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Abstract 

Variation in immune cellular homeostasis exists between individuals, is heritable and due to 

genes and environment. Environmental influences increase with age, masking genetic 

determinants and barring human adult studies from informing on the origin of baseline variability. 

To identify genetic factors affecting individuals' immune profile in early life we profiled the bone 

marrow of 55 genetically diverse Collaborative Cross mouse strains, using high resolution mass-

cytometry. We identified 1,662 genes associated with 11 well defined cell subsets, 862 of which 

validated in an independent cohort. These genes were strongly enriched for basic housekeeping 

functions of proliferation and death, predicted cellular abundance and showed a higher mutation 

rate across multiple human cancers. Thus, akin to mRNA or protein species abundance, cellular 

variation is determined by genetic variants of production and turnover genes. Given these affect 

baseline homeostasis, reaching an at-risk immune state would differ for individuals, set by the 

genetic determinants we identified here.   
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Introduction 

The immune system has a major impact on maintaining our health and preventing the state of 

disease. Measurements in both humans and mice show a large amount of variation between 

individuals in cell subset abundance and relative ratios, suggesting a "personalized immune 

homeostasis". This variation has been exploited for blood based cellular biomarkers yielding 

important diagnostic health-information; not only of disease (Brodin and Davis, 2017), but also of 

outcomes among the healthy, such as predicting vaccine response or surgery outcomes 

(Gaudillière et al., 2014; Tsang et al., 2014).  

 

These cellular immune profiles are highly heritable, suggesting a strong role for environment and 

genetics in determining these phenotypic traits (Lu et al., 2016). Though data from young twins 

suggests a high level of genetic determinism (Hall et al., 2000; Pedersen, 2000), the effects of the 

environment increase with age, eventually dominating over the genetic components (Brodin et 

al., 2015).  In agreement, several large-scale association studies have identified genetic variants 

of disease genes associated with blood cell subset frequencies and counts (Orrù et al., 2013; 

Roederer et al., 2015). Yet these appear to be more associated with an individual's life history 

than to the basic biological processes that drive determination of a cell's abundance, suggesting 

that the source of variation in immune cellular profile remains unknown. Evidence from basic 

studies tracking labeled cells have shown that when one changes the rate of a cell subsets' 

proliferation or death, the total number and relative frequencies of cells would be altered (Mohri 

et al., 1998; Asquith et al., 2002; Busch et al., 2015) . Yet these findings do not explain the 

source of individual variability in immune cellular profiles. Thus, identifying genetic 

determinants of immune cell profiles is at the root of understanding how an individual's immune 

system state arises and ultimately what biomarkers are 'made of'. 

 

Immune phenotypes are predominantly considered complex traits. Successful mapping of such 

traits often requires an interplay between power and resolution of mapping: using humans who 

are genetically diverse as a model reduces the power of mapping, resulting in inability to detect 

relevant genomic loci, whereas using F2 populations of classical laboratory strains yields a 

limited resolution due to low sequence diversity (Mott and Flint, 2013). The Collaborative Cross 

(CC) mice strains form a large panel of inbred mouse strains that are derived from eight inbred 

founder strains (five classical inbred and three wild-derived strains). The CC mice were outbred 

in an 8-way cross for two generations and then inbred by inter-sibling mating to achieve 
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individual genetic homozygosity while maintaining heterogeneity between strains, which is closer 

to that observed in humans than previously established mice resources (Rogala et al., 2014; 

Elbahesh and Schughart, 2016). These mice share a similar environment yet are genetically 

diverse, enabling increased statistical power and focus for gene-trait correlation studies 

(Srivastava et al., 2017). Moreover, the CC mice have been shown to exhibit large phenotypic 

variation with respect to immune homeostatic conditions (Graham et al., 2017) and related 

responses (Rasmussen et al., 2014; Gralinski et al., 2015; Snijders et al., 2016; Brinkmeyer-

Langford et al., 2017), such as infection or viral challenge, offering an important venue to study 

the maintenance and variation of immune system homeostasis and its genetic determinants. 

 

With the aim of identifying the genetic origins of homeostatic variability in early life we coupled 

the high genetic diversity of the Collaborative Cross mice, which bring statistical power, a clean 

environment and reproducibility, with the high resolution of mass cytometry (CyTOF), which 

brings well defined characterization of entire cellular profiles. We identify the involvement of 

1662 genes associated with 11 well defined cell subsets and show that baseline variability in 

immune cell profiles is predominantly determined by genetic variants of cellular proliferation and 

death genes, information which we validate in a second cohort of mice and show can be used to 

predict cell abundance and proliferation rates. The majority of these associations are cell subset 

specific, suggesting unique mechanism of regulation, however as a group they show increased 

mutation rates across many forms of cancers, suggesting they may be co-opted by tumors to alter 

production and turnover rates across many cell-types.  

