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ABSTRACT
Hierarchical processing is pervasive in the brain, but its computational significance for learning in

real-world conditions, with uncertainty and changes, is disputed. We show that previously proposed

qualitative signatures which relied on reports of learned quantities or choices in simple experiments

are  insufficient  to  categorically  distinguish  hierarchical  from non-hierarchical  models  of  learning

under uncertainty.  Instead,  we present  a  novel  test  which leverages a more complex task,  whose

hierarchical structure allows generalization between different  statistics tracked in parallel.  We use

reports  of  confidence  to  quantitatively  and  qualitatively  arbitrate  between  the  two  accounts  of

learning.  Our  results  indicate  that  human  subjects  can  track  multiple,  interdependent  levels  of

uncertainty,  and  provide  clear  evidence  for  hierarchical  processing,  thereby  challenging  some

influential neurocomputational accounts of learning.

INTRODUCTION
In real-world environments, learning is made difficult by at least two types of uncertainty (Yu &

Dayan,  2005).  First,  there is  inherent  uncertainty in many real-world processes.  For instance,  the

arrival of your daily commute may not be perfectly predictable but subject to occasional delays. Faced

with such random fluctuations, learners should integrate as many observations as possible in order to

obtain a stable, accurate estimate of the statistics of interest (e.g. the probability of delay) (Behrens,

Woolrich,  Walton,  &  Rushworth,  2007;  Yu  &  Cohen,  2008).  Second,  there  is  the  higher-order

uncertainty  related  to  sudden  changes  in  those  very  statistics  (change  points).  For  instance,

engineering works may increase the probability of delay for an extended period. When faced with a

change point, learners should discount older observations and rely on recent ones instead, in order to

flexibly update their estimate  (Behrens et al., 2007; Mathys, Daunizeau, Friston, & Stephan, 2011;

Nassar, Wilson, Heasly, & Gold, 2010).

 Confronted with both forms of uncertainty, the optimal learning strategy is to track not only the

statistics of interest but also the higher-order probability of change points. This enables learners to

render their estimate stable when the environment is stable (i.e. between change points) and flexible

when the environment changes  (Behrens et al., 2007; Iigaya, 2016; Mathys et al., 2011; McGuire,

Nassar,  Gold,  &  Kable,  2014;  Meyniel,  Schlunegger,  &  Dehaene,  2015;  Payzan-LeNestour  &

Bossaerts,  2011).  Importantly,  this  approach  assumes  that  learners  use  a  hierarchical generative

model of their environment. Such a model comprises multiple levels, of which lower levels depend on

higher ones: current observations (level 1) are generated according to statistics of observations (level

2) which themselves may undergo change points (level 3). The hierarchical approach is widely used to

study learning in both health (Behrens et al., 2007; Iglesias et al., 2013) and disease (Lawson, Mathys,
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&  Rees,  2017;  Powers,  Mathys,  &  Corlett,  2017).  However,  efficient  learning  in  dynamic

environments is possible  without tracking the likelihood of individual change points  (Ritz, Nassar,

Frank, & Shenhav, 2017; Ryali & Yu, 2016; Sutton, 1992; Wyart & Koechlin, 2016; Yu & Cohen,

2008), and a large body of work indeed uses such a solution to model behavioral and brain responses

(Bell,  Summerfield,  Morin,  Malecek,  &  Ungerleider,  2016;  Farashahi  et  al.,  2017;  Rescorla  &

Wagner, 1972). Computationally, this approach is very different as it assumes that learners do not take

higher-level factors (e.g. change points) into account, and hence use a non-hierarchical or flat model

of the world. 

The possibility that the brain uses internal hierarchical models of the world is an active area of

research in cognitive science  (Tenenbaum, Kemp, Griffiths, & Goodman, 2011), and has important

consequences for neurobiology, since hierarchical models (Friston, 2008; Lee & Mumford, 2003) and

non-hierarchical  ones  (Farashahi  et  al.,  2017;  Yu  &  Cohen,  2008) require  different  neural

architectures.  In  learning  theory  however,  internal  hierarchical  models pose  somewhat  of  a

conundrum,  being  simultaneously  assumed  critical  by  some  frameworks  for  learning  under

uncertainty  (Behrens  et  al.,  2007;  Mathys  et  al.,  2011;  Meyniel,  Schlunegger,  et  al.,  2015) and

unnecessary by others (Bell et al., 2016; Farashahi et al., 2017; Wyart & Koechlin, 2016; Yu & Cohen,

2008). One  possible  explanation  for  this conundrum  is  that  flat  approximations  to  hierarchical

solutions  can be so efficient  that  both accounts  become difficult  to  distinguish.  Indeed,  previous

studies using quantitative model  comparison reported conflicting results:  some authors found that

learning was best explained by hierarchical models (Iglesias et al., 2013; Lawson et al., 2017; Meyniel

& Dehaene,  2017;  Vinckier et  al.,  2016) while others found that  flat  models best  explained their

results (Bell et al., 2016; Farashahi et al., 2017; Summerfield, Behrens, & Koechlin, 2011). Here, we

address this issue by developing a new way to test whether learners use a hierarchical model of the

world. Specifically, we sought to find a method that relied not just on comparing model fits but that

can  detect  qualitative  signatures or  hallmarks that  are  uniquely  characteristic  of  an  internal

hierarchical model. 

RESULTS

Modulations of apparent learning rate are not a hallmark of hierarchical processing

 Over and above the use of formal model comparison, earlier work on learning under uncertainty

also influentially relied on demonstrations of qualitative signatures or hallmarks. In this context, a key

feature of hierarchical models is the modulation of the learning rate by the changeability (or volatility)

of the environment. One particularly influential demonstration of this principle in humans showed that

the apparent learning rate — the ratio between the update size and the prediction error at any given

observation — was modulated by change points (Behrens et al., 2007; Nassar et al., 2010). This was
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argued a hallmark of hierarchical processing, since increasing the learning rate after change points

would only be expected from a hierarchical learner (tracking both the statistics of observations and

changes in those statistics) and not from a flat learner (tracking only the statistics). However, we show

a counter-example: a flat learning model  whose parameters are kept fixed and nevertheless shows

systematic  modulations  of  the  apparent  learning  rate  without  actually  tracking  the  higher-level

likelihood of change points (Fig 1. and Methods).  Although the modulations are smaller  in the flat

model  than  in  the  hierarchical  one,  they  are  qualitatively  identical,  demonstrating  that  such

modulations are not uniquely characteristic of hierarchical models. This suggests that the presence of

apparent learning rate modulations is not sufficiently specific, and that a new test must tap into a

different property in order to reveal a true hallmark of hierarchical learning. 

Simulations suggest confidence offers a sensitive metric to discriminate models

When developing such a new test, the first question is what quantity or metric this test should

target. In earlier studies, subjects tracked changing statistics such as the probability of a reward or a

stimulus  (Behrens et al.,  2007; Bell et al.,  2016; Gallistel, Krishan, Liu, Miller,  & Latham, 2014;

Iglesias et al., 2013; Jang et al., 2015; Vinckier et al., 2016), or the mean of some physical quantity

like the location of a reward on an axis (McGuire et al., 2014) or its magnitude (Nassar et al., 2010).

In those tasks, learning was probed either using choices that were supposedly guided by the learned

statistics  (Behrens et  al.,  2007;  Bell  et  al.,  2016;  Iglesias et  al.,  2013;  Summerfield et  al.,  2011;

Vinckier et al., 2016) or using explicit reports of the learned statistics (Gallistel et al., 2014; McGuire

et al., 2014; Meyniel, Schlunegger, et al., 2015; Nassar et al., 2010). Both choices and explicit reports

are first-order metrics, as they only reflect the estimated statistics themselves. However, since a first-

order metric only describes the level of observations, it may be seldom unique to a single model,

especially if models aim at providing a good description of observations. By contrast,  second-order

metrics, such as the learner’s confidence about her estimates, describe the learner’s inference and may

be more diagnostic  about  the  underlying computations  (Meyniel,  Sigman,  & Mainen,  2015).  For

illustration, we simulated a hierarchical and flat model in a probability learning problem (similar to

the task used here, detailed below). Over a large range of possible task parameters, the probability

estimates  of  the  optimal  hierarchical  model  and  a  near-optimal  flat  model  were  indeed  highly

correlated (Pearson ρ>0.9)  whereas  their  confidence levels were much less  correlated,  potentially

offering a more sensitive metric (see Fig. S1 and Methods). 

