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Abstract 

There is increasing evidence that genetic risk variants for non-syndromic cleft 

lip/palate (nsCL/P) are also associated with normal-range variation in facial 

morphology. However, previous analyses are mostly limited to candidate SNPs and 

findings have not been consistently replicated. Here, we used polygenic risk scores 

(PRS) to test for genetic overlap between nsCL/P and seven biologically relevant 

facial phenotypes. Where evidence was found of genetic overlap, we used 

bidirectional Mendelian randomization (MR) to test the hypothesis that genetic 

liability to nsCL/P is causally related to implicated facial phenotypes. Across 5,804 

individuals of European ancestry from two studies, we found strong evidence, using 

PRS, of genetic overlap between nsCL/P and philtrum width; a 1 S.D. increase in 

nsCL/P PRS was associated with a 0.10 mm decrease in philtrum width (95% C.I. 

0.054, 0.146; P = 0.00002). Follow-up MR analyses supported a causal relationship; 

genetic variants for nsCL/P homogeneously cause decreased philtrum width. In 

addition to the primary analysis, we also identified two novel risk loci for philtrum 

width at 5q22.2 and 7p15.2 in our Genome-wide Association Study (GWAS) of 6,136 

individuals. Our results support a liability threshold model of inheritance for nsCL/P, 

related to abnormalities in development of the philtrum.  
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Introduction 

Orofacial clefts are malformations characterised by a failure of fusion between 

adjacent facial structures in the embryo 1. Cleft lip with/without cleft palate (CL/P) is a 

sub-type of orofacial cleft, consisting of individuals presenting with a cleft of the 

upper lip, with or without a cleft of the palate. Approximately 70% of CL/P cases are 

non-syndromic, where the facial cleft is not accompanied by other apparent 

developmental or physical abnormalities 2. The non-syndromic form of CL/P 

(nsCL/P) is a multifactorial trait with both genetic and environmental risk factors 1. A 

possible polygenic threshold model of inheritance is supported by the identification of 

more than 20 common genetic risk variants for nsCL/P from genome-wide 

association studies (GWAS) 3-9 and single nucleotide polymorphism (SNP) 

heritability estimates of around 30% 6.  

Facial morphology in the general population is also likely to be highly 

polygenic; genome-wide significant loci have been found for multiple facial 

phenotypes across diverse ethnic populations 10-14. In some cases, the genes 

associated with normal-range variation in facial shape have also been implicated in 

nsCL/P (e.g. MAFB) 12. Likewise, previous studies using candidate SNPs have found 

overlap between nsCL/P risk loci and facial phenotypes in the general population 11; 

15; 16. For example, the strongest nsCL/P GWAS signal, intergenic variant rs987525 

on chromosome 8q24, was found to be associated with more than half of the 48 

facial phenotypes studied in a European population 11 while in a Han Chinese 

population, rs642961 in IRF6 (a major nsCL/P-associated gene) strongly predicted 

lip-shape variation in females 16. However, associations between nsCL/P genetic 

variants and facial morphology were not consistently replicated, possibly because of 
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methodological differences in measuring facial phenotypes or population differences 

between cohorts 10.  

The use of individual markers to demonstrate genetic overlap between two 

phenotypes has notable limitations; a large number of statistical tests are introduced, 

and interpretation is difficult when some SNPs show an association and others do 

not. Polygenic risk scores (PRS) involve incorporating multiple markers, including 

those not reaching genome-wide significance, into a genetic score that serves as a 

proxy for a trait 17. PRS have been previously shown to be suitable predictors for 

nsCL/P 6 suggesting they can be used to estimate genetic overlap between nsCL/P 

and normal-range facial morphology.  