Results 

A high variability in immune cellular homeostasis in CC mice raised in a clean environment  

To assess the non-environmental variation in immune cell subset frequencies we focused on the 

bone marrow, given it covers major developmental milestones of hematopoiesis. Fitting the need 

for profiling this complex cellular environment at high dimension, we profiled 30 naive CC 

mouse strains in duplicate and 8 founder strains in triplicate (See Supp. Table 1) using a large 

panel of CyTOF phenotypic markers, reflective of hematopoietic populations (See Supp. Table 2 

for panel). We noted that for several strains, some markers were unobservable, making it difficult 

to cluster cell subsets of these mice at high dimension (Supp. Table 3). For the remaining 

samples, which had a full set of phenotypic markers (15 CC strains and 3 founder strains), we 

clustered the single cell data using Citrus, a high-dimensional clustering algorithm (Bruggner et 
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al., 2014) (Fig 1A, See Supp. Table 4). Of note, even for these mice expressing the full set of 

markers, we observed a high variability in marker expression, which could not be fixed via 

scaling and resulted in immune profile of CC mice clustered by replicate strains, followed by a 

close similarity to the whole genome genetic kinship distance, suggesting that phenotypic 

similarity was driven by genetic similarity (Fig 1B). To avoid bias in identification of cluster 

identity and allow downstream integration of strains which could not be clustered, we leveraged 

the Scaffold algorithm which maps high dimensional clusters to manually gated populations 

(Spitzer et al., 2015) (Fig 1C, Supp. Figure 1 for gating scheme, see Methods).  

Next, to assess homeostatic variation across mice, we analyzed individual cell subset frequencies 

across both founder and CC strains. As has previously been noted for other phenotypes (Kelada et 

al., 2012), CC mice exhibited a continuous range of frequencies whose dynamic range was larger 

than that observed between the most extreme founder strains, suggesting epistatic interactions 

(Fig 1C, inset)(Srivastava et al., 2017). An individual's immune cell profile consists of a complex 

stoichiometry covering multiple cell subsets. As such, to assess the variation between individual 

mice's homeostatic composition, we performed a Principle Component Analysis (PCA) of bone 

marrow cell subset composition (Figure 1D). We noted that the first two principle components 

axes explained 48.3% of total variance, with the first component capturing variation in lymphoid 

lineage B and T cell subsets and the second component capturing variation in myeloid cell 

subsets and NK cells. To quantify the extent of variation in homeostatic composition, we 

measured the pairwise distance between individual mice profiles within replicate mice, founder 

and CC strains. Here too, CC strains created a continuous scale of phenotypes likely introduced 

by epistatic events, whose dynamic range was largest and mean distance significantly greater than 

that observed between replicate strains (Figure 1E, p<0.001 by Student's t-test). Interestingly, we 

noted no significant differences of homeostatic composition distances between bone marrow 

samples profiled from ten healthy adults and CC strains, supporting the observation that these 

strains phenotypic variation is close to that observed in humans (Figure 1E, Supp. Figure 2 for 

human gating scheme). In addition, to understand the extent the observed variability defined an 

individual 'fingerprint', we profiled spleen of CC and founder mice strains and compared the 

similarity between individual mice across tissues. To do so, we measured the distance of each 

strain's immune profile from that of C57BL/6J on the same tissue (see Methods). We observed a 

positive correlation of homeostatic composition differences between mice across tissues (Figure 

1F, Sup. Figure 3, r=0.41), suggesting that cellular differentiation, as reflected in the spleen, is a 

direct function of individual bone marrow composition. Taken together, immune cell subset 
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variation is high, yet non-random, in genetically diverse mice raised in a shared clean 

environment and is likely driven by epistatic genetic trait interactions.  

Immune cell subset frequencies are complex traits associated with multiple genomic loci 

The high phenotypic variation observed in CC mouse strains provides a good platform for 

detection of quantitative trait loci responsible for immune traits. To identify those genes 

associated with immune cellular homeostasis, while reducing the number of multiple hypotheses 

to be tested, we chose to focus on loci harboring genes expressed in immune cells and for which 

mutations in the exon region were predicted (see Methods, Supp. Table 5). This filtering 

procedure yielded 6,961 genes covering a broad set of functions, spanning from broad cellular to 

immune specific functionalities. Next, we mapped per mouse loci, the likelihood of it stemming 

from a particular founder, using haplotype reconstruction (see Methods) and computed the logs 

odds ratio (LOD) score of each locus with each of the manually gated cell subset populations 

(Figure 2A). Of note, as manual gating depends on several representative markers (see gating 

scheme in Supp. Figure 1) and some mice did not show any pattern of expression for a marker of 

interest, we could not gate for all populations in all mouse strains and the number of mice used 

for associations varied between cell subsets (range 44 to 59, Supp. table 3). This procedure 

yielded a total of 1,619 loci, corresponding to 1,578 genes which matched our filtering criteria, 

namely below a false discovery rate (FDR) threshold of 15% and passing a leave-one-out 

procedure (Figure 2B, Supp. Figure 4, Supp. Table 6, see Methods).  