Altogether, our simulations demonstrate firstly that modulations of the apparent learning rate are

not unique to hierarchical models and are thus not a hallmark of  hierarchical learning (Fig. 1); and

secondly,  that  a  new test  aiming to  discriminate  hierarchical  from flat  models  can  use  learners’

confidence about their estimates for doing so, since this metric is in theory more sensitive (Fig. S1).
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A task allowing for a more direct test for an internal hierarchical model 

Based on the simulation results, we designed a new test that uses confidence to reveal clearly

dissociable  signatures  of  hierarchical  and flat  models  of  learning.  Our  new test  builds  on a  task

structure that has been used before (Meyniel, Schlunegger, and Dehaene 2015; Meyniel & Dehaene

2017).  The  motivation  for  using  this  task  is  that  participants  must  track  two changing  statistics

governed by  the   same higher-order  change  points.  This  stands  in  contrast  to  most  earlier  tasks

discussed  above,  which  required  subjects  to  monitor  only  one  changing  statistic  and  whose

hierarchical  structure  was  therefore  less  prominent.  Such  tasks  may  have  been  too  simple  to

categorically  distinguish hierarchical  and  flat  accounts.  Here,  by  using multiple  statistics  we  can

probe  forms  of  transfer  between estimated  statistics  that  are  truly  unique  to  internal  hierarchical

models, as we will detail below. 

In the task (see  Fig. 2A),  participants observed long sequences of two stimuli (A and B), the

occurrence of which was governed by two transition probabilities which subjects had to learn: p(A t|At-

1)  and  p(Bt|Bt-1).  The  value  of  each  probability  was  independent,  but  at  unpredictable  moments

(change points) both simultaneously changed.  Subjects  were fully  informed about  this  generative

process.  They passively observed the stimuli  and were asked to report  both their  estimate of the

transition probability leading to the next stimulus, and their confidence in this estimate. 

Probability and confidence estimates closely follow a hierarchical ideal observer 

Before testing for an internal hierarchical model, we first wanted to verify whether subjects had

performed the task well,  in the sense that  their  responses  were consistent  with those of  an ideal

observer.  As  a  benchmark,  we  used  the  optimal  ideal  observer;  this  model  was  not  fitted  onto

subjects’ data,  but  set  so as  to  optimally  solve the task by  ‘inverting’ its  hierarchical  generative

structure using Bayes’ rule (see methods). As  displayed in  Fig. 2B-C, linear regressions between

participants’ responses  and  optimal  values  showed  a  tight  agreement  for  probability  estimates

(β=0.66±0.06 s.e.m., t22= 11.13,  p=1.7 10-10),  and for confidence reports (β=0.10±0.03 s.e.m., t22=

3.06,  p=0.0058);  for  further  checks  of  robustness,  see  Supplementary Results  2.  Despite  being

somewhat  noisier,  confidence  reports  also  showed  many  properties  of  optimal  inference  (see

Supplementary Results 3). 

Since  we  propose  that  subjects’ confidence  reports  are  more  diagnostic  than  their  first-order

estimates, the next thing we verified was that confidence reports indeed conveyed information that

was  not  already  conveyed  implicitly  by  the  first-order  estimates.  We  tested  this  in  our  data  by

regressing  out  the  (theoretically  expected)  covariance  between  subjects’ confidence  reports  and

several metrics derived from first-order estimates (see  Supplementary Results 3); the residuals of

this regression still co-varied with optimal confidence (β=0.028±0.012, t22=2.3, p=0.029). This result

was replicated by repeating the analysis  on another  dataset  (Meyniel,  Schlunegger,  et  al.,  2015):
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β=0.023±0.010, t17=2.2, p=0.0436; and also in the control experiment detailed below: β=0.015±0.006,

t20=2.3,  p=0.034.  These results  indicate that  subjective confidence and probability reports  are not

entirely redundant, and thus that confidence is worth investigating.

Having verified that confidence and probability reports closely followed estimates of an optimal

hierarchical  model,  and  that  both metrics  were  not  redundant,  we  then  tested  whether  subjects’

reports, overall, could not be better explained by a different, computationally less sophisticated model.

We consider two models: the optimal hierarchical model (same as above) and a near-optimal flat

model, akin to the delta-rule algorithm with a fixed learning rate (see Methods and Supplementary

Results 1), that approximates the full Bayesian model extremely well. The models have the same

number of free parameters, so model comparison boils down to comparing the goodness-of-fit. We

first  took  the  parameters  that  provide  the  best  estimate  of  the  true  generative  probabilities.  The

goodness-of-fit, assessed as mean square error (MSE) between subjects’ and models’ estimates, was

better for the hierarchical model than for the flat model (paired difference of MSE, hierarchical minus

flat: -0.0051±0.0014 s.e.m., t22=-3.7, p=0.0013). Note that subjects’ estimates of volatility, a key task

parameter here, usually deviate from the optimum and show a large variability (Nassar et al., 2010;

Zhang & Yu, 2013), which could bias our conclusion. We therefore fitted the model parameters per

subject, and we found that the difference in fit was even more significant (-0.0077±0.0019 s.e.m., t22=-

3.97,  p=6.5 10-4).  This  result  replicates  a previous finding  (Meyniel  & Dehaene,  2017).  We then

repeated the comparison for confidence levels. When model parameters were set to best estimate the

true transition probabilities, the hierarchical model showed a trend toward a significantly lower MSE

compared to the flat model (paired difference of MSE, hierarchical minus flat: -0.0017±0.0010 s.e.m.,

t22=-1.8, p=0.084). When model parameters were fitted onto each subjects’ confidence reports, this

difference was significant (-0.0027±0.0012 s.e.m., t22=-2.36, p=0.028). 

Altogether,  these  results  show that  participants  successfully  performed  the  task  and  that  the

hierarchical model was quantitatively superior to the flat model in explaining subjects’ probability

estimates and confidence ratings. This leaves us with the last and perhaps most important question:

did subjects also show a qualitative signature that could only be explained by a hierarchical model?

Subjective confidence reveals a hallmark of an internal hierarchical model 

Identifying the qualitative signature proposed here was possible because our task involves two

transition probabilities, P(A|A) and P(B|B), whose changes were coupled, occurring simultaneously.

In  this  context,  a  flat  learner  only  estimates  the  value  of  each  transition  probability,  while  a

hierarchical  model  also  estimates  the probability of  a  global change point.  Faced with a   global

change point,  the  hierarchical  learner  then reacts  optimally and makes its  prior  knowledge more

malleable by becoming uncertain about both P(A|A) and P(B|B). Importantly, using this mechanism,

an internal hierarchical model should allow for generalization: if a change point is suspected after
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observing just  one type of transition (e.g.  AAAAAAA, when P(A|A) was estimated to be low) a

hierarchical learner would  also become uncertain about the other quantity, P(B|B), despite having

acquired no direct evidence on this transition (Fig. 3A). Critically, this form of indirect inference is

unique to hierarchical models and thus offers a powerful test of hierarchical theories of learning.

To test  for  this  generalization effect,  we focussed on streaks  of  repetitions,  and distinguished

between streaks that seem unlikely in context and may signal a change point (suspicious streaks) and

streaks that do not (non-suspicious streaks). Stimulus sequences were carefully selected to contain

enough suspicious and non-suspicious streaks and to control for confounds such as streak duration

(see Methods). Questions were inserted just before and after the streak, so that subjects reported their

estimate  of  (and  confidence  in)  the  other,  non-repeating  transition  (Fig.  3A).  Exact  theoretical

predictions for both models are found in Fig. 3B. In the the hierarchical model, confidence decreases

strongly after suspicious, but much less after non-suspicious streaks. In the flat model, however, there

is no such difference.  Strikingly,  subjective reports exactly followed the hierarchical  account and

falsified the flat one, see Fig. 3C: confidence decreased strongly after suspicious (-0.12±0.04 s.e.m,

t22=-3.2, p=0.004) but not after non-suspicious streaks (-0.02±0.03 s.e.m., t22=-0.7, p=0.51), and this

interaction was significant (paired difference, 0.10±0.03 s.e.m., t22=3.7, p=0.001).

Various controls demonstrate the specificity of the effect on confidence

We now rule out a series of potential confounding explanations. First,  one concern is that the

analysis above involves models that are optimized to estimate the true transition probabilities of the

task:  perhaps  the  predictions  look  different  if  we  fit  the  models  onto  behaviour.  However,  our

conclusions remain unaffected if we simulate models fitted onto each subject, (Fig. S2 C, E). Another

concern is that our analyses assume subjects were tracking transition probabilities, while they may in

fact have been tracking another (heuristic) quantity, perhaps using a flat model.  Detailed analysis

revealed that subjects did in fact track transition probabilities (see Supplementary Results 3) and that

no heuristic flat model could explain the selective decrease of confidence (Fig S2 B, D, F). 

