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Abstract     

Molecular switches, such as the protein kinase CaMKII, play a fundamental role in cell 

signalling by decoding inputs into either high or low states of activity; because the high activation state 

can be turned on and persist after the input ceases, these switches have earned a reputation as ‘digital’. 

Although this binary perspective has been valuable for understanding synaptic plasticity over long 

timescales, accumulating experimental evidence suggests that molecular switches also control cellular 

processing on short timescales. To investigate this idea further, a non-autonomous, nonlinear ordinary 

differential equation, representative of a bistable molecular switch, is analyzed. The existence and 

uniqueness of model solutions to arbitrary input is proved for both the high and low states of activity. 

These results suggest that sub-state switch activity is an analog signal that tracks instantaneous input 

frequency, thereby increasing the capacity for information transfer to downstream cellular targets. 

Using simple dynamics based on the ubiquitous Hill equation, the model and theory make intriguing 

predictions about synaptic plasticity and suggest a multiplexed encoding of instantaneous frequency 

information over short timescales, with integration of total activity over long timescales, helping to 

reconcile contrasting perspectives presented in the literature. 

 

Keywords:   molecular switches, frequency coding, stochastic resonance, cellular computation, 

CaMKII, presynaptic plasticity 
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Introduction  

Many different cellular inputs lead to transient changes in cytosolic calcium (Ca2+) levels, 

generating temporally complex signals that reflect a wealth of information [1]. As such, cells express 

highly conserved molecular decoders capable of translating Ca2+ oscillations into downstream 

signalling events that affect diverse processes such as gene transcription, development and aging, 

neural network homeostasis and the synaptic plasticity that underlies learning and memory [2-9]. A 

celebrated example of a Ca2+ decoder is the bistable molecular switch Ca2+/calmodulin (CaM)-

dependent protein kinase II (CaMKII; Box 1), which is driven by transient levels of cytosolic Ca2+ into 

either high or low states of activity. When stabilized through negative regulation by phosphatases, self-

exciting kinases such as CaMKII are an ideal component of signal amplification and have been 

previously likened to transistors on a computer chip, in that they may be turned on or off, presenting an 

ideal substrate for computation in cellular systems [10]. 

The classic CaMKII experiments of De Koninck and Schulman provided the first demonstration that a 

molecular switch can decode the frequency of periodic Ca2+ pulses into distinct levels of persistent 

activation [11]. Subsequent modelling of CaMKII autophosphorylation dynamics captured this 

hysteresis effect, that is, the ability of the high activation state to persist beyond the original Ca2+ signal 

and act enzymatically over long timescales [12-14]. In these studies, the relationship between Ca2+ 

concentration and the state of the molecular switch was determined from simulations of large, 

parameterized systems of differential equations that are not readily amenable to deeper mathematical 

analysis; furthermore, these studies were restricted to periodic inputs. One notable exception is the 

work of Graupner and Brunel, who developed a reduced Ca2+ based model of long timescale 

postsynaptic plasticity [15]. In order to better understand frequency coding over short timescales, this 

article analyzes a reduced description of molecular switch behaviour when subject to general aperiodic 

forcing and in the presence of noise. As the study of cellular information processing shifts from 
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individual transduction pathways, toward the emergent properties of complex signalling networks, 

simple mathematical models are becoming indispensable tools for both experimentalist and 

theoreticians alike [16, 17].   

 

Box 1:   The bistable molecular switch CaMKII and synaptic plasticity 

___________________________________________________________________________________ 

  

Accounting for approximately 1-2% of all brain protein, the molecular switch CaMKII is a central hub 

of cell signalling networks and can exert both pre- and post-synaptic control over information 

transmission in the central nervous system [18]. Once bound to the Ca2+-CaM complex, the kinase’s 

ability to cooperatively autophosphorylate produces two distinct stable states: either high or low levels 

of enzymatic activation.  

Postsynaptically, after repetitive stimulation, the high activation state may persist long after the calcium 

signal subsides and can strengthen the connection between neurons, for example, the hippocampal 

CA3-CA1 synapses that support learning and memory [19]. Presynaptically, CaMKII also modifies 

connection strength [20-22]. At mouse hippocampal CA3-CA1 synapses, knocking-out the αCaMKII 

isoform leads to reduced synaptic potentiation under paired pulse facilitation protocols when compared 

to the wild-type [23]. Through enzymatic phosphorylation of voltage gated Ca2+ channels and 

ryanodine receptors, αCaMKII can enhance Ca2+ entry and Ca2+-induced Ca2+ release in response to 

high frequency signals [24]. However, at the same CA3-CA1 synapses, post-tetanic potentiation 

protocols generate enhanced levels of potentiation in the knock-out mice, illustrating that αCaMKII 

may also limit neurotransmitter release depending on the frequency and duration of the input [23]. 