While genetic mosaic strains offer high power for statistical association, they also suffer from 

technical limitations introduced by their non-standard phenotype. Our inability to characterize 

cell subset populations included a staining loss of 6 markers, CD45, CD43, Sca-1, IA-IE, and 

Ly6c, one or more of which were undetectable in various combinations across strains. For each 

marker, we observed at least one founder strain for which the marker expression was undetectable 

in the stained panel (Figure 2C for CD43 as an example). This suggested that the inability to stain 

these markers was not due to a new recombination events, but rather was likely a consequence of 

differences in allelic variants, yielding an inability for epitope detection by the commonly used 

antibody isoforms (Philbrick et al., 1990). We reasoned that this loss of signal may be overcome 

using a statistical learning approach that would leverage the large phenotypic panel of CyTOF 

markers to approximate cell subsets frequencies unmeasurable by manual gating. We focused on 

CD43, critical for differentiating B-cell subsets in our CyTOF panel (Figure 2C inset) and for 

which the number of associated genes we identified was low, particularly for early B-cells, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/256073doi: bioRxiv preprint 

https://doi.org/10.1101/256073
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

suggesting that we lacked statistical power. Noting that CD19 and CD44 were correlated with 

CD43, we trained a random forest classifier on those mice whose markers were non-missing 

(Figure 2C-D, See Methods). The accuracy of this point estimate procedure was 82% (Figure 2E). 

Next, using this learned classifier we estimated early B-cell proportions in those strains where 

CD43 expression was un-detectable (Supp. Table 7). Finally, we repeated our genetic association 

analyses for early B cell subsets, but now adding those strains for which cell subset proportion 

were estimated. This increased our statistical power and allowed identification of an additional 83 

loci, corresponding to 84 genes in early B-cell subsets (Supp. Table 8, see Methods). Though the 

actual LOD score range for these was lower compared to the rest of associations, newly detected 

loci remained stable following multiple repeat randomizations in each of which we introduced 

error, on par with the training set estimation error (see Methods). Thus, the technical difficulties 

of assaying antibody-based measurements in genetically diverse individuals may be overcome by 

algorithmic means and a smart antibody panel design, allowing us to reach a total 1,662 genes 

whose variants were associated with immune cell homeostasis. 

 

Immune cell subset frequencies are regulated by genetic networks that are predominantly 

cell-specific 

The regulation of immune cell subsets homeostasis may be common to all cell subsets, or unique 

per population or lineage, based on functionality and developmental constraints. We noted that 

the number of associated hits was not uniformly distributed across immune cell subsets, rather, 

we detected over 700 genes whose variants were associated with monocytes but only 23 genes 

whose variants were associated with Pro-B cells (Figure 3A, Supp. Table 9). Of interest, our 

association picked up 45 genes whose phenotype according to Mammalian Phenotype Ontology 

is known to affect leukocyte levels, for example genes specific to the immune system: PAX5, 

CD28, Ltbp1 and genes with more housekeeping functionality: Myo3b, Hnrnpr and others (for 

full list see Supp. Table 10). This imbalance in trait-gene associations may be due to differences 

in regulatory complexity, yet is most likely is due to multiple complex issues involving both 

biological and technical limitations in experimental design: differences in allelic composition 

between genes across CC strains, unequal sample size per cell subset and more. To overcome 

these issues and increase the strength of detected associations, we repeated our analysis in a 

second independently collected cohort of 24, non-overlapping, mouse CC strains, whose bone 

marrow we profiled by CyTOF similar to the first cohort (See Methods, Supp. Table 11-12). This 

yielded successful validation of 862 genes (52%) from the initially detected set (Figure 3B, Supp. 
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Table 13 for adjusted p-values). Of note, we observed the highest percent of validated gene-trait 

associations in the B cell lineage, possibly hinting on a more highly conserved regulatory 

mechanism. In contrast, for T cells, we observed a lower percentage of validated genes, possibly 

as their presence in the bone marrow is due to migration and not differentiation processes (Di 

Rosa and Pabst, 2005; Mazo et al., 2005).   

Genetic regulation of a cell's homeostatic condition may be determined by the cell subset itself, or 

by other cell subsets. For the majority (84%) of genetic variants we detected an association only 

in a single cell subset. To delineate the relationship between a gene's cellular genetic association 

and its expression pattern we checked each gene's cellular expression profile across the ImmGen 

sorted cell gene expression compendium (Heng and Painter, 2008) (see Methods). We detected 

the overwhelming majority of the genes whose variants were associated with a specific cell subset 

frequency to be expressed in that same cell subset, that is in cis (Figure 3C, mean 86.5%, ranging 

between 83-100% across subsets). Whereas, 1.5% of genes were expressed in the same lineage, 

but not in the associated cell subset, and an additional 5% not expressed by any of the tested 

immune subsets. The remaining 12% were trans, that is, genes whose variants were associated 

with a specific cell subset frequency, but not expressed in that cell or in other subsets in the same 

lineage. The distribution of genes between these three non-cis genes sets was expression 

threshold dependent yet irrespective of the threshold, the existence of these four groups could not 

be discounted and robust to false discovery assessments. Taken together this would suggest that a 

cell's homeostatic condition is determined using distinct regulatory mechanisms per cell subset 

which are predominantly expressed in that cell. 

 

Genes associated with immune cell subset frequencies are enriched for cell production and 

turnover functions and highly overlap with mutated genes in various cancers. 

