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1 Université Grenoble-Alpes, 2 Centre National de la Recherche Scientifique, 3 Grenoble INP

Address: TIMC-IMAG UMR 5525, 38000 Grenoble, France.

? Corresponding author: olivier.francois@grenoble-inp.fr

Abstract

Genome-wide, epigenome-wide and gene-environment association studies are plagued with the problems of

confounding and causality. Although those problems have received considerable attention in each application

field, no consensus have emerged on best practices in this respect. Current methods use approximate heuristics

for estimating confounders, and often ignore correlation between confounders and primary variables, resulting

in suboptimal power and precision. In this study, we developed a least-squares estimation theory of confounder

estimation using latent factor models, providing a unique framework for several categories of genomic data.

Based on statistical learning methods, the proposed algorithms are fast and efficient, and they were proven

to provide optimal solutions mathematically. In simulations, the algorithms outperformed commonly used

methods based on principal components and surrogate variable analysis. In analysis of methylation profiles and

genotypic data, they provided new insights on the molecular basis on diseases and adaptation of humans to

their environment. Software is available in the R package lfmm at https://bcm-uga.github.io/lfmm/.

1 Introduction

Association studies have been extensively used to identify candidate genes or molecular markers associated

with disease states, exposure levels or phenotypic traits. Given a large number of target variables, the ob-

jective of those studies is to test whether any of the variables exhibits significant correlation with a primary

variable of interest. The most common association studies are genome-wide association studies (GWAS) that

focus on single-nucleotide polymorphisms (SNPs) by examining genetic variants in different individuals [2]. In

recent years, other categories of association studies have emerged and become important. Of specific interest,

epigenome-wide association studies (EWAS) measure DNA methylation levels in different individuals to derive

associations between epigenetic variation and exposure levels or phenotypes [35]. Gene-environment association

studies (GEAS) test for correlation between genetic loci and ecological variables in order to detect signatures

of environmental adaptation [36].
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Although they could bring useful information on the causes of diseases or on biological functions, association

studies suffer from the problem of confounding. This problem arises when there exist unobserved variables that

correlate both with primary variables and genomic data [42]. Confounding inflates test statistics, and early

approaches consisted of introducing inflation factors to correct for the bias [5]. Statistically, inflation factors

represent an empirical null-hypothesis testing approach, which is frequently used in gene expression studies [10].

GWAS have addressed the confounding issue by including known or inferred confounding factors as covariates

in regression models. A prominent GWAS correction method is principal component analysis (PCA) which

adjusts for confounding by using the largest PCs of the genotypic data [32]. A drawback of the approach

is that the largest PCs may also correlate with the primary variables, and removing their effects can result

in loss of statistical power. In gene expression studies where batch effects are source of unwanted variation,

alternative approaches to the confounder problem have been proposed. These methods are based on latent

factor regression models, also termed surrogate variable analysis (SVA) [26, 7]. Latent factor models have

also been considered in GEAS (LFMM, [13]) and in EWAS for dealing with cell-type composition without

reference samples (RefFreeEWAS, [21, 39]). Latent factor models employ deconvolution methods in which

unobserved batch effects, ancestry or cell-type composition are integrated in the regression model using hidden

factors. Those models have been additionally applied to transcriptome analysis [22]. As they do not make

specific hypotheses regarding the nature of the data, latent factor models could be applied to any category of

association studies regardless of their application field. Method choices and best practices are, however, specific

to each field, and have been extensively debated in recent surveys [43, 24].

Most inference methods for latent factor regression models are based on heuristic approaches, lacking the-

oretical guarantees for identifiability, numerical convergence or statistical efficiency [42]. In addition, existing

methods do not always address the confounding problem correctly, building confounder estimates on genetic

markers only while ignoring the primary variables. In this study, we propose confounder estimation algorithms

that explicitly account for the correlation between confounders and primary variables. The algorithms are based

on two distinct regularized least squares methods for latent factor mixed models. We present the methods and

theoretical developments in the next section. Then we demonstrate that the new methods achieve increased

power compared to standard methods in simulations, in an EWAS of patients with rhumatoid arthritis, in a

GWAS of patients with celiac disease, and lead to new discoveries in a GEAS of individuals from the 1,000

Genomes Project.

2 LFMM algorithms

Consider an n × p response matrix, Y, recording data for n individuals. The individual data can correspond

to genotypes, methylation profiles or gene expression levels measured from p genetic markers or probes. In

addition, consider an n × d matrix, X, of individual observations, recording variables of primary interest such

as phenotypes or exposure levels. Additional covariates including age and gender of individuals as well as

observed confounders could be included in the X matrix. Association methods evaluate correlation between

the response matrix and the primary variables, and commonly rely on regression models. Latent factor mixed

models (LFMMs) are particular regression models defined by a combination of fixed and latent effects [26, 13, 42]

as follows

Y = XBT + W + E, (1)
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where W is a n × p latent matrix of rank K. We defined U and V as the unique factor and loading matrices

obtained from a (rank K) PCA of W,

W = UVT .