One may also wonder whether the effect reported in  Fig. 3 about confidence is also found in

another variable. Note that this would not invalidate our conclusion about the hierarchical nature of

learning.  Fig. S3 shows that probability estimates (the ones about which confidence is reported and

shown in Fig. 3) are not affected by streak types neither in subjects (paired difference between streak

types, -0.01±- 0.02 s.e.m., t22=-0.5, p=0.59) nor in the hierarchical model (-0.01±0.01 s.e.m., t22=-1.4,

p=0.17). A more subtle effect is that, when a change point is suspected, generalization should lead to

reset the estimate of the unobserved transition probability, which should thus get closer to the prior

value 0.5. However, this effect is less straightforward, because the estimated transition probability

may already be close to 0.5 before the streak, such that an effect of streak type on the distance to the

prior may be difficult to detect. Indeed, in the hierarchical model, streak type had only a weak effect
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(paired difference, 0.02±0.01 sem, t22=2.9, p=0.008). For comparison, the same effect on confidence

(Fig. 3) had t22=11.7, p=6.9 10-11. The expectedly weaker effect of streak type on the distance to the

prior was not detected in participants (-0.0036 +/- 0.01 sem, t22=-0.3, p=0.76). We also tested reaction

times  since  they  often  co-vary  with  confidence.  Here,  when  the  optimal  confidence  was  lower,

subjects  took  longer  to  respond  to  the  prediction  question  (slope  of  reaction  times  vs.  optimal

confidence:  -0.57±0.19  s.e.m.,  t22=-3.07,  p=0.005),  but  not  to  the  confidence  question  (slope:

0.04±0.08 sem, t22=0.48, p=0.64). However, there was no effect of streak type on reaction times both

for the probability estimate and reports (paired difference between streak types, both p>0.27). 

A final alternative explanation for the effect shown in Fig. 3 is that suspicious streaks were more

surprising and that subjects may become generally uncertain after surprising events. In this case, the

effect would not reflect hierarchical inference but simply general surprise. We therefore performed a

control experiment in which both probabilities changed independently: here, suspicious streaks were

equally surprising but no longer signalled a global change point (Fig. 4A). Indeed, generalization of a

decrease in  confidence  was no  longer  observed for  the  hierarchical  model  or  in  subjects  (paired

difference between suspicious and non-suspicious streaks: 0.03±0.02 s.e.m., t20=1.5, p=0.15), see Fig.

4B. This absence of effect in the control task is significantly different from the effect found in the

main task (difference of paired differences, two-sample t-test, t42=-2.03, p=0.048). This difference is

not  due poor  performance in  the  control  experiment  (see  Fig 4C):  linear  regression between the

optimal hierarchical model for uncoupled change (the ideal observer in this task) and subjects showed

a  tight  agreement  for  both predictions  (β=0.61±0.06 s.e.m.,  t20= 10.27,  p=2 10-9)  and  confidence

(β=0.08±0.01 s.e.m., t20= 6.83, p=1.2 10-6),  as in the main task (see  Fig. 1 B, C).  The difference

between the two tasks shows an effect of higher-level factors (coupled vs. uncoupled change points)

and thus constitutes further evidence for a hierarchical model. Altogether, learners generalize from

inferring the change of  one probability  to  decreasing their  confidence in  the  estimate  of  another

probability, but only when they know the changes are coupled and it is thus adaptive to do so. This

supports that the result in Fig. 3 and 4 is a hallmark of an internal hierarchical model, and does not

reflect a simpler, heuristic inference. 

DISCUSSION
We have shown that some previous tests are insufficient to categorically distinguish hierarchical

from non-hierarchical models of learning in uncertain and changing environments, and we introduced

a novel test to dissociate the two. The key features of our experiment are that subjects estimate two

statistics that depend upon the same change points, and that we analyse the subjects’ confidence about

their estimation. Our test taps into a unique property of hierarchical models: the ability to generalise

between different probabilities that are coupled by the higher-order structure of the task. As such, both

classes of theories make qualitatively different predictions at the level of individual trials. Based on

Heilbron & Meyniel, Confidence and hierarchical learning

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 24, 2018. ; https://doi.org/10.1101/256016doi: bioRxiv preprint 

https://doi.org/10.1101/256016
http://creativecommons.org/licenses/by-nc-nd/4.0/


both qualitative and quantitative model comparison, our results provide clear evidence in support of a

hierarchical account of adaptive learning in humans. These results indicate that humans can track

multiple levels of uncertainty that are hierarchically organized, including the uncertainty about their

own inference. 

Quantitative vs. qualitative model comparison

A widely  used  method  for  contrasting  competing  models  is  quantitative  model  comparison.

Following this approach, multiple models are fit onto the subjects’ data, and the model that achieves

the best fit with respect to its complexity is deemed most likely (Gelman et al., 2013; Stephan, Penny,

Daunizeau, Moran, & Friston, 2009). This approach is attractive because it is generally applicable and

it provides a common metric (e.g. goodness-of-fit, Bayes-Factor, exceedance probability) to compare

different models. This approach nevertheless needs to be supplemented for at least two reasons. First,

quantitative model comparison only allows for relative conclusions, such as one model being better

than the  other  tested  models,  but  it  does  not  allow  for  more  general  conclusions  such  as  the

falsification of one model (Palminteri, Wyart, and Koechlin 2017). Moreover, it is not always clear

what underlying factors are contributing to differences in the models’ goodness-of-fit, and whether

these factors  are  indeed most  relevant  to  the  question at  hand.  A complimentary approach,  is  to

analyse specific, critical trials for the presence of  qualitative signatures or  hallmarks that uniquely

identify  or  exclude  one  type  of  model.  Such  signatures  are  appealing  because  they  are  easily

interpretable and they directly reflect a critical theoretical distinction. Previous prominent examples of

the use of qualitative tests include the influential two-step task used to distinguish model-based from

model-free reinforcement learning  (Daw, Gershman, Seymour, Dayan, & Dolan, 2011). Here, both

approaches are indeed complementary: quantitative model comparison provided evidence in favor of

a  hierarchical  account  of  learning,  and  the  qualitative  approach tested  for  unique  hallmarks  and

thereby falsified a flat account. 

Which behavioral metrics best reveal the learner’s computations?

A feature that distinguishes our task from previous studies is the use of explicit confidence ratings

to test a key dissociation between flat and hierarchical models (Fig. 3). Our rationale was that since

the flat  models considered here are known to provide very accurate first-order approximations to

hierarchical (optimal) models (Meyniel, Maheu, & Dehaene, 2016; Sutton, 1992; Yu & Cohen, 2008),

we should opt for another variable that is less correlated between models. Choices and first-order

reports are often used in behavioral science, but other metrics like subject’s confidence and reaction

times also proved useful  to study cognition,  see  (Shadlen & Kiani,  2013).  Here,  our  simulations

showed that confidence is less correlated between models, we therefore took confidence as a window

on the learner’s computations. 
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In principle it should be possible to use other metrics to probe the same effect. Reaction times are

one  obvious candidate,  inasmuch they are  often  an implicit  measure  of  the  subject’s  uncertainty

(Dotan, Meyniel, & Dehaene, 2017; Kepecs & Mainen, 2012; Kepecs, Uchida, Zariwala, & Mainen,

2008; Kiani, Corthell, & Shadlen, 2014). In our study, we found a correlation between reaction times

and confidence, but no effect of streak type that serves as our hallmark signature. In our study, in

contrast to accumulation (Kiani et al., 2014) or waiting-time (Kepecs et al., 2008) paradigms, there is

no principled reason for reaction times to co-vary with confidence, which may explain why reaction

times do not show the hallmark signature of a hierarchical inference.

Another candidate is the  apparent learning rate.  Previous studies reported modulations of the

apparent  learning rate  by change points  (Behrens et  al.,  2007;  Nassar et  al.,  2010).  The optimal,

hierarchical  model  indeed  shows  such  modulations  because  its  updates  are  confidence-weighted

(Mathys et al., 2011; Meyniel & Dehaene, 2017): for a given prediction error, its updates are larger

when confidence about prior estimates is lower, which is typically the case when a change point is

suspected. However, we found that in simple experiments that require to monitor only the frequency

of a stimulus or a reward, a flat model could exhibit similar modulations, which are therefore not

diagnostic of a hierarchical inference. In more complex experiments like the one here, the apparent

learning  rate  could  nevertheless  show  our  hallmark  signature  of  a  hierarchical  inference.  Our

theoretical analysis supports this hypothesis (see Supplementary Results 4) but we cannot assess it

in our data, since this analysis requires a trial-by-trial measure of the apparent learning rate, and thus

trial-by-trial (not occasional) reports of first-order estimates. A trial-by-trial measure of the apparent

learning rate is neither accessible if subjects make choices at each trial. In such studies (Behrens et al.,

2007;  Glaze,  Kable,  & Gold,  2015),  the  authors  could only use choices  to  compute  an apparent

learning rate in a sliding window of trials but this analysis lacks the trial-by-trial resolution. In our

task, one could investigate the apparent learning rate of subjects, but that would require subjects to

report their probability estimates after each trial, and hence to constantly interrupt the stimulus stream.

