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Many experiments show that the numbers of mRNA and protein are proportional to the cell
volume in growing cells. However, models of stochastic gene expression often assume constant
transcription rate per gene and constant translation rate per mRNA, which are incompatible with
these experiments. Here, we construct a minimal gene expression model to fill this gap. Assuming
ribosomes and RNA polymerases are limiting in gene expression, we find that (1) because the
ribosomes translate all proteins, the concentrations of proteins and mRNAs are regulated in an
exponentially growing cell volume; (2) the competition between genes for the RNA polymerases
makes the transcription rate independent of the genome number. Furthermore, by extending the
model to situations in which DNA (mRNA) can be saturated by RNA polymerases (ribosomes) and
becomes limiting, we predict a transition from exponential to linear growth of cell volume as the
protein-to-DNA ratio increases.

Despite the noisy nature of gene expression [1–6], var-4

ious aspects of single cell dynamics, such as volume5

growth, are effectively deterministic. Recent single-cell6

measurements show that the growth of cell volumes is7

often exponential. These include bacteria [7–10], ar-8

chaea [11], budding yeast [10, 12–15] and mammalian9

cells [10, 16]. Moreover, the mRNA and protein numbers10

are often proportional to the cell volume throughout the11

cell cycle: the homeostasis of mRNA concentration and12

protein concentration is maintained in an exponentially13

growing cell volume with variable genome copy number14

[17–22]. The exponential growths of mRNA and protein15

number indicate dynamical transcription and translation16

rates proportional to the cell volume, and also indepen-17

dent of the genome copy number. However, current gene18

expression models often assume constant transcription19

rate per gene and constant translation rate per mRNA20

(constant rate model) [1, 5, 23–25]. Assuming a finite21

degradation rate of mRNAs and non-degradable proteins,22

these models lead to a constant mRNA number propor-23

tional to the gene copy number and linear growth of pro-24

tein number [26–28], incompatible with the proportion-25

ality of mRNA and protein number to the exponentially26

growing cell volume.27

Since the cell volume, protein copy number and mRNA28

copy number grow exponentially throughout the cell cy-29

cle, one may expect a sufficient condition to achieve a30

constant concentration is to let them grow with the same31

exponential growth rate. However, mathematical analy-32

sis suggests this is insufficient. Let us consider the loga-33

rithm of protein concentration c, which can be written as34

ln(c) = ln(p)−ln(V ). Here p is the protein number and V35

is the cell volume. If one assumes the protein number and36

the cell volume grow exponentially but independently,37

with time-dependent exponential growth rates λp(t) and38

λv(t) respectively, the time derivative of the logarithm of39

concentration then obeys d ln(c)/dt ∼ λp(t)−λv(t). Even40

when the time-averaged growth rates of protein number41

and cell volume are equal, 〈λp(t)〉 = 〈λv(t)〉, any fluc-42

tuations in the difference between them will accumulate43

and lead to a random walk behavior of the logarithm of44

concentration. The homeostasis of protein and mRNA45

concentrations implies that there must be a regulatory46

mechanism in place to prevent the accumulation of noise47

over time.48

The main goal of this work is to identify such a mech-49

anism by developing a coarse-grained model taking into50

account cell volume growth explicitly. Specially, we only51

consider continuously proliferating cells and do not take52

account of non-growing cells, e.g., bacterial cells in sta-53

tionary phase [29]. The ubiquity of homeostasis suggests54

that the global machinery of gene expression, RNA poly-55

merases (RNAPs) and ribosomes, should play a central56

role within the model. Based on the assumption that57

the number of ribosomes is the limiting factor in transla-58

tion, we find that the exponential growth of cell volume,59

protein number originates from the auto-catalytic nature60

of ribosomes [30–32]. The fact that ribosomes make all61

proteins ensures that the protein concentrations do not62

diverge. Based on the assumption that the number of63

RNAP is the limiting factor in transcription, we find64

that the mRNA number also grows exponentially and65

the mRNA concentration is independent of the genome66

copy number because of the competition between genes67

for this global resource [18–20]. We also study the ef-68

fects of genome replication. Due to the heterogeneous69

timing of gene replication, the transcription rate of one70

gene has a cell cycle dependence. Within our model, it71

doubles immediately after the gene is replicated and de-72

creases gradually as other genes are replicated. Finally,73

we extend our model to more general situations in which74

an excess of RNAP (ribosome) leads to the saturation75

of DNA (mRNA). We propose a phase diagram of gene76

expression and cellular growth controlled by the protein-77

to-DNA ratio. We predict a transition from exponential78

growth to linear growth of cell volume as the protein-to-79

DNA ratio passes a threshold.80
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Figure 1. The growing cell model of stochastic gene expression in comparison with constant rate models.
(a) In the constant rate model, the transcription rate is proportional to the gene copy number, and the translation rate is
proportional to the mRNA number. These assumptions imply that the gene number and mRNA number are the limiting
factors in gene expression.
(b) In Phase 1 of the growing cell model, we introduce as limiting factors RNA polymerases (RNAPs) and ribosomes. Genes
with different colors are transcribed with different rates. Here k0 is a constant and the gene regulation is coarse-grained into the
gene allocation fraction φi = gi/

∑
j gj . gi is the effective copy number of gene i (also accounting for the promoter strength).

n is the total number of RNAPs. Translation rates of mRNA depend on the number of active ribosomes (far), the translation
rate kt, and the fraction of mRNA i in the total pool of mRNA. In a later section (A unified phase diagram of gene expression
and cellular growth), we will relax our assumptions and consider situations in which the limiting factors of gene expression
become the gene number and the mRNA number.