Interpreting genetic overlap between nsCL/P and a facial phenotype is difficult 

because the development of the face and development of an orofacial cleft are 

largely synchronous. One possibility is that differences in the facial phenotype are a 

sub-phenotypic manifestation of genetic liability to nsCL/P (see Figure 1). The 

inheritance of dichotomous traits can be modelled on the liability scale, where every 

individual has an underlying normally distributed liability to the trait determined by 

genes, environment and chance. Individuals above a liability threshold develop the 

trait, while increased liability may cause related phenotypic differences in individuals 

without the trait 18-20. For example, increased liability to developing a cleft palate (CP) 

has been hypothesised to be associated with delayed movement of the palatal shelf, 

which may in turn result in a CP, dependant on other factors such as shelf and head 

width 20.  
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Figure 1. Liability threshold model for nsCL/P 

Shown is an illustration of a liability threshold model for nsCL/P. Every individual has 
a normally distributed liability to nsCL/P, determined by genes, environment and 
chance. Individuals over the liability threshold develop nsCL/P, with the area under 
the curve past the threshold equal to the trait incidence. We are hypothesising that 
liability to nsCL/P, specifically genetic liability to nsCL/P, may be associated with 
differences in facial morphology across the general population. 

 

 

 

 

 

In order to evaluate the coherence of the liability-related sub-phenotype 

model, we apply the principles of Mendelian randomization (MR). MR is an 
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instrumental variable approach, testing causality of an “exposure” and an outcome 

by using genetic instruments to mimic a randomised controlled trial 21. MR relies on 

several strict assumptions; firstly, genetic variants must be robustly associated with 

the exposure (in this instance, genetic liability to nsCL/P); secondly, the variants 

cannot influence the outcome through a pathway independent of the exposure; and 

thirdly, the variants should not be associated with confounders of the relationship 

between the exposure and the outcome 22. If these assumptions are met, 

bidirectional MR can be used to test the hypothesis that genetic liability to nsCL/P is 

causally related to facial morphology 22. 

In the absence of large-scale publicly available GWAS summary data for 

nsCL/P, we used individual level genotype data from the International Cleft 

Consortium to Identify Genes and Interactions Controlling Oral Clefts (ICC) and 

GWAS summary statistics from the Bonn-II study 8 to replicate the meta-analysis 

GWAS summary statistics from the previously published Ludwig et al 2012 GWAS 3. 

Next, we investigated genetic overlap between nsCL/P and normal-range facial 

morphology in the general population, using PRS derived from the GWAS summary 

statistics. Finally, in the instance of genetic overlap, we used bidirectional MR to 

explore the relationship between nsCL/P and implicated facial phenotypes.  

 

Subjects and Methods 

Study Participants 

International Cleft Consortium (ICC):  
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Data was used on parent-child cleft trios from the ICC (dbGaP Study 

Accession phs000094.v1.p1) 23; 24 which includes genotype data from a wide array of 

geographical locations across North America, Europe and Asia. The data-set 

included 2,029 parent-offspring trios, 401 parent-offspring pairs, 88 single cleft cases 

and 25 assorted extended families. Of the 2,543 children with an orofacial cleft; 

1,988 presented with nsCL/P while 582 presented with an isolated cleft palate (CPO) 

and 21 presented with an “unknown cleft”.  

Analysis was restricted to trios with a proband diagnosed with nsCL/P. 654 of 

the parent-offspring trios and 164 of the parent-offspring pairs were of European 

descent and were used in the primary analyses. 759 parent-offspring trios and 159 

parent-offspring pairs of Asian descent were included in secondary analyses.  

GWAS genotypes and phenotypes are available at dbGaP 

(https://www.ncbi.nih/gov/gap; accession number phs000094.v1.p1). 

ALSPAC:  

We used data on children from the Avon Longitudinal Study of Parents and 

Children (ALSPAC), a longitudinal study that recruited pregnant women living in the 

former county of Avon (UK) with expected delivery dates between 1 April 1991 and 

31 December 1992. The initial number of enrolled pregnancies was 14,541, which 

resulted in 14,062 live births and 13,988 children alive at the age of 1. When the 

oldest children were approximately 7 years of age, the initial sample was boosted 

with eligible cases who had failed to join the study originally. For analyses of children 

after the age of 7, the total possible sample size is 15,247 pregnancies, resulting in 

14,775 live births. Full details of the enrolment have been documented elsewhere 25; 

26. Data have been gathered from the mother and her partner (during pregnancy and 
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post birth) and the children (post birth) from self-report questionnaires and clinical 

sessions. Ethics approval for the study was obtained from the ALSPAC Ethics and 

Law Committee and the Local Research Ethics Committee. The study website 

contains details of all available data through a searchable data dictionary 

(http://www.bristol.ac.uk/alspac/researchers/dataaccess/datadictionary/). 