This  would probably interfere  with the  participants’ ability  to  integrate  consecutive observations,

which is critical for tracking transition probabilities, and therefore seems difficult to implement in

practice. Furthermore, if an effect of streak type were observed on the apparent learning rate, it would

probably be mediated by the subject’s confidence (Mathys et al., 2011; Meyniel & Dehaene, 2017), in

that case one may prefer to probe confidence directly.

We acknowledge that there are drawbacks of using confidence as the metric of interest. In theory,

confidence more reliably discriminates flat and hierarchical models; but in practice we found that the

agreement between participants and the ideal observer was considerably more precise for probability

estimates than for confidence ratings (see Fig. 3B-C and Fig 4C). This noisy character of confidence

measurements was also reported previously  (Baranski & Petrusic, 1994; Maniscalco & Lau, 2012;

Meyniel, Schlunegger, et al., 2015; Zylberberg, Barttfeld, & Sigman, 2012), it may hinder the use of
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confidence as a metric to discriminate between models, and it  may explain that  the difference in

overall model fit between the flat and hierarchical model here was weaker for confidence than for

probability  estimates.  This  problem  may  be  even  worse  when  using  an  indirect  indicator  of

confidence, such as reaction times or the apparent learning rate. 

Learning in a structured environment 

Our  qualitative  test  for  a  hierarchical  inference  also  leverages  a  particular  task  structure:  the

higher-level dependence of generative statistics upon the same (or distinct, in the control experiment)

change points. Our task structure is more complex than experiments that require to monitor only one

generative statistics  (Behrens et  al.,  2007;  Gallistel  et  al.,  2014;  Iglesias et  al.,  2013;  Kheifets &

Gallistel,  2012;  McGuire  et  al.,  2014;  Nassar  et  al.,  2010).  Our  task structure  may constrain the

applicability and generality of our experiment, but it has a certain ecological appeal since in real-life

situations, multiple regularities are often embedded in a single context. We believe that more complex

task structures are suited to distinguish complex computations and approximations. Both are likely to

be  equivalent  in  simpler  experiments,  whereas  in  highly  structured  environments  with  multiple

interdependent levels  (Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick, 2013; Tenenbaum et

al., 2011), an optimal learning algorithm can hardly obliviate the hierarchical nature of the problem to

solve. 

An interesting and difficult problem that we leave unaddressed here is how subjects may discover

the task structure (Pouget, Beck, Ma, & Latham, 2013; Tenenbaum et al., 2011; Tervo, Tenenbaum, &

Gershman, 2016). In our task, the optimal hierarchical model is able to correctly identify the current

task structure (coupled vs. uncoupled change points),  but only with moderate certainty even after

observing the entire experiment presented to one subject (log-likelihood ratios range from 2 to 5

depending  on  subjects).  Therefore,  in  principle,  subjects  who  are  not  endowed  with  optimal

computing power cannot identify reliably the correct structure from observations alone. We speculate

that in real-life situations, some cues or priors inform subjects about the relevant dependencies in their

environment; if true, then our experiment in which subjects were instructed about the correct task

structure may have some ecological validity.

Interestingly, while the importance of hierarchical inference remains controversial in the learning

literature (Bell et al., 2016; Farashahi et al., 2017; Gallistel et al., 2014; Iglesias et al., 2013; Mathys

et  al.,  2011;  McGuire  et  al.,  2014;  Nassar  et  al.,  2010;  Ritz  et  al.,  2017;  Ryali  &  Yu,  2016;

Summerfield et al., 2011; Wyart & Koechlin, 2016), it seems more clearly established in the domain

of decision making and action planning  (Balaguer, Spiers, Hassabis, & Summerfield, 2016; Daw et

al.,  2011; Huys et al.,  2012; Keramati,  Smittenaar, Dolan, & Dayan, 2016; Schapiro et al., 2013;

Wunderlich, Dayan, & Dolan, 2012). For instance, it was suggested that the functional organization of

cognitive control is nested: low level cues trigger particular actions, depending on a stimulus-response
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association which is itself selected depending on a particular context  (Koechlin, Ody, & Kouneiher,

2003). In this view, negative outcomes may indicate that the (higher-level) context has changed and

thus that a new rule now applies. This inference even seems to be confidence-weighted in humans: the

suspicion of a change in context is all the stronger that subjects were confident that their action should

have yielded a  positive  outcome under  the  previous context  (Purcell  & Kiani,  2016).  Those two

studies feature an important aspect of hierarchy: a succession of (higher-level) task contexts separated

by  change  points  governs  the  (lower-level)  stimuli.  Our  task  also  leverages  another  feature  of

hierarchy: it allows generalization and transfer of knowledge. A rule learned in a particular context

can be applied in other contexts, for instance see (Collins, Cavanagh, & Frank, 2014; Collins & Frank,

2016). Our results go beyond a mere transfer: they show that the brain can update a statistics in the

absence of direct evidence thanks to higher-level dependencies.

Possible neural implementation for adaptive learning

Our results falsify a flat account of learning in our task, therefore they also falsify the possible use

of a simple leaky integration by neural networks to solve this task. Leaky integration is often deem

both plausible biologically and computationally efficient  (Farashahi et al., 2017; Glaze et al., 2015;

Rescorla & Wagner, 1972; Yu & Cohen, 2008). A sophisticated version of the leaky integration with

metaplastic  synapses  allows  partial  modulation  of  the  apparent  learning  of  the  network,  without

tracking change points or volatility (Farashahi et al., 2017). Others have suggested that computational

noise itself could enable a flat inference to automatically adapt to volatility (Wyart & Koechlin, 2016).

Those approximate solutions dismiss the need to compute higher-level factors like volatility, they are

thus appealing due to their simplicity; however, we believe that such solutions cannot explain the

generalization afforded by hierarchical inference that we showed here. We nevertheless acknowledge

that it is unlikely that only one algorithm subserves all forms of learning in the brain, and therefore

that our result does not dismiss the possibility that the brain resorts to flat, simpler and yet efficient

algorithms like the delta rule in many situations. One previously proposed bio-inspired model seems

compatible with our result  (Iigaya, 2016). This model comprises two modules: one for learning and

the other for detecting change points, or “unexpected surprise” (Yu & Dayan, 2005). When a change

point is detected, a reset signal is sent to the learning module. Converging evidence indicates that

noradrenaline could play such a role  (Bouret & Sara, 2005; Nieuwenhuis, Aston-Jones, & Cohen,

2005; Salgado, Treviño, & Atzori, 2016; Schomaker & Meeter, 2015). A global reset signal could

promote learning for the two transition probabilities that are maintained in parallel in our task, thereby

allowing the reset of both when only one arouses the suspicion of a change point. Such a hypothesis

nevertheless needs to be refined in order to account for the fact that the two statistics can also be reset

independently from one another, as in the control task.

We hope that the test which we propose for hierarchy here will be applied to other learning model
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that  computes  uncertainty,  and  even  to  non-human  animals  despite  significant  methodological

challenges, and therefore that it will be of interest to experimentalists and theoreticians alike.
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MATERIALS AND METHODS

Participants

Participants were recruited by public advertisement. They gave a written informed consent prior to

participating and received 20 euros for volunteering in the experiment. The study was approved by the

local Ethics Committee (CPP n°08–021 Ile de France VII). 26 participants (17 female, mean age 23.8,

s.e.m.: 0.49) performed the main task and 21 other participants performed the control task (11 female,

mean age 23.0, s.e.m.: 0.59). We excluded participants who showed poor learning performance, which

we quantified as the Pearson ρ coefficient between their probability estimates and the ideal observer’s

estimates.  We used a threshold corresponding to 5% of the (lowest)  values measured in this task

(ρ<0.18, from a total of 105 participants in this study and others) This excluded 3 subjects from the

main task, and none from the control task. 

Main Task

The  task  was  run  using  Octave  (Version  3.4.2)  and  PsychToolBox  (Version  3.0.11).  Each

participant completed a total of 5 blocks: 1 training block and 4 experimental blocks (2 auditory, 2

visual). Auditory and visual blocks alternated, with the modality of the first block randomised across

participants. In each block, we presented binary sequences of 380 stimuli (1520 total) denoted A and

B, which were either visual symbols or sounds and were perceived without ambiguity.