Furthermore, a frequency dependent shift from paired pulse facilitation to paired pulse depression has 

been reported [25] and αCaMKII has been shown to serve as a negative, activity-dependent regulator of 

neurotransmitter release probability [26]. This effect can be partially explained by the fact that CaMKII 

phosphorylates Ca2+ -activated potassium channels that hyperpolarize the presynaptic terminal [27], 

decreasing the likelihood of Ca2+ entry and neurotransmitter release. Intriguingly, αCaMKII also plays 

a non-enzymatic role in presynaptic CA3-CA1 plasticity by regulating the number of docked synaptic 

vesicles containing neurotransmitter [28]. In this case, decreased transmitter release is likely explained 

by the fact that αCaMKII is acting as a sink for intracellular Ca2+, lowering the cytosolic levels that 

drive the machinery of synaptic vesicle fusion and influencing the size of the readily releasable vesicle 

pool [29, 30]. 

One of the most influential discoveries about CaMKII is its ability to decode the frequency of periodic 

Ca2+ pulses into distinct amounts of long lasting, autonomously activated kinase [11]. However, the 

interpretation of CaMKII as a frequency decoder has been criticized based on the fact that mean values 

of activity, evoked by different combinations of Ca2+ pulse size, duration and frequency, are 

ambiguously mapped into the same level of autonomously activated switch [31]. To address this 

criticism and bridge our understanding of CaMKII function over short and long timescales, this article 

investigates whether the concentration of activated switch acts as a reliable, sub-state analog signal that 

encodes frequency information over short timescales, where Ca2+ pulse size and duration are stable 

[32]. The experimental evidence discussed above suggests that frequency coding by these ‘digital’ 

molecular switches is more sophisticated than previously thought and that fluctuations in presynaptic 
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αCaMKII activity meaningfully decode instantaneous frequency information, translating it into 

bidirectional, real-time control of synaptic strength. 

___________________________________________________________________________________ 

 

Results 

A Bistable Switch Model The following differential equation is an abstraction of a bistable 

molecular switch and was originally proposed as a model of genetic development by Lewis et al. [33]. 

This relatively simple model is a useful analytical tool to understand the general properties of bistable 

kinetic systems; although the model interpretation and results are centered on CaMKII and synaptic 

plasticity, the reader is encouraged to consider the broader implications for instantaneous frequency 

coding with molecular switches (e.g., mitogen-activated protein kinases). 

 2
0 1

3

n

n

n

k ydy
k s k y

dt k y
  


 

In this formulation, the level of activated CaMKII ( y ) is stimulated by the presence of Ca2+ bound to 

CaM ( s ), which will be studied as a function of time. For simplicity we assume that pulses of Ca2+ are 

bound upon cell entry, which is reasonable since CaM is found in large concentrations surrounding 

Ca2+ channels and has a strong affinity for Ca2+ [34]. Deactivation is directly proportional to the active 

CaMKII concentration at a rate 1k , representing the collective activity of protein phosphatases. Finally, 

once activated, CaMKII has the ability to cooperatively bind Ca2+- CaM and autophosphorylate itself, 

which motivates the nonlinear, positive feedback term captured by the Hill equation, where 2k and 3k  

are the association and dissociation constants respectively. Due to physiological constrains, 

0 1 2 3, , , 0, ,y s k k k k  . 

 

This generic model has been previously applied to genetic networks [33, 35, 36], transcriptional 

regulation [37, 38], mitogen-activated protein kinases [39], and incorporated into a larger 
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phenomenological model of presynaptic plasticity [40]. Although insightful for their specific systems, 

these studies retain a large numbers of parameters that clutter analysis and obscure the generality of the 

results. Therefore, it is desirable to reduce the number of parameters and facilitate the following 

analysis by performing routine nondimensionalization. Let 3y x k  , 1 3

2

k k
r

k
 , 2

0

k
s c

k
  and 3

2

k
t

k
 , 

which, when substituted into the original equation and simplifying gives the reduced but dynamically 

equivalent form: 

 (1)
1 n

ndx x
c rx

d x
  


 

This article is interested in a time varying 0 ( )lc c c   , where 0c  reflects residual cytosolic Ca2+ 

whose slow dynamics are treated as fixed on the fast timescales over which the local Ca2+ signal ( )lc 

fluctuates [41]. The scale factor 3

2

k

k
T  , the quotient of the switch deactivation and activation 

parameters, will be reintroduced later in order to connect the switch dynamics to time in seconds and 

stimulation frequency in Hz. Finally, for highly cooperative reactions, n  = 2 is a reasonable 

approximation [42] and a convention maintained by all of the studies listed above. The following 

bifurcation analysis is illustrated for n  = 2, which allows for exact analytical solutions (Fig. 1 and 

Methods); however, the main results are then generalized to arbitrary nℝ+, which is much more 

realistic and has important consequences for frequency coding. 

