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Abstract

Molecular switches, such as the protein kinase CaMKII, play a fundamental role in cell
signalling by decoding inputs into either high or low states of activity; because the high activation state
can be turned on and persist after the input ceases, these switches have earned a reputation as ‘digital’.
Although this binary perspective has been valuable for understanding synaptic plasticity over long
timescales, accumulating experimental evidence suggests that molecular switches also control cellular
processing on short timescales. To investigate this idea further, a non-autonomous, nonlinear ordinary
differential equation, representative of a bistable molecular switch, is analyzed. The existence and
uniqueness of model solutions to arbitrary input is proved for both the high and low states of activity.
These results suggest that sub-state switch activity is an analog signal that tracks instantaneous input
frequency, thereby increasing the capacity for information transfer to downstream cellular targets.
Using simple dynamics based on the ubiquitous Hill equation, the model and theory make intriguing
predictions about synaptic plasticity and suggest a multiplexed encoding of instantaneous frequency
information over short timescales, with integration of total activity over long timescales, helping to

reconcile contrasting perspectives presented in the literature.
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Introduction

Many different cellular inputs lead to transient changes in cytosolic calcium (Ca") levels,
generating temporally complex signals that reflect a wealth of information [1]. As such, cells express
highly conserved molecular decoders capable of translating Ca** oscillations into downstream
signalling events that affect diverse processes such as gene transcription, development and aging,
neural network homeostasis and the synaptic plasticity that underlies learning and memory [2-9]. A
celebrated example of a Ca®" decoder is the bistable molecular switch Ca**/calmodulin (CaM)-
dependent protein kinase II (CaMKII; Box 1), which is driven by transient levels of cytosolic Ca*" into
either high or low states of activity. When stabilized through negative regulation by phosphatases, self-
exciting kinases such as CaMKII are an ideal component of signal amplification and have been
previously likened to transistors on a computer chip, in that they may be turned on or off, presenting an

ideal substrate for computation in cellular systems [10].

The classic CaMKII experiments of De Koninck and Schulman provided the first demonstration that a
molecular switch can decode the frequency of periodic Ca®" pulses into distinct levels of persistent
activation [11]. Subsequent modelling of CaMKII autophosphorylation dynamics captured this
hysteresis effect, that is, the ability of the high activation state to persist beyond the original Ca®" signal
and act enzymatically over long timescales [12-14]. In these studies, the relationship between Ca**
concentration and the state of the molecular switch was determined from simulations of large,
parameterized systems of differential equations that are not readily amenable to deeper mathematical
analysis; furthermore, these studies were restricted to periodic inputs. One notable exception is the
work of Graupner and Brunel, who developed a reduced Ca®" based model of long timescale
postsynaptic plasticity [15]. In order to better understand frequency coding over short timescales, this
article analyzes a reduced description of molecular switch behaviour when subject to general aperiodic

forcing and in the presence of noise. As the study of cellular information processing shifts from
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individual transduction pathways, toward the emergent properties of complex signalling networks,
simple mathematical models are becoming indispensable tools for both experimentalist and

theoreticians alike [16, 17].

Box 1: The bistable molecular switch CaMKII and synaptic plasticity

Accounting for approximately 1-2% of all brain protein, the molecular switch CaMKII is a central hub
of cell signalling networks and can exert both pre- and post-synaptic control over information
transmission in the central nervous system [18]. Once bound to the Ca?>"-CaM complex, the kinase’s
ability to cooperatively autophosphorylate produces two distinct stable states: either high or low levels
of enzymatic activation.

Postsynaptically, after repetitive stimulation, the high activation state may persist long after the calcium
signal subsides and can strengthen the connection between neurons, for example, the hippocampal
CA3-CAL synapses that support learning and memory [19]. Presynaptically, CaMKII also modifies
connection strength [20-22]. At mouse hippocampal CA3-CA1 synapses, knocking-out the aCaMKII
isoform leads to reduced synaptic potentiation under paired pulse facilitation protocols when compared
to the wild-type [23]. Through enzymatic phosphorylation of voltage gated Ca*" channels and
ryanodine receptors, aCaMKII can enhance Ca** entry and Ca**-induced Ca®" release in response to
high frequency signals [24]. However, at the same CA3-CA1 synapses, post-tetanic potentiation
protocols generate enhanced levels of potentiation in the knock-out mice, illustrating that aCaMKII
may also limit neurotransmitter release depending on the frequency and duration of the input [23].
Furthermore, a frequency dependent shift from paired pulse facilitation to paired pulse depression has
been reported [25] and aCaMKII has been shown to serve as a negative, activity-dependent regulator of
neurotransmitter release probability [26]. This effect can be partially explained by the fact that CaMKII
phosphorylates Ca** -activated potassium channels that hyperpolarize the presynaptic terminal [27],
decreasing the likelihood of Ca" entry and neurotransmitter release. Intriguingly, aCaMKII also plays
a non-enzymatic role in presynaptic CA3-CA1 plasticity by regulating the number of docked synaptic
vesicles containing neurotransmitter [28]. In this case, decreased transmitter release is likely explained
by the fact that aCaMKII is acting as a sink for intracellular Ca**, lowering the cytosolic levels that
drive the machinery of synaptic vesicle fusion and influencing the size of the readily releasable vesicle
pool [29, 30].

