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Abstract  
 
Localizing human brain functions is a long-standing goal in systems neuroscience.  Towards 
this goal, neuroimaging studies have traditionally used volume-based smoothing, registered 
data to volume-based standard spaces, and reported results relative to volume-based 
parcellations.  A novel 360-area surface-based cortical parcellation was recently generated 
using multimodal data from the Human Connectome Project (HCP), and a volume-based 
version of this parcellation has frequently been requested for use with traditional volume-based 
analyses.  However, given the major methodological differences between traditional volumetric 
and HCP-style processing, the utility and interpretability of such an altered parcellation must first 
be established.  By starting from automatically generated individual-subject parcellations and 
processing them with different methodological approaches, we show that traditional processing 
steps, especially volume-based smoothing and registration, substantially degrade cortical area 
localization when compared to surface-based approaches.  We also show that surface-based 
registration using features closely tied to cortical areas, rather than to folding patterns alone, 
improves the alignment of areas, and that the benefits of high resolution acquisitions are largely 
unexploited by traditional volume-based methods.  Quantitatively, we show that the most 
common version of the traditional approach has spatial localization that is only 35% as good as 
the best surface-based method as assessed with two objective measures (peak areal 
probabilities and ‘captured area fraction’ for maximum probability maps).  Finally, we 
demonstrate that substantial challenges exist when attempting to accurately represent volume-
based group analysis results on the surface, which has important implications for the 
interpretability of studies, both past and future, that use these volume-based methods. 
 
Significance Statement  
 
Most human brain imaging studies have traditionally used low-resolution images, inaccurate 
methods of cross-subject alignment, and extensive blurring.  Recently, a high-resolution 
approach with more accurate alignment and minimized blurring was used by the Human 
Connectome Project to generate a multi-modal map of human cortical areas in hundreds of 
individuals.  Starting from this data, we systematically compared these two approaches, 
showing that the traditional approach is nearly three times worse than the HCP’s improved 
approach in two objective measures of spatial localization of cortical areas.  Further, we 
demonstrate considerable challenges in comparing data across the two approaches, and, as a 
result, argue that there is an urgent need for the field to adopt more accurate methods of data 
acquisition and analysis. 
 
Introduction 
 
Since the 19th century, neuroscientists have tried to relate human behavior to particular 
functionally specialized regions within the brain.  Meaningful correlations between brain function 
and anatomy were first achieved by post-mortem mapping of lesion locations in subjects having 
specific behavioral deficits in life [Reviewed (1)].  Neuroanatomists later began subdividing the 
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cerebral cortex into distinct areas based on cytoarchitecture [e.g., (2)] and myeloarchitecture 
[Reviewed (3)] with the hope that well defined brain areas could be assigned specific behavioral 
functions. 
 
When noninvasive methods for mapping human brain function became available, first with PET 
[e.g., (4)] and then fMRI [e.g., (5)], it also became desirable to establish spatial correspondence 
across individuals and studies using standard stereotactic coordinate spaces, borrowing an idea 
from neurosurgical practice.  Brodmann’s parcellation (2) became especially popular in the 
neuroimaging community, not necessarily because it was the best, but because Talairach and 
Tournoux demarcated the approximate locations of Brodmann areas in their standard space (6), 
which was then mapped to the population average Montreal Neurological Institute (MNI) space 
(7). 
 
An early and still widely used method for assessing statistical significance in functional brain 
imaging, statistical parametric mapping using Gaussian random field theory, requires volumetric 
smoothing to satisfy its underlying assumptions [e.g. (8)], resulting in the widespread adoption 
of smoothing in brain imaging studies.  Spatial smoothing has the seductive side effect of 
increasing the statistical significance of weak effects in small sample sizes, but at the expense 
of spatial localization precision (9, 10).  Traditionally, smoothed group functional activations are 
then statistically thresholded and summarized by single 3D coordinates that may be assigned 
Brodmann’s areas or gyral and sulcal designations.  Unfortunately, these standard coordinates 
are imprecisely related to the underlying functional neuroanatomy—the cortical areas—whose 
neuronal populations generate the functional activations under study (9, 10). 
 
Besides the reductions in precision from spatial smoothing and representing brain functional 
neuroanatomy with single 3D coordinates, another key issue is the approach used for cross-
subject alignment.  Because of the high degree of individual variability in cortical folding 
patterns, and in the location of many areal boundaries relative to folds (11, 12), traditional 
volume-based methods for aligning cortical areas are imprecise across much of the cerebral 
cortex (13).  Progress in characterizing the functions of brain areas has been impeded by these 
factors, along with the distributed nature of many brain functions and the lack of an accurate 
map of human cortical areas.  Surface-based approaches enable more precise spatial 
localization than traditional volume-based approaches (13), and have been in use for some 
time, particularly in studies of the visual cortex (14-16). 
 
The recently reported HCP-MMP1.0 multi-modal cortical parcellation  
(https://balsa.wustl.edu/study/RVVG) contains 180 distinct areas per hemisphere and was 
generated from hundreds of healthy young adult subjects from the Human Connectome Project 
(HCP) using data precisely aligned with the surface-based neuroimaging analysis approach (9).  
Each cortical area is defined by multiple features such as those representing architecture, 
function, connectivity, or topographic maps of visual space.  This multimodal parcellation has 
generated widespread interest, with many investigators asking how to relate its cortical areas to 
data processed using the traditional neuroimaging approach.  Because volume-registered 
analysis of cortex in MNI space is still widely used (17), this has often translated into concrete 
requests such as: “Please provide the HCP-MMP1.0 parcellation in standard MNI volume 
space.”  Here, we investigate quantitatively the drawbacks of traditional volume-based analyses 
and document that much of the HCP-MMP1.0 parcellation cannot be faithfully represented when 
mapped to a traditional volume-based atlas.  
 
