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Abstract

Genome-wide association studies have helped to shed light on the genetic architecture of
complex traits and diseases. Deep phenotyping of population cohorts is increasingly
applied, where multi- to high-dimensional phenotypes are recorded in the individuals.
Whilst these rich datasets provide important opportunities to analyse complex trait
structures and pleiotropic effects at a genome-wide scale, existing statistical methods for
joint genetic analyses are hampered by computational limitations posed by
high-dimensional phenotypes. Consequently, such multivariate analyses are currently
limited to a moderate number of traits. Here, we introduce a method that combines
linear mixed models with bootstrapping (LiMMBo) to enable computationally efficient
joint genetic analysis of high-dimensional phenotypes. Our method builds on linear
mixed models, thereby providing robust control for population structure and other
confounding factors, and the model scales to larger datasets with up to hundreds of
phenotypes. We first validate LiMMBo using simulations, demonstrating consistent
covariance estimates at greatly reduced computational cost compared to existing
methods. We also find LiMMBo yields consistent power advantages compared to
univariate modelling strategies, where the advantages of multivariate mapping increases
substantially with the phenotype dimensionality. Finally, we applied LiMMBo to 41
yeast growth traits to map their genetic determinants, finding previously known and
novel pleiotropic relationships in this high-dimensional phenotype space. LiMMBo is
accessible as open source software (https://github.com/HannahVMeyer/limmbo).

Author summary

In multi-trait genetic association studies one is interested in detecting genetic variants 1

that are associated with one or multiple traits. Genetic variants that influence two or 2

more traits are referred to as pleiotropic. Multivariate linear mixed models have been 3

successfully applied to detect pleiotropic effects, by jointly modelling association signals 4

across traits. However, these models are currently limited to a moderate number of 5

phenotypes as the number of model parameters grows steeply with the number of 6

phenotypes, raising a computational burden. We developed LiMMBo, a new approach 7

for the joint analysis of high-dimensional phenotypes. Our method reduces the number 8

of effective model parameters by introducing an intermediate subsampling step. We 9

validate this strategy using simulations, where we apply LiMMBo for the genetic 10
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analysis of hundreds of phenotypes, detecting pleiotropic effects for a wide range of 11

simulated genetic architectures. Finally, to illustrate LiMMBo in practice, we apply the 12

model to a study of growth traits in yeast, where we identify pleiotropic effects for traits 13

with formerly known genetic effects as well as revealing previously unconnected traits. 14

Introduction 15

Quantitative measurements of organisms have been a bedrock of genetics since the birth 16

of this science [1]. One can measure many different traits of an organism and it is 17

natural to want to jointly analyse the measurements to discover new genetic 18

associations, generically called multi-trait analysis. Many cohort studies today have rich, 19

high-dimensional datasets ranging from studies in model organisms such as yeast and 20

Arabidopsis thaliana to human molecular, morphological or imaging derived traits [2–6]. 21

Genetic association studies of high-dimensional traits have often used approximate 22

methods such as dimensionality reduction of the phenotypes prior to the genetic 23

mapping and univariate trait-by-trait analyses followed by post-hoc integration using 24

meta-analysis. Although both strategies have been successful in a variety of 25

scenarios [7–10], neither uses the potential of genetics to inform the joint multi-trait 26

analysis. In contrast, multivariate regression models explicitly model the genotypic 27

association across multiple phenotypes. 28

A recent innovation in regression models for genetics has been to use linear mixed 29

models (LMMs). LMMs in genetics use the random effect term for explicitly modelling 30

complex genetic structure [11,12] thereby retaining calibrated test statistics even in 31

structured populations. LMMs are common in genetic studies of animal and plant 32

breeding, and more recently have been applied to account for population structure and 33

relatedness in human populations [10,13,14]. In addition, they allow for estimating 34

narrow sense heritability [15,16]. 35

Most recently, extensions of the classical LMM have enabled joint genetic analyses of 36

multiple traits, where the random effect component captures both the genetic 37

covariance between individuals (sample-to-sample) and the traits (trait-to-trait) [17–19], 38

accounting for the genetic trait covariance. Additionally, these models also consider a 39

residual trait covariance, which capture covariances between traits not due to genetics. 40