Unobserved confounders are modeled through the n × K matrix of latent factors, U, where the number of

confounders, K, is determined by model choice procedures (see below). Loadings corresponding to each latent

variable are recorded in the V matrix, which has dimension p × K. Fixed effect sizes are recorded in the B

matrix, which has dimension p× d. The E matrix represents residual errors, and it has the same dimensions as

the response matrix. In this section, we present two statistical learning algorithms for confounder estimation

based on L2 and L1-regularized least-squares problems.

L2-regularized least-squares problem. Statistical estimates of the parameter matrices U, V, B in equation

(1) were computed after minimizing the following penalized loss function

Lridge(U,V,B) = ‖Y −UVT −XBT ‖2F + λ‖B‖22 , λ > 0, (2)

where ‖.‖F is the Frobenius norm, ‖.‖2 is the L2 norm, and λ is a regularization parameter. A positive value

of the regularization parameter is necessary for identifying the parameter matrices W = UVT and B. To see

this, note that for any matrix P with dimensions d× p, we have

‖Y − (U−XP)VT + X(BT −PVT ))‖2F = ‖Y −UVT + XBT ‖2F .

This result entails that the minima of the unregularized (λ = 0) least-squares problem are not defined unequivo-

cally, and infinitely many solutions of the least squares problem could exist unless a positive value is considered.

As a consequence, any algorithm computing a low rank approximation of a response matrix using their first K

principal components, and performing a linear regression of the residuals on X does not identify the regression

and factor coefficients in equation (2) properly.

Ridge estimates (LFMM2). To computer the least-squares estimates of the latent factors, minimization of

the Lridge function started with a singular value decomposition (SVD) of the explanatory matrix, X = QΣRT ,

where Q is an n × n unitary matrix, R is a d × d unitary matrix and Σ is an n × d matrix containing the

singular values of X, denoted by (σj)j=1..d. The ridge estimates are described as follows

Ŵ = QD−1λ svdK(DλQ
TY) (3)

B̂T = (XTX + λIdd)
−1XT (Y − Ŵ), (4)

where svdK(A) is the rank K singular value decomposition of the matrix A, Idd is the d× d identity matrix,

and Dλ is the n× n diagonal matrix with coefficients defined by

dλ =

(√
λ

λ+ σ2
1

, . . . ,

√
λ

λ+ σ2
d

, 1, . . . , 1

)
.

Theorem 1. The estimates Û, V̂ obtained from the principal component analysis of the matrix Ŵ, and the

estimate B̂T define a global mimimum of the penalized loss function Lridge.
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The proof of Theorem 1 was based on mathematical properties of the SVD, and it can be found in appendix.

The result describes a simple algorithm for computing the matrice of confounder estimates, Û, with a computing

cost determined by the algorithmic complexity of low rank approximation. According to [18], computing Û

requires O(npK) operations. This complexity reduces to O(np ln(K)) operations when random projections are

used (our implementation). Accounting for the computational cost of QTY, the complexity of the LFMM2

algorithm of order O(n2p+np ln(K)). For studies in which the number of samples, n, is much smaller than the

number of response variables, p, the computing time of ridge estimates is approximately the same as running

the low rank approximation SVD algorithm on the response matrix twice.

L1-regularized least-squares problem. In addition to the ridge estimates, a sparse regularization approach

was considered by introducing penalties on the loss function based on the L1 and nuclear norms

Llasso(W,B) =
1

2

∥∥Y −W −XBT
∥∥2
F

+ µ‖B‖1 + γ‖W‖∗ , µ, γ > 0, (5)

where ‖B‖1 denotes the L1 norm of B, µ is an L1 regularization parameter, W is the latent matrix, ‖W‖∗
denotes its nuclear norm, and γ is a regularization parameter for the nuclear norm. The L1 norm was introduced

for inducing sparsity on the fixed effects [40]. The L1 penalty corresponds to the prior information that not

all response variables may be associated with the primary variables. More specifically, the prior implies that a

restricted number of rows of the effect size matrix B are non-zero. The second regularization term is based on

the nuclear norm, and it was introduced to penalize large numbers of latent factors. In addition, it defined a

convex function, and convex mimimization algorithms could be applied in order to minimize the Llasso function

[31].

Lasso estimation algorithm (LFMM1). Let us assume that the explanatory variables, X, were scaled

so that XTX = Idd. Under this assumption, we developed a convergent block-coordinate descent method

for minimizing the convex loss function Llasso with respect to B and W. The algorithm is initialized from a

null-matrix, Ŵ0 = 0, and iterates the following steps

1. Find B̂t a minimum of the penalized loss function

L(1)
lasso(B) =

1

2
‖(Y − Ŵt−1)−XBT ‖2F + µ‖B‖1 , (6)

2. Find Ŵt a minimum of the penalized loss function

L(2)
lasso(W) =

1

2
‖(Y −XB̂T

t )−W‖2F + γ‖W‖∗. (7)

The algorithm cycles through the two steps until a convergence criterion is met or the allocated computing

resource is depleted. Each minimization step has a well-defined and unique solution. To see it, note that Step

1 corresponds to an L1-regularized regression of the residual matrix Y − Ŵt−1 on the explanatory variables.