There are four key differences between the traditional volume-based neuroimaging approach 
and the HCP-style approach (for details, see (13)): (i) Spatial resolution of images.  The HCP 
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acquired structural images (T1w and T2w) at 0.7 mm resolution (higher than the typical 1 mm 
acquisition) and used FreeSurfer’s cortical segmentation algorithms [Reviewed (18)] for robust, 
high-quality cortical surface models (19).  For fMRI, the HCP acquired data at 2 mm isotropic 
resolution, better than the mean cortical thickness [2.6 mm, range 1.6 - 4 mm (13)], whereas 
fMRI is traditionally acquired more coarsely (typically 3 - 4 mm isotropic).  (ii) Distortion 
reduction.  The HCP-style approach corrects fMRI data for distortion induced by inhomogeneity 
in the main (B0) magnetic field using a field map, which is often neglected in the traditional 
approach, leading to a mismatch between the fMRI and anatomical data.  (iii) Spatial smoothing.  
The HCP-style approach keeps spatial smoothing to a minimum, instead averaging within 
parcels when appropriate to improve statistical sensitivity and power.  The traditional approach 
uses extensive volume-based spatial smoothing to increase statistical significance, satisfy 
statistical assumptions, and/or strive to compensate for imperfect cross-subject alignment.  (iv) 
Cross-subject alignment.  The HCP-style approach gently initializes alignment of cortical areas 
on the surface using cortical folding patterns and then aligns areas across subjects using ‘areal 
features’ (cortical myelin content, resting state networks, and resting state topographic maps) 
that are more closely related to areal boundaries than are structural image intensities in the 
volume (13) or, to a lesser extent, than folding patterns alone on the surface (20, 21).  The 
resulting standard space is a CIFTI “grayordinates” space that contains both cortical surface 
vertices and subcortical gray matter voxels (19).  In contrast, the traditional volume-based 
approach strives for alignment using linear or non-linear volume-based registration of structural 
image intensities to a standard volume space (Reviewed (22)].  The HCP-Style approach of 
surface-based alignment grew out of earlier methods that used only folding patterns (12, 23-28) 
and that, together with surface-based smoothing [e.g., (29)], represent intermediate approaches 
sharing several advantages with the HCP-Style approach over the traditional volume-based 
approach. 
 
We use individual-subject cortical parcellations from the HCP-MMP version 1.0 generated by an 
automated areal classifier (13) as a “silver standard” (see Main Text Discussion and 
Supplementary Discussion Section D4) to illustrate and quantify the impact of key acquisition 
and analysis choices on the spatial localization of cortical areas.  The individual subject 
parcellations were derived from each subject’s multimodal imaging data in a spatially agnostic 
manner1, and we use a validation group of subjects that share no family relationships with the 
subjects used for parcellation or classifier training.  These steps minimize concerns about 
possible circularity in our analysis strategy (see Main Text Discussion and Supplementary 
Discussion Section D1).  Projecting the individual parcellations into volume space using each 
subject’s own surfaces results in a voxel-wise map of each area in each subject, based on that 
subject’s multi-modal data.  We use these maps to simulate the effects of different analysis 
strategies on the arrangement of cortical areas and their degree of spatial overlap.  The degree 
to which each analysis approach differs from the HCP-style approach serves as a proxy for 
what would happen to any neuroanatomically organized dataset if analyzed in a similar way 
(e.g., an fMRI study, a structural MRI study, etc.).  We also include intermediate approaches 
that use surface registration based on folding alone instead of areal features gently initialized by 
folding, or use substantial smoothing on the cortical surface.  Finally, we illustrate the pitfalls of 
mapping results from traditional volume-analyzed group average data onto the surface.  Overall, 

																																																								
1The only spatial constraint was that the classifiers were applied within searchlights that were large (30 
mm in all directions from the group areal definition) relative to the size and variability of cortical area 
positions in areal-feature-based aligned data.  Parcellation regularization steps that occurred after areal 
classification (dilation, remove islands, etc) used only local distance and vertex neighbor information. 
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we hope that a deeper appreciation of these issues will accelerate the community’s migration 
away from traditional analyses and towards HCP-style analyses. 
 
Results 
 
R1. Comparing areal-feature-based surface registration to traditional volume alignment of 
cortical areas: probabilistic maps of cortical areas 
 
We used binary ROIs from the classifier-based individual parcellations (9) of each of the 210 
validation subjects to compute probabilistic maps of each cortical area (i.e. cross-subject 
averages of the 210 individual subject classifications of each area, see Supplemental Methods 
Section M1).  For the volume-based analyses, individual cortical areas were mapped back to 
the volume using individual subject surfaces, reversing the process by which the data were 
originally brought on to the surface (see Supplemental Methods Sections M2 and M3).  Figure 1 
shows probabilistic maps of five exemplar areas spanning a range of peak probabilities.  Each 
area is shown as localized by areal-feature-based surface registration (MSMAll, lower middle 
panel), and as localized by volume-based methods (FNIRT, parasagittal volume slices).  One 
area (3b) has a peak probability of 0.92 in the volume (orange, red), whereas the other four 
have volumetric peak probabilities in the range of 0.35 – 0.7 (blue, yellow).  Notably, the peak 
probabilities of these five areas are all higher on the surface (lower center panel, range 0.90 to 
1) than in the volume, indicating that MSMAll nonlinear surface-based registration provides 
substantially better functional alignment across subjects than does FNIRT nonlinear volume-
based registration. 
 

 
Figure 1.  Probabilistic maps for 5 areas using both MSMAll areal-feature-based surface registration and 
FNIRT volume alignment.  The volume-based peak probabilities are all lower than the surface-based 
probabilities for these example areas.  Each volume-based area is shown on a parasagittal slice through 
the peak volumetric probability.  See Supplemental Methods Sections M2 and M3. Data at 
https://balsa.wustl.edu/xK0Z. 
 
In Figure 2A, the scatterplot shows that surface peak probabilities are almost exclusively higher 
and have many more areas with peaks at 100% (54 out of 360 on the surface versus only 3 in 
the volume).  Peak volume probabilities have a mean of 0.70 and a standard deviation of 0.17, 
whereas the peak surface probabilities have a much higher mean (0.94) and a lower standard 
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deviation (0.06).  Only five of the 360 areas (R_AAIC, R_EC, L_AAIC, L_PoI1, and L_MBelt) 
have a higher peak value in the volume than on the surface (those below the gray line), and for 
these the differences are very small.  Notably, most of these areas are in locations with good 
folding-based alignment but relatively poor fMRI SNR (which likely reduces the accuracy of 
MSMAll areal-feature-based alignment). 
 

 
Figure 2.  A: A scatterplot of areal-feature-based surface registration (MSMAll) peak areal probability vs 
volume-based registration (FNIRT) peak areal probability for all 360 areas (180 per hemisphere).  B: A 
scatterplot of the individual areal signal captured by the group areal definitions (Maximum Probability 
Maps, MPMs, see Supplemental Methods Sections M6 and M7) at resolutions of 4 mm functional (e.g. 
legacy fMRI data, in green), 2 mm functional (e.g. HCP-style fMRI, in blue) and 0.7 mm structural (e.g. 
myelin or ultra high field fMRI, in red).  In the right scatter plot, gray lines connect the 3 data points for 
each area (averaged across hemispheres, 180 total) showing the degree to which surface-based and 
volume-based methods benefit from increased resolution (with intermediate resolutions lying along the 
lines).  See Supplemental Methods Sections M2, M3, M6, and M7. 
 