 

3D Facial Norms Database: 

 The 3D Facial Norms Database (3DFN) has been described in detail 

previously 27. In brief, we used data from the 3DFN, a database of controls for 

craniofacial research. 2,454 unrelated individuals of recent European descent, aged 

between 3 and 40 years were recruited from 4 sites across the USA and screened 

for a history of craniofacial conditions. 3D-derived anthropometric measurements, 3D 

facial surface images and genotype data were derived from each study participant.  

GWAS genotypes and phenotypes are available at dbGaP 

(https://www.ncbi.nih/gov/gap; accession number phs000949.v1.p1). 

Facial phenotyping 

ALSPAC: 

ALSPAC children were invited to a clinic at the age of 15 years and 5,253 

attended, where two high-resolution facial images were taken by Konica Minolta 

Vivid 900 laser scanners. 4,747 individuals had usable images (506 individuals did 

not complete the assessment, or the scans were of poor quality and consequently 

excluded). The coordinates of 22 facial landmarks were derived from the scans.  

Further methodological details are contained in a previous publication 10.   
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Distances between facial landmarks were computed by calculating the 

Euclidean distance between the 3D coordinates. To alleviate multiple testing issues, 

this study chose to test 7 distances that were either tested previously or have 

biological relevance to nsCL/P (Supplementary Table 1). Facial distances used in 

the analysis are shown in Figure 2. 

 

Figure 2. Facial morphological distances of interest 

This figure shows the 12 facial landmarks that were used to generate the facial 
phenotypes tested for association with the nsCL/P PRS. Facial phenotypes were 
defined as the 3D Euclidean distance between the following landmarks (Nasal width: 
1-2, Nasal-lip distance: 3-7, Lip width: 4-5, Philtrum width: 6-8, Lip height: 7-9, Lip-
chin distance: 9-10 and inter-palpebrale width: 11-12).  

 

3D Facial Norms Database: 

 A methodological description of the facial phenotyping has been previously 

described in detail 27. In brief, 3DFN study participants had their facial surfaces 

captured via 3D stereo-photogrammetry using either a two-pod 3dMDface or a multi-

pod 3dMDcranial system. Captures were inspected to ensure 3D surface quality and 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/255901doi: bioRxiv preprint 

https://doi.org/10.1101/255901
http://creativecommons.org/licenses/by/4.0/


additional captures were obtained if necessary. Similar to ALSPAC, a set of standard 

facial landmarks were collected from each 3D facial image and linear distances were 

calculated between the landmark coordinates. 

Genotyping 

ICC dbGaP: 

Of 7,347 DNA samples from study subjects genotyped using the Illumina 

Human610_Quadv1_B array SNP genotyping platform, scans from 7,089 subjects 

passed QC for unexpected relatedness, gender errors and missingness (>5%) and 

were released on dbGAP (phs000094.v1.p1). Pre-dbGaP release, SNPs in sample-

chromosome combinations with a chromosomal anomaly (e.g. aneuploidy) were 

excluded. Post dbGaP release, SNPs were excluded for missingness (>5%), MAF 

(<5%) and HWE (P < 0.05) leaving 490,493 SNPs using PLINK 28. 

 

ALSPAC: 

 A total of 9,912 ALSPAC children were genotyped using the Illumina 

HumanHap550 quad genome-wide SNP genotyping platform. Individuals were 

excluded from further analysis based on having incorrect gender assignments; 

minimal or excessive heterozygosity (0.345 for the Sanger data and 0.330 for the 

LabCorp data); disproportionate levels of individual missingness (>3%); evidence of 

cryptic relatedness (>10% IBD) and being of non-European ancestry (as detected by 

a multidimensional scaling analysis seeded with HapMap 2 individuals. After quality 

control for SNPs on missingness (>1%) INFO quality (< 0.8), MAF (< 1%) and HWE 

(P < 10-6) 853,816 SNPs and 8,365 individuals were available for analysis.   