To compute the regression coefficients, we used Friedman’s block-coordinate descent method [14]. According to

[40], we obtained

B̂t = sign(B̄t)(B̄t − µ)+ (8)

where s+ = max(0, s), sign(s) is the sign of s and B̄t is the classical regression estimate B̄t = XTY − Ŵt−1.

Step 2 consists of finding a low rank approximation of the residual matrix Y −XB̂T
t [6]. This approximation

starts with a singular value decomposition of the residual matrix Y−XB̂T
t = MSNT , with M a unitary matrix
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of dimension n×n, N a unitary matrix of dimension p×p, and S the matrix of singular values (sj)j=1..n. Then,

we obtained

Ŵt = MS̄NT (9)

where S̄ is the diagonal matrix with diagonal terms s̄j = (sj−γ)+, j = 1, ..., n. Building on results from [41],the

following statement holds.

Theorem 2. Let µ > 0 and γ > 0. Then the block-coordinate descent algorithm cycling through Step 1 and

Step 2 converges to estimates of W and B defining a global mimimum of the penalized loss function Llasso.

The proof of Theorem 2 can be found in the appendix. The algorithmic complexities of Step 1 and Step 2

are bounded by a term of order O(pn + K(p + n)). The computing time of lasso estimates is generally longer

than for the ridge estimates, because the LFMM1 algorithm needs to run the SVD and projection steps several

times until convergence while the ridge method (LFMM2) requires a single iteration.

Statistical tests. Suppose we test a single primary variable (d = 1, the extension to d > 1 variables is

straightforward). To test association between X and the response variables Yj , we used the latent score estimates

obtained from the LFMM1 or LFMM2 methods as covariates in multiple linear regression models. Our approach

is similar to other methods for confounder adjustment in association studies [32, 37, 27, 34, 16]. It differs

from other approaches through the latent scores estimates, Û, that capture the part of response variation not

explained by the primary variable. To test for correlation with the response variable Yj , we estimated the

regression coefficients in a linear regression model

Yj = Xβj + ÛαTj + Ej , j = 1, . . . , p. (10)

To test the null hypothesis H0 : βj = 0, we used a Student distribution with n−K − 1 degrees of freedom [19].

To improve test calibration and false discovery rate estimation, we eventually applied an empirical-null testing

approach to the test statistics [10].

Remark that in the above equation, causality is modeled when X is an exposure variable and Y represents

a biological measure such as gene expression or DNA methylation levels. When X is a phenotypic trait and

Y represents a biological measure such as a genotype, direct effect sizes can be estimated by switching the

response and explanatory variables in the regression model (X = Yjβj). In addition, tests based on generalized

linear models or mixed linear models could be implemented according to similar principles. In the case of

mixed linear models, the covariance matrix for random effects can be computed from the K estimated factors

as C = UUT /n. The methods presented in this study and their extensions were implemented in the R package

lfmm.

R package availability. The R package lfmm is available from the following URL: https://github.com/

bcm-uga/lfmm.
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3 Results and Discussion

Simulation study. In a series computer experiments, we simulated quantitative trait variables for a world-

wide sample of 1,758 human individuals from the 1000 Genomes Project database [1]. Our simulations considered

various levels of confounding and numbers of causal variables in the data. For each simulation setting, five data

sets were created, representing a total number of 125 data sets. As a baseline, we fitted simple linear regression

models (LRM) without adjusting the data for potential confounding effects. This procedure was expected to

result in a severe inflation of the test statistic. Six additional association methods were applied to the simulated

data: PCA, two variants of SVA, CATE[42] and two variants of LFMM. Additionnally, we implemented an

oracle method that performed association tests aware of the generating mechanism and confounders. By using

the (true) confounders as covariates in its regression model, the oracle method was expected to provide an

upper bound on the power of association method that estimates confounding effects (Fig. 1A, Fig. S1). In most

simulations, the power of LFMM1, LFMM2 and CATE was identical to the power of the oracle method. PCA

(EIGENSTRAT) had genomic inflation factors close to one (Fig. S1), but the power of this method decreased

with increasing numbers of causal loci and correlation between confounders and the primary variable. SVA

methods had genomic inflation factors close to one for lower levels of confounding (Fig. S1), but their power

remained lower than the oracle method for all numbers of causal loci. LFMM1, LFMM2 and CATE acheived

substantially more power than SVA1, SVA2 and PCA for higher levels of confounding.

Rheumatoid arthritis (RA) EWAS. We performed an EWAS using whole blood methylation data from a

study of patients with RA [28]. The cell composition of blood in RA patients is a known source of confounding,

and unaccounting for cell type heterogeneity leads to an increased rate of false discoveries [23, 34]. Cross-

validation identified hyperparameter values for the LFMM2 algorithm, and ten confounders were selected (Fig.