Importantly, while the genetic sample covariance can be directly estimated from the 41

genetic variation data itself, e.g. using a realised relationship or identity by descent, the 42

trait covariance matrices need to be statistically estimated, typically using a (restricted) 43

maximum likelihood procedure. 44

Current multi-trait LMM implementations scale reasonably well with the number of 45

analysed samples [18,19] but not as well with number of the traits.Specifically, 46

computations become prohibitive as soon as a few tens of traits (P) are considered, with 47

a computational complexities ranging O(P5) to up to O(P7) for existing 48

methods [17,19]. 49

Here we developed a simple, but surprisingly effective heuristic to efficiently estimate 50

large trait covariance matrices in linear mixed models using bootstrapping (LiMMBo), 51

thereby allowing for the analysis of datasets with a large number of phenotypic traits. 52

We first validate LiMMBo through comparisons to exact inference methods on a smaller 53

and tractable datasets, demonstrating the consistency of the variance component 54

estimates obtained using the model. 55

Importantly, LiMMBo is faster than existing methods, even for moderately sized 56

problems. This enables both efficient variance component estimation but also genetic 57

mapping for high-dimensional phenotypes with up to hundreds of traits. Using 58

simulations, we show that the ability to scale multi-trait LMMs to large numbers of 59

traits substantially increases the power to detect genetic effects. Finally, we illustrate 60
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the effectiveness of LiMMBo through application to a yeast quantitative trait loci 61

study [2] with 41 measurements. We observed an increase in power compared to 62

univariate models and used LiMMBo to explore the pleiotropic relationship between 63

traits. 64

Results 65

Covariance estimation via bootstrapping 66

LiMMBo builds on a multivariate LMM framework with multiple fixed and random 67

effect components [19,20]. This model can be used to estimate genetic and non-genetic 68

variance components, and it has been applied to test for genetic associations between 69

individual variants and moderately sized groups of traits [21,22]. Briefly, this LMM 70

model can be cast as 71

Y = G + Ψ, (1)

where the N × P phenotype matrix Y for N individuals and P traits is modelled as the 72

sum of a genetic (or polygenic) component G and a noise component Ψ. We have 73

omitted additional fixed effects for notational brevity. Here, G and Ψ are random 74

effects following matrix-normal distributions: 75

G ∼MNN,P (0,R,Cg)

Ψ ∼MNN,P (0, IN,Cn) ,
(2)

where R denotes the N ×N genetic relationship matrix, IN is the N ×N identity 76

matrix and Cg and Cn are the genetic and the residual trait P × P covariance matrices, 77

respectively. The marginal likelihood of the model in equation Eq. 2 can be expressed in 78

terms of a multivariate normal distribution of the form 79

p (Y|Cg,RN ,Cg) = N (vecY|0,Cg ⊗RN + Cn ⊗ IN) , (3)

where the covariance structure of the phenotypes (in shape of the N × P phenotype 80

vector vec (Y) through stacking the columns of the phenotype matrix) is described by 81

the sum of the Kronecker products ⊗ of the sample and trait covariance terms. This 82

model enables efficient inference schemes by exploiting Kronecker identities for the 83

eigendecomposition of the full covariance matrix [18–20,23]. In particular, it allows for 84

decoupling the decomposition of Cg and RN , which greatly increase the efficiency of 85

the inference as RN is constant. The model in Eq. (3) also corresponds to the null 86

model when using the multi-trait LMM for genetic association mapping. While there 87

exist exact schemes for refitting the variance components for each variant tested [18], 88

approximations that keep the fitted variance components Cg and Cn from the null 89

model constant across tests frequently yield satisfactory results [12,17,20]. 90

The complexity of a multivariate LMM implementation previously described 91

in [19,20] (herein ‘standard REML’) is O(N2 + t(NP 4 + P 5)) with N samples, P traits, 92

and t iterations of Broyden’s method, which uses an approximation of the second 93

derivative for optimising the REML of the parameter estimates. From this scaling 94

behaviour, it becomes evident that as the number of traits increases, the complexity 95

increases steeply (as is the case for other inference schemes, Supplementary Tab. S1), 96

thereby limiting applications for larger numbers of traits. 97

The key innovation in LiMMBo is to perform the variance decomposition on b 98

bootstrap samples of a subset of s traits, and then to appropriately use those bootstrap 99

samples to reconstruct the full Cg and Cn matrices (Fig. 1, right panel). By breaking 100

down the computationally expensive variance estimation step into b independent steps, 101

