x, s.e. = 0.54x for S-LDSC; P = 2.2 x 10-22 for difference).  

S-LDSC+LDAK (S-LDSC estimand) vs. S-LDSC+LDAK (LDAK estimand): To assess whether differences 

between S-LDSC and LDAK could be due to their different estimands, we compared S-LDSC+LDAK 

enrichments using either S-LDSC or LDAK estimands. We determined that S-LDSC+LDAK results were 

nearly identical when using the two different estimands (nMSE = 0.004; Figure S4), suggesting that differences 

between S-LDSC and LDAK enrichment estimates are not driven by their different estimands. 

S-LDSC and LDAK sample size limitations: S-LDSC and LDAK analyzed data sets of different sample sizes, 

due to LDAK computational constraints (N = 434K for S-LDSC vs. N = 20K for LDAK). However, we 

observed similar results for LDAK when either (i) running LDAK on N = 10K and N = 15K data sets (nMSE ≤ 

0.02; Figure S5), (ii) running LDAK on three random subsamples with N = 20K (nMSE ≤ 0.02; Figure S6), or 

(iii) running LDAK-sumstats on all UK Biobank individuals (average N = 434K; nMSE = 0.04; Figure S7), 

suggesting that N = 20K is a sample size large enough for LDAK results to converge. On the other hand, S-

LDSC (and thus S-LDSC+LDAK) requires GWAS summary statistics computed on a large number of 

individuals (e.g. heritability Z score >7)1; only 3 of 16 UK Biobank traits have a heritability Z score >7 when 

running S-LDSC on summary statistics computed using the N = 20K LDAK data set (Table S3). 

S-LDSC+LDAK vs. LDAK: For completeness, we also compared LDAK (N = 20K) and S-LDSC+LDAK 

(using LDAK estimand; N = 434K). We observed that the nMSE between S-LDSC+LDAK and LDAK (nMSE 

= 0.19; Figure S3) is larger than the nMSE between S-LDSC+LDAK and S-LDSC (nMSE = 0.002; Figure 1c). 

Although we have shown that the nMSE difference cannot be explained by the application of LDAK to a lower 

sample size (Figures S5-S7), we also compared S-LDSC and LDAK to S-LDSC+LDAK restricting to N = 20K 
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samples for the three traits that passed the recommended heritability Z score threshold (Figure S10). We 

observed that the difference between S-LDSC+LDAK (N = 20K) vs. S-LDSC (N = 20K) (nMSE = 0.02) was 

lower than the difference between S-LDSC+LDAK (N = 20K) vs. LDAK (N = 20K) (nMSE = 0.42). Overall, 

these experiments advocate for using S-LDSC in preference to LDAK to infer functional enrichment. 

We also observed that LDAK tends to overestimate the denominator of the enrichment estimand (i.e. the 

proportion of heritability expected under the LDAK model) compared to S-LDSC+LDAK (ratio 1.05; Table 

S4), as these two methods use different set of SNPs to compute this metric (i.e. the thinned set of SNPs with 

MAF ≥ 1% and INFO score ≥ 0.99 for LDAK, vs. all reference SNPs with MAF ≥ 1% for S-LDSC+LDAK 

with LDAK estimand). For example, LDAK (N = 20K) and S-LDSC+LDAK (N = 434K; LDAK estimand) 

estimated similar proportions of heritability explained by the DHS annotation (0.38 and 0.41, respectively; ratio 

0.93x), but different proportions of heritability expected under the LDAK model (0.23 and 0.19, respectively; 

ratio 1.20x), leading to quite different enrichment values (1.63x and 2.11x, respectively; ratio 0.77x). These 

differences in the denominator also impacted coding enrichment: LDAK (N = 20K) estimated a higher 

proportion of heritability explained by the coding annotation than S-LDSC+LDAK (N = 434K; LDAK 

estimand) (0.11 and 0.09, respectively; ratio 1.34x) but a much higher proportion of heritability expected under 

the LDAK model than S-LDSC+LDAK (0.029 and 0.018, respectively; ratio 1.64x)—largely due to LDAK’s 

thinning of SNPs, with the LDAK estimates of heritability expected under the LDAK model equal to 0.019 and 

0.027 before and after the thinning step, respectively—leading to lower enrichment (3.96x and 4.85x, 

respectively; ratio 0.82x). 
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Supplementary Figures 