The peak areal probability only represents information at a single vertex or voxel for each area.  
To better measure the probabilistic spatial spread of each area, we measured the proportion of 
each area’s vertices or voxels across all individuals that were contained within the group 
definition of the area, simulating the application of the group parcellation to the data (See 
Supplemental Methods Sections M3 and M7).  This measure is derived from the idea that each 
cortical gray matter area will in some situations generate a distinctive ‘signal’ relative to other 
areas that is common across individuals (i.e. fMRI timeseries, myelin content, etc.).  We use this 
concept for evaluating and comparing methods by asking what proportion of the individuals’ 
simulated signal overlaps with (or is ‘captured’ by) the surface-based and volume-based group 
areal definitions (from the Maximum Probability Map (MPM), see Supplemental Methods section 
M6).  Both the surface-based and volume-based measures use the same per-individual volume 
files to define the simulated signal. 
 
Figure 2B shows the fraction of the areal signal that lies within the group areal definitions, for 
both volume and surface.  Several different resolutions are simulated, including when the data is 
acquired with 2 mm voxels (blue dots, simulating data acquired with HCP-style high resolution 
fMRI), 0.7 mm voxels (red dots, simulating data acquired at HCP-style structural resolution such 
as myelin maps, or ultra high field fMRI), or 4 mm voxels (green dots, simulating data acquired 
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with “legacy” low resolution fMRI).  Gray lines connect each area between its 4 mm, 2 mm, and 
0.7 mm values, revealing how much each method benefits from increases in resolution.  This 
measure is universally higher in MSMAll-aligned surface-based processing than in FNIRT-
aligned volume-based processing, with very few areas even approaching equivalence. The 
median across areas of the surface MPM captured fraction is 0.56 for simulated 2 mm 
acquisition resolution, vs 0.37 for the volume MPM captured fraction.  For simulated 0.7 mm 
acquisition resolution, the median of the surface captured fraction increases to 0.67, vs 0.41 for 
volume-based methods, suggesting that higher spatial resolution preferentially benefits surface-
based analyses.  For simulated 4 mm acquisition resolution, the median of the surface captured 
fraction is lower (0.43) as expected, but it remains higher than for volume-based methods 
(0.29), demonstrating benefits of surface-based analyses even for low-resolution, legacy fMRI 
data (indeed surface-based at 4mm (0.43) still outperforms volume-based at 0.7mm (0.41)).   
Thus, when compared with areal-feature aligned surface-based analyses, an individual’s areal 
signal in volume-based analyses is much more likely to be located outside of the group areal 
definition.  Indeed on average much less than half of the signal lies inside the group areal 
definition in volume-based analyses, even before accounting for the smoothing that is 
traditionally done (see Section R4). 
 
R2. Comparing areal-feature-based surface registration to traditional volume alignment of 
cortical areas: Areal Uncertainty. 
 
We used binary ROIs of the individual parcellations from each of 210 subjects to compute 
maximum probability maps (MPMs) for each cortical area and for the non-cortical tissue 
domains (‘outside pial’ and ‘inside white’) after processing via different approaches (see 
Supplemental Methods Sections M1-M3, M6 and M8).  As an objective measure of the quality of 
spatial alignment, we computed ‘uncertainty maps’, where the uncertainty value equals 1 minus 
the maximum probability value at each vertex or voxel.  Figure 3 shows the uncertainty measure 
computed for areal-feature-based surface registration (MSMAll SBR Panel A) and for selected 
parasagittal slices of the FNIRT volume-based registration (FNIRT VBR, Panel C).  The 
uncertainty values for MSMAll SBR are strikingly lower (better) and more consistent than those 
for FNIRT VBR.  For MSMAll SBR, about half of cortex (49.6%) has uncertainty values less than 
0.2 (maximum single area probability > 0.8), and only a small percentage of cortex has 
uncertainty values above 0.5 (9.0%).  Note that we expect uncertainty to reach 0.5 at 
boundaries between two areas, and to be even higher at junctions of more than two areas, even 
if the registration and classification steps had resulted in nearly perfect overlap of areas across 
subjects.  The consistently sharp transition near areal boundaries and the low overall values 
reflect both the high quality of areal alignment in this registration and the consistency of the 
parcellation across individuals.  Even in regions that are typically challenging to align due to 
high folding variability (such as prefrontal cortex, see Supplemental Figure 1), uncertainty 
values near 0.5 are almost entirely confined to narrow strips along the boundaries between 
cortical areas.  The largely uniform and low-valued uncertainty pattern, even in known 
challenging locations, indicates excellent cross-subject alignment with MSMAll surface 
registration (see Figure 6 for a comparison with surface registrations based solely on folding). 
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Figure 3.  Areal uncertainty of MSMAll surface-based alignment (top) versus FNIRT volume-based 
alignment (bottom) for the 210V probabilistic cortical areas.  The traditional volume-based approach has 
substantially greater uncertainty (greens, yellows, and oranges) than the HCP-Style surface-based 
approach as seen in the histograms (Panels B, D) as well as the images (Panels A, C).  In the volume-
based results, some locations have low uncertainty (purple and black) and relatively sharp boundaries 
between areas (red arrows: early sensorimotor, insular, and inferior temporal cortex), comparable to what 
is consistently found on the surface. The volume ROIs that were used to create this figure were 
generated by mapping the individuals’ parcellations to the 0.7 mm MNI template space using the native 
resolution MNI space individual surfaces and the ribbon mapping method (19).  Using 0.7 mm voxels 
minimizes the effects of voxel size on the group probability maps, allowing the effect of alignment to be 
investigated separately from the effect of voxel resolution.  In practice, typical fMRI resolutions lead to 
increased signal mixing between areas and non-cortical tissues, for both surface and volume analysis 
(see Results Section R6).  See Supplemental Methods Sections M2, M3, and M8. Data at 
https://balsa.wustl.edu/PGX1. 
 