 

Stability and Bifurcation Analysis 

Although interested in frequency-driven fluctuations, we must first examine the fixed state behaviours 

of the bistable switch. An important reason for reducing the number of model parameters is to simplify 

the analysis of how the behaviour of the system changes as a function of the parameter values. For 

Equation 1, having selected n  = 2, we only need to consider the effect of varying r  and c ; depending 
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on their values, we may have one, two or three equilibrium points ( *x ), where the rate of change of the 

switch 
2

2
( )

1

x
c rxf x

x
 


 is equal to zero. For example, consider the values 0.52r   and 0.04c   

that support bistability: there are three fixed points, two of which are stable, as illustrated by the 

switch’s potential function ( ) ( )U x f x dx   (Fig. 1A). As r  and c  change, saddle node bifurcations 

can occur, resulting in the presence of only the high or low activation state. The corresponding 

bifurcation diagrams are displayed in Figure 1B; their derivation is found in the Methods section.  

 

A key feature of bistability is the hysteresis effect, where the same value of a parameter may evoke 

different states depending on the history of activity. For example, as c  increases, *x  grows larger until 

crossing the rightmost cc , where a saddle node bifurcation occurs and the switch jumps up to the high 

activation state as the low state disappears (Fig. 1B, i). Now, as c  decreases back into the bistable 

range, the high activation state is preserved, and only lost when c  crosses below the leftmost value of 

cc . This history dependent behaviour is presumably central to CaMKII activity and the synaptic 

plasticity that underlies learning and memory (Box 1) [19]. A similar phenomenon occurs for the 

negative regulation parameter r  (Fig. 1B, ii). The values of cr  and cc  are plotted parametrically as a 

function of the active switch in the bifurcation curves (Fig 1B, iii). The bifurcation surface summarizes 

this information completely (Fig. 1B, iv). 

 

Existence of Sub-state Solutions 

 

To date, studies of Lewis et al.’s model have been restricted to static input and periodic forcing. It is of 

principal interest to characterize the model behaviour in response to aperiodic forcing, in order to gain 

a more general, physiologically realistic understanding of frequency coding with molecular switches. In 
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addition to coding frequency information into stable levels of activated switch for minutes to hours [11, 

19], what about frequency coding on the order of milliseconds to seconds? In a region surrounding a 

stable activation state, is there a unique sub-state solution for a time varying input signal? This question 

is not trivial, since small changes in the initial conditions of a nonlinear system (i.e., past switch 

activity) may generate drastically different behaviours. Understanding the relationship that determines 

whether solutions converge or diverge provides valuable insight into the properties of bistable 

molecular switches.  

 

We now reintroduce the scale factor T  since, in the following section, we are interested in studying 

frequency in Hz and time in seconds ( t ). As such, Equation 1 becomes 

( () 2)
1 n

ndx x
T c t rx

dt x
  


 

First, to establish the existence of solutions around the high and low switch states, consider Equation 2 

and note that f explicitly depends on the time-varying forcing term, 0( ) ( )lc t c c t  .  The function

( , ( ))f t x t  is assumed to be Lipschitz continuous and well-defined within strips, ( )y x t y    

satisfying the conditions ( , ) 0f t y   and ( , ) 0f t y   t ℝ+, which trap solutions within these 

boundaries. For ( , )c r  corresponding to the bistable region of parameter space (Fig. 1B, iii), there exist 

two infinite strips, ( ) ( , )l lx t y y   and ( ) ( , )h hx t y y  , each surrounding one of the stable 

equilibrium points ( *)x . Now, we wish to locate values for the low state ( , )l ly y  and high state 

( , )h hy y  , where the existence of local time-varying solutions can be guaranteed. This problem is 

intimately linked to bifurcation, since ly   and 
hy 

depend on the values of c  and r . The choice of a 

lower bound for the strip that exists around the low activation state is 0ly   , since the physiological 

restriction ( ) 0c t   implies ( ,0) 0f t  t , ignoring the degenerate case of ( ) ( ) 0c t x t  . The upper 
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bound of the lower strip, 
ly 

, should occur at a value *
ux x  , left of the unstable equilibrium where

*( , ) 0uf t x  , such that *, 0( )u xc f t x    , t ; this condition ensures that the system is not trivially 

displaced into the up-state by a single Ca2+ pulse with amplitude c . For the high concentration strip 

( , )h hy y  , the lower bound 
hy 

 is chosen as a value of x  infinitesimally greater than *
ux , that is, 

*
uhy x     for 0  . Since we have restricted r  and 

cc c (leftmost) to the bistable range, we know 

that ( , ) 0hf t y   t .  For the upper bound of the high activation strip, it is enough to note that for

*
hx x , ( , ( )) 0f t x t   t  and, since we wish to maximize the width of the strip, we take x  arbitrarily 

large, denoting this value by
hy x  . During stimulation, if ( , )c r  drifts out of the bistable region of 

parameter space, a saddle node bifurcation occurs and only one infinite strip exists; in this case, 0y   

and y x  . 