To characterize the biological processes of these genetic associations, we performed a pathway 

enrichment analysis (Figure 4A, Supp. Table 14 for significantly enriched functions, threshold at 

p<0.01 BH adjustment).  At this cutoff, the functionally enriched gene set consisted of 310 genes 

of which 137 (44%) were annotated for one of four main processes: proliferation, cell death, 

differentiation and cellular movement (q-value=10-8, 10-5, 10-4, 10-10 respectively by 

hypergeometric test). Beyond this, we observed an enrichment for other immune functions, 

including those responsible for homeostatic balance, which highly overlapped in gene 

membership with that of those four functions (68%). Of note, genes with proliferation and death 
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functionality that were found were both innate immunity oriented such as C5AR1, MYD88 

various TLR molecules (2,3 and4) and adaptive derivatives as IL7r and CTLA4. In addition, we 

observed a group of genes which are commonly known to affect proliferation processes as CD69 

and apoptotic processes such as Capase3,8 and BCL2, and a considerable group (10%) of 

cytokines, chemokines and phosphorylated proteins. Analyzing the distribution of these functions 

between cells, each cell subset included genes with at least one of four functionalities; whereas 

from a gene perspective, genes in this set were associated with only a single cell subset (Figure 

4B). Per cell subset network analysis, identified functionally connected networks in each cell 

subset, suggesting that genes associated with a cell subset's frequency act synergistically to 

balance its frequency. For example, analysis of late maturation stage (CD43-) B cell associated 

genes, identified a genetic network covering B cell differentiation genes, with Id3 forming a hub 

protein, as well as more general functionality genes, such as BCL2, involved roles in proliferation 

and apoptosis processes (Figure 4C, Supp. Figure 5 for more cell specific networks). Noting this 

highly specific gene-cell subset relation for what are generally considered housekeeping type 

functionalities (i.e. performing similar functionalities in most cell-types); per cell, we next 

contrasted the LOD score distribution of genes associated to only a single cell subset, that is, 

below LOD cut-off in other cell subsets, with that a random set of genes of equal size. We 

observed significantly higher LOD scores for "cell-specific genes associations" across multiple 

cell-types (Supp. Table 15 for p-values by Student's t-test), suggesting that cell-subset-association 

genes may also play a lesser role in the biological processes involved in other cell subsets, and 

that homeostatic cell regulation forms a large network with both cell-specific and pan-cell 

functionalities.  

Given these findings, this suggests, that akin to mRNA or protein species abundance, cell subset 

abundance is determined by genetic variants of genes associated with production or turnover. We 

thus hypothesized that individuals with similar complex genetic profiles of proliferation genes, 

would show similar cellular proliferation rates and cell abundances. To test this, we injected IdU 

to the second cohort of CC mice and assayed them following 48hr (2 injections at 24 hours’ 

interval). IdU incorporates into DNA strands and its level increases as more DNA synthesis 

occurs such that one can estimate the percent of proliferating cells in each cell subset by 

measuring number of cells in S phase (Supp. Table 16). Next, we clustered mice based on their 

genetic distance from one another, defined by their shared genetic variants of the validated 

(Figure 3B) proliferation genes of a specific cell-type, and clustered the individuals (Figure 5A 

for late B-cells, Supp. Figure 6 for monocytes). We observed that the mice having PWK/PhJ or 
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CAST/Eij founder strains contributing to the allelic variants of genes associated with the late B-

cell subset, had significantly higher proliferation rates (p<0.05) and higher subset abundance 

(p<0.01, Figure 4C). Of interest, genes that showed higher effect on the resulting abundance had 

basic functionality as Batf and Dicer1 or were previously found to regulate neuro related 

homeostatic and disease processes Nf1, ADORA2b, NOS1, suggesting that the regulation of the 

immune cell subset frequency might be affected by neuronal signaling as well.    

Given the homeostatic functionality we detected in the associated genes, we reasoned that their 

mutation may play a role in diseases in which the normal process of proliferation and/or death is 

disrupted. We thus leveraged information regarding patient somatic mutations in various cancers 

from TCGA, including both solid and blood tumors. Across the majority of cancers, the number 

of mutations accumulated in this gene set was at the top percentile compared to equally sized 

random controls, both when compared to genes sampled from the entire human genome as well as 

when restricted to genes expressed in immune cell only and excluding all known proliferation and 

death annotated genes (Figure 5B, see Methods).  

Discussion 

Here we aimed to identify what are the genetic mechanisms that drive variation in immune cell 

homeostasis between individuals. To do so we coupled the high variability of Collaborative Cross 

mice with the high dimensional phenotypic capabilities of mass cytometry to identify genetic 

determinants that are responsible for between organismal homeostatic differences. Using QTL 

mapping we identified 1662 genes which we associated with one or more of eleven immune cell 

subset frequencies of mice bone marrow. These set of genes are highly enriched for functions of 

cell proliferation, death, migration and differentiation. We validated that these epistatic genetic 

variants drive cell subset frequencies in a second cohort of CC mice, stratified by their genetic 

profile of proliferation genes. Transferring these findings to humans, we observed that as a group 

these genes are highly likely to be mutated across multiple cancer types, even when removing 

from our hit list all previously annotated proliferation and death genes.  