3D Facial Norms Database: 
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 In collaboration with the Center for Inherited Disease Research (CIDR), 2,454 

subjects in the 3DFN database were genotyped using a genome-wide association 

array including 964,193 SNPs from the Illumina OmniExpress+exome v1.2 array and 

an additional 4,322 SNPs from previous craniofacial genetic studies. Imputed was 

performed using the 1000 Genomes reference panel (phase 3) 27.  

Statistical analysis 

nsCL/P meta-analysis Genome-Wide Association Study 

 The transmission disequilibrium test (TDT) 29 evaluates the frequency with 

which parental alleles are transmitted to affected offspring to test genetic linkage in 

the presence of genetic association. The TDT was run on 638 parent-offspring trios 

and 178 parent-offspring duos of European descent to determine genome-wide 

genetic variation associated with nsCL/P using PLINK 28.  

The Bonn-II study 8 summary statistics from a case-control GWAS of 399 

nsCL/P cases and 1,318 controls were meta-analysed, in terms of effect size and 

standard error, with the TDT GWAS summary statistics using METAL 30, based on a 

previously described protocol for combining TDT and case-control studies 31. The 

final sample consisted of 1215 cases and 2772 parental and unrelated controls.  

Polygenic risk score analysis 

P-value inclusion threshold determination and PRS construction: 

 We started by estimating the most appropriate P-value inclusion threshold for 

the nsCL/P PRS. The Bonn-II study summary statistics were used to construct PRS, 

using different P-value inclusion thresholds, in the independent nsCL/P ICC 

European and Asian trios (the analysis was done separately for the two ethnic 
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groups). The Polygenic-Transmission Disequilibrium Test (PTDT) 32 was then used 

to measure over-transmission of polygenic risk scores from unaffected parents to 

affected offspring and thereby select the most predictive P-value inclusion threshold. 

The P-value inclusion threshold was selected based on the most predictive threshold 

in the European trios, with results from the Asian trios treated as a sensitivity 

analysis. Parents with any form of orofacial cleft were removed from this analysis.  

 Next, using ALSPAC as a reference panel for linkage disequilibrium, PLINK 

was used to prune and clump the nsCL/P meta-analysis summary statistics (r2<0.1 

and 250 kb) using the most predictive P-value threshold. The PRS were then 

constructed in the ALSPAC sample. In addition, power calculations for PRS analysis 

were performed using AVENGEME 17; 33. More information on power calculations is 

contained in the Supplementary Methods. 

Association of nsCL/P PRS with facial phenotypes in ALSPAC  

Of the 4,747 ALSPAC children with face-shape scans, 3,941 individuals had 

genotype data. GCTA 34 was used to prune these individuals for relatedness (IBS < 

0.05) and the final sample with complete covariates included 3,707 individuals. The 

association between facial phenotypes and the nsCL/P PRS was measured in the 

final sample using a linear regression adjusted for sex, age at clinic visit, height at 

clinic visit and the first four principal components. Effect sizes were reported per 

standard deviation increase in PRS.  

Replication in 3D Facial Norms Database: 

 Distances with some evidence of an association (P < 0.05) in the ALSPAC 

children were followed up for replication in an independent cohort (3DFN). 2,429 

3DFN individuals had genotype and face-shape data. 332 individuals were removed 
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due to missing SNPs in the PRS or missing covariates. The final sample consisted of 

2,097 individuals. The association between implicated facial measurements and the 

nsCL/P PRS was measured using a linear regression adjusted for sex, age, height 

and the first 4 principal components. Effect sizes were reported per standard 

deviation increase in PRS. 