In the FNIRT volume-based alignment, some low folding variability locations show reasonably 
good cross-subject agreement, such as the central sulcus and insula (red arrows).  In these 
locations the higher uncertainties are locally restricted to obvious boundaries between areas, or 
between cortex and the CSF or white matter.  However, very little cortex has uncertainty below 
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0.2 (only 3.3% of the voxels where cortex is the most likely tissue), and almost two thirds of 
cortex has uncertainty above 0.5 (65.5% of voxels where cortex is the most likely tissue).  The 
higher uncertainty is concentrated in regions of high cortical folding variability (See also 
Supplemental Figure 1).  Additionally, the volume-based uncertainty maps contain both 
uncertainty in gray matter alignment and uncertainty in areal alignment (See also Supplemental 
Figure 2).  These high uncertainties show that volume-based registration failed to align the 
HCP-MMPv1.0 areas in many locations.  Notably, most of the very low values in the volume 
histogram (Figure 3D) are from the wide low-uncertainty fringes that are in atlas white matter 
and CSF, rather than in locations that are highest probability gray matter (see Supplemental 
Figure 3).  In contrast, the low values of the surface uncertainty (upper right panel) occur 
exclusively inside gray matter cortical areas.  Altogether, this indicates that FNIRT-based 
volume analysis is unable to reliably discriminate between cortical areas over much of the 
neocortex. 
 
R3. Volumetric Areal Maximum Probability Maps (MPMs) 
 
Volumetric MPMs for cortical areas have been reported in other studies (e.g., (30)), and we 
generated volumetric MPMs for the HCP-MMP1.0 parcellation, as described in Supplemental 
Methods Section M6.  We found that in regions where the probabilistic gray matter ribbon has 
relatively high values and low areal uncertainties, the vMPM forms a thick continuous ribbon, 
roughly comparable to average cortical thickness in these regions.  In such regions, volume-
based alignment is not at a major disadvantage to surface-based alignment.  In contrast, for 
regions where probabilistic cortical gray matter is less well aligned and areal uncertainty is 
consistently high the vMPM is thinner than the average cortical thickness.  Indeed, in a few 
locations there are overt gaps that lack a winning cortical area, identifying regions where white 
matter or CSF is more likely than any single cortical area (see left side of Supplemental Figure 
4). This contrasts with the accurate alignment of each individual subject’s parcellation, mapped 
to the volume using the subject’s surfaces and displayed on the individual’s T1w volume, which 
completely overlaps the map of the individual’s gray matter (see right side of Supplemental 
Figure 4).  More generally, the volumetric probabilistic maps for the exemplar areas shown in 
Figure 1 represent the expected distribution of data generated by these areas in any dataset 
that has been registered using FNIRT using the HCP’s FNIRT configuration without spatial 
smoothing.  The net result is that each area in the vMPM is much smaller than its corresponding 
probabilistic map, such that a large fraction of each area’s group probability (and therefore 
signal) will fall outside the vMPM parcel.  We quantified this effect above in Figure 2 for MSMAll 
surface-based registration vs FNIRT volume-based alignment and below in Figure 8 for 
additional analysis approaches.  This poor alignment of individual subject cortical areas to the 
group MPM is a fundamental problem for using a volumetric MPM to represent cortical areas.  
We next demonstrate that this problem is dramatically exacerbated by the spatial smoothing 
that is commonly used in volume-based studies. 
 
R4. Effects of Spatial Smoothing in the Volume and on the Surface 
 
Smoothing of volumetric data is widely used as a way to reduce voxel-wise noise, increase 
measures of statistical significance, and satisfy statistical assumptions.  It is also often 
presumed to compensate for imperfect alignment of cortical areas across subjects. 
Unfortunately, smoothing in the volume mixes data across tissue compartments and across 
areal boundaries, including non-contiguous areas on opposite banks of gyral and sulcal folds 
(13).  By treating the binary individual-subject parcellations as patches of idealized signal, we 
can show the effect of smoothing on the purity and extent of areal signal (See Supplemental 
Methods Section M3 and M4).  This effect is visible as a reduction in peak areal probability and 
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an expansion of the volume-based areal probability maps in Figure 4, which shows three 
exemplar areas after different smoothing amounts.  Area 3b (top row) has a relatively tight 
probabilistic distribution without any smoothing (left), but the peak value is markedly reduced 
and the spatial extent increased with 4 mm FWHM volumetric smoothing, deleterious trends that 
worsen with 8 mm FWHM smoothing.  Areas 55b and LIPv start out with greater spread in the 
no smoothing condition, so the effects of volumetric smoothing are not as visually dramatic, but 
they are nevertheless substantial in both cases.  Comparable levels of surface-based smoothing 
applied to the same three MSMAll-registered areas (bottom row) show a much smaller effect, 
though smoothing still erodes localization. 
 
From the standpoint of cortical localization, volume-based smoothing substantially erodes the 
fidelity with which areal assignments can be made.  This effect is illustrated in the top two rows 
of Figure 5, which shows areal uncertainty maps (second row) and histograms (top row) without 
smoothing (left) and after volumetric smoothing of the group probability maps by 4 mm FWHM 
(middle column) and 8 mm FWHM (right column), which are commonly used levels of volumetric 
smoothing in fMRI studies.  Over most of the cortical ribbon, areal uncertainty in the volume-
smoothed maps exceeds 0.5 (green/yellow), especially for 8 mm FWHM smoothing, indicating 
that neuroanatomical identification at the level of individual cortical areas in the HCP-MMP1.0 
parcellation is quite limited indeed.  Surface-based smoothing of the areal probability maps at 4 
mm and 8 mm FWHM (Figure 5, bottom rows) also causes some blurring of areal boundaries.  
However, unlike volume-based smoothing, it does not blur across sulci or across tissue 
categories, so the overall effects are substantially less deleterious.  See Supplemental Figure 5 
for additional volume smoothing levels of 2 mm, 6 mm, and 10mm FWHM that have been 
reported for fMRI studies (17), and Supplemental Figure 6 for the additional surface smoothing 
level of 15 mm FWHM that has been reported in the literature (31) and that approaches the 
areal uncertainty values seen in unsmoothed volume-based alignment and the same three 
levels of smoothing (4 mm, 8 mm, and 15 mm) with a FreeSurfer alignment. 
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Figure 4.  Effects of volume-based and surface-based smoothing on example cortical areas.  The top 
three rows show enlarged sagittal slices of volumetric probabilistic maps through the maximum probability 
of 3 exemplar areas, before (left) and after unconstrained volume-based Gaussian smoothing of 4 mm 
(center) or 8 mm (right) FWHM.  In each row, white dots are in corresponding positions for reference.  
The bottom row shows the same amounts of surface-based Gaussian smoothing applied to the same 3 
areas after areal-feature-based registration (MSMAll).  Areal probability values decrease substantially 
more in the volume after smoothing than on the surface with the same amount in millimeters of 
smoothing.  See Supplemental Methods Sections M3 and M4. Data at https://balsa.wustl.edu/7Blg. 
 