S2). We implemented five methods for confounder adjustement in EWAS (Fig. 1B, Fig. S3). The resulting

discoveries were compared with CpG sites detected by using a reference-based method [20, 45]. PCA, SVA1

and LFMM1 recovered 80% of the reference-based candidates within their eleven top hits, in agreement with

the results of a previous analysis with REFACTOR [34]. PCA and SVA1 provided almost identical lists of

candidate sites for an expected FDR of 1%. LFMM1 had higher power than PCA and SVA1, and ranked new

discoveries above previously discovered candidates (Fig. 1B, Fig. S4). New discoveries included CpG sites in

the genes SPEC and LYN playing an important role in the regulation of innate and adaptive immune responses,

and in HLA-DRB1 having known association with RA [25] (Fig. 1B, Table S1).

Celiac disease (CD) GWAS. Next we performed a GWAS using SNPs from a study of patients with CD

[8]. In GWAS, systematic differences in allele frequencies between patients, known as population structure,

are assumed to result in spurious associations and in an increased number of false positive tests [2]. Cross-

validation selected high nine axes of variation in the data (Fig. S5). We implemented four methods for

confounder adjustement in GWAS (Fig. 1C, Fig. S5), and we compared the regions found by those methods

with the GWAS Catalog for CD. LFMM2 and PCA (EIGENSTRAT[32]) had the smallest false positive rate

overall. LFMM1 and CATE had the highest power to detect regions with SNPs included in the GWAS Catalog.

Pooling discoveries from all factor methods for an expected FDR level of 1% identified 282 genomic regions,

containing 28% of all loci referenced in the GWAS catalog for CD (Fig. 1C, Table 1). For the most powerful

method (LFMM1), six genomic regions or loci among the twenty top hits were not referenced in the GWAS
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Figure 1. Power of tests. A) Simulations. Power measured by AUC for three levels of confounding. The
importance of confounding corresponds to the squared correlation between confounders and primary variables.
B) Rheumatoid Arthritis EWAS. Top: List of 19 methylation probes corresponding to the shared top hits of
four methods: PCA, CATE, LFMM1 and LFMM2. The list was controlled for a false discovery rate of 1%.
Highlighted genes correspond to previously reported discoveries. Bottom: Quantiles plot indicating that PCA
correction lead to more conservative tests than methods estimating latent factors. C) Celiac disease GWAS.
Ability of four methods to recover genomic regions with known associations with CD. PCA correction led to
more conservative tests than methods estimating latent factors.
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Figure 2. Gene environment association study. Association study based on genomic data from the 1000
Genomes Project database and climatic data from the Worlclim database. A) Latent factors estimated by
LFMM2. B) Target genes corresponding to top hits of the GEAS analysis (expected FDR level of 5%). The
highlighted genes correspond to functional variants. Predictions were obtained from the variant effect predictor
program.

catalog [17] (Table 1).

Human GEAS. To detect genomic signatures of adaptation to climate in humans, we performed a GEAS

using 5,397,214 SNPs for 1,409 individus from the 1,000 Genomes Project [1], and bioclimatic data from the

WorldClim database [12] (Fig. S6). Nine confounders were estimated by LFMM2, mainly describing correlation

between population structure and climate in the sample (Fig. 2A, Fig. S7, Fig. S8). Four methods for

confounder adjustement led to a list of 836 (1335) SNPs after pooling the list of candidates from the four methods

(expected FDR = 1%-5%). A variant prediction analysis reported a large number of SNPs in intergenic and

intronic regions, with an over-representation of genic regions (Fig. 2B). Top hits represented genomic regions

important for adaptation of humans to environmental conditions. The hits included functional variants in the

LCT gene, and SNPs in the EPAS1 and OCA2 genes previously reported for their role in adaptation to diet,

altitude or in eye color [11] (Fig. 2B, Fig. S9, Table S2).

Conclusions. In this study we introduced two statistical learning algorithms for confounder estimation based

on L2 and L1-regularized least-squares problems for latent factor regression models. We used those algorithms
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for testing associations between a response matrix Y and a primary variable matrix X in EWAS, GWAS and

GEAS. In those applications, standard association methods have mainly focused on corrections for specific

confounding effects such as individual relatedness or cell type composition. In contrast, LFMMs do not put

prior information on any particular source of confounding, but account for correlation between confounders

and primary variables. Compared to PCA approaches, LFMMs gained power by removing the part of genetic

variation that could not be explained by the primary variables [13]. In GWAS, LFMM extends tests performed

by the EIGENSTRAT program by improving estimates of principal components [32]. For EWAS, LFMMs

extended surrogate variable analysis (SVA) [26] also achieving an increased power. In comparison with other

algorithms, LFMM1 and LFMM2 have mathematical guarantees to provide globally optimal solutions of least-

squares estimation problems, and the proposed estimates could be shown to reach oracle asymptotical efficiency

for large sample sizes [42].