Bidirectional Mendelian randomization analysis 

A bidirectional two-sample Mendelian randomization analysis was performed 

using the TwoSampleMR R package 35, testing both the forward direction (the effect 

of genetic risk variants for nsCL/P on implicated facial measurements) and the 

reverse direction (the effect of genetic risk variants for implicated facial 

measurements on liability to nsCL/P). The Inverse-Variance Weighted method was 

used as the primary analysis. Several sensitivity analyses were performed to test the 

assumptions of MR; the heterogeneity test was used to measure balanced 

pleiotropy, MR-Egger 36 was used to test for directional pleiotropy, the weighted 

median method 37 was used to test if the result is consistent assuming that at least 

half of the variants are valid and the weighted mode method 38 was used to test if the 

result is consistent assuming that the most common effect is valid. The Steiger test 

39 was used to determine the likely direction of effect. 

GWAS summary statistics for nsCL/P and implicated facial phenotypes 

MR analysis required relevant SNP association information with respect to 

both nsCL/P and implicated facial measurements. SNP information relevant to 

nsCL/P was extracted from the nsCL/P meta-analysis summary statistics, previously 

described.  
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For implicated facial phenotypes, GWAS were performed using PLINK 28 in 

both ALSPAC (3,707 individuals) and the 3DFN study (2,429 individuals with 

genotype and face-shape data), using the same covariates as previously described 

in the polygenic risk score analysis. Summary statistics were then meta-analysed 

using METAL 30 with the combined sample including 6,136 individuals. SNP 

information relevant to implicated facial phenotypes was then extracted from the 

ALSPAC/3DFN meta-analysis summary statistics.  

The ALSPAC/3DFN meta-analysis GWAS summary statistics of implicated 

facial phenotypes were subsequently analysed and functionally annotated 40 with the 

potential overlap between philtrum-width associated SNPs and expression 

quantitative trait loci (eQTLs) investigated using the Genotype-Tissue Expression 

(GTEx) catalogue 41. 

Genetic risk variants for nsCL/P and implicated facial phenotypes 

For the forward direction, relevant SNPs are variants strongly associated with 

nsCL/P. 6 well-characterised genome-wide significant nsCL/P SNPs in Europeans 

were taken from a previous study 3.  

Information on the nsCL/P SNPs is contained in Supplementary Table 2. 

For the reverse direction, relevant SNPs are variants strongly associated with 

the implicated facial phenotypes. We LD clumped (r2<0.001 within 500KB) the 

ALSPAC/3DFN meta-analysis summary statistics to generate independent 

instruments for the MR analysis. LD proxies (r2>0.9) were used for SNPs 

unavailable in the nsCL/P summary statistics and were generated using LDlink and 

LDproxy 42 using the 1000 Genomes CEU/GBR populations as the reference panel 

43.  
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Interpreting bidirectional Mendelian randomization analysis 

The results of the bidirectional MR and relevant sensitivity analyses were 

used to infer the likelihood of the liability-related sub-phenotype model. Three distinct 

possibilities were considered to explain the association between nsCL/P PRS and 

implicated facial phenotypes (see Figure 3).  
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Figure 3. Interpretation of bidirectional MR 

(A) SNPs associated with nsCL/P have a homogeneous effect on the facial 
phenotype with weak evidence for the reverse direction MR. We would conclude that 
genetic liability to nsCL/P causes both increased liability to nsCL/P (in conjunction 
with the environment and chance) and changes in the facial phenotype.  

(B) SNPs associated with nsCL/P have a heterogeneous effect on the facial 
phenotype. In this instance, there is weak evidence for genetic liability to nsCL/P 
causing changes in the facial phenotype because liability assumes a consistent 
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effect. We would conclude that an unknown confounder Y affects the facial 
phenotype and liability to nsCL/P independently. 

 

(C) SNPs associated with nsCL/P have a homogeneous effect on the facial 
phenotype AND SNPs associated with the facial phenotype cause increased liability 
to nsCL/P. In this instance, there are two possibilities. The first possibility is that the 
genetic instruments for the facial phenotype are weak (e.g. only one SNP) and so 
the causal effect estimate of the facial phenotype on liability to nsCL/P is imprecise. 
The second possibility is that nsCL/P and the facial phenotype have a substantial 
genetic correlation, which would require further investigation. Here, the results of the 
Steiger test are useful, as they can infer the most likely direction of effect between 
nsCL/P and implicated facial phenotypes.  