One of the most influential discoveries about CaMKII is its ability to decode the frequency of periodic
Ca" pulses into distinct amounts of long lasting, autonomously activated kinase [11]. However, the
interpretation of CaMKII as a frequency decoder has been criticized based on the fact that mean values
of activity, evoked by different combinations of Ca®" pulse size, duration and frequency, are
ambiguously mapped into the same level of autonomously activated switch [31]. To address this
criticism and bridge our understanding of CaMKII function over short and long timescales, this article
investigates whether the concentration of activated switch acts as a reliable, sub-state analog signal that
encodes frequency information over short timescales, where Ca** pulse size and duration are stable
[32]. The experimental evidence discussed above suggests that frequency coding by these ‘digital’
molecular switches is more sophisticated than previously thought and that fluctuations in presynaptic
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aCaMKII activity meaningfully decode instantaneous frequency information, translating it into
bidirectional, real-time control of synaptic strength.

Results

A Bistable Switch Model The following differential equation is an abstraction of a bistable
molecular switch and was originally proposed as a model of genetic development by Lewis et al. [33].
This relatively simple model is a useful analytical tool to understand the general properties of bistable
kinetic systems; although the model interpretation and results are centered on CaMKII and synaptic
plasticity, the reader is encouraged to consider the broader implications for instantaneous frequency

coding with molecular switches (e.g., mitogen-activated protein kinases).

n

d—y:kos—k1y+—k2y

dt "+ y"
In this formulation, the level of activated CaMKII ( y ) is stimulated by the presence of Ca?" bound to
CaM (s ), which will be studied as a function of time. For simplicity we assume that pulses of Ca*" are
bound upon cell entry, which is reasonable since CaM is found in large concentrations surrounding
Ca”* channels and has a strong affinity for Ca** [34]. Deactivation is directly proportional to the active
CaMKII concentration at a rate &, , representing the collective activity of protein phosphatases. Finally,
once activated, CaMKII has the ability to cooperatively bind Ca®'- CaM and autophosphorylate itself,
which motivates the nonlinear, positive feedback term captured by the Hill equation, where £, and £,

are the association and dissociation constants respectively. Due to physiological constrains,

v, S, kg, k, ky, k;=0.

This generic model has been previously applied to genetic networks [33, 35, 36], transcriptional

regulation [37, 38], mitogen-activated protein kinases [39], and incorporated into a larger
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phenomenological model of presynaptic plasticity [40]. Although insightful for their specific systems,
these studies retain a large numbers of parameters that clutter analysis and obscure the generality of the
results. Therefore, it is desirable to reduce the number of parameters and facilitate the following

: : : . S kk k.
analysis by performing routine nondimensionalization. Let y = x -k, , r = f , 8= k—2 cand t= k—3 T,
2 0 2

which, when substituted into the original equation and simplifying gives the reduced but dynamically

equivalent form:

dx x"
—=Cc—rx+ -
dr 1+x

M

This article is interested in a time varying ¢ = ¢, +¢,(7), where ¢, reflects residual cytosolic Ca*"

whose slow dynamics are treated as fixed on the fast timescales over which the local Ca** signal ¢,(7)

k . . . ..
fluctuates [41]. The scale factor 7' = k—3 , the quotient of the switch deactivation and activation
2

parameters, will be reintroduced later in order to connect the switch dynamics to time in seconds and
stimulation frequency in Hz. Finally, for highly cooperative reactions, n =2 is a reasonable
approximation [42] and a convention maintained by all of the studies listed above. The following
bifurcation analysis is illustrated for » = 2, which allows for exact analytical solutions (Fig. 1 and
Methods); however, the main results are then generalized to arbitrary n» € R*, which is much more

realistic and has important consequences for frequency coding.