RESULTS81

Model of stochastic gene expression82

In constant rate models, the transcription rate per gene83

and the translation rate per mRNA are constant [1, 5, 24]84

(Figure 1a). This implies that the gene (mRNA) num-85

ber is the limiting factor in transcription (translation).86

Constant rate models predict a constant mRNA number87

proportional to the gene copy number and independent of88

the cell volume. However, experimental observations on89

plant and mammalian cells have revealed a proportion-90

ality between mRNA number and cell volume for cells91

with a constant genome copy number [18–20]. Moreover,92

even comparing the cells before and after the genome93

replication (S phase), the proportionality coefficient be-94

tween mRNA and cell volume does not exhibit any ob-95

vious change. In contrast, a constant transcription rate96

per gene would predict a doubled transcription rate after97

the replication of the whole genome, leading to a higher98

mRNA concentration. In one class of constant rate mod-99

els [26, 27, 33], a deterministic exponential growth of cell100

volume is explicitly considered. The resulting perturba-101

tion on the concentrations due to genome replication is102

suppressed in the long lifetime limit, but still significant103

for short lifetime molecules, e.g., mRNA (see Fig.1 in104

Ref. [27]).105

Considering translation, various experiments have106

shown that the number of ribosomes is the limiting fac-107

tor rather than the number of mRNAs. The most direct108

evidence is the growth law: the growth rate of cells is109

proportional to the fraction of ribosomal proteins in the110

total proteome (with a constant factor depending on the111

growth condition) [34] both for bacterial cells [30, 35]112

and budding yeast cells [31]. This means a constant frac-113

tion of ribosomes are actively translating mRNAs. These114

results suggest that in general cells are below the satu-115

ration limit in which there are too many ribosomes that116

the mRNAs can bind. We will therefore assume the bi-117

ological situation in which mRNAs in the cell compete118

for the limiting resource of actively working ribosomes,119

therefore the translation rate of one type of mRNA is120

proportional to the number of active ribosomes times its121

fraction in the total pool of mRNAs.122

Considering transcription, experiments have shown123

that mutants of fission yeasts altered in cell size regu-124
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lated global transcription to maintain similar transcrip-125

tion rates per cell volume regardless of the cellular DNA126

content. The changes in total transcription correlated127

with coordinated changes in gene occupancy by RNA128

polymerases [36]. These results suggest that the num-129

ber of RNAPs may be the limiting factor in transcription130

rather than the gene number, and similar evidence has131

been shown for bacterial cells [37] and mammalian cells132

[38]. However, in the same experiments on fission yeast133

[36], it has also been found that in cell-cycle-arrested mu-134

tants, total transcription rates stopped increasing as the135

cell volume exceeded a certain value, which suggested136

DNA became limiting for transcription at low DNA con-137

centration. This result suggests that an excess of RNAPs138

may lead the gene number to become the limiting factor139

in certain conditions. In this section, we will focus on140

the scenario that both RNAP and ribosome are limit-141

ing in gene expression, which we denote as Phase 1. In142

this phase, we will show that the mRNA number and the143

protein number are proportional to the cell volume and144

grow exponentially. In a later section (A unified phase145

diagram of gene expression and cellular growth), we will146

consider a more general model in which the limiting na-147

ture of RNAPs and ribosomes may break down and the148

dynamics of mRNA and protein number is different.149

To address the limiting nature of RNAP, we define an150

effective gene copy number gi for each gene to account for151

its copy number and the binding strength of its promoter,152

which determines its ability to compete for RNAPs. The153

transcription rate for one specific gene i is proportional154

to the fraction of RNAPs that are working on its gene(s),155

φi = gi/
∑
j gj , which we denote as the gene allocation156

fraction. Gene regulation is thus coarse-grained into the157

gene allocation fraction φi. The transcription rate is in-158

dependent of the genome copy number since a change159

in the genome number leaves the allocation fraction of160

one gene invariant, a conclusion which is consistent with161

a number of experimental results on various organisms162

[18–20, 36].163

In fact, explicit gene regulation can also be included in164

our model (Methods), with a time-dependent gi. In such165

scenarios, gi may be a function of protein concentrations166

(for instance, the action of transcription factors modifies167

the transcription rate). Such models will lead to more168

complex dynamics of mRNA and protein concentrations.169

However, since we are interested in the global behavior of170

gene expression and cell volume growth, we do not focus171

on these complex regulations in this manuscript. Our172

conclusions regarding the exponential growth of mRNA173

and protein number for constitutively expressed genes174

and the exponential growth of cell volume on the global175

level are not affected by the dynamics of gene expression176

of particular genes.177

In the following, m, p, r, n represents the numbers of
mRNA, protein, ribosome and RNA polymerase, respec-
tively. Proteins (p) also include RNAPs (n) and ribo-

somes (r) [30]. We consider the degradation of mRNA
with degradation time τ for all genes. The protein num-
ber decreases only through cell divisions (though adding
a finite degradation rate for proteins does not affect
our results). The chemical reactions of gene expression
within Phase 1 of our model are summarized in the fol-
lowing sets of equations and Figure 1b,

mi
k0(gi/

∑
gj)n−−−−−−−−→ mi + 1, (1a)

mi
mi/τ−−−→ mi − 1, (1b)

pi
kt(mi/

∑
j mj)far

−−−−−−−−−−−−→ pi + 1. (1c)