 
Figure S1a – simulations under S-LDSC model 
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Figure S1b – simulations under LDAK model 
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Figure S1c – simulations under alpha model 
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Figure S1: Simulations to assess LDAK, S-LDSC and S-LDSC+LDAK enrichment accuracy. We report 
enrichment simulations of 7 different methods, 3 different enriched annotations, and 7 different simulation 
scenarios involving 3 different generative models. The 7 different methods are S-LDSC with the baseline-LD 
model (S-LDSC), S-LDSC with intercept constrained to 1 (S-LDSC-nointercept), LDAK using all SNPs 
(LDAK-nofilters), LDAK restricted to all SNPs with INFO score ≥0.99 but with no LD thinning (LDAK-
noLDthinning), LDAK with default SNP filtering, i.e. restricted to SNPs with INFO score ≥0.99 followed by 
LD thinning (LDAK), LDSC with two annotations based on LDAK weights (LDAK-sumstats), and S-LDSC 
with the baseline-LD model and two annotations based on LDAK weights (S-LDSC+LDAK). The 3 different 
enriched annotations are coding (row 1), conserved (row 2), and DHS (row 3). The 3 different simulation 
scenarios are functional enrichment with same proportion of causal SNPs in the enriched annotation but higher 
effect size variance (column 1), functional enrichment with higher proportion of causal SNPs in the enriched 
annotation but same effect size variance (column 2), and no enrichment (column 3).  The 3 different generative 
models are S-LDSC (using the baseline-LD model with previously estimated parameters2) (a), LDAK (b), and 
the alpha model (c).  Panel (a) shows that in simulations under the S-LDSC model, 1) the S-LDSC, S-LDSC-
nointercept and S-LDSC+LDAK methods are unbiased, and 2) other LDAK-related methods are downward 
biased. Panel (b) shows that in simulations under the LDAK model, 1) the LDAK-nofilters and S-
LDSC+LDAK methods are unbiased, 2) LDAK is downward biased when simulating functional enrichment 
and upward biased under no enrichment, and 3) S-LDSC produces unstable estimates while S-LDSC-
nointercept does not. Panel (c) shows that in simulations under the alpha model, 1) S-LDSC produces stable 
estimates, and 2) S-LDSC is unbiased in null simulations. Dashed red lines indicate true values. Error bars 
represent the 95% confidence intervals based on 500 simulations. See Table S1 for numerical results. 
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Figure S2: Comparison of S-LDSC and LDAK functional enrichment. (a) LDAK functional enrichment 
reported in Speed et al.6 vs. S-LDSC functional enrichment reported in Finucane et al.1 (b, c, d) LDAK 
functional enrichment estimated across 16 independent UK Biobank traits (average N = 20K) vs. S-LDSC 
functional enrichment estimated across 16 independent UK Biobank traits for various choices of baseline model 
and reference data set (average N = 434K). In our main analyses, we used the baseline-LD model and UK10K 
as the reference data set (b), and observed a much lower difference between S-LDSC and LDAK than 
previously reported (nMSE = 0.23, vs. nMSE = 1.32 in (a)). Only part of this large difference is due to using the 
baseline-LD model (nMSE = 0.44 using baseline model, (c)) or to using UK10K as the reference data set 
(nMSE = 0.54 using 1000 Genomes, (d)). In each case we report the normalized mean square error (nMSE). 

●

●● ●●●
● ●

●●● ●●
●● ●●

●

● ●

●

● ●
●

●

●

●

●

0 5 10 15

0
5

10
15

S−LDSC Enrichment from Finucane et al. 2015
(baseline model, 1000G reference genome)

LD
AK

 E
nr

ic
hm

en
t f

ro
m

 S
pe

ed
 e

t a
l. 