 

By invoking the Cauchy-Peano theorem, we guarantee the existence of at least one sub-state solution 

for every initial condition found within the strip regions defined above, since the conditions on the sign 

of the derivative ( , ( ))f t x t define trapping regions. However, this theorem says nothing about whether 

solutions starting at different initial conditions will converge to a unique, stimulus-driven response and 

track the instantaneous frequencies of the input signal.  

 

Uniqueness of Sub-state Solutions 

 

As motivation for the following results, Figure 2A shows an example switch response to an 8 Hz 

Poisson pulse sequence, which is convolved with an alpha function filter (30 ms; Methods), then 

normalized to the signal’s maximum and scaled by 0.5c   to create a representative input signal, 

which the switch tracks closely.  
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We now establish the stability and uniqueness of solutions in each strip for distinct initial conditions. 

Consider a general infinite strip ( , )y y  , where ( )x t  is a solution to Equation 2 with initial condition

0 ( , )x y y  . Assume there is another solution, ( )u t , with a different initial condition 0 ( , )u y y  . 

Writing ( ) | ( ) ( ) |z t u t x t   and first assuming n  is a positive integer, we see that 

 

0

0

0

0

1

( ) ( )
( ) lim

( ) ( ) ( ) ( )
lim

( ( ) ( )) ( ( ) ( ))
lim

( ( ) ( )) ( ( ) ( ))
lim

sgn[ ( ) ( )] ( ( ) ( ))

( )
sgn[ ( ) ( )] ( ) ( )

1 ( )

h

h

h

h

n

n

d z t h z t
z t

dt h

u t h x t h u t x t

h

u t h x t h u t x t

h

u t h u t x t h x t

h

d
u t x t u t x t

dt

u t
T u t x t c t r u t

u t
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T z t r p u x n

 





 
 

    
  

 
 

   


 

 

The expression ( , , )p u x n  reflects a tendency for solutions to diverge and achieves a maximum at an 

intermediate switch level that separates the low and high states of activation. Now, consider ( , , )p u x n  

for the special case of n 2, used in the bifurcation analysis; in this case, 
2 2

( , , 2)
(1 )(1 )

u x
p u x

u x




 
 , 

which is plotted in Figure 2B. Setting the partial derivatives of the function to zero and solving for u  
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and x , yields a critical point: 3 3
( , ) ,

3 3
u x

 
   
 

. Substituting this into p  gives a global maximum of 

3 3

8
.  Since 1 3 3

( ) ( )
8

d
z t r zT t

dt


 

    
 

 t , we can apply Grönwall's inequality, which gives us the 

following: 

 
0

1 3 3
( )

8
( )

t

r sT d

z t e

  




 

Substituting the expression for ( )z t  and solving this integral exponent yields, 

 
1 3 3
( )

8| ( ) ( ) |
rT t

u t x t e
 

   

and, as t  , we have  

 

1 3 3
( )

80 lim | ( ) ( ) | lim
T

t t

r t
u t x t e

 

 
    

For 
3 3

8
r   (≈ 0.65), we obtain 

 0 lim | ( ) ( ) | 0
t

u t x t


    

 

By the squeeze theorem we conclude that | ( ) ( ) | 0u t x t   as t  . Therefore, a unique frequency-

driven solution exists within either strip and is independent of the initial conditions. The time taken to 

converge to the unique solution is inversely proportional to T  (Fig. 2C). The value T   0.01 seconds 

was chosen here for the specific example switch, CaMKII, whose dissociation constant ( 3k ) is at least 

100-fold smaller than the activation constant ( 2k ) that governs the rate of autophosphorylation [43]. 

Unlike the larger value of T  0.1 seconds, T  0.01 permits quick convergence and reliable encoding 

for the action potential frequencies characteristic of hippocampal CA3-CA1 synaptic input 

(approximately 1-15 Hz) [44]. Smaller values of T  permit rapid convergence and more sensitive 
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frequency coding, but may become overly sensitive to temporary lulls in activity when c  briefly drops 

below the leftmost cc (recall Fig. 1B, i).   

 

It should be noted that r > 0.65 is an absolute guarantee of convergence to a unique frequency driven 

solution; but, from the bifurcation analysis (Fig. 1B, iii; Methods), we know that bistability does not 

exist for this value. However, in general, only ( , , 2) 0r p u x   is required, which, for low and high 

concentrations of activated switch, is obtained at smaller values of r  that support bistability. Although 

a unique encoding of sub-state solutions still exists for smaller r  values, convergence about the low 

activation state is vulnerable to perturbation by short Ca2+ inter-pulse intervals, thus acting as a high 

frequency event (burst) detector through induction of long term switch activation (i.e., hysteresis; Fig. 

2D). In theory, this dynamic threshold (the separatrix), is sensitive to recent levels of activation, and 

could be purposefully modulated by the cell through regulation of the parameters r and 
0c , that is, the 

expression of protein phosphatases and residual levels of cytosolic Ca2+  [45]. To restore the low state, 

the cell simply needs to adjust 
0c  to fall below the leftmost critical value cc . Note, in this simulation, 

the kernel was specifically chosen to be 30 ms based on literature values for the time course of local 

synaptic Ca2+ signals [15, 46, 47].  