Here k0, kt are constants, characterizing the transcrip-178

tion (translation) rate of a single RNAP (ribosome). fa179

is the fraction of active ribosomes. For simplicity, we180

first assume the values of φi do not change in time. This181

can be formally thought of as corresponding to an in-182

stantaneous replication of the genome. Because within183

our model, the transcription rate is proportional to the184

relative fraction of one gene in the total genome rather185

than its absolute copy number, the invariance of mRNA186

and protein concentrations before and after the genome187

replication is a natural result and does not rely on a long188

lifetime of the molecule under consideration in contrast189

to the constant rate models [27].190

In reality, a finite duration of DNA replication and the191

varying time of replication initiation for different genes192

lead to φi’s that change during the DNA replication. We193

later analyze a more complete version of the model which194

includes these gene dosage effects, but we first consider195

the simplified scenario of constant φi that will capture196

the essential features of the problem. We assume the197

cell volume is approximately proportional to the total198

protein mass, i.e., V ∝M =
∑
j pj , which is a reasonable199

approximation for bacteria [39, 40] and mammalian cells200

[17]. To simplify the following formulas, we consider each201

protein has the same mass and set the cell density as 1.202

Due to the fast degradation of mRNA compared with203

the cell cycle duration [41, 42], the mRNA number can204

be well approximated as being in steady state. We can205

express the ensemble-averaged number of mRNA of gene206

i as207

〈mi(t)〉 = k0φi〈n(t)〉τ. (2)

Equation (1c) then leads to the time-dependence of208

average ribosome number, d〈r〉/dt = ktfaφr〈r〉, repro-209

ducing the auto-catalytic nature of ribosome production210

and the growth rate211

µ = ktfaφr, (3)

determined by the relative abundance of active ribosomes212

in the proteome [30, 31].213

Similarly, we can find the number of protein i grows as
d〈pi〉/dt = ktfaφi〈r〉. As the cell grows and divides, the
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Figure 2. Exponential growth of the cell volume, protein number, mRNA number; the homeostasis of protein
and mRNA concentrations throughout the cell cycle.
(a) Numerical simulated trajectories of cell volume, protein number, and mRNA number are shown (φi = 0.018).
(b) The averaged values of protein and mRNA number of a highly expressed gene (φi = 0.04), are shown (circles) with 3 single
trajectories in the background. The black lines are theoretical predictions of Equations (4a, 4b). The average is over 130 cell
cycles. The color band represents the standard deviation (same for (c)).
(c) The averaged values of protein and mRNA concentrations of the same gene as in (b) are shown (circles). The black lines
are theoretical predictions of Equations (5a, 5b). Three trajectories are shown in the background.
(d) Three trajectories of diverging concentrations in the scenario where the protein number and cell volume grow independently.
See the numerical details in Methods.
(e) The scatter plot of the protein numbers at cell division (Pd) v.s. the protein numbers at cell birth (Pb). The circles are
binned data. The black line is a linear fit of the binned data with slope 1.03, consistent with the adder correlations.

dynamics becomes insensitive to the initial conditions, so
the protein number will grow exponentially as well [21].
The ratio between the averages of two protein numbers
in the steady state is set by the ratio of their production
rate, therefore 〈pi〉/〈pj〉 = φi/φj . The average number of
mRNA traces the number of RNA polymerases according
to Equation (2), and therefore also grows exponentially.

Throughout the cell cycle we have

〈mi(t)〉 = mb(i) exp(µt), (4a)

〈pi(t)〉 = pb(i) exp(µt), (4b)

where mb(i) (pb(i)) is the number of mRNA (protein) of214

gene i at cell birth.215

The concentration of mRNA and protein of gene i as
cmi = mi/V , ci = pi/V . According to Equations (1a-
1c), the deterministic equations of the above variables
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become (see details in Methods)

dci
dt
≈ µ(φi − ci). (5a)

dcmi

dt
≈ 1

τ
(k0φiφnτ − cmi). (5b)