Stability and Bifurcation Analysis

Although interested in frequency-driven fluctuations, we must first examine the fixed state behaviours
of the bistable switch. An important reason for reducing the number of model parameters is to simplify
the analysis of how the behaviour of the system changes as a function of the parameter values. For

Equation 1, having selected n =2, we only need to consider the effect of varying 7 and c¢; depending
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on their values, we may have one, two or three equilibrium points ( x *), where the rate of change of the

2
X

switch f(x)=c—rx+
1+

— is equal to zero. For example, consider the values 7 =0.52 and ¢ =0.04
X
that support bistability: there are three fixed points, two of which are stable, as illustrated by the

switch’s potential function U(x) =— j f(x)dx (Fig. 1A). As r and ¢ change, saddle node bifurcations

can occur, resulting in the presence of only the high or low activation state. The corresponding

bifurcation diagrams are displayed in Figure 1B; their derivation is found in the Methods section.

A key feature of bistability is the hysteresis effect, where the same value of a parameter may evoke
different states depending on the history of activity. For example, as ¢ increases, X* grows larger until

crossing the rightmost ¢, , where a saddle node bifurcation occurs and the switch jumps up to the high

activation state as the low state disappears (Fig. 1B, 1). Now, as ¢ decreases back into the bistable

range, the high activation state is preserved, and only lost when ¢ crosses below the leftmost value of
¢,. This history dependent behaviour is presumably central to CaMKII activity and the synaptic
plasticity that underlies learning and memory (Box 1) [19]. A similar phenomenon occurs for the
negative regulation parameter » (Fig. 1B, i1). The values of 7, and c, are plotted parametrically as a

function of the active switch in the bifurcation curves (Fig 1B, iii). The bifurcation surface summarizes

this information completely (Fig. 1B, iv).
Existence of Sub-state Solutions
To date, studies of Lewis et al.’s model have been restricted to static input and periodic forcing. It is of

principal interest to characterize the model behaviour in response to aperiodic forcing, in order to gain

a more general, physiologically realistic understanding of frequency coding with molecular switches. In
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addition to coding frequency information into stable levels of activated switch for minutes to hours [11,
19], what about frequency coding on the order of milliseconds to seconds? In a region surrounding a
stable activation state, is there a unique sub-state solution for a time varying input signal? This question
is not trivial, since small changes in the initial conditions of a nonlinear system (i.e., past switch
activity) may generate drastically different behaviours. Understanding the relationship that determines
whether solutions converge or diverge provides valuable insight into the properties of bistable

molecular switches.

We now reintroduce the scale factor T since, in the following section, we are interested in studying

frequency in Hz and time in seconds (¢ ). As such, Equation 1 becomes

dx x"
T—=clt)—rx+ 2
dt @) 1+x" 2)

First, to establish the existence of solutions around the high and low switch states, consider Equation 2
and note that f explicitly depends on the time-varying forcing term, ¢(¢) = ¢, +¢,(¢) . The function
f(¢,x(¢)) is assumed to be Lipschitz continuous and well-defined within strips, ¥y <x(¢f)<y,
satisfying the conditions f(¢,¥ )>0 and f(¢,y,)<0 V¢eR", which trap solutions within these
boundaries. For (c,r) corresponding to the bistable region of parameter space (Fig. 1B, iii), there exist
two infinite strips, x(¢) € (y,_,¥,,) and x(t) € (y,_,»,,) , each surrounding one of the stable
equilibrium points (x*). Now, we wish to locate values for the low state (y,_, y,, ) and high state
(¥4—»>¥5,) » where the existence of local time-varying solutions can be guaranteed. This problem is
intimately linked to bifurcation, since y,, and y, depend on the values of ¢ and 7. The choice of a
lower bound for the strip that exists around the low activation state is y, = 0, since the physiological

restriction ¢(¢) >0 implies f(¢,0) >0 Vt,ignoring the degenerate case of ¢(¢) = x(¢) =0 . The upper
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bound of the lower strip, y,, , should occur at a value x” — Ax, left of the unstable equilibrium where

f(t,x)=0, such that Ac+ f(¢,x, —Ax) <0, V¢ ; this condition ensures that the system is not trivially
displaced into the up-state by a single Ca?" pulse with amplitude Ac . For the high concentration strip
(V4_»V4.) > the lower bound y, is chosen as a value of x infinitesimally greater than x, that is,

Y, =x, +¢& for £ > 0. Since we have restricted » and ¢ > ¢, (leftmost) to the bistable range, we know

that f(¢,y, ) >0 V¢. For the upper bound of the high activation strip, it is enough to note that for

x>x,, f(t,x(t))<0 V¢ and, since we wish to maximize the width of the strip, we take x arbitrarily
large, denoting this value by y,, = x_ . During stimulation, if (c,7) drifts out of the bistable region of
parameter space, a saddle node bifurcation occurs and only one infinite strip exists; in this case, y =0

andy, =x,.
By invoking the Cauchy-Peano theorem, we guarantee the existence of at least one sub-state solution
for every initial condition found within the strip regions defined above, since the conditions on the sign
of the derivative f(¢, x(¢)) define trapping regions. However, this theorem says nothing about whether
solutions starting at different initial conditions will converge to a unique, stimulus-driven response and

track the instantaneous frequencies of the input signal.