 

Realistically, the Hill function exponent need not be restricted to integer values, which is unlikely in 

real biological systems. Thus, in the above proof, the expression ( , , )p u x n  is left as 

( )(1 )(1 )

n n

n n

u x

u x u x



  
 for nℝ+, since there is no longer a closed form expression for the factorization 

of the numerator by u x . The function ( , , )p u x n  has only one critical point at u x , which occurs at 

an apparent discontinuity due to the factor u x  in the denominator. However, assessing the limit as 

the difference between x  and u  becomes infinitesimally small, making the change of variable 
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u x h   as 0h  , and recognizing the limit definition of the power rule for differentiation, yields an 

expression for the maximum of ( , , )p u x n  , ,u x n ℝ+: 

 

 

0 0

2

1

2

max[ ( , , )] lim ( , , )

lim
( )(1 )(1 )

( ) 1
lim lim

( ) (1 ( ) )(1 )

1

(1 )

(1 )

u x

n n

n nu x

n n

n nh h

n

n

n

n

p u x n p u x n

u x

u x u x

x h x

x h x x h x

d
x

dx x

nx

x





 





 
  

   

  
  

     

 





 

For each value of the exponent n , the global maximum of this expression is determined for x ℝ+, 

and plotted (Fig. 2E). For 0.012n  , the minimum of the class of functions ( , , )p u x n  is found at n  = 

1.55. Fascinatingly, the αCaMKII isoform was reported by De Koninck and Schulman to have a Hill 

function exponent of 1.6 [11]; although their Hill function argument was Ca2+-CaM, this striking match 

suggests that αCaMKII’s activation function may operate with this particular exponent as it provides 

the minimum level of negative regulation required to maintain convergence of unique input driven 

switch activity, even at intermediate levels of the switch response, where r  must be stronger to 

guarantee unique solutions about the low activation state. This has the putative benefit of minimizing 

the amount of broadly acting phosphatase that may interfere with a cell’s other phosphorylation-

dependent processing. The reader should note that this result is independent of the model parameters, 

suggesting it is a very general property of the Hill function and regulated, self-excitatory biological 

phenomena.  
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Molecular Switches and Stochastic Resonance  

 

If the model is to capture actual molecular switch behaviour in vivo, then we must understand 

frequency coding in the presence of noise. The results presented in this section are generated by 

Equation 2 with additive Ornstein-Uhlenbeck noise, ( )t , which evolves according to the stochastic 

differential equation  

            ( )
d

dt
t



 


    

where ( )t  is bounded Gaussian noise, (0,1)N , whose amplitude is scaled by a parameter  . The 

choice of the time constant 
n  is based on previous studies of noisy microdomain Ca2+ fluctuations, 

where an upper bound for the autocorrelation time was determined to be approximately 10 ms [48, 49]. 

This choice has the added benefit of matching our switch time constant T , should we instead assume 

the noise is inherent to switch activation. Figure 3A shows the power spectrum ( cP ) of a weak 

sinusoidal calcium oscillation, 
0 sin(2 )c c t   , where 

0c = 0.04,  α =0.02 and  = 2 Hz, which was 

selected based on the mean action potential frequency associated with the CA3 and CA1 regions of the 

hippocampus [50]. As expected, the noisy switch oscillates at the frequency  , reflected in its power 

spectrum ( xP ).  Given our interest in frequency transfer, it is natural to ask whether noise improves or 

degrades the switch’s frequency coding ability. Very recently, the model of Lewis et al., studied under 

the context of genetic regulation with n   2, has been shown to produce the stochastic resonance effect 

[38], which is confirmed here (Fig. 3B). As  increases from 0, frequency transfer, measured as the 

ratio of switch power to signal power at  , dips slightly and then improves dramatically, achieving a 

maximum at 0.29, followed by a quick decrease as the noise becomes dominant. When changing the 

exponent from n   2 to n 1.6, this spectral amplification becomes significantly larger, suggesting 

again that presynaptic αCaMKII functions as a powerful frequency decoder and that the exponent n 
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1.6 has evolved to optimize this purpose. The reader should note that, for comparisons sake, r  = 0.65 

and r = 0.61 were selected respectively for n   2 and n 1.6 based on Fig. 2E, but that this effect is 

robust to changes in r and  . Setting n 1.6 also shifts the optimal noise strength to a substantially 

lower value, 0.09, which has the putative benefit of harnessing stochastic resonance at lower levels of 

noise that could otherwise be detrimental to different cellular operations.  

 

The results of Kang et al. [38] depend on a full complement of parameters, which begs the question of 

whether stochastic resonance is a generic feature of the model switch or whether the effect is only 

significant for a certain range of the parameters. The dimensional reduction of the switch model 

performed here allows this question to be easily addressed as a function of the parameters 
0c , r and n . 