Sequences were generated according to the same principles as in previous studies  (Meyniel &

Dehaene, 2017; Meyniel, Schlunegger, et al., 2015). A and B were randomly drawn based on two

hidden transition probabilities which subjects had to learn. These probabilities were stable only for a

limited time. The length of stable periods was randomly sampled from a geometric distribution with

average length of 75 stimuli, truncated at 300 stimuli to avoid overly long stable periods. Critically,

and contrary to other studies (Behrens et al., 2007) the volatility was thus fixed (at 1/75). Transition

probabilities were sampled independently and uniformly between 0.1-0.9, with the constraint that, for

at  least  one  of  the  two probabilities,  the  change in  odd ratio  (p/1-p)  between consecutive  stable

periods was at least fourfold, thus guaranteeing that the change was effective. Across sequences and

subjects, the actually used generative values indeed covered the transition probability matrix 0.1-0.9

uniformly, without any correlation (Pearson ρ = −0.0009, p = 0.98). Occasionally, the sequence was

interrupted and subjects had to estimate the probability that the next stimulus would be either an A or

a  B  and  report  their  confidence  in  that  estimate.  Questions  were  located  quasi-randomly,  semi-

periodically once each 15 stimuli on average (100 in total). Of the 100 questions, 68 questions were

randomly placed;  the  remaining  32  questions  were  intentionally  located  just  before  and after  16

selected streaks (8 suspicious, 8 non-suspicious) and functioned as pre/post-questions to evaluate the
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effect  of  these streaks (see  Fig.  3).  For details  on the definition and selection of suspicious/non-

suspicious streaks, see below.

To familiarize participants with the task they were carefully instructed and performed one training

block of 380 stimuli (or ~12 minutes). To make sure they were fully aware of the volatile nature of the

generative process, participants had to report when they detected changes in the hidden regularities. In

the experimental blocks, reporting change points was omitted, but participants knew the underlying

generative process was the same.

Control Task

The control task was very similar to the main one, with only two differences. (1) When a change

occurred, it impacted only one of the two transition probabilities (randomly chosen). (2) During the

training block, when subjects were required to report when they detected change points, they also

reported which of the two transition probabilities had changed.

Selection of sequences

Each  randomly  generated  sequence  was  evaluated  computationally  and  carefully  selected  to

ensure  that  each  subject  encountered  enough  target  moments  during  which  the  models  make

qualitatively  different  predictions,  and  that  all  sequences  were  balanced  in  terms  of  potential

confounds such as streak duration and location. To this end, 4 random sequences of 380 stimuli long

(each  corresponding  to  one  block)  were  analyzed  computationally  with  the  hierarchical  and  flat

learning models, yielding 4 simulated ‘blocks’. The sequences, and associated trial-by-trial transition

probability estimates from both models, were concatenated to form a single experimental sequence (of

1520 stimuli). This experimental sequence was then submitted to several selection criteria. First, we

assessed  whether  the  sequence  contained  at  least  8  suspicious  and  8  non-suspicious  ‘streaks’.

Consecutive repetitions were defined as ‘streaks’ if they consisted of at least 7 or more stimuli, and

started after the 15th stimulus of a block. Streaks were classified as ‘suspicious’ if they aroused the

suspicion of a change in the hierarchical ideal observer. Computationally, this was defined via the

confidence in the probability of the observed repetition decreasing at least once during the streak.

Following this criterion, even streaks of repetitions are that just slightly surprising are considered

‘suspicious’. To ensure the effect would be observable, only sequences in which the suspicious streaks

led to  a  sizeable  decrease  in  theoretical  confidence levels  were  selected.  Due  to  an error  in  the

selection procedure, one sequence was included for which the theoretically expected average decrease

in confidence after non-suspicious streaks was in fact larger than that after suspicious streaks. Because

the corresponding subject who observed this sequence did show sufficient learning performance and

hence added valuable data to all other analyses, we decided not to exclude the participant from the

study. Importantly, excluding this subject does not change any conclusion or significance level of the
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statistical tests reported here. 

To control for factors that may potentially confound decreases in confidence, only sequences in

which the average duration of suspicious and non-suspicious streaks was approximately identical, and

in which there was at least one streak of each type in each block, were selected. In addition, subjects

were  not  informed  about  the  distinction  between  suspicious  and  non-suspicious  streaks  or  that

between random questions and pre-post questions that targeted the critical moments before and after

streaks. Interviews performed after the experiment ruled out that subjects understood the goal of the

experiment,  as  no  subject  had  noticed  that  a  sizable  fraction  (~30%)  of  questions  purposefully

targeted streaks.

Ideal observer models    

The models used in this study are implemented in a Matlab toolbox available on GitHub and

described in a previous publication (Meyniel et al., 2016). The model termed “hierarchical” and “flat”

here correspond respectively to the hidden Markov model (HMM) and the leaky integrator model in

the toolbox. Here, we summarize the essential aspects of those models. 

The hierarchical  and flat  models (M) are both ideal  observer models:  they use Bayes rule to

estimate the posterior distribution of the statistic they estimate, θt, based on a prior on this statistic and

the likelihood provided by previous observations, y1:t (here, a sequence of As and Bs): 

p(θt∣y1 :t ,M )∝ p( y1: t∣θt , M ) p (θt ,M ) (Eq 1)

Subscripts denote the observation number within a sequence. In the main text, the models estimate

the transition probabilities between successive stimuli, so that θ is a vector with two elements: θ =

[p(A|A), p(B|B)]. Note that those two probabilities suffice to describe all transitions, since the others

can be derived as p(B|A) = 1-p(A|A) and p(A|B)=1-p(B|B). In Fig. S2, we also consider variants in

which the model estimate another statistic, the frequency of stimuli: θ = p(A). Note that p(B) is simply

1-p(A). 

The estimation of θ depends on the assumption of the ideal observer model (M). The flat model

considers that θ is fixed, and evaluates its value based on a leaky count of observations. The internal

representation of this model therefore has only one level: θ, the statistic of observations. When the

true  generative  statistic  is  in  fact  changing  over  time,  the  leakiness  of  the  model  enables  it  to

constantly adapt its estimate of the statistic and therefore to cope with changes. If the leakiness is

tuned to the rate of change, the estimate can approach optimality (see Fig. S1A). 

By contrast, the hierarchical model entertains the assumption that θ can abruptly change at any

moment. The internal representation of the model therefore has several levels beyond observations: a

level characterizing the statistic of observations at a given moment (θ t) and a level describing the
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probability  that  of  a  change  in  θ  occurs  (pc).  Conceivably,  there  could  be  higher-order  levels

describing changes in pc itself (Behrens et al., 2007); however this sophistication is unnecessary here

and we consider that pc is fixed. 

Flat model

The flat model assumes that the true value of θ is fixed, and it constantly infers its value given the

evidence received. Therefore, the likelihood function can be decomposed as follows:

p( y1 :t|θ)=p( y1|θ)∏
i=2

t

p( y i|θ , y i−1)

=
1
2
[θA∣A

N A∣A(1−θA∣A)
N B∣A][θB∣B

N B∣B(1−θB∣B)
N A∣B]

(Eq 2)

Where NA|A(t) denotes the number of AA pairs in the sequence y1:t. A convenient parametrization

for  the  prior  distribution  is  the  beta  distribution:  p(θ)  =  Beta(θA|A |  Nprior
A|A,   Nprior

B|B).  This

parametrization allows for  an  intuitive  interpretation of  Nprior
A|A and   Nprior

B|B as  prior  observation

counts, and due to its conjugacy with the likelihood function (Eq2), inserting Eq2 into Eq1 yields that

the posterior probability of θ is the product of two beta functions:

p(θ|y1 : t)∝
1
2

Beta(θA∣A|N A∣A +N A∣A
prior , NB∣A+NB∣A

prior
)Beta(θB∣B|N B∣B+ NB∣B

prior , N A∣B+ N A∣B
prior

)

(Eq 3)

We consider here that the count of observations (the number of AA and BB pairs) is leaky, so that

observations  that  are further  in the  past  have a lower  weight  than recent  ones.  We modeled this

leakiness as an exponential decay ω, such that the k-th past stimulus has a weight e -k/ω. Note a perfect

integration, in which all observations are given the same weight, corresponds to the special case with

ω being infinitely large.  Also note that  ω*ln(2) corresponds to the “half-life”,  i.e.  the number of

observations after which the weight of a past observation is reduced by half. 

In the main text (but  Fig. 1),  we choose [Nprior
A|A,  Nprior

B|B] = [0 0],  for in this case, the mean

estimate of the flat model becomes strictly equivalent to the estimate of a “delta rule” as the number

of observations increases (see Supplementary Result 1). An alternative choice for the prior is the so-

called Laplace-Bayes prior [1 1], which is uninformative in that it gives the same prior probability to

any value of θ (Gelman et al., 2013). This choice is important for Fig. 1, but not for the results in the

main text (see Fig S2).

Hierarchical model

The  hierarchical  model  evaluates  the  current  value  of  the  generative  statistic  θ  under  the
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assumption that it may change at any new observation with a fixed probability pc. Note that, would the

location of the change points be known, the inference of θ would be simple: one would simply need to

count the number of pairs (NA|A, NB|B, NA|B, NB|A) since the last change point and apply Eq. 2. However,

without knowing the location of change points, one should in principle average the estimates given all

possible locations of change points, which is in practice far too large a number. The computation is

rendered tractable by the so-called Markov property of the generative process. If one knows θ at time

t, then the next observation yt+1 is generated with θt+1 = θt if no change occurred and with another value

drawn from the prior distribution otherwise. Therefore, if one knows θ t, previous observations are not

needed to estimate θt+1. Casting the generative process as a Hidden Markov Model (HMM) enables to

compute the joint distribution of θ and observations iteratively, starting from the prior, and updating

this distribution by moving forward in the sequence of observations:

p(θt +1 , y1: t+1)=p ( y t+1|θt+1 , y t)∫ p(θt , y1: t) p (θt+1|θt)d θt (Eq 4)

This integral can be computed numerically by discretization on a grid. The posterior probability

can be obtained by normalizing this joint distribution.