  

The large variation exhibited by CC mice, coupled with their controlled genetics and clean 

environment make them an ideal model for System Immunology studies. This is due to the fact 

that the variation between individual mice is large compared to classical laboratory strains and 

can thus be used to generate meaningful correlations between measured features (e.g. cells, genes, 

protein or genetic variants) as well as an improved understanding of the biological processes 
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studied and at a higher statistical rigor. Moreover, for immunology, where environmental 

exposure may overcome initial genetic variability, the CC mice offer a means at peeking at a 

'dark genetics' that would otherwise be difficult, if not impossible.   

 

Work with the CC strain though is not without difficulties, the use of conventional 

immunological techniques to characterize the mice may be limited due to reagent standards being 

largely dictated by C57BL/6J strains. To overcome this, we used statistical learning methodology 

which leverages the high dimensionality of the data to estimate missing signal, an approach that 

can be generalized. Beyond this, our findings are dependent on measured relative frequency of 

immune cell subsets rather than the absolute cell count, which is difficult to obtain in the bone 

marrow. We validated our model by looking at proliferation rates of different immune cell 

subsets, however to validate the production/turnover equation suggested by the associated genes 

in full, one should consider apoptosis and migration functions as well, which would require 

longitudinal studies to infer rates.  

 

Our analysis revealed an unprecedented number of novel associations of genes with immune cell 

functionality. These describe a network governing homeostatic balance, whose components are 

connected and both play a functional role in specific cell-types as well as across multiple cells. 

The majority of these genes act in cis, that is, they are expressed in those cells whose abundance 

they predominantly regulate. Yet, we also observed lineage specific and trans mediated 

regulation. The latter suggest a complex pattern of immune lineage cross-talk which may be 

mediated by communication mechanisms, such as exosomes and nanotubes (Mccoy-simandle et 

al., 2017), to allow maintenance of homeostatic stoichiometry.  Beyond this, we focused solely 

on genes whose expression in the immune system is well established, yet genes expressed in the 

stromal tissue may drive bone marrow formation as well (Wilson and Trumpp, 2006). For the 

majority of the genes we identified, no functional association with cellular homeostatic control 

has been reported to date, these would need to be further studied, especially as we observe their 

enriched mutation across many cancers, suggesting that tumors may mutate these genes 

preferentially to control growth.  

 

Over time, environmental exposures (e.g. disease, pregnancy, habitation conditions and other) 

alter one's immune system. Yet, these changes are always relative to the initial starting conditions 

which are largely dictated by genetic factors as we show here, and are likely unidirectional 

towards a non-naïve system. Evidence of immune cellular profiles or immune states being of 
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clinical relevance for diagnostic purposes has been shown across multiple disease conditions and 

health outcomes. As these states are reached through a developmental trajectories beginning in 

early life, the genetic determinants we identify here, affect baseline variability and thus how 

quickly one may reach an at-risk immune state. This would suggest that by checking the relation 

of immune responses to genetics, we may be able to predict the immune profile of an individual 

and their susceptibility to disease. 

 

Methods 

Mice samples collection and processing 

Founder strain males (n=3 per strain) of the A/J, C57BL/6J, 129S1Sv/ImJ, NOD/ShiLtJ, 

NZO/H1LtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ strains were purchased from The Jackson 

Laboratory and sacrificed at 6-8 weeks. For the Collaborative Cross strains, the Systems Genetics 

Core Facility (University of North Carolina) provided 129 mice aged 8-14 weeks from 55 

different complete lines, at least two mice per strain. Mice genetic information can be found at 

http://csbio.unc.edu/CCstatus/. 

Mice were bred and sacrificed at UNC facility. All procedures involving animals were performed 

according to the Guide for the Care and Use of Laboratory Animals with prior approval by the 

Institutional Animal Care and Use Committee within the Association for Assessment and 

Accreditation of Laboratory Animal Care-accredited program at the UNC at Chapel Hill (Animal 

Welfare Assurance Number: A-3410-01). Bone marrow and spleen were collected from necropsy 

following humane euthanasia by CO2. 

Primary conjugates of mass cytometry antibodies were prepared using the MaxPAR antibody 

conjugation kit (Fluidigm Inc.) according to the manufacturer protocol and optimal concentration 

was determined by titration. 

Bone marrow was flushed with cold CSM (PBS + 0.5% BSA) from the femur and tibia using a 

27.5-gauge needle and a 10mL syringe to achieve a single cell suspension. Cells from each mouse 

were washed twice and a total of 3 million cells were used for staining. Spleen tissue was 

homogenized and red blood cells were eliminated by lysis buffer. Cells were resuspended in 

500ul containing 1:2000 Rh DNA intercelator for 20 min of live/dead cells staining. Samples 

were washed with CSM buffer and resuspended in total of 100 ul metal-tagged antibody mix for 

cell surface markers staining for 1 hour. Cells were then fixed in 1.6% PFA (Sigma-Aldrich) in a 

total volume of 200 ul and stored at 40C.  DNA intercalator Ir191/193 staining was performed 
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post-PFA removal for 20 min at 1:2000 concentration in 500 ul volume. Finally, fixed samples 

were washed 3 times with DIW immediately prior to acquisition.  