LiMMBo reduces the overall complexity of the ‘standard REML’ to 102
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O(N2 + bt1(Ns4 + s5) + t2P
2). Parameter estimation for the full trait set is only 103

required for the final covariance matrices Cg and Cn and is achieved by finding the best 104

fit of the bootstrap estimates to a P × P covariance matrix (see Methods). While this 105

approach keeps the complexity at O(P 2), it has the additional advantage of allowing for 106

trivial parallelisation of the covariance estimation step. The variance decomposition of 107

each bootstrap is computed independently and our implementation allows for making 108

use of multiple cores. 109
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Fig 1. Variance decomposition with REML and LiMMBo. REML approach
(left): the phenotype set of P traits and N samples is decomposed into its P × P
trait-to-trait covariances Cg and Cn, based on the provided N ×N genetic
sample-to-sample kinship estimate matrix R. The noise sample-to-sample matrix I is
assumed to be constant (identity matrix). Existing implementations of LMM to fit such
variance decomposition (VD) models via REML are limited to moderate numbers of
phenotypes. LiMMBo approach (right): for higher trait-set sizes, the phenotypes’
variance components are estimated on b s-sized subsets of P which are subsequently
combined into the overall P × P covariance matrices Cg and Cn.

Scalability 110

To assess the scaling of LiMMBo, we fit the model to simulated datasets with increasing 111

numbers of phenotypes. Fig. 2 shows both the overall compute time and a break down 112

into the two main components of the method, bootstrapping and the combination of the 113

bootstrapping results. The majority of compute time is needed for the variance 114

decomposition of the bootstrapped subsets, which can be trivially parallelised across 115

bootstraps. As a comparison, the time taken by the standard REML approach quickly 116

exceeds the time of LiMMBo and becomes infeasible for more than 30 traits. 117

LiMMBo yields reliable covariance estimates 118

To assess the accuracy of LiMMBo for covariance estimation of the trait covariances Cg 119

and Cn, we considered in-silico simulations with known ground truth. We simulated 120

datasets with different extents of population structure (based on genotype data of the 121

1000Genomes Project [24], see Methods), varying the extent of the genetic population 122

effect and different numbers of traits. 123

First, we compared the LiMMBo and the standard REML fits in terms of their 124

accuracy to recover the true simulated covariance matrix. This comparison is only 125

feasible in the regime of low to moderate number of traits (i.e., lower than 30) where 126

existing REML implementations can be applied. Reassuringly, we observed that both 127

approaches provide consistent estimates of comparable accuracy, independent of the 128

number of traits (Fig. 3A). 129
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Fig 2. Scalability of REML and LiMMBo. Empirical run times for standard
REML inference and LiMMBo on ten simulated datasets with N = 1, 000 individuals,
increasing number of traits (P ∈ {10, . . . , 100} and different amount of variance
explained by the genetics (h2 ∈ {0.2, 0.5, 0.8}). Shown is the average empirical run time
for 30 experiments per trait size (10 per h2) , with error bars denoting plus or minus one
standard deviation across experiments. Lines denote a fit of the theoretical complexity
to the observed run times: bootstrapping step (orange): b(Ns4 + s5); the combination
of the bootstrapping (blue): P 2, their combined run time (turquoise): b(Ns4 + s5) + P 2

and the standard REML approach (red): NP 4 + P 5. b: number of bootstraps, s:
bootstrap size, P : phenotype size, N : sample size. The majority of the run time is
allocated to the bootstrapping. Run times for the standard REML are depicted up to
P = 40 when they already exceed the run times for P = 100 in the LiMMBo approach.
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Next, we assessed the utility of LiMMBo estimates of the trait covariance matrices 130

for carrying out multi-trait GWAS. Specifically, we assessed the calibration of type-I 131

error rates using phenotypes simulated from the null (no causal variant) and applying 132

LiMMBo to fit the the trait covariances Cg and Cn which we then used in a 133

multivariate LMM [17]. For low to moderate number of traits we compared the 134

calibration to a multi-trait LMM using standard REML-derived estimates of Cg and 135