 

Results 

Genome-wide association study and genetic proxy for nsCL/P 

We performed a GWAS of nsCL/P using the TDT on 638 parent-offspring trios 

and 178 offspring duos of European descent, and then meta-analysed our results 

with GWAS summary results previously published on 399 cases and 1317 controls in 

the Bonn-II study 8. This yielded comparable results to a previously published GWAS 

3, which used a very similar data-set with slightly different quality control and analysis 

methods (Supplementary Table 3). 

We also evaluated the predictive accuracy of nsCL/P that could be achieved 

using different PRS constructed from these summary data by comparing the strength 

of association at different inclusion thresholds of the PTDT. We determined that 

including independent SNPs that surpass a P-value threshold of 0.000001 was the 

most predictive of nsCL/P liability in both European and Asian trios (Supplementary 

Table 4). Therefore, this threshold was used for generating polygenic risk scores 

from the meta-analysis summary statistics. SNPs included in the selected score are 

listed in Supplementary Table 5. 
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The prediction of facial morphology using PRS for nsCL/P 

 Prior to testing the performance of our nsCL/P PRS on predicting facial 

morphology, we calculated the minimum genetic correlation required to detect an 

association between the PRS and the facial phenotypes. We found that the minimum 

genetic correlation required ranged from 0.17 to 0.28 with differences attributable to 

different heritability estimates across the facial phenotypes (Supplementary Table 

6). 

We evaluated the performance of our nsCL/P PRS for prediction of seven 

facial morphological traits. We found evidence of an association between the nsCL/P 

PRS and philtrum width in the ALSPAC children, where a 1 S.D. increase in nsCL/P 

PRS was associated with a 0.07 mm decrease in philtrum width (95% C.I. 0.02, 0.13; 

P=0.014) (Table 1).  

 

 

 

 

 

 

 

 

Table 1: Association of nsCL/P PRS with facial phenotypes in ALSPAC children  
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 We attempted to replicate this finding in the 3DFN study and found a 

consistent effect of 1 S.D. increase in nsCL/P PRS being associated with a 0.14 mm 

decrease in philtrum width (95% C.I. 0.07, 0.21; P = 0.00017). Meta-analysing these 

results; indicated that a 1 S.D. increase in nsCL/P PRS is associated with a 0.10 mm 

decrease in philtrum width (95% C.I. 0.054, 0.146; P = 0.00002). 

GWAS of Philtrum width 

 To generate SNP-philtrum width association information for MR analyses, we 

performed GWAS of philtrum width in both ALSPAC and 3DFN separately, before 

meta-analysing. The combined sample included 6,136 individuals of recent 

European descent. We identified two novel chromosomal regions associated with 

3D facial Euclidean distances 
in ALSPAC 
 

ALSPAC children (N=3707) 

Beta (95% C.I.) P-value 

Distance between subnasale 
and labiale superius 
 (Nasal-lip)  

-0.25 (-2.16, 1.65) 0.79 

Distance between labiale 
inferius and pogonion 
(Lip-chin) 

-0.02 (-0.10, 0.06) 0.64 

Distance between left and 
right palpebrale inferius (Mid-
point of eyes) 

-0.08 (-0.17, 0.01) 0.09 

Distance between left and 
right alare (Nasal width) 

-0.01 (-0.08, 0.06) 0.75 

Distance between labiales 
inferius and superius 
(lip height) 

0.02 (-0.05, 0.10) 0.53 

Distance between left and 
right crista philtri 
(philtrum width) 

-0.07 (-0.13, -0.02) 0.014 

Distance between left and 
right cheilion  
(lip width) 

-0.02 (-0.15, 0.10) 0.70 
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philtrum width with genome-wide significance at 5q22.2 (lowest P value for 

rs255877, P=3.8x10-10), within the non-coding RNA intronic region of an 

uncategorised gene ENSG00000232633, and 7p15.2 (rs2522825, P=1.4x10-8), an 

intergenic SNP near HOXA1 (Supplementary Table 7). We found some evidence 

that the two lead SNPs may be eQTLs for nearby genes (Supplementary Table 8). 