Volume-based smoothing also shifts the location of maximum gray matter probability towards 
the central CSF-filled portion of sulci and towards the white matter portion of gyri (Supplemental 
Figure 7).  Features in regions of low folding variability (e.g., insular cortex and the superior 
temporal gyrus) are sharply defined without smoothing, as is the boundary between gray and 
white matter in such regions.  With smoothing, the sulcal fundi are not only blurry, but the 
apparent location of the transition between gray and white matter is substantially shifted, 
particularly for high smoothing levels (e.g. 8 mm FWHM). 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/255620doi: bioRxiv preprint 

https://doi.org/10.1101/255620


	 11	

 
Figure 5.  Comparison of different degrees of smoothing (columns) for both volume-based (top two rows) 
and surface-based (bottom two rows) approaches.  Both areal uncertainty maps and histograms are 
shown.  These were computed by smoothing the probability maps, which is equivalent to smoothing the 
per-subject ROIs before averaging.  Smoothing kernels on the surface clearly have less deleterious 
effects than smoothing kernels of the same size in the volume, because surface smoothing avoids 
smoothing across sulci or into other tissues.  As with Figure 3, the volume-based histograms have 
substantial “low uncertainty” tails that arise from poor alignment of the cortical ribbon, and from the tail of 
the Gaussian smoothing kernel within the white matter and CSF.  See Supplemental Methods Sections 
M3, M4, and M8. Data at https://balsa.wustl.edu/6MB7. 
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Figure 6. Comparison of four surface-based alignments: MSMAll areal-feature-based registration (top), 
MSMSulc folding-based registration (second row), FreeSurfer folding-based registration (third row), and a 
rigid spherical rotation alignment based on the FreeSurfer registration (bottom).  The left column shows 
six probabilistic areas for each registration approach with yellow contours representing the areal 
boundaries from the 210V MPM.  The center column shows the maps of areal uncertainty (1 – maximum 
probability at each vertex), as in Figure 3.  The right column shows the histograms of the uncertainty 
maps.  See Supplemental Methods Section M4. Data at https://balsa.wustl.edu/1616. 
 
R5. Comparing areal alignment quality of different surface-based registration methods 
 
We compared the alignment quality of four different surface-based registration methods (See 
Supplemental Methods Section M4).  Figure 6 shows results for MSMAll registration (areal 
feature based), MSMSulc (folding based, with less distortion than FreeSurfer), FreeSurfer 
(folding based), and a sphere rotation-only rigid alignment (which has only 3 degrees of 
freedom, whereas spherical warpfields often have thousands) derived from the FreeSurfer 
registration.  Each row shows surface probabilistic maps for six representative cortical areas, 
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areal uncertainty maps, and histograms of uncertainty values.  All three ways of representing 
the data demonstrate that MSMAll provides the tightest alignment of HCP-MMP1.0 probabilistic 
maps (higher peak probabilities and tighter clustering).  MSMSulc is intermediate, though only 
slightly better than FreeSurfer, which in turn is slightly better than spherical rotation overall.  The 
spherical rotation method’s alignment is driven primarily by similarities in spherical inflation 
across subjects.  The peak areal probabilities and degree of areal dispersion found here for 
FreeSurfer folding-based registration is comparable to that reported in previous studies that 
used FreeSurfer registration with other parcellations (12, 32, 33).  Note that the maximum 
possible overlap on the surface (or in the volume) is less than 100% for some areas because 
the areal classifier does not detect 100% of all areas in all subjects and because there are 
atypical topologies in some areas in some subjects that prevent any topology preserving 
registration from achieving perfect overlap across subjects (see Supplemental Methods Section 
M1). 
 
R6. Effect of Acquisition Resolution 
 
Of the three main acquisition and analysis choices made in neuroimaging studies that directly 
impact spatial fidelity (acquisition resolution, method of cross-subject alignment, and method 
and amount of smoothing), we found that commonly used fMRI acquisition resolution choices 
have the smallest overall impact (See Supplemental Methods Section M2).  Figure 7 compares 
how surface-based and volume-based processing is affected by the combination of partial-
volume and volume-based tissue alignment effects, at current state-of-the-art 3T fMRI 
acquisition resolutions (2 mm isotropic) and five other simulated resolutions (0.7 – 4.0 mm).  It 
shows that partial-volume effects on the surface decrease substantially (gray matter signal 
fraction increases) when acquiring data with smaller voxel sizes.  Notably, for surface-based 
analysis, the group-average spatial pattern in this measure is largely determined by cortical 
thickness, and is highly uniform over much of the cortex.  In contrast, the histograms of group 
average volume data are largely unchanged despite increases in acquisition resolution, 
because the inaccuracies of volume-based alignment largely dominate the measure, showing 
that traditional volume-based analysis is unable to fully take advantage of higher resolution 
data.  The maximum volume-based group cortical signal fraction also varies considerably 
across different regions of cortex (e.g. between the central sulcus and superior parietal cortex), 
suggesting spatial heterogeneity in statistical power and localization precision for volume-based 
analyses.   
 
Although acquisition resolution has the lowest impact among the three aforementioned 
processing choices, finer acquisition resolution, especially below the mean cortical thickness of 
2.6 mm, is very helpful for surface-based studies, which are not limited by volume-based cross-
subject alignment.  Higher resolutions (e.g., the 1.6 mm voxel size for HCP 7T fMRI data) will 
reduce partial volume effects and enable more advanced analyses, such as those focusing on 
laminar differences within the cortical ribbon (9) (see Supplemental Figure 8).  However, such 
analyses will require technical advances in MRI acquisition, and optimization of tradeoffs 
between voxel size, signal-to-noise ratio (SNR), and acquisition speed. 
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Figure 7 shows the effect of acquisition resolution on the separation of cortical signal from non-cortical 
signal, for surface-based (left two columns) and volume-based (next two columns) processing.  The 
measure shown is the group average cortical gray matter fraction of each vertex or voxel. The rightmost 
column shows an individual’s (HCP subject 121618) cortical fraction volumes for the same six resolutions, 
as an example of the inputs to the analyses.  Smoothing was not applied. The cortical signal fraction 
becomes somewhat degraded at the edge of cortex (green voxels) in many regions even at 2 mm 
resolution (even though this is less than the mean cortical thickness) and is severely degraded (many 
green and blue voxels) at traditionally used resolutions between 3 and 4 mm. See Supplemental Methods 
Section M2. Data at https://balsa.wustl.edu/5gMx.  
 