 

Human samples 

Bone marrow aspirates from AML patients presenting at the Hematology Department in Rambam 

Medical Health Care Campus were collected.  All patients gave informed consent according to 

the declaration of Helsinki (IRB number: 0573-10). Mononuclear cells were separated by 

centrifugation over a layer of LymphoprepTM (Axis-Shield PoC AS, Oslo, Norway) and then 

stored in freezing medium [fetal bovine serum (FBS) with 10% DMSO] in a liquid nitrogen tank. 

 

Samples acquisition and data analysis  

Samples were acquired using CyTOF 1 machine at 500 events/sec for a total of 100-200K events. 

Internal metal isotope bead standards were added for sample normalization as described (Finck et 

al., 2013) to account for the decline in mean marker intensity over time. Acquired data were 

uploaded to a Cytobank web server (Cytobank Inc.) for data processing and gating out of dead 

cells and normalization beads. To account for intra-run declines in mean marker intensity over 

time, we performed a within-sample-over-time normalization step by using a running window to 

adjust mean marker intensity throughout each individual run such that the mean expression over 

time was equal to that measured at the beginning of the run.  

We manually gated all the major cell populations in the mouse bone marrow (Supp. Figure 1-3). 

Resulting phenotypes were than exported and adjusted to the total number of cells in the sample. 

Cell subset frequencies for each mouse sample are summarized in (Supp. Table 4).  

 

Estimation of cell type proportions 

To overcome the loss of signal due to allelic variation in a subset of markers, we devised a 

statistical learning approach to estimate the proportion of each cell type. Broadly, this consisted 

of two steps. First, a mixture-based distribution alignment methodology tailored to preserving 

differences in cell-type proportions between strains, while removing batch differences at the 

marker level. Second, a supervised estimation of cell-type proportions from the batch-corrected 

marker distributions using a random forest. 

Mixture-based distribution alignment - Single-cell protein expression distributions were aligned 

across mice using a constrained mixture model to capture sample-to-sample variation not handled 

by bead-based normalization. This mixture approach aligns the means of individual modes in the 
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distribution, in contrast to standard alignment approaches that rely on sample-wide averages, 

quantiles, or regression models. The advantage of this approach is that it prevents variation in cell 

type proportions from confounding the distribution alignment. 

Briefly, for a given marker, we modeled the observed distribution within each mouse by a 

mixture of Gaussians. We constrained the mean and variance structure of this mixture to be 

identical across mice, up to a global, linear shift of the distribution in each mouse.  However, we 

allowed the mixture weights to vary to account for shifts in cell type proportion. Finally, we 

aligned the distributions by removing the estimated constant shift from the distribution of each 

mouse. The mixture models were fit using an Expectation-Maximization algorithm in the 

FLEXMIX package in R, initializing the model with the modes computed on the data pooled 

across all mice.  

 

Estimating cell-type proportions with random forest- We used mice expressing all markers to 

train a random forest classifier to classify cell subsets. We specifically focused on CD43, critical 

for differentiating B-cell subsets in our CyTOF panel and selected the 3609 CC strain as the strain 

used for training as it exhibited reliable classification performance across a range of different 

training mice. We applied the learned classifier to the mice with missing markers to obtain 

estimated probabilities of being early or late B-cells.  Since correctly calibrating these 

probabilities on a new mouse actually depends on the unknown proportions of early and late B- 

cells, these scores cannot directly be interpreted as probabilities.  However, their relative values 

on the log scale are unaffected by this issue.  Because the classifier performance is high enough 

that the estimated log scores are highly bimodal, we were able to fit a mixture model to extract 

accurate proportion estimates, regardless of the lack of calibration. We fit a mixture model on the 

logit scale of estimated probabilities to extract the relative weight on each component, and used 

these mixture weights as estimates of the cell type proportions in that mouse. We validated this 

approach in held-out mice where all gating markers were present and estimated our error in early 

B-cell populations. These errors were then used during the genetic association step, to ensure that 

identified loci were stable. Specifically, for each mouse strain in which a cell subset was 

estimated, we set the frequency of the cell to be the estimated point value minus the estimation 

errors where the error is taken from a pooled distribution of errors across all training set strains. 
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Filtering of loci 

To reduce the number of multiple hypotheses tests, we chose to focus on associations with 

genomic loci that passed the following filter criteria: First, those loci which contained genes for 

which at least one of the CC founder strain is predicted to have an altered protein structure due to 

a sequence change compared to C57BL6 in exons of protein coding genes (Keane et al., 2011; 

Yalcin et al., 2011); Second, those genes determined to be expressed in immune cells 

based(Ericson et al., 2008). Using these two filtering criteria reduced the number of tested loci 

from 77,725 to 15,470.   