Stable fixed points exist for the dynamics of ci and cmi,216

which are φi and k0φiφnτ . The stability of the fixed217

points is due to the global nature of RNAPs and ri-218

bosomes: any noises arising from the copy number of219

RNAPs (ribosomes) equally affect all mRNAs (proteins),220

and therefore leave the relative fraction of one type of221

mRNA (protein) in the total pool of mRNAs (proteins)222

invariant. The average concentrations of mRNA and pro-223

tein of gene i become 〈ci〉 = φi, and 〈cmi〉 = k0τφiφn.224

The results are independent of the cell volume and225

genome copy number agreeing with experimental data226

on various organisms [18–20, 22].227

If we only consider the dynamics of concentrations, we228

do not need to introduce cell division. However, taking229

account of cell division is necessary for the study of pro-230

tein number dynamics at the single-cell level, and also231

important for the study of effects of gene replication.232

Therefore, we take explicitly cell division into account233

and, for concreteness, use the “adder” model for cell di-234

vision by considering an initiator protein I. We consider235

an initiator protein I, which accumulates from 0 after236

cell birth, and triggers the cell division once I reaches237

the division threshold Ic and is then destroyed (or “re-238

set”, e.g., after initiation of DNA replication in bacteria,239

the ATP-bound DnaA is dephosphorylated to the ADP-240

bound form) [43–45]. During a division event, we assume241

proteins and mRNAs are divided between the two daugh-242

ter cells following a binomial distribution [46]. The initia-243

tor protein sets the scale of absolute protein number, and244

the average number of proteins produced in one cell cycle245

is equal to ∆(i) = Icφi/φI [44]. Since the protein number246

grows twofold during one cell cycle, the average protein247

number of gene i at cell birth is pb(i) = Icφi/φI and248

the corresponding average mRNA number at cell birth249

is mb(i) = k0Icτφiφn/φI . We remark that the exact250

molecular mechanism of cell division does not affect our251

results.252

We corroborate the above analytical calculations with253

numerical simulations. These will also capture the254

stochastic fluctuations in gene expression levels, which255

are not included in the previous analysis. Due to the256

short lifetime of mRNAs, the production of proteins can257

be approximated by instantaneous bursts [24]. We intro-258

duce the burst size parameter b0 as the average number of259

proteins made per burst, b0 = ktfa〈r(t)〉/〈
∑
jmj〉 × τ ≈260

ktfaφr/(k0φn), independent of the cell volume. φi for261

N = 200 proteins are uniformly sampled in logarith-262

mic space, with the sum over φi (including ribosome and263

RNAP) constraint to be precisely one. We choose the pa-264

rameters to be biologically relevant for bacteria: the dou-265

bling time T = ln(2)/µ = 150 min, rb = 104, nb = 103,266

b0 = 0.8, Ic = 20, φr = 0.2, fa = 0.7 and τ = 3.5 min,267

see other numerical details in Methods. Our conclusions268

are independent of the specific choice of parameters.269

In Figure 2a, we show the typical trajectories from our270

simulations of cell volume, protein number and mRNA271

number for the same gene over multiple generations. To272

verify the exponential growth of protein and mRNA, we273

average the protein and mRNA numbers given a fixed274

relative phase in the cell cycle progression, which is nor-275

malized by the generation time and changes from 0 to276

1. The averaged values of protein and mRNA numbers277

(circles) are well predicted by exponential growth, Equa-278

tions (4a, 4b) (black lines) without fitting parameters,279

as shown in Figure 2b with 3 single trajectories in the280

background. We also simulate a regulated gene with a281

time-dependent gene copy number and obtain qualita-282

tively similar results (Methods, Figure S1).283

The corresponding trajectories of protein and mRNA284

concentrations are shown in Figure 2c, with bounded285

fluctuations around the predicted averaged values (black286

lines). In contrast, if the protein number and cell volume287

grow exponentially but independently, the ratio between288

them will diverge as the effects of noise accumulate, ex-289

hibiting a random walk behavior (Figure 2d). Consid-290

ering the cell cycle dependence of mRNA number and291

the homeostasis of protein concentration throughout the292

cell cycle, the experimental observation in E. coli show-293

ing negligible correlations between mRNA number and294

protein concentration [47] seems to be a natural result of295

the cell cycle effect [48].296

Within our model, we may also study the protein num-297

ber dynamics: how does the protein number at cell di-298

vision correlate with that at cell birth? We find that299

the correlations follow an “adder” (i.e. the number of300

new proteins added is uncorrelated with the number301

at birth), as shown in Figure 2e. While this has been302

quantified in various organisms with respect to cell vol-303

ume [8, 9, 11, 49–51], checking correlations between pro-304

tein content at cell birth and division has received sig-305

nificantly less attention [52, 53]. Related to this, we306

study the auto-correlation function of protein concen-307

tration in time. We find that the auto-correlation func-308

tion is approximately exponential, with a correlation time309

bounded from below by the doubling time (Figure S2).310

Both of these results provide experimentally testable pre-311

dictions.312

Effect of finite duration of gene replication313

So far, we considered a constant φi throughout the314

cell cycle assuming an instantaneous replication of the315

genome. In this section, we relax this condition and study316

the effects of finite DNA replication time. We consider317

the bacterial model of DNA replication, specifically, Es-318
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cherichia coli, for which the mechanism of DNA repli-319