R7. Summary localization measures for different registrations and smoothing levels 
 
Figure 8 provides a valuable summary comparison across a variety of approaches, using the 
aforementioned peak probability and ‘area capture’ measures (see Figure 2) for each of the 360 
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cortical areas.  Notably, this figure also includes a new strain-regularized MSMAll surface-based 
registration (20), which was not used in defining the parcellation or training the areal classifier, 
but nevertheless shows very similar performance to the original MSMAll.  The left panel box and 
whisker plots show the peak probabilities of each area, and the right panel shows the MPM 
captured area signal measures for the same ten methods (using 2 mm resolution partial volume 
weighting).  These measures give the same ranking to the medians of each method, which are 
tabulated in Supplemental Table 1.  A particularly important comparison shows that the most 
commonly used smoothing level (17) in the traditional approach (FNIRT + 8 mm FWHM volume 
smoothing) is only 35% as good as the best surface-based method (MSMAll) using measures of 
median peak areal probability (0.340 vs 0.967) and median MPM-captured areal fraction (0.200 
vs 0.564).  Comparing the surface-based analysis using only rigid rotation for spherical 
alignment to the volume-based analysis without smoothing reveals the benefits achieved by 
simplifying the more challenging cross-subject cortical registration problem from 3D to 2D and 
solving the more tractable tissue segmentation problem to handle the third dimension.  These 
conceptual improvements reflect the fundamental advantage that surface-based approaches 
have over volume-based approaches (see Supplementary Discussion Section D2).  Large 
amounts of surface-based smoothing (15 mm FWHM) substantially degrade cortical area 
localization to levels similar to volume-based alignment with no smoothing.   
 

 
Figure 8.  Left: Box and whisker plots of the peak probability of each area for various SBR methods and 
for FNIRT volume-based registration, plus the effects of differing amounts of surface (4 mm, 8 mm, and 
15 mm FWHM) and volume smoothing (4 mm and 8 mm FWHM).  Less optimal registration methods and 
greater smoothing consistently reduce peak areal probability.  Volume-based smoothing has the largest 
impact, followed by volume-based versus surface-based alignment.  The decrease of FreeSurfer 
compared to MSMSulc is similar in magnitude to that of smoothing MSMAll data by 4mm FWHM.  Right: 
MPM captured area fraction using 2 mm MNI space voxels for the same ten methods, showing a similar 
pattern. Notably, the areas that do worse in the new MSMAllStrain are generally well aligned by folding, 
whereas the areas that do better in MSMAllStrain have more variability across subjects (the new 
MSMStrain allows more mild to moderate distortions while clamping peak distortions).  Red line is the 
median, box edges are the 25 to 75 percentiles, whiskers are 2.7 standard deviations, and red pluses are 
outliers beyond 2.7 standard deviations.  See Supplemental Methods Sections M2-M7. 
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R8. Mapping legacy group average volume results onto the surface 
 
Traditional volume-based analyses often map group average volume-based results onto group 
average surfaces for visualization purposes, using, for example, the ‘average fiducial mapping’ 
approach (24).  While this approach has known limitations, its accuracy has not previously been 
analyzed carefully.  We used a modified form of this approach, which we call ‘average surface 
mapping’ (ASM), employing the ribbon-based volume to surface mapping technique (19) and 
the group average MSMAll white and pial surfaces (See Methods Section M9).  In Supplemental 
Figure 9 we illustrate the primary pitfall of this approach: Group average surface contours do not 
consistently follow the group average cortical ribbon, particularly in regions of high folding 
variability (see panel B2).  Even when using folding-based surface registration, topologically 
incompatible folding patterns (e.g., two gyri in some subjects where there typically is only one) 
lead to reductions in group average cortical surface area that “shrink” the surface towards the 
direction of folding, as these patterns are unable to be aligned and therefore result in significant 
cross-subject variability of coordinates.  The folding detail of the group average surface is 
further reduced when using average surfaces from MSMAll-registered data instead of folding-
based alignment because of discrepancies between function and folds (see Supplemental 
Figure 1).  Indeed, the MSMAll group average surfaces only show significant folding detail in 
locations that have good correspondence between folds and areas.  Thus, mapping group 
average volume data onto group average surfaces will have additional biases (on top of the 
blurring effects from misalignment and smoothing and the biasing effects of smoothing folded 
cortex shown in Supplemental Figure 7).  Folding-based average surfaces will be only modestly 
better that MSMAll surfaces overall. 
 
An alternative approach for mapping group average volume data to surfaces is the ‘multi-fiducial 
mapping’ method, using anatomical midthickness (fiducial) surfaces from many individuals as 
intermediates (24).  Here we similarly modified this method by using ribbon mapping and call 
this ‘multiple individual mapping’ (MIM).  The cortical gray matter fraction map from this 
approach is smoother, showing less sensitivity to folding patterns, but also has a lower overall 
value, as shown in Supplemental Figure 9 (see Figure Legend and Supplemental Methods 
Section M2 and M9).  This effect occurs because the tissue misalignment from FNIRT is applied 
twice, once in making the volume-based group average cortical ribbon, and again when 
mapping the group average onto the individuals’ surfaces.  This method also results in more 
mixing between tissue classes, decreasing the cortical contribution to the surface-mapped 
values. 
 
These effects are apparent when looking at cortical areas as well.  Indeed, after averaging the 2 
mm MNI-space area maps in the volume, mapping this result onto a large set of individual 
surfaces, and averaging on the surface, the resulting area maps are dramatically changed 
relative to the surface-based approach of mapping each individual subject’s area volumes onto 
their own surfaces before averaging (Supplemental Figure 10).  These effects extend to the 
maximum partial volume maps as well (Figure 9).  In regions with high folding variability, it is 
challenging for cortical areas to be dominant over non-cortical tissue classes (white matter in 
particular), as shown by the extensive bright yellow regions in the top two rows for FNIRT + 
ASM mapping (column 2) and their even greater extent for FNIRT + MIM (column 4).  These 
effects are further exacerbated by volume-based smoothing (columns 3 and 5).  Notably, for 
some cortical areas that are well aligned by folds, such as those in the insula, the methods are 
essentially identical across unsmoothed approaches (though again, volume-based smoothing is 
universally deleterious).  However, when analyzing all of cortex, it is much better to map 
individual data onto individual surfaces and align the data on the surface if one wants to relate it 
to surface-based data, including the HCP’s multi-modal parcellation. 
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Figure 9.  Comparison of the surface-based maximum partial volume map to the maps produced after 
volume-based analysis with Average Surface Mapping (ASM) or Multi-Individual Mapping (MIM), and 4 
mm FWHM volume-based smoothing before ASM and MIM.  The figure uses the same methods as 
Supplemental Figure 10, and then uses the maximum fraction to label the surface vertices.  In the top two 
rows, bright yellow is the white matter label, and bright orange is the CSF label (occurring in only a few 
small patches).  Substantial regions of the cortex are not separated into cortical areas after volume-based 
analysis and MIM, and ASM shows significant stripes where the gyral crowns are decapitated.  On the 
other hand, in regions of lower folding variability and variability of areas vs folds such as the insula, 
volume-based methods reproduce the parcellation found with the surface-based approach, particularly if 
smoothing is not used.  See Supplemental Methods Sections M2 and M9. Data at 
https://balsa.wustl.edu/nKvx. 
 