Uniqueness of Sub-state Solutions

As motivation for the following results, Figure 2A shows an example switch response to an 8 Hz
Poisson pulse sequence, which is convolved with an alpha function filter (30 ms; Methods), then
normalized to the signal’s maximum and scaled by Ac = 0.5 to create a representative input signal,

which the switch tracks closely.
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We now establish the stability and uniqueness of solutions in each strip for distinct initial conditions.
Consider a general infinite strip (y_,),), where x(¢) is a solution to Equation 2 with initial condition
X, €(y_,»,). Assume there is another solution, u(¢), with a different initial condition u, € (y_,y,).

Writing z(¢) = | u(¢) — x(¢) | and first assuming » is a positive integer, we see that

4y = fim 2D =20
dt

h—>0 h

. |u(t +h)—x(t+ h)| - |u(t) - x(t)|
=lim

h—0 h

<l |t + 1) = x(2 + ) = (u(t) = x(2))|
= 11m

h—0 h
_5 |2+ h) = u(®) = (x( + h) = x(1))|
h hl—r>r01 h

=sgn[u(t)—x(t)]-%(um—xm)

= T’*1 Sgl’l[u(l) —x(l‘)](c(l‘) —r u(l‘) +&_(C(l)—r~x(t) N x”(t) ]]

1+u"(¢t) 1+x"(2)
- B (. B u"(t)—x"(¢t)
=T sgnfu(t)—x(1)] ( r-(u()—x())+ A ()1 2" (t))j
- B _ B . u" () —x"(1)
=T sgn[u(t) =x(D]-(u()) =x(1) ( " WO O) T )T UDJ

Zn: u' () x"(t)
A+u" ()1 +x"(2))

for neZ”

=T u(@) = x(@)|-| —r+

= T‘lz(t)-(—r + p(u, x, n))

The expression p(u,x,n) reflects a tendency for solutions to diverge and achieves a maximum at an
intermediate switch level that separates the low and high states of activation. Now, consider p(u,x,n)

u+x

for the special case of n =2, used in the bifurcation analysis; in this case, p(u,x,2)=—————,
(I+u)(A+x7)

which is plotted in Figure 2B. Setting the partial derivatives of the function to zero and solving for u
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and x, yields a critical point: - V3 V3, Substituting this into p gives a global maximum of
(u,x) ,
3°3

3\/— Since 4 0 2(t)< T ( r+ %J z(¢) Vt, we can apply Gronwall's inequality, which gives us the
8

following:

T 1]( r+3f)ds
A(f)<e O

Substituting the expression for z(¢) and solving this integral exponent yields,

343
@ -x) e R

and, as t — o, we have

Sy i)t
0 <lim|u(r)—x(?) |[< lime
t—0 t—0

33

For r > e (= 0.65), we obtain

0 < lim |u(t) - x(£)|< 0

By the squeeze theorem we conclude that |u(¢) — x(¢)|— 0 as ¢ — co. Therefore, a unique frequency-

driven solution exists within either strip and is independent of the initial conditions. The time taken to

converge to the unique solution is inversely proportional to 7 (Fig. 2C). The value 7 = 0.01 seconds

was chosen here for the specific example switch, CaMKII, whose dissociation constant (k; ) is at least

100-fold smaller than the activation constant ( k,) that governs the rate of autophosphorylation [43].

Unlike the larger value of 7 =0.1 seconds, 7' =0.01 permits quick convergence and reliable encoding
for the action potential frequencies characteristic of hippocampal CA3-CA1 synaptic input

(approximately 1-15 Hz) [44]. Smaller values of T permit rapid convergence and more sensitive
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frequency coding, but may become overly sensitive to temporary lulls in activity when ¢ briefly drops

below the leftmost c, (recall Fig. 1B, 1).

It should be noted that 7> 0.65 is an absolute guarantee of convergence to a unique frequency driven
solution; but, from the bifurcation analysis (Fig. 1B, iii; Methods), we know that bistability does not
exist for this value. However, in general, only —r + p(u, x,2) < 0 is required, which, for low and high
concentrations of activated switch, is obtained at smaller values of 7 that support bistability. Although
a unique encoding of sub-state solutions still exists for smaller » values, convergence about the low
activation state is vulnerable to perturbation by short Ca®" inter-pulse intervals, thus acting as a high
frequency event (burst) detector through induction of long term switch activation (i.e., hysteresis; Fig.
2D). In theory, this dynamic threshold (the separatrix), is sensitive to recent levels of activation, and

could be purposefully modulated by the cell through regulation of the parameters 7 and ¢, that is, the

expression of protein phosphatases and residual levels of cytosolic Ca*" [45]. To restore the low state,

the cell simply needs to adjust ¢, to fall below the leftmost critical value ¢, . Note, in this simulation,

the kernel was specifically chosen to be 30 ms based on literature values for the time course of local

synaptic Ca" signals [15, 46, 47].