20
17

nMSE = 1.32

a

Coding
Conserved

TSSFANTOM5
Enhancer

●

●

● ●
●●

●

●

●●
●●

●

●
●

●
●

●

●
●

●

● ●
●

●●
●

●

0 5 10 15

0
5

10
15

S−LDSC Enrichment from 16 UK Biobank traits
(baseline−LD model, UK10K reference genome)

LD
AK

 E
nr

ic
hm

en
t f

ro
m

 1
6 

U
K 

Bi
ob

an
k 

tra
its nMSE = 0.23

Coding

Conserved
TSS

FANTOM5
Enhancer

b

●

●

● ●
●●

●

●

●●
●●

●

●
●

●
●

●

●
●

●

● ●
●

●●
●

●

0 5 10 15

0
5

10
15

S−LDSC Enrichment from 16 UK Biobank traits
(baseline model, UK10K reference genome)

LD
AK

 E
nr

ic
hm

en
t f

ro
m

 1
6 

U
K 

Bi
ob

an
k 

tra
its nMSE = 0.44

Coding

Conserved
TSS

FANTOM5
Enhancer

c

●

●

● ●
●●

●

●

●●
● ●

●

●
●

●
●

●

●
●

●

● ●
●

●●
●

●

0 5 10 15

0
5

10
15

S−LDSC Enrichment from 16 UK Biobank traits
(baseline model, 1000G reference genome)

LD
AK

 E
nr

ic
hm

en
t f

ro
m

 1
6 

U
K 

Bi
ob

an
k 

tra
its nMSE = 0.54

Coding

Conserved
TSS

FANTOM5
Enhancer

d

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/256412doi: bioRxiv preprint 

https://doi.org/10.1101/256412
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 26 

Grey lines represent y = x. Error bars represent 95% confidence intervals for annotations for which the 
estimated enrichment is significantly different between the two methods. See Table S4 for numerical results. 

 
Figure S3: LDAK (N = 20K) vs. S-LDSC+LDAK (N = 434K). We report the enrichment of LDAK (N = 20K) 
vs. S-LDSC+LDAK (N = 434K; LDAK estimand) for 28 functional annotations, meta-analyzed across 16 
independent UK Biobank traits. In each case we report the normalized mean square error (nMSE). The grey line 
represents y = x. Error bars represent 95% confidence intervals for annotations for which the estimated 
enrichment is significantly different (P < 0.05) between the two methods. 
 
 

 
Figure S4: Comparison of S-LDSC+LDAK using different estimands. We report the enrichment of S-
LDSC+LDAK using S-LDSC and LDAK estimands for 28 functional annotations, meta-analyzed across 16 
independent UK Biobank traits (average N = 434K). We report the normalized mean square error (nMSE). The 
grey line represents y = x. 
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Figure S5: Comparison of LDAK using different sample sizes. We report the enrichment of LDAK using 
N=20K individuals (as in our main analyses) vs. LDAK using N = 5K individuals (a), N = 10K individuals (b) 
and N = 15K individuals (c) for 28 functional annotations, meta-analyzed across 16 independent UK Biobank 
traits. In each case we report the normalized mean square error (nMSE). Grey lines represent y = x. 

 
Figure S6: Comparison of LDAK using 3 random data sets with N = 20K individuals. We compared the 
enrichment of LDAK using 3 random subsets of UK Biobank with N = 20K individuals. In each case we report 
the normalized mean square error (nMSE). Grey lines represent y = x. Error bars represent 95% confidence 
intervals for annotations for which the estimated enrichment is statistically different between the two analyses. 
 

 
Figure S7: Comparison of LDAK-sumstats using N = 434K and LDAK using N = 20K. We report 
enrichment estimates for LDAK-sumstats (LDAK estimand) using N = 434K samples and LDAK using N = 
20K samples for 28 functional annotations, meta-analyzed across 16 independent UK Biobank traits. We report 
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the normalized mean square error (nMSE). Grey lines represent y = x. Error bars represent 95% confidence 
intervals for annotations for which the estimated enrichment is significantly different between the two methods. 
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Figure S8: Comparison of S-LDSC and S-LDSC with constrained intercept. We report the enrichment of S-
LDSC vs. S-LDSC with constrained intercept (S-LDSC-nointercept) for 28 functional annotations, meta-
analyzed across 16 independent UK Biobank traits. We report the normalized mean square error (nMSE). Grey 
lines represent y = x. 
 