 

Gene-Phenotype Association 

We performed QTL mapping using DOQTL R package and MegaMUGA SNP chip 

(https://csbio.unc.edu/CCstatus/index.py) given the CC genotype reconstruction and the 

probability of descent from one out of eight founder strains for each genomic interval. We 

searched for significant association between immune phenotype and each genomic locus, using 

an additive linear model.  To check for stability of observed association we used a leave-one-out 

approach, calculating the strength of association. We only selected the associations which passed 

the threshold of significance in a strain independent manner. We set a significant association 

threshold based on the FDR of same population. We adjusted the threshold such that will allow 

and FDR of 15% and less. We calculated FDR for each phenotype separately by shuffling each 

time the mice ancestry in the locus and calculating the strength of the association.  

 

Functional classification of genes and validation of the analysis 

We performed pathway enrichment analysis with IPA software (Ingenuity Pathway Analysis 

Qiagen), using the core analysis module. To do so we estimated expression of genes according to 

ImmGen., using a threshold of log2(47) (Ericson et al., 2008), as a threshold for genes of  

intermediate and high probability of expression. We used a second cohort of mice to validate our 

findings. Each significant gene-phenotype association we identified in the first cohort was tested 

for significance in the second cohort (p-value <0.05).  

We injected the mice i.p. with 50mg/kg body weight IdU (5-Iodo-2′-deoxyuridine) twice: 48 

hours and 24 hours prior to euthanasia. To test for differences in IdU levels we manually gated all 

the subsets for IdU positive and negative cells. Mice were clustered, per cell-subset, by hierarchal 

clustering, based on the loci identified as associated with the cell-subset in the first cohort. One-

way ANOVA was performed in order to test for difference in percent of proliferating cells 

(p<0.05).  
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Cancer mutation enrichment 

We obtained somatic mutations of cancer patients TCGA. For each cancer type we computed the 

overlap between genes mutated in that cancer with a random gene set of equal size to the 

remaining set of identified genes post filtering for filtering for one-to-one orthologues. We 

performed this computation 100 times to generate a distribution, and then checked the percentile 

at which the identified set of genes placed. We considered two sampling options, to sample genes 

out of the whole human genome or only from genes that are expressed in immune cell subsets. To 

conduct a more conservative test, we checked whether the results remain stable even when taking 

out genes that were previously functionally annotated as proliferation and death genes by IPA 

and/or GO.  As such, we analyzed the data in four conditions: every combination of background 

and gene set options. 
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Figure 1. CC mice strains exhibit high variation in immune cell subset frequencies that is 

comparable to humans and conserved across immune organs. (a) Single cell data of bone marrow 

populations from CC mice were analyzed by Citrus, a high dimensional clustering analysis algorithm. 

The tree structure organizes clusters of single cells sharing similar set of 20 markers. Clusters are 

organized in a hierarchy with leaves of the tree in the periphery being more specific and those inward 

aggregating multiple leaves. Populations were color-labeled according to phenotypic markers distinctive 

for major bone marrow populations. Nodes in bold were used for further downstream analysis. Inset 

shows an example of markers that contributed to cluster characterization of monocyte cluster: Ly6c and 

CD11b (red and blue representing single cell distribution of marker expression in the cluster versus 

background respectively).  (b) Phenotypic profiling of bone marrow populations follows genotypic 

similarity. Heatmap (left) of scaled Citrus cluster frequency (columns) for CC mice and founder strains 

(rows). Founders indicated in black and the CC strains are colored according to the phylogenetic tree 

branch. Phylogenetic tree (right) represents whole genome genetic distance between CC strains. (c) 

Scaffold mapping between manually gated populations and those obtained from Citrus clustering analysis 

allows to overcome heterogeneity in marker expression. Inset shows monocyte frequency distribution 

across non-missing CC and founder strains. CC mice exhibited a continuous range of frequencies whose 

dynamic range was larger than that observed between the most extreme founder strains. (d) PCA 

projection of immune cellular profiles obtained from manual gates of CC (purple) and founder (green) 

strains. Only strains with complete set of markers were included (Supp. table 3). The two principle 

components are defined primarily by lymphoid and myeloid lineage subsets respectively. (e) CC strains 

form a continuous phenotypic variation in immune homeostatic profiles whose dynamic range exceeds 

that of founder strains and is similar to that observed in humans. Boxplots showing pairwise analysis of 

distances in PC space (the first and second dimensions were used) within groups of replicate, founder or 

CC strains as well as ten human healthy bone marrow. Student's t-test p-value are: **p<0.01, ***p<0.001. 

Pairwise distances between replicate strains were only considered in the Duplicate group. (f) Individuality 

of homeostatic immune cellular profiles is conserved between mice across tissues. Distances of each CC 

strain from C57BL/6J in PC space in bone marrow and spleen tissues.   