Like several factor methods, the computational speed of LFMM methods is mainly influenced by the algo-

rithmic complexity of low rank approximation of large matrices. The algorithmic complexity of LFMM methods

in similar to PCA or SVA, of order O(np ln(K)) for LFMM1 and O(n2p + np ln(K)) for LFMM2. LFMM2 is

generally faster than LFMM1 because all computations are based on a unique round of SVDs. These approaches

are faster than algorithms based on mixed linear models [44] and faster than Bayesian methods currently used

in GEAS [13]. Although potential improvements such as random effects, logistic regressions and stepwise con-

ditional tests were not included in our results, those options are available with the lfmm program, and may

provide additional power to detect true associations.

4 Materials and Methods

Multiple linear regression with principal components. We implemented a standard approach that

estimates confounders from the PCA of the response matrix Y. Scaling the response matrix, this approach is

similar to the EIGENSTRAT method [32]. As a baseline, we also implemented linear regression models (LRM)

that did not include correction for confounding. In the presence of confounding, LRM are expected to lead to

inflation of false positive tests, whereas the PCA approach is expected to lead to overly conservative tests.

Surrogate variable analysis. Surrogate variable analysis (SVA) was introduced to overcome the problems

caused by heterogeneity in gene expression studies. SVA is based on the latent factor regression model presented

in this study, and is potentially useful for confounder adjustment in any type of genome-wide association studies.

Two distinct SVA algorithms were implemented SVA1 [26] and SVA2 [27]. In a first step, the SVA1 algorithm

estimates loadings of a PCA of the residuals of the regression of the response matrix Y on X. The second step

of the SVA1 algorithm determines a subset of response variables exhibiting low correlation with X, and uses

this subset of variables to estimate the score matrix. SVA1 is similar to LFMM2 with regularization term set to

λ = 0, a degenerate case for the least-squares problem. The SVA2 method is an iterative approach. In SVA2,

the second step of SVA1 is modified so that a weight is given to each response variable. Weights are used to

compute a weighted PCA of the regression residuals, and the cycle is iterated until a convergence criterion is

met. The SVA methods were implemented by using the R package sva [27].

Confounder adjusted testing and estimation. Confounder adjusted testing and estimation (CATE) [42]

is a recent estimation method based on latent factor regression models. CATE uses a linear transformation
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of the response matrix such that the first axis of this transformation is colinear to X. CATE and LFMM2

apply different transformations to the response matrix, but the CATE estimates are comparable to LFMM2

estimates (although CATE estimates do not solve a least-squares problem). Asymptotic results obtained for

CATE estimates were also valid for LFMM2 estimates. The CATE method was implemented in the R package

cate [42].

Simulated data. We used empirical data from a world-wide sample of 1,758 human genotypes from the

1,000 Genomes Project [1] for simulating quantitative phenotypes, X, latent factors U and a response matrix

Y. For the simulation, an initial data matrix, Y?, including 52,211 single nucleotide polymorphisms (SNPs)

from chromosomes 1 and 2 was considered. To create K articifial confounders, we first performed a PCA

of the Y? matrix, and retained K = 5 principal components. The eigenvalues, s2k, were computed for each

retained component. Then a primary variable X and five latent variables latentes, U, were simulated by using

a multivariate Gaussian distribution

(U,X) ∼ N (0,S),

where S was the covariance matrix defined by

S =


s21 0 · · · ρc1

0
. . . 0

...
... 0 s2K ρcK
ρc1 · · · ρcK 1

 .

The ck coefficients were sampled from a uniform distribution taking values in the range (−1, 1), and ρ was

inversely proportional to the square root of
∑
k c

2
k/s

2
k (which was less than one). The coefficient of proportion-

ality was chosen so that the percentage of variance of X explained by the latent factors ranged between (0.1, 1).

The effect size matrix, B, was generated by setting a proportion of effect sizes to zero. Non-zero effect sizes

were sampled according to a standard Gaussian distribution N(0, 1). The proportion of null effect sizes ranged

between 80% and 99%. We eventually created a response matrix, Y, by simulating from the generative model

of the latent factor model as follows

Y = XBT + UVT + E. (11)

In those simulations, K latent variables had the same variance as original PCs from the 1,000 Genomes Project

data set, and we controlled the correlation between simulated phenotypes (primary variables) and confounders.

To evaluate the capabilities of methods to identify true positives, we used the area under the precision-power

curve (AUC) as a global estimate of power. Precision is the proportion of true positives in a candidate list of

positive tests. Power is the number of true positives divided by the number of true associations. To evaluate

whether the methods have inflated number of false positives, we computed a genomic inflation factor using the

median of squared z-scores divided by the median of the chi-squared distribution with one degree of freedom

[5].