Figure 3C shows that the parameter r  has significant influence over the value of   that produces 

optimal spectral amplification and that, for some combinations of 
0c , r and n , the stochastic resonance 

effect disappears completely. The absence or presence of stochastic resonance may prove useful for 

deducing parameter ranges of molecular switches in vitro and in vivo. Furthermore, these noise 

fluctuations drive state transitions and, depending on their intensity ( ) , may generate unimodal or 

bimodal distributions of switch activation (Fig. 3D); this provides another experimentally testable 

prediction for αCamKII, given that the switch state controls neurotransmitter release probability (Box 

1). 

 

Long timescale switch activation   

A potential caveat of the bistable switch model is that, even in the autonomous high activation state, the 

population of phosphorylated units ( x ) are still subject to the phosphatase activity ( )r . This places 

difficult constraints on the cell for long-timescale activation: if 
0c  and r are not controlled carefully, 

the upstate can be lost. The model effectively represents all of the phosphorylated subunits in a 
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population of CaMKII molecules (each having twelve phosphorylation sites). When one of these 

dodecamers becomes fully phosphorylated, it effectively becomes impervious to negative regulation by 

the phosphatases, since any cleaved subunit will immediately be re-phosphorylated by its neighbouring 

subunits and the enzyme can be shielded by its interactions with downstream targets [19]. Until now, 

the work presented here has ignored this feature of CaMKII dynamics. Therefore, we introduce a new 

variable to represent the level of autonomously activated switch that persists after the stimulus has been 

removed, even when Ca2+ levels drop below the leftmost critical value cc  that supports hysteresis (Fig. 

1B, i). Inspired by the work of Pinto et al. [31] (Box 1), we assume that the total amount of 

autonomously activated switch ( )X  is simply proportional to the average amount of input and thus, 

the amount of phosphorylated switch ( )x t  that occurs over the duration of stimulation, t :  

 
0

( )( ) (3)

t

t
dt tX x t x




        

For simplicity, a basal rate of transition to the fully autonomous state,  , is assumed. Figure 3E shows 

the amount of autonomously activated switch in response to repeated realizations of Poisson input over 

a range of frequencies.  Note that the amount of autonomously activated switch performs a logarithmic 

compression of the average frequency over the course of stimulation, while the instantaneous levels of 

phosphorylated switch track the instantaneous input frequencies throughout (as in Fig. 2A). As a final 

validation of the model’s ability to produce CaMKII-like behaviour, the essence of De Koninck and 

Schulman’s experimental results ([11]; see Fig. 4 within) and the model of Dupont et al. ([12]; Fig. 3E 

within) are captured qualitatively by Equations 2 and 3 (Fig. 3F). This required setting T  on the order 

of 10-1, which may reflect altered kinetics under the artificial conditions of their experiment, or the 

need for further refinement of the model presented here. For instance, the proportion   is expected to 

grow larger as more of the subunit population becomes phosphorylated and cooperative activation 

grows stronger [51, 52], leading to an increased likelihood for individual dodecamers to transition to 
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the fully autonomous state. This is expected to improve the reproduction of De Koninck and 

Schulman’s results by flattening the curves at lower frequencies and steepening them at higher 

frequencies [11]. Future work should seek to determine ( )x , with the hopes of identifying reduced 

representations of strongly nonlinear CaMKII activation.   

 

Discussion  

A main goal of this study was to extend the frequency coding idea of De Koninck and Schulman [11] 

in a generic switch model that captures the qualitative behaviour of CaMKII. The model of Lewis et al. 

[33], helps to reconcile contradictory perspectives of CaMKII function [11, 31] and suggests dual 

streams of information transfer that are temporally multiplexed: over short timescales, where the size 

and duration of the Ca2+ pulse is expected to be stable [32], the molecular switch acts as an encoder of 

instantaneous frequency information and apparently functions to bidirectionally regulate transmitter 

release probability at synapses through a combination of enzymatic and non-enzymatic activity (Box 

1). Over longer timescales, the switch integrates signal intensity, which dictates long term changes in 

synaptic strength and is dependent on multiple factors such as slow Ca2+-induced Ca2+ release 

(affecting 0c ) [24, 53], the size of the Ca2+ pulse, its duration and the mean frequency of stimulation. 

These latter features are expected to adjust the frequency sensitivity of the system by differentially 

modulating the relative activation of protein phosphatases [45], which influence the threshold for 

detecting high frequency events, such as bursts of action potentials [54], that could drive up the switch 

activation state and influence release probability after the input subsides. Furthermore, phosphatases 

( )r  have been treated statically in this study but actually have a high affinity for Ca2+ and their 

dynamics will additionally contribute to frequency tuning and neurotransmitter release [55-57].  

Importantly, the work presented here provides some testable predictions for synaptic physiologists: 

establishing the presence of both bimodal and unimodal synaptic release that depends on αCaMKII and 
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noise, as well as studying the real-time modulation of release probability at central synapses by 

αCaMKII in response to natural, aperiodic stimulation patterns (particularly bursting).  