The two lead SNPs of the genome-wide significant loci, rs255877 and rs2522825, 

were used as genetic variants associated with philtrum width in subsequent MR 

analyses. 

Bidirectional Mendelian randomization 

We used MR to investigate the possible causal mechanism that would give 

rise to the genetic overlap between nsCL/P and philtrum width. 

Firstly, we determined whether genetic variants contributing to liability of 

nsCL/P cause changes in philtrum width, by testing SNPs strongly associated with 

nsCL/P for association with philtrum width. A 1-unit log odd increase in liability to 

nsCL/P was associated with a 0.11mm (95% C.I. 0.04, 0.19; P = 0.0036) decrease in 

philtrum width. Sensitivity analyses suggested there was no evidence of pleiotropy or 

heterogeneity and validated the consistency of the instrument. Leave-one-SNP-out 

analysis showed consistent effect estimates after exclusion of each SNP (Table 2).  
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Table 2: Causal estimates of genetic liability for nsCL/P on philtrum width using 
Mendelian Randomization  

Test Interpretation Estimate (95% 
C.I.) 

P-value 

Inverse variance 
weighted  

Primary result -0.11 (-0.19, -0.04) 0.0036 

Heterogeneity of 
Inverse variance 
weighted 

Balanced 
pleiotropy 

N/A 0.36 

MR-Egger Directional 
pleiotropy 

-0.10 (-0.33, 0.13) 0.43 

Weighted median Consistency -0.12 (-0.21, -0.04) 0.0043 
Weighted mode Consistency -0.12 (-0.21, -0.03) 0.049 
Leave-one out 
rs1873147 

Additive model -0.11 (-0.20, -0.02) 0.017 

Leave-one out 
rs227731 

Additive model -0.10 (-0.16, -0.03) 0.007 

Leave-one out 
rs7078160 

Additive model -0.13 (-0.20, -0.06)  0.0001 

Leave-one out 
rs7590268 

Additive model -0.11 (-0.20, -0.02) 0.013 

Leave-one out 
rs8001641 

Additive model -0.13 (-0.21, -0.04) 0.0030 

Leave-one out 
rs987525 

Additive model -0.10 (-0.22, 0.01)  0.084 

 

Secondly, we determined whether genetic variants associated with philtrum 

width also affect liability to nsCL/P, by testing two independent SNPs associated with 

philtrum width at genome-wide significance (derived in the ALSPAC and 3DFN 

cohorts) for association with nsCL/P. Utilising strong LD proxies (Supplementary 

Table 9), weak evidence was found of an association between philtrum width-

associated variants and liability to nsCL/P (LogOR=0.30; 95% C.I. -0.26, 0.86; P = 

0.30). Sensitivity analyses for pleiotropy were limited, with only 2 SNPs. 

Thirdly, we used the MR-Steiger test of directionality to test the direction of 

effect between philtrum width and liability to nsCL/P. The results suggested that the 

true direction of effect is that genetic variants contributing to liability to nsCL/P cause 

changes in philtrum width (P <10-10). 
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Interpretation of Bidirectional Mendelian randomization 

Strong evidence was found for genetic liability to nsCL/P causing decreased 

philtrum width, weak evidence was found for heterogeneity or assumption violations 

in the forward-MR, and weak evidence was found for the reverse-MR of philtrum 

width-associated variants on liability to nsCL/P. Therefore, we conclude that the 

most likely explanation for the genetic overlap between nsCL/P and philtrum width is 

that genetic liability to nsCL/P is causally related to decreased philtrum width. 

Discussion 

In this manuscript, we have shown that there is genetic overlap between 

nsCL/P and normal-range variation in philtrum width, and furthermore, that genetic 

risk SNPs for nsCL/P consistently cause decreased philtrum width in the general 

population. Notably there was weak evidence for genetic overlap between nsCL/P 

and upper lip width despite the observational correlation between the widths of the 

upper lip and philtrum.  