Probability reports and confidence ratings with the models

Both the flat and hierarchical models estimate a full posterior distribution for θ, therefore both

models have a posterior uncertainty (or conversely, confidence) about their estimate. In that sense, the

flat model can be considered as a delta rule that is extended to provide confidence estimates about

first-order estimates (see  Supplementary Results 1 for more details about the flat model and delta

rule). 

The probability  of  the  next  stimulus  (question #1 asked to  subjects)  was computed from the

posterior using Bayes rule:

p( y t +1|y1 :t)=∫ p ( y t+1|θt+1 , y t) p(θ t+1|y1 :t)d θt+1 (Eq 5)

Note  that  the  first  term  in  the  integral,  the  likelihood,  is  nothing  but  the  relevant  transition

probability itself (conditioned on the actual previous observation). This integral is therefore simply

the mean of the posterior distribution of the relevant transition probability. The confidence in the

reported  probability  estimate  (question  #2)  was  computed  as  the  log-precision  of  this  posterior

distribution (Meyniel & Dehaene, 2017; Meyniel, Schlunegger, et al., 2015; Meyniel, Sigman, et al.,

2015).

Model fit

The flat and the hierarchical models have one free parameter each, respectively ω (the leakiness)
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and pc (the prior probability of change point). 

Unless stated otherwise, the analysis reported in the main text used the parameters that best fit the

true probabilities used to generate the sequences of observations presented to subjects. More precisely,

for each sequence of observations, we computed the probability of each new observation given the

previous ones, as estimated by the models using Eq. 5 and we compared it to the true generative

probability. We adjusted the free parameters ω and pc with grid-search to minimize the sum of squared

errors (SSE) over all the sequences used for all subjects. The resulting values, ω=20.3 and p c=0.014

(indeed close to the generative value 1/75).

We also fitted the parameters to the responses of each subject (Fig. S2). For probability estimates,

the above grid-search procedure was repeated after  replacing generative values with the subject’s

estimates  of  probabilities  at  the  moment  of  questions.  For  confidence reports,  we  used a  similar

procedure; note however that subjects used a bounded qualitative slider to report confidence whereas

the model confidence is numeric and unbounded, so that there is not a direct mapping between the

two. Therefore, the SSE was computed with the residuals of a linear regression between subject’s

confidence and the model’s confidence. 

Statistical analyses

All linear regressions between dependent variables (e.g. probability estimates, confidence ratings)

and explanatory  variables  (optimal  estimates  of  probabilities  and  confidence,  surprise,  prediction

error,  entropy)  included  a  constant  and  were  estimated  at  the  subject  level.  The  significance  of

regression  coefficients  was  estimated  at  the  group  level  with  t-tests.  For  multiple  regressions,

explanatory variables were z-scored so that  regression coefficients can be compared between the

variable of a given regression. Unless stated otherwise, all t-tests are two-tailed.

Availability of data and code

The  source  data  for  all  participants  is  available  as  supplementary  information. The  code  to

compute the ideal observers is available on GitHub:

https://github.com/florentmeyniel/MinimalTransitionProbsModel 
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FIGURES AND LEGENDS

Figure 1. Apparent learning rate modulations in previous designs are not a hallmark of 

hierarchical processing 

This simulation is inspired by a previous study (Behrens et al., 2007), in which subjects carried

out a one-arm bandit task. The reward probability was not fixed but changed abruptly; the authors

used different volatility levels (i.e. different numbers of change points). Subjects had to learn this

reward probability through experience in order to optimize their payoff. 

Similarly, we generated sequences with low volatility (7 change points, see vertical plain black

lines), and high volatility (see additional change points, vertical dashed dashed lines). The sequences

were binary (absence or presence of reward) and the reward probability was resampled randomly after

each  change  point.  We consider  two learning  models:  a  hierarchical  model,  which  estimates  the

reward rate, taking into account the possibility of change points; and a flat model that computes the

reward rate near-optimally based on a fixed leaky count of observations, and a prior count of 1 for

either outcome (see Methods). Contrary to Behrens et al, our hierarchical model does not  estimate

volatility, and therefore it cannot detect that the task comprises two volatilities; had we allowed for it,

the observed modulations would have been even larger. Each model has a single free parameter which

we fit to return the best estimate of the actual generative reward probabilities in both the low and high

volatility conditions together. Keeping those best fitting parameters equal across both conditions, we

measured the dynamic of the apparent learning rates of the models, defined as the ratio between the

current update of the reward estimate (θt+1-θt) and the prediction error leading to this update (y t+1-θt).

The hierarchical model shows a transient increase in its apparent learning rate whenever a change

point occurs, reflecting that it gives more weights to the observations that follow a change point. Such
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a dynamic adjustment of the apparent learning rate was reported in humans (Nassar et al., 2010). The

flat model showed a qualitatively similar effect, despite the leakiness of its count being fixed. Note

that since there are more change points in the higher volatility condition (dashed lines), the average

learning rates of both models also increase overall with volatility, as previously reported in humans

(Behrens et al., 2007). 

The lines show mean values across 1000 simulations; s.e.m. was about the line thickness and

therefore omitted.
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Figure 2. Behavioral task: learning of dynamic transition probabilities with confidence

reports

(A) Probability learning task. Human subjects (N=23) were presented with random sequences of

two stimuli A and B. The stimuli were, in distinct blocks, either auditory or visual and they were

perceived  without  ambiguity.  At  each  trial,  one  of  either  stimulus  was  sampled  according  to  a

probability that  depended on the identity of the previous stimulus:  p(A t|At-1) and P(Bt|Bt-1).  These

transition probabilities underwent occasional, abrupt changes (change points). A change point could

occur  at  any  trial  with  a  probability  that  was  fixed  throughout  the  experiment.  Subjects  were

instructed about this generative process and had to continuously estimate the (changing) transition

probabilities given the observations received. Occasionally (see black dots in  A), we probed their

inferences by asking them, first, to report the probability of the next stimulus (i.e. report their estimate

of the relevant transition probability) and second, to rate their confidence in this probability estimate.

(B, C) Subjects’ responses were compared to an ideal observer model that solved the same task using
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optimal Bayesian inference. Numeric values of confidence differ between subjects and models since

they  are  on  different  scales  (from 0  to  1  in  the  former,  in  log-precision  unit  in  the  latter).  For

illustration, the ideal observer values were binned, the dashed line (B) denotes the identity, the plain

line (C) is a linear fit, and data points correspond to subjects’ mean ± s.e.m.
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Figure 3: A qualitative signature of hierarchical learning in confidence reports

(A) Divergent predictions of hierarchical versus flat learning models. Two fragments of sequences

are shown in which one stimulus (‘A’) is consecutively repeated 10 times. In the upper fragment, this

streak of repetitions is highly unlikely (or ‘suspicious’) given the context, and may indicate that the

underlying statistics changed. By contrast, in the lower fragment, the same streak is not unlikely, and

does not suggest a change point. The heat maps show the posterior probability distribution of P(B|B),

i.e. the probability of a repetition of the  other stimulus (B), estimated by the hierarchical and flat

models. In a hierarchical model, unlikely streaks arouse the suspicion of a global change in statistics,

causing the model to become uncertain about its estimates of both transition probabilities,  despite

having acquired no direct evidence on P(B|B). In a flat model, by contrast, a suspicious streak of A’s

will  not  similarly decrease the confidence in  P(B|B),  because a  flat  model  does  not  track global

change points. To test for this effect, pre/post questions (indicated by a star) were placed immediately

before  and  after  selected  streaks,  to  obtain  subjective  estimates  of  the  transition  probability

Heilbron & Meyniel, Confidence and hierarchical learning

638

639

640

641

642

643

644

645

646

647

648

649

650

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 24, 2018. ; https://doi.org/10.1101/256016doi: bioRxiv preprint 

https://doi.org/10.1101/256016
http://creativecommons.org/licenses/by-nc-nd/4.0/


corresponding to the stimulus not observed during the streak. Streaks were categorized as suspicious

if they aroused the suspicion of a change point from the hierarchical ideal observer’s viewpoint. Note

that the flat model also shows a decrease in confidence, because it progressively forgets its estimates

about P(B|B) during a streak of As, but, there is no difference between suspicious and non-suspicious

streaks. (B) For the sequences presented to subjects, the change in confidence (post-streak minus pre-

streak) was significantly modulated by streak type in the hierarchical model, but not in a flat model.