Realistically, the Hill function exponent need not be restricted to integer values, which is unlikely in

real biological systems. Thus, in the above proof, the expression p(u, x,n) is left as

womx for n e R", since there is no longer a closed form expression for the factorization
(u—x)I+u")1+x")

of the numerator by u —x . The function p(u,x,n) has only one critical point at u = x, which occurs at

an apparent discontinuity due to the factor u —x in the denominator. However, assessing the limit as

the difference between x and u becomes infinitesimally small, making the change of variable
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u=x+h as h— 0, and recognizing the limit definition of the power rule for differentiation, yields an

expression for the maximum of p(u,x,n) Vu,x,neR":

max| p(u,x,n)]=lim p(u,x,n)

- lim{ =Xt }
uox | (u—x)(1+u")(1+x")
=1im{(x+h)n_xn} lim !

50| (x+h—x) |0 (1+(x+ A )(1+x")
_ i(xn ) S
dx (1+x")°
nxn—l
B (1+x")?
For each value of the exponent 7, the global maximum of this expression is determined for Vx e R",

and plotted (Fig. 2E). For n > 0.012, the minimum of the class of functions p(u, x,n) is found at n =

1.55. Fascinatingly, the aCaMKII isoform was reported by De Koninck and Schulman to have a Hill
function exponent of 1.6 [11]; although their Hill function argument was Ca**-CaM, this striking match
suggests that aCaMKII’s activation function may operate with this particular exponent as it provides
the minimum level of negative regulation required to maintain convergence of unique input driven
switch activity, even at intermediate levels of the switch response, where » must be stronger to
guarantee unique solutions about the low activation state. This has the putative benefit of minimizing
the amount of broadly acting phosphatase that may interfere with a cell’s other phosphorylation-
dependent processing. The reader should note that this result is independent of the model parameters,
suggesting it is a very general property of the Hill function and regulated, self-excitatory biological

phenomena.
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Molecular Switches and Stochastic Resonance

If the model is to capture actual molecular switch behaviour in vivo, then we must understand
frequency coding in the presence of noise. The results presented in this section are generated by

Equation 2 with additive Ornstein-Uhlenbeck noise, 7(¢) , which evolves according to the stochastic

differential equation

dn__n
dt  t tel)

n

where £(¢) is bounded Gaussian noise, N(0,1), whose amplitude is scaled by a parameter o . The
choice of the time constant 7, is based on previous studies of noisy microdomain Ca*" fluctuations,
where an upper bound for the autocorrelation time was determined to be approximately 10 ms [48, 49].
This choice has the added benefit of matching our switch time constant 7', should we instead assume
the noise is inherent to switch activation. Figure 3A shows the power spectrum (£, ) of a weak
sinusoidal calcium oscillation, ¢ = ¢, + a sin(2z¢t) , where ¢,=0.04, a =0.02 and ¢ =2 Hz, which was
selected based on the mean action potential frequency associated with the CA3 and CA1 regions of the
hippocampus [50]. As expected, the noisy switch oscillates at the frequency ¢, reflected in its power
spectrum ( P,). Given our interest in frequency transfer, it is natural to ask whether noise improves or

degrades the switch’s frequency coding ability. Very recently, the model of Lewis et al., studied under
the context of genetic regulation with n = 2, has been shown to produce the stochastic resonance effect
[38], which is confirmed here (Fig. 3B). As o increases from 0, frequency transfer, measured as the
ratio of switch power to signal power at ¢, dips slightly and then improves dramatically, achieving a
maximum at 0.29, followed by a quick decrease as the noise becomes dominant. When changing the
exponent from n= 2 to n=1.6, this spectral amplification becomes significantly larger, suggesting

again that presynaptic aCaMKII functions as a powerful frequency decoder and that the exponent n =
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1.6 has evolved to optimize this purpose. The reader should note that, for comparisons sake, » = 0.65
and » = 0.61 were selected respectively for n= 2 and n=1.6 based on Fig. 2E, but that this effect is
robust to changes in 7 and ¢. Setting n =1.6 also shifts the optimal noise strength to a substantially
lower value, 0.09, which has the putative benefit of harnessing stochastic resonance at lower levels of

noise that could otherwise be detrimental to different cellular operations.