Discussion 
 
We have systematically explored the impact on spatial localization of different acquisition and 
analysis choices, using a large dataset in which the cerebral neocortex was individually 
parcellated using multiple modalities.  This data allowed us to incisively and quantitatively 
assess the impact of these methodological choices on spatial localization, not only for the HCP-
MMP1.0 parcellation data but also by extension for a wide range of neuroimaging studies (both 
past and future).  The analysis in Figure 8 summarizes the key results and illustrates the 
magnitudes of the effects on spatial localization of different analysis choices.  Areal-feature-
based surface registration (MSMAll or MSMAllStrain) without smoothing clearly achieves the 
best localization of the HCP-MMP1.0 areas.  The effect of 4 mm FWHM surface-based 
smoothing on MSMAll registered data is comparable to the difference between MSMSulc and 
FreeSurfer folding-based registrations: modest, but still meaningful.  The difference between 
registrations based on areal features vs folding is comparable to the difference between folding-
based surface registration and FNIRT volume-based registration, and also similar to the 
difference between unsmoothed areal-feature-based surface registration and more heavily 
smoothed areal-feature-based surface registration at 8 mm FWHM.  15 mm FWHM surface-
based smoothing more substantially degrades MSMAll aligned cortical areal spatial localization 
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to be similar to that of unsmoothed FNIRT volume-based alignment.  The degradation of spatial 
localization from moderate (4 mm FWHM) unconstrained volume-based smoothing is similar to 
the difference between unsmoothed volume-based registration vs areal feature-based 
registration, and the degradation is substantially greater for the more commonly used 8 mm 
FWHM volume-based smoothing (17).  Importantly, these effects are cumulative, and one 
cannot “recover” any spatial localization that was lost in previous steps (i.e. smoothing does not 
ameliorate reductions in spatial localization from registration methods that do not align areas, it 
instead makes them worse).  
 
Studies that use extensive smoothing typically do not overtly justify their chosen amount of 
smoothing. The most common smoothing level in the literature is 8 mm FWHM, the default 
value in SPM, the most commonly used neuroimaging software package (17).  While spatial 
smoothing is indeed effective in increasing statistical sensitivity, so too is improving areal 
alignment across subjects with surface-based, areal-feature-based registration.  Aligning “like 
with like” tends to improve z-statistics by reducing cross-subject variability (see (13)), and it also 
makes the resulting group maps sharper and more neuroanatomically interpretable rather than 
making them blurrier and less interpretable as smoothing does.  Use of areal feature-based 
registration together with minimal smoothing was critical for creating HCP’s multi-modal 
parcellation at the group level (9).  Permutation-based non-parametric statistical methods (such 
as that offered in PALM software [https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM; (34)] can be used 
without smoothing, or with small amounts of smoothing, in contrast to popular parametric 
methods, and also work well with HCP-Style CIFTI or parcellated data.  The statistical 
assumptions required by Gaussian random field theory, which have been assumed to be 
satisfied by using large smoothing kernels, were recently shown to be unsatisfied in some 
cases, leading to increased false positives (35). 
 
Surface-based representations of cortical data are more visually informative than volume-based 
depictions, insofar as the convoluted sheet-like cerebral cortex is best inspected on a 2D visual 
model, often using inflation or flattening to expose cortex that is buried inside sulci.  Modest 
surface-based smoothing (e.g., 4 mm FWHM) can increase statistical sensitivity and make 
maps more visually appealing at the cost of a modest decrease in spatial resolution (e.g., 
reducing the discriminability of thin features such as area 3a or fine details such as somatotopic 
variations in myelin content in areas 4 or 3b).  Parcellation provides a more powerful alternative 
to spatial smoothing for increasing statistical sensitivity (13).  Parcel-constrained averaging can 
be considered a neuroanatomically informed method of “smoothing” (averaging within cortical 
areas defined using multiple modalities)2 that also greatly reduces the number of statistical 
comparisons.  Rather than improving alignment, spatial smoothing further erodes the ability to 
localize brain structure, function, or connectivity in neuroimaging studies.  The statistical 
sensitivity benefits of spatial smoothing come from reducing the effects of unstructured noise in 
the data and real cross-subject variability, not from alignment improvements.  Notably, other 
fields concerned with image analysis generally strive to reduce rather than increase blurring of 
their images (e.g., astronomy uses space telescopes and advanced adaptive optics to 
counteract the blurring effects of the earth’s atmosphere).    (36, 37)    (38) 
 
Additionally, the use of statistical thresholds (which are less reproducible than effect size maps 
and spatial gradients (13)), and the tendency to summarize activation clusters as single 3D 

																																																								
2Parcel-based averaging is appropriate for many analyses, but of course not for all. For example, studies 
of fine-scale cortical topography (e.g., 36-38) depend on preservation of small spatial details and are best 
analyzed using minimally smoothed data.  However, neurobiological interpretation of topographic 
gradients can benefit from relating the gradients to nearby cortical areas.  
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coordinates, induce further spatial localization uncertainty in the traditional volume-based 
literature.  Taken together, these limitations make accurate comparisons between the traditional 
neuroimaging literature and the HCP’s multi-modal parcellation very challenging indeed.   
Our findings are also unlikely to be the result of circularity (i.e., that MSMAll was intrinsically 
favored because it had been used in generating the HCP-MMP1.0 parcellation used here to 
evaluate different acquisition and analysis methods) for the reasons discussed in Supplemental 
Discussion Section D1.  Briefly, we used a spatially agnostic classifier, analyzed an independent 
dataset, and replicated the findings with a different version of the registration algorithm that 
produces a non-identical solution.  Indeed any circularity concerns would be limited to the 
improvements of MSMAll over and above MSMSulc, which accounts for only ~25% of the 3-fold 
improvement of MSMAll over FNIRT with 8mm smoothing (~50% is related to not doing the 
smoothing and another ~25% to surface instead of volume alignment).  MSMAll has previously 
been shown to provide major improvements in independent task fMRI data that was not used in 
the registration (20, 21) over MSMSulc.  Thus, we believe any circularity effect is small if it 
exists at all, and even in a worst case it would not affect our main conclusions. 
 