(C) Subjects’ confidence showed an effect of streak type predicted by the ideal hierarchical model. As

in  Fig.  2C,  confidence  values  in  subjects  and  models  are  on  different  scales.  The  error  bars

correspond  to  the  inter-subject  quartiles,  distributions  show  subjects'  data;  significance  levels

correspond to paired t-test with p<0.005 (**) and p<10-12 (***).
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Figure 4. Control experiment: subjects take into account the higher-order structure of 

the dynamics

Results  of  the  control  experiment,  in  which  change  points  were  uncoupled  between  the  two

transition  probabilities,  thereby  abolishing  the  possibility  to  infer  a  change  in  one  transition

probability by only observing the other transition type. (A) Theoretical predictions for changes in

confidence around the target streaks. The optimal hierarchical model for the main task assumes that

change points are coupled (“hierarchical model, coupled changes”), which is no longer optimal in the

case of uncoupled change points. This model was nevertheless used to identify suspicious and non-

suspicious streaks and indeed it showed an effect of streak type on the change in confidence here in
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the control  task as in the main task (Fig.  3C).  The optimal hierarchical  Bayesian model  for  this

control experiment is similar to this first model, the only difference is that it assumes that change

points are uncoupled (“hierarchical model, uncoupled changes”). As expected, this model correctly

showed no effect of streak type on the change in confidence. The flat model, by definition, ignores

change points and therefore whether they are coupled or uncoupled, as a result it shows no effect of

streak type (as in the main experiment). (B) Subjects showed no difference between streak types, like

the hierarchical model for uncoupled changes. The results of the main task are reproduced from Fig.

3C to facilitate visual comparison. (C) Subjects overall perform well in the control task, showing a

tight agreement with the optimal hierarchical model for uncoupled change (the optimal ideal observer

in this task) for both predictions (left) and confidence (right).

In panels  A and  B,  the error bars correspond to the inter-subject  quartiles,  distributions show

subjects' data. In panel  C, data points are mean ± s.e.m across subjects. In all panels; significance

levels correspond to p<0.05 (*), p<0.01 (**), p<0.001(***) in a t-test.
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SUPPLEMENTARY INFORMATION
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SUPPLEMENTARY FIGURES AND LEGENDS

Figure S1: Correlation between the hierarchical and flat models is different for probability

estimates and confidence levels

We ran simulations of our experiment (Fig. 2A) to assess which metric (probability estimates or

confidence in those estimates) better distinguishes the hierarchical and flat learning models. For the

sake of generality, we varied the volatility (probability of a change point in a sequence) and the step

size of those changes (minimum fold change, in odd ratio, affecting the transition probabilities). For

each combination of volatility and step size, we simulated 100 sequences to achieve stable results and

we fit the single free parameter of each model (prior estimate of change point probability  pc in the

hierarchical model; and leak factor ω in the flat model) onto the actual generative probabilities of the

observed stimuli  in the sequences.  The resulting parameterized models therefore  return their  best

possible estimate of the hidden regularities, in each volatility-step size condition. We then simulated

new sequences  (again,  100  per  condition)  to  measure  the  correlation  between  (A)  the  estimated

probabilities of stimuli between the two models, and (B) the correlation (Pearson’s rho) between the

confidence (log-precision) that those models entertained in those estimates. The correlations indicate

that  probability  estimates  are  nearly  indistinguishable  between  the  two  models,  whereas  their

confidence levels are more different. 

Note  that  the  volatility  level  (0.013)  and  step  size  (4)  used  in  the  experiment  ensure  that

confidence levels greatly differ between models. Those simulations used prior [1 1] for the flat model,

but the results are qualitatively similar with prior [0 0] (see Methods).
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Figure S2: Theoretical predictions for various alternative models

Simulated changes in confidence around the target streaks in the main task. We consider three

ideal observers models: the hierarchical model, the flat model with prior [0 0] and with prior [1 1].

Those models tracked either the transition probabilities between successive stimuli (A,  C,  E) or the

frequency of stimuli (B,  D,  F). The free parameters of the models (the prior probability of change

point pc in the hierarchical model; the leak factor ω in the flat model) were fitted following three

procedures: so as to provide the best estimation of the actual generative probabilities of the sequences

at all trials (A,  B) or the answers of subjects at the moment of all questions regarding probability

estimates (C,  D) or their confidence ratings (E,  F). Panels  A and  B therefore show the results of

models that were optimized to solve the probability estimation task. By contrast, panels C,  D,  E,  F,

show the results of models that were optimized to be as close as possible to subjects, which can in

principle deviate from A and B. 

Note that panel A corresponds to Fig. 3B, expanded with a new case (simulation of a flat model

with priors [1 1]). None of the flat models in all plots shows an effect of streak type; some even

predict increase (not decrease) in confidence (B, D, F). By contrast, a hierarchical model learning the

stimulus frequency (B,  D,  F) seems more compatible with the subject’s data: they indeed predict an

effect  of  streak  type.  One  could  therefore  wonder  whether  subjects  actually  monitor  the  item

frequency, instead of transition probabilities in the task. Several pieces of evidence argue against this
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possibility  (see  Supplementary Results  3).  In  addition,  this  possibility  is  incompatible  with  the

results of the control experiment (Fig. 4B): a model that estimates a single statistic, namely the item

frequency and the associated confidence, shows the same effect of streak type no matter whether

change points are coupled between transition probabilities (main experiment) or uncoupled (control

experiment).  

Data points are mean ± s.e.m of model predictions for each subject; significance levels correspond

to p<0.05 (*), p<0.01 (**), p<0.001(***) in paired t-test, except for comparisons involving the flat

model with prior [0 0] in F for which we used a Wilcoxon sign rank test because of an outlier point

(see large error bar). 
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Figure S3: Probability estimates show no effect of streak type

This figure is analogous to Fig. 3B-C, excepted that it shows probability estimates reported at the

moment of the pre/post streak questions, rather than the associated confidence levels. The error bars

correspond to the inter-subject quartiles, distributions show subjects' data; the significance level ‘ns’

corresponds to paired t-tests with p>0.15.
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SUPPLEMENTARY RESULTS

1 - Relation between the flat model and the delta rule

The equations of the flat model can be re-arranged so as to show the link with a leaky integrator,

and hence, to a delta rule. For simplicity we derive those equations for the Bernoulli case (when one

seeks to infer the frequency of items in a sequence), noting that the case of transition probabilities

between successive items (p(A|A), p(B|B)) is nothing but the Bernoulli case when looking at each

transition type separately (AA, BB).

Let’s recode the binary sequences as 1s and 0s, and estimate the probability P 1(n) of observing a 1

after a sequence of observations y1, …, yn. P1(n) is the mean of a beta distribution, whose parameters

are the (leaky) counts of observations and the prior count  (cf. Eq. 3 and 5). Using the analytical

solution for beta distributions,  and recalling that  the observation count  is  leaky,  with exponential

decay ω:

P1(n)=
N1+N 1

prior

N 1+N0+N1
prior

+N 0
prior

=

∑
t=1

n

y t (e
−1 /ω)n−t+N1

prior

∑
t=1

n

(e−1/ ω
)

n−t
+N 1

prior
+ N0

prior

=c∑
t=1

n

y t(e−1 /ω
)

n−t
+c N1

prior

(Eq 6)

Where c can be approximated by a constant since e-1/ω<1 and n is typically large:

 

c=
1

1−e−n/ω

1−e−1/ω +N1
prior

+N 0
prior

≈
1

1
1−e−1/ω +N1

prior
+N 0

prior

A delta-rule with learning rate α reads as follow:

P1(n)=(1−α)n P1(0)+α∑
t=1

n

yt (1−α)n−t

≈α∑
t=1

n

y t(1−α)
n−t

(Eq 7)
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Note that for large n, the term before the sum vanishes since (1-α)<1, hence the approximation on

the second line.

Comparison of Eq. 6 and 7 shows that the flat model and the delta rule are very similar, the only

difference is that the leaky integration constantly adds a prior count in the flat model, whereas in the

delta-rule, the impact of the starting point P1(0), which can be thought of as a prior, vanishes as more

observations are accumulated. Stated differently, in the flat model, the inference progressively forgets

about  previous  observations  (like  in  the  delta  rule)  and  constantly  factors  in  a  prior  about  the

estimated  quantity  (unlike  the  delta  rule).  Note  that  with  Nprior
1 =Nprior

0 =0,  both  models  become

asymptotically identical for large n. 

Computing the apparent learning rate (the ratio between update P1(n)-P1(n-1) and prediction error

yn-P1(n-1) leading to this update) shows, with a bit of math, that for typical choices of ω, N prior
1 >0 and

Nprior
0 >0, the apparent learning rate increases whenever two consecutive observations are identical,

and decreases whenever they differ.  Considering that  consecutive observations are more likely to

differ after a change point in the underlying generative probability, the learning rate of the flat model

typically increases, on average, immediately after change points (see Fig. 1). 