 

Bistable molecular switches are a conserved feature of cell signalling networks and generate 

combinatorial power in their collective action [58-60]. Much in the way that the leaky-integrate and fire 

model has been a successful abstraction of neuronal activity, providing a trade-off between 

performance and a reduced description that facilitates network studies [61, 62], the model of Lewis et 

al. captures the core essence of molecular switches while remaining amenable to mathematical 

analysis. The relative simplicity of the model and its application to diverse signalling pathways make it 

a useful framework for further theoretical and experimental investigations into signalling networks and 

cellular computation. 
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Methods: 

Bifurcation Analysis 

The first step of the bifurcation analysis is to find the equilibrium points. Setting n  = 2, we rewrite Equation 1 

as, 

 ( ) ( )
dx

g x h x
dt

   

where 
2

2
( )

1

x
g x

x



 and ( )h x rx c  . The fixed points occur when ( ) ( ) 0g x h x  , which amounts to 

finding the solutions of the polynomial 3 2( 1) 0rx c x rx c      . First, fix c  and examine the effects 

of varying r . When 0c  , 0x   is a fixed point, and, for a particular range of r , there exists two 
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other positive valued fixed points, given by the roots of 
2 0rx x r    . The critical value of the 

parameter r , denoted by cr  is found by setting ( ) ( )g x h x  and ( ) ( )g x h x  , which, when solved, 

gives 
2 2 2

2

1 (1 )
c

x x
r

x x
 

 
. Three values of x  satisfy this equality: -1, 0 and 1. Since we are not 

considering negative values of x , we have two critical points, cr  = 0 and 
1

2
cr  . Therefore, when 

0c  , the system is bistable for 
1

0
2

r  . For 0c  , r  can be larger than 
1

2
 while still preserving 

bistability (as in Fig. 1A). We know cr  occurs when ( ) ( )h x g x  and ( ) ( )h x g x  ; therefore, when 

( ) ( )h x g x  we lose a fixed point through a saddle node bifurcation. For 0x  , the maximum of ( )g x  

is found at 
1

3
x   which gives 

3 3
max [ ( )]

8
x g x  . Therefore, when 

3 3

8
cr r  , only one fixed 

point exists.  

 

Now, we are interested in fixing r  and examining the effects of varying c . To find cc  we set 

( ) ( )g x h x  and ( ) ( )g x h x  , which gives 
2 2

2

(1 )

x
r

x



 and 

2

21
c

x
c rx

x
 


. Substituting the first 

expression into the second, we get 
2 2

2 2

(1 )

(1 )
c

x x
c

x





. We differentiate with respect to x  in order to locate 

the maximum value for cc ; 
2

2 3

2 (1 3 )
0

(1 )

x x

x





. This gives 0x   and

1

3
x  , which corresponds to 0cc   

and 
1

8
cc  . When cc c , only one fixed point exists for all values of r .  For a fixed value of r that 

supports bistability, as c  increases from 0  and crosses a critical value ( cc ), the fixed point *x  will 

jump up to the high amplitude branch. If c  is now decreased, the fixed point remains on the high 

amplitude branch even as c  becomes smaller than the corresponding cc . This hysteresis effect permits 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/256032doi: bioRxiv preprint 

https://doi.org/10.1101/256032
http://creativecommons.org/licenses/by-nc-nd/4.0/


switch activation to remain as the transient Ca2+ signal subsides, consistent with the findings from 

synaptic plasticity experiments (Box 1). Using the expressions derived for the critical values of cr  and

cc , we plot them parametrically as functions of x (Fig. 1B, iii). Saddle node bifurcations occur all 

along the boundary of these curves, it is here we find the values of r  and c  for which only two fixed 

points occur. Crossing each branch results in a pairwise collision and disappearance of two fixed 

points. Note where the bifurcation curves meet tangentially,
1 3 3

( , ) ,
8 8

c r
 

   
 

, here we observe a co-

dimension two bifurcation; beyond this point there is only one fixed point and the distinction between 

low and high activation states is blurred (Fig. 1B, iii).  

 

Computational Specifications and Miscellaneous Details 

 

Simulations were solved using the 4th order Runge-Kutta method, with the exception of the Ornstein-

Uhlenbeck noise, which was solved using the stochastic Euler method (time step of 1 ms in all cases). 

All simulations were performed using custom code, available upon request to the author, and were 

implemented on a Linux machine running Ubuntu 16.04 with an Intel core i7-6700 CPU, 3.4 GHz 

processing speed, and 62 GB of RAM.  

 

Pulse train sequences { }it were convolved with the filter  ( )/i ct t
t e

 
 , whose decay constant c was set 

to 30 ms, reflecting an accommodation of both pre- and post-synaptic calcium decay values from the 

literature that range from 15-43 ms  [15, 46, 47]. The resulting input signal was normalized to the 

maximum value and then scaled by c .The decay value is closely related to the input frequencies 

typical of a given synapse and the definition of what constitutes a high frequency event in the system, 

since for events occurring faster than the decay, Ca2+ accumulates quickly, driving the switch into the 
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upstate. The putative burst detector will work for different c , but may require a different set of 

corresponding switch parameters, range of stimulation frequencies and pulse amplitudes. 