cation is well characterized [54]. The duration of DNA320

replication is constant, and defined as the C period. The321

corresponding cell division follows after an approximately322

constant duration known as the D period. Details of the323

DNA replication model are in the Methods. In Figure324

3a, we show the time trajectories of the gene allocation325

fraction, mRNA concentration and protein concentration326

of one gene for a doubling time of T = 30 min with327

C +D = 70 min. The DNA replication introduces a cell328

cycle dependent modulation of φi. The abrupt increase329

of φi corresponds to the replication of the specific gene i330

(Figure 3a) φi → 2φi. However, as other genes are repli-331

cated, the relative fraction of gene i in the total genome332

decreases. This modulation propagates to the mRNA333

concentration which essentially tracks the dynamics of334

φi due to its short lifetime. The modulation of mRNA335

concentration affects the protein concentration as well,336

yet with a much smaller amplitude. These results can337

be tested experimentally by monitoring the DNA repli-338

cation process and mRNA concentration simultaneously.339

We predict a quickly increasing mRNA concentration af-340

ter the gene is replicated, followed by a gradual decrease341

of mRNA concentration until the next round of replica-342

tion.343

Noise in gene expression can be classified as intrinsic344

and extrinsic noise [55]. While intrinsic noise is due to345

the stochastic nature of the chemical reactions involved346

in gene expression, extrinsic noise is believed to be due347

to the fluctuations of external conditions and common to348

a subset of proteins. Experiments have revealed a global349

extrinsic noise that affects all protein concentrations in350

the genome [47, 56, 57]. Because all genes are subjected351

to the finite duration of DNA replication, it is tempting352

to attribute the finite duration of DNA replication as one353

of the main sources of global extrinsic noise [33]. Within354

our model in the previous section (constant φi’s through-355

out the cell cycle), there is no global extrinsic noise (Fig-356

ure S3). A global extrinsic noise may emerge after we in-357

troduce the time-dependent φi due to DNA replication.358

However, we find that the coefficient of variation (CV,359

the ratio between standard deviation and mean) of the360

most highly expressed proteins is only about 0.02 within361

the growing cell model (Figure 3b), much smaller than362

that found in experiments [47, 56].363

A unified phase diagram of gene expression and364

cellular growth365

Experimental observations on E. coli [30] and bud-366

ding yeast [31] support our assumption that ribosomes367

are limiting for translation. Experimental observations368

on plant and mammalian cells [18–20] and fission yeast369

[36] are also consistent with our assumption that RNA370

polymerase is limiting for transcription. However, as we371
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Figure 3. Effects of finite duration of DNA replica-
tion.
(a) The time trajectory of gene allocation fraction, mRNA
concentration and protein concentration of a high copy num-
ber protein (µp ≈ 104, see (b)). The doubling time T = 30
min , and we use the values of the C and D periods from Ref.
[54], namely, C = 35 min and D = 35 min. In this situation,
the cell undergoes DNA replication throughout the cell cycle.
Nevertheless, the noise in φi does not propagate to the noise
in protein concentration significantly. The value of mRNA
concentration is 5 times amplified for clarity.
(b) An exponentially growing population is simulated (See
Methods). The noise magnitude is quantified as the square
of CV of protein concentrations. The mean protein number
(µp) is the protein number per average cell volume. Gene
dosage effects due to DNA replication do not generate a sig-
nificant global extrinsic noise. Two different doubling times
are considered.

discussed in the first section, in the same experiments on372

fission yeast [36] DNA became limiting for transcription373

at low DNA concentration. Therefore, we cannot exclude374

the possibility that in some cases because RNAPs are too375

abundant, DNA becomes the limiting resource for tran-376

scription rather than the number of RNAPs. Similarly,377

when ribosomes are too abundant relative to the tran-378

script number, the limiting factor for translation becomes379

the transcript number rather than ribosome number.380

In this section, we generalize our model by assuming381

that each gene has an upper bound on the number of382

RNAPs (ns) than can simultaneously work on it. A pos-383

sible extreme case is that the gene is fully loaded with384

RNAPs, on which RNAPs are only constrained by steric385

hindrance. The same assumption is made for mRNA with386

an upper bound of ribosomes (rs) that can work on it si-387
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multaneously. We remark that the exact mechanism of388

DNA and mRNA saturation is beyond our coarse-grained389

model. If the number of RNAP (ribosome) is above the390

upper bound, the transcription (translation) rate is lim-391

ited by the gene (mRNA) number, in a similar fashion to392

the constant rate models.393

Protein-to-DNA ratio

Phase 1 Phase 2 Phase 3

DNA    (U)

mRNA (U)

DNA    (S)

mRNA (U)

DNA    (S)

mRNA (S)

cell volume growth

exponential

cell volume growth

exponential

cell volume growth

linear

S: Saturated U: Unsaturated

Phase 2

Phase 3

RNA polymerase (n) Ribosome (r)

a

c

b DNA limiting ribosome limiting

DNA limiting mRNA limiting

Figure 4. Phases of gene expression and cell volume
growth.
(a) Theoretical phase diagram of gene expression and cellular
growth within our model. The x axis is the protein-to-DNA
ratio (γ). When γ < γ1, neither DNA nor mRNA is satu-
rated. The mRNA number, the protein number and the cell
volume all grow exponentially with the growth rate set by the
fraction of ribosomal gene in the total genome (φr). When
γ1 < γ < γ2, DNA is saturated but mRNA is not. The protein
number and the cell volume still grow exponentially while the
mRNA number is a constant proportional to the gene num-
ber. When γ > γ2, both DNA and mRNA are saturated.
The protein number and cell volume grow linearly, and the
cell volume growth rate is set by the genome copy number.
(b) The gene expression dynamics in Phase 2. In this phase,
DNA becomes saturated by RNAPs, therefore, the transcrip-
tion rate becomes proportional to the effective gene copy num-
ber, gi. ns is the upper bound of RNAPs that can work on
one gene simultaneously. The translation rate is the same
as in Phase 1. To simplify the formula, we assume all ribo-
somes are active (to include the effect of an inactive fraction,
r should be replaced by far).
(c) The gene expression dynamics in Phase 3, in which both
DNA and mRNA are saturated. The translation rate becomes
proportional to the mRNA number. rs is the upper bound of
ribosomes that can work on one mRNA simultaneously.