2 - Robustness of the results

Each subject performed four blocks, two with auditory stimuli and two with visual stimuli. We

tested the robustness of the linear relations between subject’s and optimal values (Fig.  2B-C)  by

testing them separately in each block type. We found that the results were replicated in each sensory

modality. For probability estimates, in the auditory modality β=0.69±0.07 s.e.m., t22=9.27, p=4.7 10-9;

in the visual  modality β=0.64±0.06 s.e.m.,  t22=10.32,  p=6.8 10-10.  For  confidence,  in the auditory

modality β=0.10±0.04 s.e.m., t22=2.85, p=0.009; in the visual modality β=0.09±0.03 sem, t22=2.81,

p=0.010. Interestingly, the regression coefficients were correlated across subjects between modalities

(probability estimates: ρ23=0.45, p=0.031; confidence ratings: ρ23=0.81, p=2.6 10-6), suggesting that

inference in this task operates at an abstract, amodal level.

We  further  tested  the  robustness  of  the  correlation  between  subject’s  and  optimal  values  by

restricting the regression analysis to a subset of data points, namely, the questions that surround the

target streaks (Fig 3A). The significant correlations were replicated on this subset of data for both

probability estimates (β=0.57±0.07 s.e.m., t22=7.6, p=1.4 10-7) and confidence ratings (β=0.12±0.05

s.e.m., t22=2.6, p=0.017).

We also tested the robustness of our central analysis of the effect of streak type on the change in

confidence. In the main text, we report a dichotomy between suspicious and non-suspicious streaks,

but in reality the ‘suspiciousness’ of a streak is a matter of degree: the more a streak arouses the

suspicion of a change, the larger the decrease in confidence. We therefore regressed the subject’s
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changes in confidence onto the hierarchical model’s changes in confidence across all streaks. In order

to test whether the hierarchical model or the flat model provides a better account of the subjects’ data,

we also include the change in confidence of the flat model as a competing explanatory variable in the

multiple regression. Regression coefficients were significant for the hierarchical model (β=0.07±0.02

s.e.m., t22=3.7, p=0.001), but not for the flat model (β=0.01± 0.01 s.e.m., t22=0.8, p=0.44), and the

regression coefficients of the hierarchical model were significantly larger than those of the flat model

(paired difference of βs=0.06±0.03 s.e.m., t22=2.3, p=0.031), indicating that the hierarchical model

provides a significantly better account of the subjects’ data.

3 - Normative properties of confidence reports

In  the  ideal  observer  model,  the  answers  to  questions  #1  and  #2  (probability  estimate  and

confidence rating) are different readouts of the same posterior distribution, namely its mean and log-

precision. If the subjects’ answers to those questions also derive from the same inference process, then

we expect that subjects who are closer to the optimal probability estimates are also those who are

closer to the optimal confidence ratings. We therefore tested whether the linear regression coefficients

(βs) linking subjects and the optimal hierarchical model were correlated between probability estimates

and confidence ratings. The between-subject correlations was indeed significant: ρ23=0.53, p=0.009. 

We tested for further normative properties of the subject’s confidence ratings. Several factors,

notably factors pertaining to first-order estimates, are expected to impact confidence ratings in this

task  from  a  normative  viewpoint.  We  first  show  that  those  factors  indeed  impact  the  optimal

confidence levels at the moments of questions during the task, and then report a similar analysis for

the subject’s confidence ratings. Optimal confidence levels were entered into a multiple regression

model which included the estimated probability itself, the entropy of this probability (which quantifies

the estimated unpredictability of the next stimulus, it culminates when the estimated probability is

0.5), and the extent to which the current observation deviates from the previous estimate, as quantified

by the surprise (negative log likelihood of the observations, (Shannon, 1948)) and the prediction error

(one  minus  the  likelihood  of  the  current  observation).  Optimal  confidence  was  lower  when  the

estimated entropy was higher (β=-0.051±0.008, t22=-6.1, p=4.2 10-6), lower when surprise was larger

(β=-0.142±0.026, t22=-5.4, p=1.8 10-5) and when prediction error was larger (β=-0.128±0.030, t22=-4.2,

p=3.5 10-4). 

To analyze subjects’ confidence ratings, we added other explanatory variables to this multiple

linear regression model, which correspond to subject’s estimates: the subject’s probability estimate,

and the entropy corresponding to this estimate. Note that questions are asked only occasionally, so

that we don’t know the probability estimate of the subject at the  previous trial, and therefore, we

cannot compute the subject’s surprise and prediction error elicited by the last observation. Subject’s

confidence was lower when the entropy of his estimate was higher (β=-0.125±0.009, t22=-14.5, p=1.0
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10-12) and when the optimal surprise level was higher (β=-0.090±0.022, t22=-4.1, p=5.0 10-4). 

Another aspect of subjects’ accuracy is that their report of confidence is specific to the relevant

statistics.  In the experiment,  subjects monitor two transition probabilities,  there are therefore two

confidence levels, each being attached to one transition type. Questions asked subjects to estimate the

likelihood of the next stimulus, which depends on only one of the two transition probabilities: the one

that  is  relevant  given  the  identity  of  the  previous  stimulus  at  the  moment  of  the  question.  We

estimated a multiple linear regression in which the subject’s confidence ratings was regressed onto

both  the  optimal  relevant  confidence  levels,  and  the  optimal  irrelevant  confidence  level  (those

attached  to  the  irrelevant  transition).  The  regression  coefficients  corresponding  to  the  relevant

confidence levels were significant (β=0.039±0.014 s.e.m., t22= 2.8, p=0.011), those for the irrelevant

confidence were not (β=0.001±0.008 s.e.m., t22=0.1, p=0.89) and the difference between the two was

significant (paired difference of βs=0.038±0.018 s.e.m., t22=2.0, p=0.027, one-tailed test). A different

multiple linear regression indicates, in addition, that confidence ratings are selectively modulated by

the (optimal) entropy of the relevant transition probability, as opposed to the irrelevant one (paired

difference of βs=-0.020±0.007 s.e.m., t22=-2.9, p=0.008). Optimal confidence levels show the same

effect: replacing the subjects’ confidence ratings in this latter regression with the optimal confidence

levels also reveals a significant difference (paired difference of βs=-0.050±0.016, t22=-3.2, p=0.0045).

By contrast, such a difference is not observed when replacing the subjects’ confidence ratings with the

optimal  confidence of  a  model  that  monitors  solely  the  frequency of  items  (paired difference of

βs=0.005±0.008, t22=0.6, p=0.54). Together, those results indicate that subjects reported specifically

the confidence attached to the transition probability relevant at the moment of the question.

4 - Theoretical effects on the apparent learning rate

We cannot assess the apparent learning rate of subjects on a trial-by-trial basis here since it would

require  that  subjects  report  their  first-order  estimates  on  every  trial,  whereas  they  did  it  only

occasionally. However, we can run such an analysis on our simulated models. We found a specific

effect of streak type on the apparent learning rate of the hierarchical model, which increased more

after suspicious streaks than non-suspicious ones (0.11±0.01 s.e.m., p=2.9 10-14, t22=17.2), there was

no difference in the flat model (-0.0023±0.0022 s.e.m., p=0.3, t22=-1.1) and the difference between

models was significant (paired difference of differences, -0.11±0.01 s.e.m., p=1.4 10 -14,  t22=-17.9).

This  effect  of  streak  type  in  the  hierarchical  model  for  uncoupled  change  points  was  no  longer

observed in the control task with uncoupled change points (-0.001±0.005 s.e.m., p=0.85, t 20=-0.2). In

other words, the apparent learning rate passes the test we propose to detect the use of a hierarchical

model.
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SUPPLEMENTARY DATA
We provide the raw data as a Matlab data file:  HierarchyTasks_FullRawDataSet.mat. This data

file can be read with Matlab, or a freely available software such as GNU Octave or Python. The file

contains three cell  variables:  one for the subjects included in the main task,  one for the subjects

excluded from the main task, and one for the subjects (all included) in the control task. Each element

of a cell corresponds to one subject, and the data are presented as a matrix. Each row is a trial, and the

columns should be read as follows:

1. Sensory modality ("1" for visual, “0” for auditory)

2. Block number (1 to 4)

3. Observed binary sequence, coded as "1" and "2"

4. Generative probability of observing "1" when the previous stimulus is "2"

5. Generative probability of observing "2" when the previous stimulus is "1"

6. Subject's estimate of the probability of receiving "1" on the next trial, from 0 to 1 (with NaN

when no question is asked)

7. Subject's confidence about the estimated probability, from 0 to 1 (with NaN when no question

is asked)

8. Reaction times (s) for the probability report (with NaN when no question is asked)

9. Reaction time (s) for the confidence report (with NaN when no question is asked)
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