 

Histogram bin sizes for Fig. 3D were set using the Freedman-Diaconis method [63]. 
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Figure 1 Activation states of the bistable molecular switch model  A) The model’s 

potential function, ( )U x , visually describes the tendency for solutions to settle around one of two 

equilibrium points ( *)x , where the rate of change of switch activation, ( )f x , is 0 (parameters, r  = 0.52 

and c  = 0.04). To the left of the stable equilibria (black circles), ( ) 0f x   (green), and to the right, 

( ) 0f x   (blue), forcing perturbations to settle back into those states. Conversely, the sign of ( )f x  is 

reversed on both sides of the unstable equilibrium (red circle), such that tiny perturbations push the 

switch away, toward either stable state. B) As r  or c  change, ( )f x changes and can result in the loss 

of bistability. (i) To illustrate, r  is fixed as the input c  is varied: small values only support low 

activation, but, as c  grows, bistability emerges and eventually only the high activation state is 

supported when cc c  (rightmost). A defining feature of bistability is the hysteresis effect, where the 

same value of a parameter may evoke different states depending on the history of activity. For example, 

the high activation state still exists for c less than the rightmost cc  and can only be lost when c  falls 

below the leftmost cc  value. (ii) c is fixed while the negative regulation parameter r  is varied. For 

small r , only the high activation state exists. As r  grows larger, the system becomes bistable and, 

eventually, only the low state exists after crossing cr . Panel (iii) shows a parametric plot of the critical 

values ( )cc x  and ( )cr x , and the bifurcation surface summarize the analysis completely (iv).  
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Figure 2    Switch activity fluctuates with instantaneous input frequency A) Motivating 

example: switch response to an 8 Hz Poisson sequence of input pulses, convolved with an alpha 

function kernel to create a signal, 0 ( )( ) lc c c tt   . The switch tracks changes in the input frequency (

1.6n  , 0.61r  , 0 0.04c  , and 0.01T  )  B) The example function ( , , 2)p u x  from the uniqueness 

proof achieves a maximum of 0.65; r  must exceed this critical value to guarantee absolute 

convergence of the switch to a unique frequency-driven solution. C)  Initial conditions: (0) 1.7u   and 

(0) 0.1x  . The value of T affects time-to-convergence between solutions and frequency filtering. 

From empirical studies, 0.01T   [43]. D)  For cr r , sufficiently high frequency event intervals 

(bursts) cause transitions from the low to high state (illustrated for 2n  ). By adjusting 0c  to take 

advantage of hysteresis, the cell can control whether or not it is sensitive to these burst-induced up 

states. The arrows highlight this fact for 0c  equal to 0 and 0.04; neither static value can generate the 

upstate alone (Fig. 1B).  E) In general, the exponent 2n   in real biological systems.  Interestingly, 

1.55n   is a minimum for the maximum value of the class of functions ( , , )p u x n in the uniqueness 
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proof, that is, the value of r  needed to guarantee convergence of solutions in self-exciting bistable 

systems. This is remarkably close to the empirical value of 1.6 reported by De Koninck and Schulman 

for presynaptic αCaMKII [11].  
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Figure 3 Frequency coding with noisy switches A) The switch model driven by a weak 

sinusoidal signal, 
0( ) sin(2 )c t c t   , with 0c  = 0.04,  = 0.02,  = 2 Hz, and additive noise, ( )t , 

whose intensity is scaled by the parameter   and evolves according to  = 0.01. The switch amplifies 

the frequency content of the input, as shown by its power spectrum xP  relative to the signal’s, cP .  B) 

Top: For n = 2, the ratio of switch power to signal power at   is plotted as a function of the noise 

intensity  , achieving a maximum at 0.29, that is, the switch displays stochastic resonance (SR). The 

value of   that promotes optimal frequency transfer is denoted by p . Bottom: For n = 1.6, there is 

substantially larger gain in the SR effect, and p  shifts to 0.09. C) p is plotted as a function of ( , )n r  

and 0( , )c r , illustrating the presence or absence of SR. D) For n = 1.6, noisy switch activity produces 

bimodal (e.g.,  = 0.01) or unimodal (e.g.,  = 0.035) states of activation, which is likely reflected in 

synaptic release probability (Box 1); the relative occupation of the high state versus the low state 

depends on r . E) The activated switch, X , driven by multiple realizations of Poisson input, 
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logarithmically compresses the mean input frequency (shading: +/- standard deviation), while 

instantaneous switch activity tracks the instantaneous input frequencies.  F) As a model validation, the 

pulse duration (in ms) and frequency experiments of De Koninck and Schulman were simulated ( n 

1.6, r = 0.61 and 0.4T  ), qualitatively capturing their results. 
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