394

395

We define the protein-to-DNA ratio (PTD ratio) as the396

sum of protein numbers divided by the sum of effective397

gene numbers,398

γ =
∑
i

pi/
∑
i

gi. (6)

As the PTD ratio becomes larger, e.g., due to a suffi-399

ciently large cell volume with a fixed number of gene,400

the number of RNAPs (ribosomes) will exceed the max-401

imum load the total genes (mRNAs) can hold. We have402

discussed thoroughly Phase 1 (neither DNA nor mRNA403

is saturated) earlier and we summarize our predictions404

on the transition from Phase 1 to other phases in the405

following.406

Phase 2: In Phase 2, the limiting factor in transcrip-407

tion becomes the gene copy number and the transcription408

rate is proportional to the gene copy number (Figure 4b).409

The threshold PTD ratio for the transition from Phase 1410

to Phase 2 is (Methods),411

γ1 =
ns
φn
. (7)

Here ns is the upper bound of the number of RNAPs that412

can work on one gene, φn is the gene allocation fraction413

of RNAP. Because mRNA is not saturated, the protein414

number and the cell volume grow exponentially with the415

same growth rate as Phase 1, Eq. (3), and the home-416

ostasis of protein concentration is still valid. However,417

because the production rate of mRNA is now propor-418

tional to the gene copy number, the mRNA concentration419

is not constant anymore as the cell volume grows and be-420

comes inversely proportional to the protein-to-DNA ratio421

(Methods). We remark that in Phase 2, even though the422

transcription rate doubles after the genome is replicated,423

the translation rate is still proportional to the relative424

fraction of mRNA in the total pool of mRNAs. There-425

fore, the protein concentrations are still independent of426

the genome copy number. Recent proposed theoretical427

models of gene expression are consistent with this phase428

[58].429

Phase 3: As the cell keeps growing, mRNA may get430

saturated as well. The limiting factor in translation is431

now the mRNA copy number (Figure 4c). The thresh-432

old PTD ratio for transition from Phase 2 to Phase 3 is433

(Methods)434

γ2 =
k0τrsns
φr

. (8)

Here rs is the upper bound of the number of ribosomes435

that can work on one mRNA. In this phase, the transla-436

tion rate is proportional to the mRNA number and the437

protein number grows linearly as ṗi = ktk0giτnsrs, with438

a linear growth rate proportional to the gene number.439

Therefore, within the assumption that the cell volume440

is dominated by the total protein number, the cell vol-441

ume grows linearly as well with the linear growth rate442
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proportional to the total gene number,443

µl = ktk0τnsrs
∑
i

gi, (9)