There are two main implications of these results. First, our findings 

demonstrate the aetiological relevance of the formation of the philtrum to nsCL/P. 

The medial nasal and maxillary processes are responsible for development of the 

upper lip and philtrum 44. Developmental anomalies within these processes may 

result in a cleft lip 45 and our findings show that even when there is successful fusion, 

as in our study populations, the genetic variants which give rise to a CL/P cause 

decreased philtrum width. Secondly, the non-heterogenous additive effect of 

common nsCL/P risk variants, on a related phenotype in the general population, 

supports a polygenic threshold model of inheritance for nsCL/P.  
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Although previous studies have looked at nsCL/P related sub-phenotypes, 

this study uses causal inference methods to more formally investigate the 

relationship. Our identification of phenotypic differences related to nsCL/P liability are 

consistent with previous studies 46-51 observing sub-clinical facial phenotypes in 

individuals with nsCL/P and their unaffected family members, particularly a previous 

study which observed reduced philtrum width in unaffected parents of individuals 

with nsCL/P 51. A polygenic threshold model of inheritance related to development of 

the philtrum is consistent with a previously proposed mechanism for the inheritance 

of cleft palate 20, the identification of numerous common nsCL/P genetic risk variants 

3-7 and estimation of a substantial SNP heritability for nsCL/P 6. We do not replicate 

associations between nsCL/P and other facial morphological dimensions found in 

previous studies 11; 15; 51 using candidate SNPs but note that polygenic risk score 

methods are methodologically distinct and are used to investigate a different 

research question to single SNP analyses. 

We extend the investigation of the association between nsCL/P and facial 

morphology in two important ways. We demonstrate that the association is present 

not only in unaffected family members but also in the general population, and use 

MR to demonstrate that this relationship is present on the liability scale. 

Conventionally MR is used to test possible causal effects of a modifiable continuous 

exposure such as cholesterol or alcohol on disease outcomes 52; 53. Here we exploit 

the principles of MR to test the threshold hypothesis, by inferring a causal 

relationship between genetic variants contributing to liability of nsCL/P and philtrum 

width in a non-clinical population. We interpret this causal relationship as evidence 

that smaller philtrum width is a sub-phenotypic manifestation attributable to the same 

genetic variants that cause nsCL/P. 
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In addition to investigating the relationship between facial morphology and 

nsCL/P, we also performed the first GWAS of philtrum width, and identified two novel 

genome-wide significant loci. We found some evidence of an overlap between 

philtrum width associated loci and eQTLs that warrants further investigation. 

The causal inference made in this study was achieved through the use of two 

independent cohorts as discovery and replication samples which greatly reduces the 

risk of false positives and demonstrates that results can be generalised to different 

populations. Detailed facial phenotyping data on a large number of individuals in our 

cohorts along with other detailed phenotype and genotype data enabled us to 

identify philtrum width as being the most relevant facial morphological feature from 

amongst seven biologically likely candidates. Statistical power does limit the 

detection of other features that may have mechanistic relationships with smaller 

effect sizes (Supplementary Table 6). 

In this study, we combined CL/P and cleft lip only (CLO), however there is 

evidence suggesting that there are distinct aetiological differences between these 

traits, 5; 54; 55 which could reduce our statistical power, and complicates interpretation. 

For example, the philtrum may be more related to CLO, but we did not have 

sufficient data to compare nsCL/P subtype differences. An additional limitation is that 

there are few well-characterised genetic risk loci for philtrum width, so our MR 

analysis testing if genetic variants associated with a narrow philtrum width also affect 

liability of nsCL/P, may be underpowered. 

 We conclude that genetic liability to nsCL/P is causally related to variation in 

philtrum width and that this finding supports a polygenic threshold model of 

inheritance for nsCL/P, related to abnormalities in development of the philtrum. 
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Further research looking at the relationship between genetic liability for nsCL/P and 

severity of cleft would provide further evidence for the polygenic threshold model. 
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