Figure 2. Immune phenotypes are complex traits that are regulated by multiple genomic loci. (a) 

Illustration of QTL mapping process using the Collaborative Cross mice: Genetically mosaic CC strains 

whose genome is reconstructed at each locus to one of eight founder strains are assayed for a quantitative 

trait, in our case bone marrow immune cell subsets frequencies. For each locus, and each CC strain, mice 

are split based on the founder strain contributed the locus (e.g. 'Locus X’ for the first mouse is contributed 

by 129S1/SvImJ and for the second mouse by NZO/HlLtJ) and the association with the phenotype, across 

all founders tested.  (b) Manhattan plot for all associated loci, the threshold of association is set according 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/256073doi: bioRxiv preprint 

https://doi.org/10.1101/256073
http://creativecommons.org/licenses/by-nc-nd/4.0/


to FDR of each population. Colors denote cell subset gene was mapped to. (c) CD43 histogram in two 

representative founder strains. Loss of staining is seen in CAST/EiJ. The loss causes an inability to 

distinguish between early and late B-cell subsets (inset). (d) Visualization of the two-dimensional joint 

distribution of CD19, a classical B cell marker and CD44, both of which were found to be highly 

correlated with CD43 expression in non-missing samples. Shown are multiple overlaid random forest 

trees. Color range shows the probability of a cell to be an early B-cell based on CD44 (x-axis) and CD19 

(y-axis) arcsine transformed expression. (e) Scatterplot showing measured versus estimated frequency of 

early B-cells in non-missing samples. The accuracy was 82%. (f) Manhattan plot for all associated loci 

post-incorporation of estimated proportion for CD43 missing-samples. Loci associated with early B-cells 

are colored, based on whether they were identified prior to the addition of the estimated early B-cell 

strains (green) or after (yellow). Associations for other cell subsets are colored black.  

Figure 3. Immune cell subset frequencies are regulated by genetic networks that are predominantly 

cell-specific. (a) An imbalance in genetic associations across immune cell subsets. Bar plot of number of 

per cell type associated genes, the bar is colored according to the population. (b) Validation of gene-trait 

associations in a second cohort of 24 non-overlapping CC mice strains (p<0.05 following BH 

adjustment). Non-transparent bars show the percent of validation success for each immune cell subset out 

of the total number of associated loci for that subset. (c) Homeostatic condition of immune cells is 

predominantly determined by cis genetic variants expressed in the same cell subset. Split Circos plot, 

depicting the fraction of genes expressed in each cell subset (right) based on ImmGen sorted cell gene 

expression patterns and the cells in which we detected an association of these gene's genetic variant with 

the cell's frequency (left). The color of the ribbon is set according to the cell subset the genes are 

associated with. The inset on the right side shows log2 expression of Il7r and Bex1 gene. Il7r is a cis-gene 

which found to be associated with pro-B cell subset frequency and also expressed in it (blue line). Bex1 is 

trans-gene, though found to be associated with pro-B cell subset frequency, Bex1 expressed only in stem 

and progenitor cell population (red line). Expression threshold indicated by grey line. Bottom inset shows 

the strength of association for Il7r and Bex1 gene across multiple cell subsets. Il7r associated with both 

pro-B cells and monocytes, while Bex1 associated with pro-B cell subset only. (Short abbreviations used 

for: T-T cells, NK-NK cells, GN-Granulocytes, Stem- Stem and progenitor cells) 

Figure 4. Genes associated with immune cell subset frequencies are enriched for cell production 

and turnover functions. (a) Bubble plot showing functional enrichment categories. X-axis shows the 

number of genes in a functional annotation group, y-axis, -log adjusted p-value on enrichment. Repeating 

related functional terms groups were grouped together (see Supp. Table 14 for full term enrichment 

listing), and the group with highest adjusted p-value and total number of genes for each functional 
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enrichment is shown. Functionally enriched genes were annotated for at least one of four main processes: 

proliferation, cell death, differentiation and cellular movement. (b) Cell subset frequencies are regulated 

by epistatic interactions between proliferation, migration, differentiation and death genes whose genetic 

variants are associated with the outcome. For every cell, genes associated with each of these four 

functions are found associated in a cell-specific manner. The subset identity is shown as : MO-monocytes, 

CD4T- CD4 T cells, GN-Granulocytes, Late B-cells, SP- Stem and progenitor cells, B cells, CD8T- CD8 

T cells, NK- NK cells, pro-B cell.  The colors of the enriched functions: blue- proliferation, orange- death, 

yellow migration, black-multi functional gene (all differentiation genes are multi-functional). (c) Cell 

specific network of regulation for late B-cell subset. Gene shapes are annotated based on IPA gene 

ontology, genes that were found as associated to late B-cell frequency are colored in blue.  

Figure 5:  Associated genetic variants predict abundance and proliferation rate and are more likely 

to be mutated across a broad range of cancers.  

(a) Validation of the proliferation function. From the left to the right: (i) Clustered genetic profile of 

genes that are associated with late B-cell subset frequency for each mouse. All possible alleles that differ 

from the C57bl/6 mouse allele for each gene were extracted, and the resulting profile across all associated 

genes was clustered by the hamming distance. (ii) For each clustered group, two boxplots are shown: (1) 

boxplot with colored contour for the abundance and (2) with a color fill for the percent of proliferating 

cells (top and bottom axes respectively) (iii) Histogram of IdU staining for a representative samples for 

each clustered group. (b) Genes associated with immune cell subset frequency are at the top percentile of 

mutated genes in cancers, compared to equally sized random controls. Percentile is shown for cancer type, 

the percentile calculated after removing non-immune genes out of genes expressed in immune cell only 

(orange), all human genes (light orange). 
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