and therefore proportional to the genome copy number,444

ng. As in Phase 2, the mRNA concentration decreases445

as the cell volume grows, however, the protein concen-446

tration is still constant with the average protein concen-447

tration equal to the gene allocation fraction (〈ci〉 = φi,448

Methods). In Phase 3, even though the cell volume grows449

linearly, the population still grows exponentially with a450

population growth rate. However, there is no general451

relation between the ribosomal fraction in the proteome452

and the population growth rate, in contrast to the growth453

law in Phase 1 and 2. We summarize the predicted phase454

diagram of cellular growth in Figure. 4.455

To gain some sense regarding the parameters asso-456

ciated with our proposed phase diagram, we estimate457

the PTD ratio of E. coli. Considering the typical cell458

volume of E. coli as 1 µm3, the protein density as459

3 × 106 proteins/µm3 and the total number of protein-460

coding genes in E. coli as 4000 [59], we estimate the461

protein-to-DNA ratio for E. coli as γ ∼ 1000. Estimates462

of the two threshold values of PTD ratios (see Methods)463

suggest that γ1 ∼ 1500 and γ2 ∼ 20000.464

We find that E. coli cells are typically in Phase 1, but465

not too far from Phase 2. We remark that the actual466

threshold values of PTD ratio for the transitions between467

different growth phases may be affected by other factors,468

e.g., the heterogeneous size of genes, but we propose that469

the general scenario of the transition from Phase 1 to470

Phase 3 as the protein-to-DNA ration increases should471

be generally applicable. As the PTD ratio increases, we472

predict a transition from exponential growth to linear473

growth for protein number and cell volume. We propose474

future experiments to study the potential transition from475

exponential to linear growth of cell volume, for example476

using filamentous E. coli by inhibiting cell division and477

gene replication. Similar experiments can also be done478

for larger cells, e.g., mammalian cells, in which the tran-479

sition from exponential growth to linear growth of cell480

volume may be easier to achieve. Preliminary results481

from experiments measuring the growth of cell mass of482

mammalian cells by inhibiting cell division indeed show a483

crossover from exponential growth to linear growth when484

the cell mass is above a threshold value [60], consistent485

with our prediction.486

CONCLUSION487

In this work, we propose a coarse-grained model488

of stochastic gene expression incorporating cell volume489

growth and cell division. In the first part, we consider490

the biological scenario that RNAPs are limiting for tran-491

scription and ribosomes are limiting for translation. In492

other words, neither DNA nor mRNA is saturated. We493

find that the limiting nature of ribosomes in the trans-494

lation process leads to the exponential growth of protein495

numbers. The limiting nature of RNA polymerase and496

its exponential growth lead to the exponential growth of497

mRNA numbers. Homeostasis of protein concentrations498

originates from the fact that ribosomes make all proteins.499

Homeostasis of mRNA concentration comes from the re-500

sulting bounded concentration of RNAPs. Our model501

is consistent with the constancy of mRNA and protein502

concentration as the genome copy number varies since503

the transcription rate depends on the relative fraction of504

genes in the genome rather than its absolute number [22].505

During DNA replication, we find that the gene allo-506

cation fraction φi for one specific gene doubles after the507

gene is replicated but decreases afterwards since other508

genes are replicated as well and compete for RNAPs.509

This prediction can be tested by monitoring the mRNA510

concentration and the copy number of one gene through-511

out the cell cycle. Furthermore, we extend our model512

to more general cases in which DNA and mRNA can be513

saturated by an excess of RNAP and ribosome. We find514

three possible phases of cellular growth as the protein-515

to-DNA ratio γ increases. A transition from exponential516

growth to linear growth of protein number and cell vol-517

ume is predicted. In the future, it will be interesting to518

study the interplay between the global interactions which519

are the focus of this work and local interactions between520

genes. Our model provides an alternative model to con-521

stant rate models to study genetic networks, which would522

be advantageous when cell cycle effects are important.523

Another potential extension of our model is to include524

metabolic proteins and investigate the effects of nutrient525

limitation on the gene expression and cell volume growth.526

METHODS527

Derivation of protein and mRNA concentrations528

We define the fraction of mRNA i in the total mRNA
pool as fi = mi/

∑
jmj , and the concentration of mRNA

and protein of gene i as cmi = mi/V , ci = pi/V . We
denote the RNAP and ribosome concentration as cn and
cr. According to Equations (1a-1c), the deterministic
equations of the above variables then become

dfi
dt

=
k0n∑
jmj

(φi − fi) (10)

dci
dt

= ktcrfa(fi − ci) ≈ µ(fi − ci). (11)

dcmi

dt
=

1

τ
(k0φicnτ − (1 + µτ)cmi). (12)

Using the condition that mRNA degradation time is529

much smaller than the doubling time (µτ � 1), we find530
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the fixed points for the dynamics of fi, ci, and cmi. These531

are, respectively, φi, fi, and k0φicnτ . Replacing fi by φi532

and cn by φn, we obtain the approximate version of the533

above equations, Eq. (5a,5b).534

Simulations of independent growth model535

In the growth model corresponding to Figure 2d, we
assume the protein number and cell volume grow expo-
nentially and independently,

dp

dt
= (1 + ξp(t))p (13)

dV

dt
= (1 + ξV (t))V. (14)

Here, ξp(t), ξV (t) are white noise terms, with the auto-536

correlation function, 〈ξp,V (0)ξp,V (t)〉 = Ap,V δ(t). In Fig-537

ure 2d of the main text, we choose Ap = AV = 1.538

Simulations of growing cell model539

We simulated Equations (1a,1b,1c), fixing rb, nb, b0,540

φr, fa, Ic, τ as well as the growth rate µ. Other pa-541

rameters are inferred given the above values, e.g., φn =542

nbφr/r0, kt = µ/(φrfa), k0 = ktfarb/(b0nb). We fix the543

time step δt so that the probability for one event to hap-544

pen during a time step is smaller than 0.1. We track one545

of the daughter cells after cell division.546

Gene dosage effects547

In reality, the gene allocation fraction φi changes dur-
ing the cell cycle due to the finite duration of DNA repli-
cation. In this section we introduce the modified version
of the gene expression model incorporating DNA replica-
tion. Although our model is general, we focus on DNA
replication in bacteria for concreteness, specifically E.
coli where this process is very well characterized. We ex-
pect our conclusions to be generally valid. Furthermore,
we refine our model for cell division, assuming that the
initiator protein triggers the initiation of DNA replica-
tion rather than cell division, with the threshold Ic pro-
portional to the number of origins of replication [54, 61]
(the number of which doubles at each initiation). We as-
sume that the cell division takes place a fixed time C+D
after initiation of the DNA replication, where C, D are
respectively the time for DNA replication and the time
between the completion of DNA replication and cell di-
vision. The number of origins reduce by half at each cell
division. Other details are the same as in the main text.
Each gene doubles its copy number during the C period,
and we choose this gene replication time to be randomly

and uniformly distributed across all genes. When a gene
i replicates,

φi → 2φi (15)

φj →
φj∑
k φk

, (16)

where the second equation accounts for the normalization548

of the gene allocation fraction. We choose the experimen-549

tally reported C and D and cell doubling time from Ref.550

[54]. In Figure 3a, we simulate the model by tracking one551

daughter cells. In Figure 3b, we track all the cells in an552

exponentially growing population, which starts from 100553

cells to 5000 cells.554

Simulations of gene activation555

We generalize the constitutive expressed genes consid-556

ered in the main text to include a single regulated gene557

by considering a random telegraph process of the effective558

gene copy number [1],559

gi0
k−g



k+g (cTF )
0. (17)

Here the gene deactivation rate k−g is constant, and the560

activation rate is set by the concentration of transcription561

factor through positive regulation, k+g = kg0cTF . Here,562

kg0 is constant. When gene i is active, the correspond-563

ing gene allocation fraction follows φi = gi0/
∑
j gj , and564

when it becomes deactivated φi = 0. Note that here565

we only consider one regulated gene i, but the changing566

gene allocation of gene i also affects other genes’ alloca-567

tion fraction. We simulate the model in Phase 1, and the568

deactivation of gene i increases other genes’ allocation569

fraction as φj → φj/(1− φi), with φi = gi0/
∑
j gj .570

Simulated trajectories of gene allocation fraction,571

mRNA number, protein number and cell volume are572

shown in Figure S1.573

General model of gene expression574

We consider the generalized equation of mRNA num-575

ber, Eq. (1a) in the deterministic limit as576

ṁi =

{
k0φin−mi/τ, if n < nc,
k0gins −mi/τ, if n ≥ nc.