Rheumatoid arthritis (RA) data set. We performed an EWAS using whole blood methylation data from a

study of patients with rheumatoid arthritis [28, 34, 45]. The RA data are publicly available and were downloaded

from the GEO database (accession number GSE42861). For this study, beta-normalized methylation levels at

485,577 probed CpG sites were measured for 354 cases and 335 controls [28]. Following [45], probed CpG sites

having a methylation level lower than 0.2 or greater than 0.8 were filtered out. Then, the data were centered
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and scaled for a standard deviation of one. Since the cell composition of blood in RA patients typically differs

from that in the general population, there is a risk for false discoveries that stem from unaccounted-for cell type

heterogeneity [34]. Age, gender and covariates such as tobacco consumption may also have significant effects

on DNA methylation. To evaluate whether the methods presented here can correct confounding due to those

factors, we did not include them as covariates in regression analyses. Seven EWAS methods were applied to the

RA data set, including LRM, PCA, two variants of SVA, CATE and two variants of LFMM. Candidate lists

of CpG sites were controlled for a false discovey rate of 1% after recalibration of the test significance values,

and compared to the candidates obtained with a reference-based method and controlling for age, gender and

smocking status. FDR control was implemented through the qvalue function of the R program [38].

Celiac disease (CD) data set. We performed a GWAS using SNPs from a study of patients with celiac

disease [8]. The CD data were downloaded from the Wellcome Trust Case Control Consortium https://

www.wtccc.org.uk/. For this study, SNP genotypes were recorded at 485,577 loci for 4,496 cases and 10,659

controls. The genotype matrix was preprocessed so that SNPs with minor allele frequency lower than 5% and

individuals with relatedness greater than 8% were removed from the matrix. We used the program BEAGLE

to impute missing data in the genotype matrix [4]. We performed LD pruning to retain SNPs with the highest

frequency in windows of one hundred SNPs. The filtering steps were implemented in the PLINK software [33],

and resulted in a subset of 80,275 SNPs. Five GWAS methods were applied to the CD data set: LRM, PCA

(EIGENSTRAT), CATE, and two LFMM estimation algorithms. For the last four methods, the confounders

were identified based on the 80,275 pruned genotypes. The tests were performed on the full set of imputed

genotypes, and the SNP positions were grouped into clumps of correlated SNPs, using the clumping algorithm

implemented in PLINK. The significance value for a clump of SNPs was considered to be the lowest value among

all positions. FDR control was applied on the clumped significance values using qvalue. Candidates resulting

from the five analyses were compared to the GWAS catalog for known association with CD [29]. Chromosome

6, which contained the strongest association signals with CD, was treated separately. For this chromosome, all

methods performed equally well at detecting six SNPs from the HLA locus referenced in the GWAS catalog.

Gene-environment association study. We performed a GEAS using whole genome sequencing data and

bioclimatic variables to detect genomic signatures of adaptation to climate in humans. The data are publicly

available, and they were downloaded from the 1,000 Genomes Project phase 3 [1] and from the WorldClim

database [12]. The genomic data included 84.4 millions of genetic variants genotyped for 2,506 individuals from

26 world-wide human populations. Nineteen bioclimatic data were downloaded for each individual geographic

location, considering capital cities of their country of origin. The bioclimatic data were summarized by projection

on their first principal component axis. The genotype matrix was preprocessed so that SNPs with minor allele

frequency lower than 5% and individuals with relatedness greater than 8% were removed from the matrix.

Admixed individuals from Afro-american and Afro-Caribbean populations were also removed from the data set.

After those filtering steps, the response matrix contained 1,409 individus and 5,397,214 SNPs. We performed

LD pruning to retain SNPs with the highest frequency in windows of one hundred SNPs, and identified a

subset of 296,948 informative SNPs. Four GEAS methods were applied to the 1,000 Genomes Project data set:

PCA (EIGENSTRAT), CATE, and two LFMM estimation algorithms. For all methods the latent factors were

estimated from the pruned genotypes, and association tests were performed for all 5,397,214 loci. Candidates

obtained from clumps with an expected FDR level of 1% were analyzed using the Variant Effect Predictor
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(VEP) program [30].

Cross-validation and model choice. Choosing regularization parameters and the number of latent factors

can be achieved by using cross-validation methods. We developed a cross-validation approach appropriate to

latent factor regression models. Cross-validation partitions the data into a training set and a test set. The

training set is used to fit model parameters, and prediction errors can be measured on the test set. In our

approach, the reponse and explanatory variables were partitioned according to their rows (individuals). We

denote by I the subset of individual labels on which prediction errors are computed. Estimates of effect sizes,

B̂−I , and factor loadings, V̂−I , were obtained from the training set. Next, the set of columns of the response

matrix were partitioned. Denoting by J the subset of columns on which the prediction errors were computed,

a score matrix was estimated from the complementary subset as follows

Û−J = (Y[I,−J ]−X[I, ](B̂−I [−J, ])T )V̂−I [−J, ]T . (12)

In this notation, the brackets indicate which subsets of rows and columns of a matrix were selected. A prediction

error was computed as follows

Error =
1

#I#J

∥∥∥Y[I, J ]− Û−JV̂−I [J, ]
T −X[I, ]B̂−I [J, ]

T
∥∥∥
F
. (13)

Parameters leading to the lowest prediction errors were retained for data analysis.