Our analysis focused on FSL’s FNIRT algorithm and alignment to the MNI152 FNIRT non-linear 
atlas template because that is how the HCP data were aligned volumetrically.  Numerous other 
algorithms for volumetric alignment are available, and numerous template volumes are used as 
targets for registration to an atlas. However, we believe that no volume-based registration 
algorithm that enforces smoothly varying and anatomically plausible amounts of distortion will 
have better cortical alignment performance than the areal-feature-based surface registration 
algorithm shown here, even if areal features were used in the volume3.  Volume-based 
registration of incompatible folding patterns and of incompatible relationships between areas 
and folds is a profoundly more challenging problem.  While surface-based registration achieves 
a correspondence in 2D on a sphere, which allows spherical registration deformations to ignore 
incompatible or misleading folding patterns and therefore is unable to mix cortex with white 
matter or CSF, nonlinear volumetric registration is instead defined in terms of anatomical 
deformations, and must explicitly deal with fundamental folding issues like two gyri in some 
subjects where most have only one (see Supplemental Discussion Section D2 for further 
discussion of alternative volume-based registrations and the fundamental differences between 
surface and volume-based registration).  On the other hand, even better correspondence 
across subjects than the current areal-feature-based surface registration may be attainable 
using improved algorithms within the MSM framework (20), increasing the amount of allowed 
distortion, or other topology-preserving approaches [e.g.,(39)].  Methods that do not enforce 
topology preservation such as individual subject parcellation (9, 40, 41) or hyperalignment (42) 
(36) can perform even better.  Surface based studies, such as those that have used FreeSurfer 
alignment to the ‘fsaverage’ atlas, can profitably be compared to the HCP-MMP1.0 parcellation 
(see Supplemental Discussion Section D3).  Indeed they are ~3/4ths of the way towards an 
HCP Style analysis (Figure 8).  For legacy volume-based studies, it is now feasible to reanalyze 
such data using surface-based methods for accurate comparison with modern maps of the 
cerebral cortex (e.g. using tools such as CIFTIFY that are expressly designed for this purpose 
(https://github.com/edickie/ciftify)).  Finally, it is worth remembering that while we believe the 

																																																								
3That said, we feel volumetric registration of subcortical structures remains important (for example, the 
HCP uses the FNIRT nonlinear registration algorithm for subcortical alignment). Additionally the use of 
fiber orientation information may improve white matter fiber-tract alignment in the same way that areal-
features improve cortical areal alignment (43-44). Additionally, the use of gentler volume registration 
algorithms optimized maximize functional alignment would be beneficial (see Supplementary Figures 11 
and 12) together with including surface-based constraints that may also help resolve some ambiguities in 
the volume (45).   
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HCP’s multi-modal parcellation version 1.0 is the best available map of human cerebral cortical 
areas, we expect future refinements as more data become available and more investigators 
tackle the cortical parcellation problem using semi-automated, HCP-Style approaches (see 
Supplemental Discussion Section D4).  
 
Concluding Remarks 
 
For decades, human neuroimaging studies have been dominated by an analysis paradigm 
consisting of volumetric alignment of cortical data coupled with unconstrained volumetric spatial 
smoothing.  Unfortunately, this volumetric alignment is inaccurate for most of human neocortex, 
and results in statistically significant blobs whose precise relationship to cortical areas is 
uncertain.  These blobs are then represented as 3D volumetric coordinates and assigned to 
Brodmann areas and/or coarse folding-related landmarks.  Such results generally lack a close 
resemblance to the fine-grained mosaic of areas that populate the cortical sheet and generate 
the functional signals measured by these studies (9).  Cortical surface-based approaches 
provide powerful alternatives that have gained momentum since their introduction two decades 
ago, especially for studies of visual cortex, e.g. (14), but widespread adoption of surface-based 
approaches has been slow [see (27); (13)], hampering progress in understanding cortical areas 
outside the visual system.  Factors contributing to this unfortunate situation include the desire to 
replicate or compare with existing studies that used the traditional volume-based approach; the 
relative lack of “turn-key” tools for running a surface-based analysis [but see (19)]; the learning 
curve for adopting surface-based analysis methods; unawareness of the problems with 
traditional volume-based analysis; and uncertainty or even skepticism as to how much of a 
difference these methodological choices make. 
 
The present study speaks mainly to the last two points, as we have used the HCP’s multi-modal 
parcellation to quantify the benefits of aligning data on surfaces instead of in volumes, using 
areal features instead of folds for this alignment, and minimizing spatial smoothing.  These 
choices have a large impact on spatial localization.  Moreover, analysis software and 
preprocessing pipelines for using ‘grayordinate-based’ analysis and visualization are now freely 
available, such as the HCP pipelines available on github (https://github.com/Washington-
University/Pipelines), Connectome Workbench, growing support in FSL, and tools such as 
CIFTIFY for processing legacy data (https://github.com/edickie/ciftify).  FreeSurfer has also 
provided its own surface-based analysis streams for nearly two decades (Fischl et al 1999).  We 
hope that these approaches will receive increasing support and adoption in other tools such as 
AFNI (SUMA), BrainVoyager, and SPM (CAT). 
 
Rather than continuing with “business as usual” using the traditional volume-based approach, 
we encourage neuroimaging investigators to re-evaluate the methods that they are using.  An 
over-reliance on measures of statistical significance to assess scientific validity of brain imaging 
studies and an under-appreciation of neuroanatomical fundamentals has contributed to recent 
controversies in neuroimaging [e.g. (35)].  The issues considered in this and preceding papers 
[see (13)] are arguably even more problematic, given the vast resources poured into tens of 
thousands of neuroimaging studies that have yielded blurry results that would require re-
analysis to enable accurate comparisons with the sharper picture that is emerging of the 
functional and structural organization of the cerebral cortex.  The future impact of these legacy 
studies is significantly limited by the difficulty in accurately comparing them to modern surface-
based maps of the human cerebral cortex. 
 
Widespread adoption of approaches to data acquisition, analysis, and visualization that 
preserve high resolution and enable precise spatial localization is vital for accurately relating 
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brain structure, function, and connectivity to well defined neuroanatomy.  Progress in this 
direction will benefit from recognition and consideration of these issues by investigators, 
reviewers, journal editors, and funding agencies alike.  Accurate relation of brain mapping 
results to brain areas can accelerate progress in understanding how the brain works in health 
and disease. 
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