(18)

Here nc is the threshold number of RNAPs above which577

DNA starts to be saturated, in which case the transcrip-578

tion rate becomes proportional to the effective gene copy579

number gi and independent of the RNAP number. For580

one gene, the maximum load of RNAP that it can hold is581

gins, where ns is the maximum number of RNAPs that a582
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single copy of constitutively expressed gene (gi = 1) can583

hold. nc can be computed as584

φinc = gins =⇒ nc =
∑
i

gins. (19)

We also generalize the growth of protein number from585

Eq. (1c) to586

ṗi =

{
kt

mi∑
j mj

r, if r < rc

ktmirs, if r ≥ rc.
(20)

Here rc is the maximum number of ribosomes above587

which mRNA starts to be saturated. We drop the frac-588

tion of actively working ribosomes since it is often a con-589

stant depending on the growth condition [30]. rs is the590

maximum number of ribosomes one mRNA can hold. We591

can calculate rc as592

mi∑
jmj

rc = mirs =⇒ rc =

{
k0τnrs, if n < nc
k0τncrs, if n ≥ nc

(21)

Given Eqs. (18, 20), we obtain four possible phases:593

(i) n < nc, r < rc, (ii) n > nc, r < rc, (iii) n > nc, r > rc,594

and (iv) n < nc, r > rc. Given a fixed value of φr and φn,595

either (ii) or (iv) is possible. Realization of (ii) requires596

that n >
∑
i gins and r < k0τrs

∑
i gins, therefore597

φn
φr

>
1

k0τrs
. (22)

In cases where Eq. (22) breaks down, a finite fraction598

of ribosomes are not utilized. Based on various recent599

works [30, 32], this would be highly inefficient for cel-600

lular growth and we expect Eq. (22) to hold for fast601

proliferating cells. This requires a large fraction of genes602

in the genome making ribosomes that can not work on603

translating because mRNAs are saturated. Since ribo-604

somes are typically more expensive to make than other605

proteins, we assume the biological scenario, Eq. (22) will606

be satisfied.607

From Eq. (19) and using n/
∑
i pi = φn, we obtain the608

threshold PTD ratio for the transition from Phase 1 to609

Phase 2,610

γ1 =
ns
φn
. (23)

In Phase 2, the average mRNA concentration becomes611

〈cmi〉 =
k0ginsτ

V
=
k0φinsτ

∑
i gi

V
=
k0φinsτ

γ
, (24)

which is inversely proportional to the protein-to-DNA612

ratio.613

From Eq. (21) and using r/
∑
i pi = φr, we obtain the614

transition PTD ratio from Phase 2 to Phase 3 as,615

γ2 =
k0τrsns
φr

. (25)

In Phase 3, the mRNA concentration is the same as616

Phase 2. Because the protein number grows linearly617

and the cell volume is the sum of all proteins, the pro-618

tein concentration is the same as Phase 2 and Phase 1,619

〈ci〉 = gi/
∑
i gi = φi.620

Estimation of the threshold protein-to-DNA ratios621

for E. coli622

We approximate the upper bound of RNAP number623

working on a single gene as roughly equal to the number624

of RNAPs on a typical gene (∼ 103 base pairs) when half625

of the gene is occupied. The linear size of RNAP is about626

5 nm, and the length of one base pair is about 0.3 nm,627

leading to the estimate ns ∼ 30. A similar calculation628

for the upper bound of ribosome on a single mRNA leads629

to rs ∼ 10 since ribosome’s linear size is about 3 times630

larger than RNAP [59].631

We take φr ≈ 0.2 according to the Ref. [30], and632

estimate the gene allocation fraction of RNAP to be633

φn ∼ 0.02 since the number of RNAPs in E. coli is634

roughly 10% of the number of ribosomes [59]. We es-635

timate the life time of mRNA as 5 mins [59].636

We estimate the transcription rate of one RNAP by637

considering two potential limiting steps in transcription638

and take the slower one. First, assuming the initiation639

of transcription is diffusion limited, we could estimate640

the time scale for one RNAP to bind the transcription641

site as ∆t ∼ 1µm2/(0.2µm2/s) ∼ 5s using the mea-642

sured diffusion constant of RNAP [62, 63]. Second, we643

could also estimate the elongation time as the typical644

length of gene divided by the elongation rate of RNAP,645

∆t ∼ 1000nt/50(nt/s) ∼ 20s [59]. Taking the slower646

time scale from the above two calculations, we estimate647

k0 ≈ 0.05s−1. Finally, we compute γ1 and γ2 using648

the above estimated parameters, and obtain γ1 ∼ 1500,649

γ2 ∼ 20000.650
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