Additional heuristics were used to determine the number of latent factors and the nuclear norm parameter

for LFMM1 latent matrix estimates. For choosing the number of latent factors, K, we considered the matrix

Dλ defined in the statement of Theorem 1, and the Q unitary matrix obtained from the SVD of X. The

number of latent factors, K, was estimated after a spectral analysis of the matrix D0Q
TY. We determined it

by estimating the number of components in a PCA of the matrix D0Q
TY. In our experiments, we used the

“elbow” method based on the scree-plot of PC eigenvalues. Estimated values for K were confirmed based on

prediction errors computed by cross-validation. The L1-regularization parameter, µ, was determined after the

proportion of non-zero effect sizes in the B matrix, which was estimated by cross-validation. Having set the

proportion of non-zero effect sizes, µ was computed by using the regularization path approach proposed in [15].

The regularization path algorithm was initialized with the smallest values of µ such that

B̂1 = sign(B̄1)(B̄1 − µ)+ = 0, (14)

where B̂1 resulted from Step 1 in the lasso (LFMM1) estimation algorithm. Then, we built a sequence of µ

values that decreases from the inferred value of the parameter, µmax, to µmin = εµmax. We eventually computed

the number of non-zero elements in B̂t, and stopped when the target proportion was reached. The nuclear norm

parameter (γ) determines the rank of the latent matrix W. We used a heuristic approach to evaluate γ from

the number of latent factors K. The singular values (λ1, . . . , λn) of the response matrix Y were computed, and

we set

γ =
(λK + λK+1)

2
. (15)

In our experiments, the lasso estimation algorithm always converged to a latent matrix estimate having rank

K.
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Table 1. CD GWAS. Genomic regions corresponding to the first twenty hits of the LFMM1 algorithm
(SNP Ids). Rows in bold style correspond to SNPs referenced in the GWAS Catalog for a previously reported
association with CD. Chromosome 6 was not included in the analysis.

Chr SNP Id LD block (Mb) Odds ratio [95% CI] P value Q value Genes

3 rs1464510 189.56-189.61 1.30 [1.24-1.36] 3.8e-23 1.5e-20 LPP

3 rs17810546 160.99-161.32 1.35 [1.26-1.45] 1.8e-16 6.1e-14 IQCJ-SCHIP1, IL12A-AS1, IL12A

4 rs13151961 123.19-123.56 0.73 [0.68-0.78] 1.7e-14 5.3e-12 KIAA1109, ADAD1

12 rs653178 110.25-110.49 1.22 [1.16-1.28] 6.8e-13 2.1e-10 CUX2, LINC02356, SH2B3, ATXN2

2 rs917997 102.26-102.61 1.27 [1.20-1.35] 1.5e-12 4.6e-10 IL1RL1, IL18R1, IL18RAP, MIR4772,

SLC9A4, SLC9A2

4 rs6840978 123.73-123.77 0.77 [0.72-0.82] 1.2e-11 3.5e-09 IL21-AS1

3 rs9811792 161.12-161.18 1.18 [1.12-1.24] 6.6e-11 1.9e-08 IL12A-AS1

3 rs13098911 45.98-46.21 1.32 [1.22-1.43] 2.1e-10 5.8e-08 FYCO1, FLT1P1, CCR3

1 rs2816316 190.77-190.80 0.78 [0.72-0.83] 2.2e-10 6.2e-08

3 rs6441961 46.26-46.33 1.21 [1.15-1.27] 1.7e-08 4.6e-06 CCR3, UQCRC2P1

2 rs4675374 204.29-204.52 1.23 [1.16-1.31] 2.1e-07 5.4e-05 CD28, ICOS

2 rs1018326 181.54-181.78 1.15 [1.10-1.21] 4.4e-07 1.1e-04 UBE2E3, LINC01934

3 rs7648827 46.56-46.56 1.22 [1.12-1.33] 4.6e-07 1.2e-04 LRRC2

2 rs13003464 60.95-61.24 1.19 [1.13-1.25] 5.0e-07 1.3e-04 LINC01185, REL, PUS10, RNA5SP95,

KIAA1841, C2orf74

10 rs1250552 80.71-80.74 0.84 [0.80-0.88] 5.2e-07 1.3e-04 ZMIZ1

3 rs7629708 189.56-189.62 1.17 [1.11-1.24] 1.0e-06 2.5e-04 LPP

22 rs2298428 20.13-20.31 1.17 [1.10-1.24] 1.3e-06 3.3e-04 HIC2, UBE2L3, YDJC, CCDC116