 
 

 
Figure S9: Standardized effect sizes of MAF- and LD-related annotations in S-LDSC and S-
LDSC+LDAK. We report the standardized effect sizes2 (τ*) of MAF- and LD-related annotations for S-LDSC 
using the baseline-LD model and S-LDSC+LDAK (S-LDSC estimand) using the baseline-LD model and two 
coding annotations constructed from LDAK model weights. Error bars represent 95% confidence intervals.  
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Figure S10: S-LDSC (N = 20K) and LDAK (N = 20K) vs. S-LDSC+LDAK (N = 20K) for 3 highly 
heritable UK Biobank traits. We report the enrichment of S-LDSC+LDAK (N = 20K; S-LDSC estimand) vs. 
S-LDSC (N = 20K; S-LDSC estimand) (left panel) and S-LDSC+LDAK (N = 20K; LDAK estimand) vs. 
LDAK (N = 20K; LDAK estimand) (right panel) for 28 functional annotations, meta-analyzed across 3 
independent highly heritable UK Biobank traits. In each case we report the normalized mean square error 
(nMSE). Grey lines represent y = x. Error bars represent the 95% confidence intervals for annotations for which 
the estimated enrichment is significantly different (P < 0.05) between the two methods. Negative enrichment 
estimates have been set to 0 for visualization purposes but not for nMSE computations. 
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Supplementary Tables 

 
 
See Excel file. 
 
Table S1: Simulation results. We report numerical results from Figure S1. 
 
 
 
See Excel file. 
 
Table S2: Functional annotations of the baseline-LD model. We list the 75 annotations of the baseline-LD 
model, with accompanying information. The “Main annotation” column indicates whether the annotation is 
included as one of the 28 main functional annotations. 
 
 
 
See Excel file. 
 
Table S3: UK Biobank independent traits. We list the 16 UK Biobank traits analyzed, with accompanying 
information. 
 
 
 
See Excel file. 
 
Table S4: Published and UK Biobank functional enrichment estimates using LDAK, S-LDSC and S-
LDSC+LDAK. (a) We report enrichment estimates of the 28 main functional annotations published in 
Finucane et al.1 (S-LDSC with the baseline model), Speed et al.6 (LDAK) and Gazal et al. 2 (S-LDSC with the 
baseline-LD model). (b) We report enrichment estimates of the 28 main functional annotations, estimated 
across 16 independent UK Biobank traits. For each annotation, we report the proportion of SNPs of the 
annotation; for LDAK we report the proportion of SNPs before thinning, and include in parentheses the 
proportion of SNPs after thinning. For methods using the LDAK estimand, we report the proportion of 
heritability expected under the LDAK model. 
 
 
 
See Excel file. 
 
Table S5: Reference SNPs, Regression SNPs and Heritability SNPs used by S-LDSC, LDAK and S-
LDSC+LDAK. For S-LDSC and S-LDSC+LDAK we list the Reference SNPs (used to compute LD scores), 
Regression SNPs (included in the regression) and Heritability SNPs (used to compute proportion of heritability 
and enrichment).  For LDAK, we list the Heritability SNPs (used to run LDAK and compute proportion of 
heritability and enrichment), as References SNPs and Regression SNPs are not applicable.  We provide this 
information for both Simulations (column 1) and Analyses of 16 UK Biobank traits (column 2).  In the 
simulations, we restricted to causal SNPs with MAF ≥ 1%, and adapted the S-LDSC and S-LDSC+LDAK 
Reference SNPs and Heritability SNPs to match LDAK (i.e. SNPs with MAF ≥ 1%). In the analyses of 16 UK 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/256412doi: bioRxiv preprint 

https://doi.org/10.1101/256412
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 32 

Biobank traits, we ran S-LDSC and LDAK using the recommended settings6, and ran two versions of S-
LDSC+LDAK using S-LDSC and LDAK estimands respectively. 
See Excel file. 
 
Table S6: Standardized effect sizes of LDAK annotations estimated by S-LDSC+LDAK and LDAK-
sumstats. We report the standardized sizes2 (τ*), as well as corresponding jackknife standard errors and P 
values2, for the LDAK annotations in S-LDSC+LDAK (S-LDSC estimand) and LDAK-sumstats (S-LDSC 
estimand), respectively.  Each row of the table represents analyses that include LDAK annotations 
corresponding to that functional annotation only.  P values are computed analytically based on (τ*)/s.e.(τ*), and 
do not represent a formal likelihood ratio test quantifying the improvement in model fit. 
 
 
 
See Excel file. 
	
Table S7: Proportion of variance in observed 𝝌𝟐 statistics explained by S-LDSC and S-LDSC+LDAK 
models. For each model, we report the average across 16 independent UK Biobank traits of the squared 
correlation between the observed 𝜒! statistics and the expected 𝜒! statistics (see equation (2)), computed using 
HapMap 3 SNPs.  	
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