The results of Kang et al. [38] depend on a full complement of parameters, which begs the question of
whether stochastic resonance is a generic feature of the model switch or whether the effect is only
significant for a certain range of the parameters. The dimensional reduction of the switch model
performed here allows this question to be easily addressed as a function of the parameters ¢,, »and n.
Figure 3C shows that the parameter » has significant influence over the value of o that produces
optimal spectral amplification and that, for some combinations of ¢,, »and n, the stochastic resonance
effect disappears completely. The absence or presence of stochastic resonance may prove useful for
deducing parameter ranges of molecular switches in vitro and in vivo. Furthermore, these noise
fluctuations drive state transitions and, depending on their intensity (o), may generate unimodal or
bimodal distributions of switch activation (Fig. 3D); this provides another experimentally testable

prediction for aCamKII, given that the switch state controls neurotransmitter release probability (Box

1.

Long timescale switch activation

A potential caveat of the bistable switch model is that, even in the autonomous high activation state, the

population of phosphorylated units (x ) are still subject to the phosphatase activity (7). This places
difficult constraints on the cell for long-timescale activation: if ¢, and r are not controlled carefully,

the upstate can be lost. The model effectively represents all of the phosphorylated subunits in a
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population of CaMKII molecules (each having twelve phosphorylation sites). When one of these
dodecamers becomes fully phosphorylated, it effectively becomes impervious to negative regulation by
the phosphatases, since any cleaved subunit will immediately be re-phosphorylated by its neighbouring
subunits and the enzyme can be shielded by its interactions with downstream targets [19]. Until now,
the work presented here has ignored this feature of CaMKII dynamics. Therefore, we introduce a new
variable to represent the level of autonomously activated switch that persists after the stimulus has been

removed, even when Ca*" levels drop below the leftmost critical value ¢, that supports hysteresis (Fig.
1B, 1). Inspired by the work of Pinto et al. [31] (Box 1), we assume that the total amount of
autonomously activated switch (X') is simply proportional to the average amount of input and thus,

the amount of phosphorylated switch x(¢) that occurs over the duration of stimulation, A7 :

At
X =(wx(t)) =% | x(t)dt 3)

0
For simplicity, a basal rate of transition to the fully autonomous state, @, is assumed. Figure 3E shows
the amount of autonomously activated switch in response to repeated realizations of Poisson input over
a range of frequencies. Note that the amount of autonomously activated switch performs a logarithmic
compression of the average frequency over the course of stimulation, while the instantaneous levels of
phosphorylated switch track the instantaneous input frequencies throughout (as in Fig. 2A). As a final
validation of the model’s ability to produce CaMKII-like behaviour, the essence of De Koninck and
Schulman’s experimental results ([11]; see Fig. 4 within) and the model of Dupont et al. ([12]; Fig. 3E
within) are captured qualitatively by Equations 2 and 3 (Fig. 3F). This required setting 7' on the order
of 10!, which may reflect altered kinetics under the artificial conditions of their experiment, or the
need for further refinement of the model presented here. For instance, the proportion @ is expected to

grow larger as more of the subunit population becomes phosphorylated and cooperative activation

grows stronger [51, 52], leading to an increased likelihood for individual dodecamers to transition to
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the fully autonomous state. This is expected to improve the reproduction of De Koninck and
Schulman’s results by flattening the curves at lower frequencies and steepening them at higher

frequencies [11]. Future work should seek to determine w(x) , with the hopes of identifying reduced

representations of strongly nonlinear CaMKII activation.

Discussion

A main goal of this study was to extend the frequency coding idea of De Koninck and Schulman [11]
in a generic switch model that captures the qualitative behaviour of CaMKII. The model of Lewis et al.
[33], helps to reconcile contradictory perspectives of CaMKII function [11, 31] and suggests dual
streams of information transfer that are temporally multiplexed: over short timescales, where the size
and duration of the Ca®>" pulse is expected to be stable [32], the molecular switch acts as an encoder of
instantaneous frequency information and apparently functions to bidirectionally regulate transmitter
release probability at synapses through a combination of enzymatic and non-enzymatic activity (Box
1). Over longer timescales, the switch integrates signal intensity, which dictates long term changes in
synaptic strength and is dependent on multiple factors such as slow Ca**-induced Ca*" release

(affecting ¢, ) [24, 53], the size of the Ca®" pulse, its duration and the mean frequency of stimulation.

These latter features are expected to adjust the frequency sensitivity of the system by differentially
modulating the relative activation of protein phosphatases [45], which influence the threshold for
detecting high frequency events, such as bursts of action potentials [54], that could drive up the switch
activation state and influence release probability after the input subsides. Furthermore, phosphatases
() have been treated statically in this study but actually have a high affinity for Ca®" and their
dynamics will additionally contribute to frequency tuning and neurotransmitter release [55-57].
Importantly, the work presented here provides some testable predictions for synaptic physiologists:

establishing the presence of both bimodal and unimodal synaptic release that depends on aCaMKII and
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noise, as well as studying the real-time modulation of release probability at central synapses by

aCaMKII in response to natural, aperiodic stimulation patterns (particularly bursting).