18 rs1394466 48.93-49.30 1.14 [1.08-1.20] 1.5e-06 3.6e-04 DCC

18 rs1893217 12.80-12.84 1.16 [1.08-1.23] 1.6e-06 4.0e-04 PTPN2

1 rs864537 165.66-165.70 0.87 [0.83-0.92] 1.7e-06 4.2e-04 POU2F1, CD247

Appendix

In this section, we provide proofs for Theorems 1 and 2. For Theorem 1, we define the singular value decom-

position (SVD) of the explanatory matrix, as X = QΣRT , where Q is an n × n unitary matrix, R is a d × d
unitary matrix and Σ is an n × d matrix containing the singular values of X, (σj)j=1..d. Let λ > 0, and the

estimates given by

Ŵ = QD−1λ svdK(DλQ
TY) (16)

B̂T = (XTX + λIdd)
−1XT (Y − ÛV̂T ), (17)

where Dλ is the n× n diagonal matrix with diagonal terms

(Dλ,i,i)i=1..n =

(√
λ

λ+ σ2
1

, . . . ,

√
λ

λ+ σ2
d

, 1, . . . , 1

)
.

We prove that those estimates define a global mimimum of the function Lridge.

Proof. If we assume U are V to be known, then the Lridge function is convex with respect to the variable B.

A global minimum for this variable can be found by computing the derivative of Lridge with respect to B and

setting it to zero. This leads to the following solution

B̂T = (XTX + λIdd)
−1XT (Y −UVT ). (18)

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/255893doi: bioRxiv preprint 

https://doi.org/10.1101/255893
http://creativecommons.org/licenses/by-nc-nd/4.0/


This solution is merely the ridge estimate for a linear regression of the response matrix Y−UVT on X. Thus,

the problem amounts to minimizing the (implicit) function

L′(U,V) = Lridge(U,V, B̂), (19)

where B̂ was defined above. Consider the SVD of X

X = QΣRT , (20)

where Q is a unitary matrix of dimensions n× n, R is a unitary matrix of dimensions d× d, and Σ is a matrix

of dimensions n× d containing the singular values (σj)j=1..d. The L′ function rewrites as follows

L′(U,V) =
1

2

∥∥D2
λQ

T (Y −UVT )
∥∥2
F

+
1

2
λ
∥∥CλQ

T (Y −UVT )
∥∥2
F

(21)

where Cλ is a matrix of dimensions d× n, with zero coefficients except for the diagonal terms

{Cλ,i,i}i=1..d =

{
σi

σ2
i + λ

}
i=1..d

. (22)

The Dλ is a diagonal matrix of dimensions n× n such that

{Dλ,i,i}i=1..n =

{√
λ

λ+ σ2
1

, . . . ,

√
λ

λ+ σ2
d

, 1, . . . , 1

}
. (23)

Direct calculus shows that we have

L′(U,V) =
1

2

∥∥∥∥√(D2
λ + C2

λ)QT (Y −UVT )

∥∥∥∥2
F

=
1

2

∥∥DλQ
T (Y −UVT )

∥∥2
F
.

This equation shows that mimimizing the objective function L′ is equivalent to finding the best approximation

of rank K for DλQ
TY. According to [9], this solution is given by the rank K SVD of DλQ

TY. Eventually,

this concludes the proof that

ÛV̂T = QD−1λ svdK(DλQ
TY)

B̂T = (XTX + λIdd)
−1XT (Y − ÛV̂T )

defined a global minimum for the Lridge function.

Now, turn to the proof of Theorem 2. Let µ > 0 and γ > 0. Then Theorem2 states that the block-coordinate

descent algorithm converges to estimates of W and B defining a global mimimum of the function Llasso.

Proof. The result is a consequence of the convexity of Llasso function, and the fact that we can write

Llasso(B,W) = g(B,W)/2 + f1(B) + f2(W)

where g(B,W) = ‖Y −W −XBT ‖2F is a differentiable convex function, and f1(B) = ‖B‖21, f2(W) = ‖W‖2∗
are continuous convex functions. The proof of Theorem 2 relies on the following proposition adapted from [3]

and [41].
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Proposition. Let A = A1×A2× ...×Am be a Cartesian product of closed convex sets. Consider a continuous

convex function f defined on A as follows

f(x1, ..., xm) = g(x1, ..., xm) +
m∑
i=1

fi(xi), (24)

where g is a differentiable convex function, and for all i, fi is a continuous convex function. Let (xt+1) be the

sequence of values defined by the block-coordinate descent algorithm

xt+1
i ∈ arg min

χ∈Ai

f(xt1, . . . , x
t
i−1, χ, x

t
i+1, . . . , x

t
m) , i = 1, ...,m. (25)

Then a limit point of (xt) defines a global minimum of f .

Accession codes. SNP genotypes used in our simulation analysis are publicly available and were downloaded

from the 1000 Genome Project database. The RA data are publicly available and were downloaded from the

GEO database (accession number GSE42861). The CD data are publicly available and were downloaded from

the Welcome Trust Case Control Consortium database (agreement number 1248).
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