Bistable molecular switches are a conserved feature of cell signalling networks and generate
combinatorial power in their collective action [58-60]. Much in the way that the leaky-integrate and fire
model has been a successful abstraction of neuronal activity, providing a trade-off between
performance and a reduced description that facilitates network studies [61, 62], the model of Lewis et
al. captures the core essence of molecular switches while remaining amenable to mathematical

analysis. The relative simplicity of the model and its application to diverse signalling pathways make it
a useful framework for further theoretical and experimental investigations into signalling networks and

cellular computation.
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Methods:

Bifurcation Analysis

The first step of the bifurcation analysis is to find the equilibrium points. Setting #n = 2, we rewrite Equation 1

as,
dx
—=g(x)—h(x
% g(x)—h(x)
xZ
where g(x)= e and /(x)=rx—c. The fixed points occur when g(x)—A(x) =0, which amounts to
+Xx

finding the solutions of the polynomial —rx’ +(c+1)x* —rx+c =0. First, fix ¢ and examine the effects

of varying ». When ¢=0, x =0 is a fixed point, and, for a particular range of r, there exists two
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other positive valued fixed points, given by the roots of —rx” +x—7 = 0. The critical value of the
parameter », denoted by 7. is found by setting g(x)=/A(x) and g'(x)=A'(x), which, when solved,

2x

- (1+x°)°

gives 7, = . . Three values of x satisfy this equality: -1, 0 and 1. Since we are not
+x

. . .. : 1
considering negative values of x, we have two critical points, », =0 and 7, = 5 Therefore, when

. 1 1 o .
c =0, the system is bistable for 0 <r < 5 For ¢ >0, r can be larger than 5 while still preserving

bistability (as in Fig. 1A). We know 7. occurs when A(x) = g(x) and A'(x) = g'(x) ; therefore, when

h(x) > g(x) we lose a fixed point through a saddle node bifurcation. Forx > 0, the maximum of g(x)

is found at x = \E which gives max [g(x)]= % Therefore, when r >r, = % , only one fixed

point exists.

Now, we are interested in fixing » and examining the effects of varying ¢. To find ¢, we set

2

g(x)="h(x) and g'(x)="Hh'(x), which gives r = 2—x22 and ¢, =rx— > . Substituting the first
(I+x7) I+x
. x> (1-x%) . ) ) .

expression into the second, we get ¢, = ————-. We differentiate with respect to x in order to locate

c (1 2)2
+Xx
2

the maximum value for ¢, ; 0= % This gives x=0 andx = \/g , which corresponds to ¢, =0

+x

and c, = % . When ¢ > c,, only one fixed point exists for all values of 7. For a fixed value of r that

supports bistability, as ¢ increases from 0 and crosses a critical value (c, ), the fixed point x~ will

jump up to the high amplitude branch. If ¢ is now decreased, the fixed point remains on the high

amplitude branch even as ¢ becomes smaller than the corresponding c, . This hysteresis effect permits
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switch activation to remain as the transient Ca”* signal subsides, consistent with the findings from

synaptic plasticity experiments (Box 1). Using the expressions derived for the critical values of 7, and
¢, , we plot them parametrically as functions of x (Fig. 1B, iii). Saddle node bifurcations occur all

along the boundary of these curves, it is here we find the values of » and ¢ for which only two fixed

points occur. Crossing each branch results in a pairwise collision and disappearance of two fixed

points. Note where the bifurcation curves meet tangentially, (¢,r) — [%,%J , here we observe a co-

dimension two bifurcation; beyond this point there is only one fixed point and the distinction between

low and high activation states is blurred (Fig. 1B, iii).
Computational Specifications and Miscellaneous Details

Simulations were solved using the 4™ order Runge-Kutta method, with the exception of the Ornstein-
Uhlenbeck noise, which was solved using the stochastic Euler method (time step of 1 ms in all cases).
All simulations were performed using custom code, available upon request to the author, and were
implemented on a Linux machine running Ubuntu 16.04 with an Intel core 17-6700 CPU, 3.4 GHz

processing speed, and 62 GB of RAM.

*(tfti )/Tc

Pulse train sequences {z,} were convolved with the filter ¢-e , whose decay constant 7, was set

to 30 ms, reflecting an accommodation of both pre- and post-synaptic calcium decay values from the
literature that range from 15-43 ms [15, 46, 47]. The resulting input signal was normalized to the
maximum value and then scaled by Ac .The decay value is closely related to the input frequencies
typical of a given synapse and the definition of what constitutes a high frequency event in the system,

since for events occurring faster than the decay, Ca®" accumulates quickly, driving the switch into the
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upstate. The putative burst detector will work for different 7, but may require a different set of

corresponding switch parameters, range of stimulation frequencies and pulse amplitudes.

Histogram bin sizes for Fig. 3D were set using the Freedman-Diaconis method [63].
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Figure 1 Activation states of the bistable molecular switch model A) The model’s

potential function, U(x), visually describes the tendency for solutions to settle around one of two
equilibrium points (x*), where the rate of change of switch activation, f(x), is 0 (parameters, » = 0.52
and ¢ =0.04). To the left of the stable equilibria (black circles), f(x) >0 (green), and to the right,
f(x) <0 (blue), forcing perturbations to settle back into those states. Conversely, the sign of f(x) is

reversed on both sides of the unstable equilibrium (red circle), such that tiny perturbations push the
switch away, toward either stable state. B) As r or ¢ change, f(x)changes and can result in the loss

of bistability. (i) To illustrate, » is fixed as the input ¢ is varied: small values only support low
activation, but, as ¢ grows, bistability emerges and eventually only the high activation state is
supported when ¢ > ¢, (rightmost). A defining feature of bistability is the hysteresis effect, where the

same value of a parameter may evoke different states depending on the history of activity. For example,
the high activation state still exists for cless than the rightmost c. and can only be lost when ¢ falls

below the leftmost ¢, value. (ii) cis fixed while the negative regulation parameter r is varied. For

small 7, only the high activation state exists. As r grows larger, the system becomes bistable and,
eventually, only the low state exists after crossing 7. . Panel (iii) shows a parametric plot of the critical

values c,(x) and 7.(x), and the bifurcation surface summarize the analysis completely (iv).
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Figure 2 Switch activity fluctuates with instantaneous input frequency A) Motivating

example: switch response to an 8 Hz Poisson sequence of input pulses, convolved with an alpha
function kernel to create a signal, c(¢) = ¢, +¢,(¢) . The switch tracks changes in the input frequency (
n=16,r=0.61, ¢c,=0.04,and 7 =0.01) B) The example function p(u,x,2) from the uniqueness

proof achieves a maximum of 0.65; r must exceed this critical value to guarantee absolute
convergence of the switch to a unique frequency-driven solution. C) Initial conditions: u(0)=1.7 and

x(0)=0.1. The value of T affects time-to-convergence between solutions and frequency filtering.
From empirical studies, 77<0.01 [43]. D) For r <r,, sufficiently high frequency event intervals
(bursts) cause transitions from the low to high state (illustrated for n =2). By adjusting ¢, to take
advantage of hysteresis, the cell can control whether or not it is sensitive to these burst-induced up
states. The arrows highlight this fact for ¢, equal to 0 and 0.04; neither static value can generate the

upstate alone (Fig. 1B). E) In general, the exponent n # 2 in real biological systems. Interestingly,
n=1.55 is a minimum for the maximum value of the class of functions p(u, x, n) in the uniqueness
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proof, that is, the value of » needed to guarantee convergence of solutions in self-exciting bistable
systems. This is remarkably close to the empirical value of 1.6 reported by De Koninck and Schulman
for presynaptic aCaMKII [11].
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Figure 3 Frequency coding with noisy switches A) The switch model driven by a weak

sinusoidal signal, ¢(¢) = ¢, + a sin(2zgr) , with ¢, = 0.04, o =0.02, ¢ =2 Hz, and additive noise, 7(7),
whose intensity is scaled by the parameter o and evolves according to 7, = 0.01. The switch amplifies
the frequency content of the input, as shown by its power spectrum P, relative to the signal’s, P.. B)
Top: For n =2, the ratio of switch power to signal power at ¢ is plotted as a function of the noise
intensity o, achieving a maximum at 0.29, that is, the switch displays stochastic resonance (SR). The
value of o that promotes optimal frequency transfer is denoted by o, . Bottom: For n = 1.6, there is

substantially larger gain in the SR effect, and o, shifts to 0.09. C) o, is plotted as a function of (n,7)

and (c,,r), illustrating the presence or absence of SR. D) For n = 1.6, noisy switch activity produces

bimodal (e.g., 0 =10.01) or unimodal (e.g., o= 0.035) states of activation, which is likely reflected in
synaptic release probability (Box 1); the relative occupation of the high state versus the low state
depends on r. E) The activated switch, X', driven by multiple realizations of Poisson input,
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logarithmically compresses the mean input frequency (shading: +/- standard deviation), while
instantaneous switch activity tracks the instantaneous input frequencies. F) As a model validation, the
pulse duration (in ms) and frequency experiments of De Koninck and Schulman were simulated (n =

1.6, »=10.61 and T =0.4), qualitatively capturing their results.
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