Cn. Association tests based on the random effect covariance estimates using both 136

inference schemes were calibrated across varying proportion of variance explained by 137

genetic effects and different numbers of traits, including the regime of large P , where 138

existing methods cannot be applied (Fig. 3B). 139

In principle, multivariate genetic analyses in higher dimensions are also possible 140

using simple linear models without a random effect component, thereby avoiding the 141

computational bottleneck of genetic trait covariance estimation. However while 142

population structure can be accounted for within this approach, for example by 143

including principal components of the genotypes as covariates into the model, these 144

methods have known limitations when the individuals are related [12,19]. Consistent 145

with this, we found that the linear model was poorly calibrated in such structured 146

populations (Supplementary Tab. S4), clearly demonstrating the strength of the 147

mixed-model approach LiMMBo. 148

Multi-trait genotype to phenotype mapping increases power for 149

high-dimensional phenotypes 150

First, we consider simulated data to assess whether the power benefits of multivariate 151

LMMs translate to high-dimensional phenotypes when using a fixed effect test with as 152

many degrees of freedoms as traits. We examined a wide range of simulation settings, 153

simulating up to 100 traits and varying proportions of traits affected by genetic variants. 154

The mean genetic variance across all traits was kept constant (i.e with an increase in 155

the affected traits the contribution of the genetic component per trait decreases). For 156

each set-up, we simulated 50 different phenotypes and estimated the trait covariance 157

matrices Cg and Cn via LiMMBo. 158

We used these estimates in a multivariate LMM to test the association between the 159

known causal SNPs (from simulation) and the phenotypes and compared them to 160

results of univariate LMMs of the causal SNPs and the phenotypes. Fig. 4 compares the 161

power of the multivariate and univariate LMM as the percentage of significant SNPs out 162

of all true causal SNPs (univariate p-values were adjusted for multiple testing across 163

traits, see Methods). In the scenario where all traits are affected by the fixed genetic 164

effects, the burden of multiple testing in the univariate models weighs at least as heavy 165

as the increased number of degrees of freedom. For the highest number of traits 166

simulated both models are comparable in the number of causal SNPs they detect. For 167

the other trait sizes tested, the multivariate model out-performs the univariate model by 168

far (Fig. 4A). The advantage of the multivariate model to exploit correlated trait 169

structures becomes evident when the proportions of traits affected by the causal SNPs 170

is increased. The univariate model suffers from the weaker genetic components when a 171

large number of traits is affected and loses power. In contrast, the multivariate model 172

can still detect increasing percentages of true causal SNPs (Fig. 4B). For both the 173

univariate and multivariate model, the number of detected SNPs decreases with 174

increasing variance explained by genetics, as the effect sizes of the SNPs (fixed for all 175

simulations) become negligible compared to the overall genetic variance. However, the 176

multivariate model is still able to exploit the correlation of the SNP effects across traits 177

and detects more SNPs in cases of high genetic background structure (Fig. 4C). An 178

overview of all parameter comparisons can be found in Supplementary Fig. S2. 179
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Fig 3. Comparison of trait-by-trait covariance estimates derived using
standard REML and LiMMBo. Phenotypes with increasing percentages of
variance explained by genetic effects (h2 ∈ {0.2, 0.5, 0.8}) and for increasing numbers of
traits were simulated. The genetic and noise trait covariance matrices Cg and Cn were
estimated using both LiMMBo and standard REML. A Comparison of the estimated
trait covariances to the simulated (‘true’) matrices using the root mean squared
deviation (RMSD). For each of the simulation scenarios, ten independent datasets
generated for each setting. Boxplots show the distribution of RMSD values for Cg and
Cn across the simulation settings. For moderate trait set sizes ranging from 10 to 30
traits, LiMMBo and conventional REML yield consistent covariance estimates. RMSD
in covariance estimates via LiMMBo remained stable for larger numbers of traits
(P ∈ {50, 100}). B Comparison of model calibration in multi-trait GWAS with
LiMMBo and standard REML derived covariance matrices. Statistical calibration of
p-values under the null model was assessed for each of the trait sizes and percentages of
variance explained by genetic effects. Quantile-quantile plots show uniform distribution
for both methods across all trait sizes and levels of proportion of variance explained by
genetics. Multi-trait GWAS for phenotypes with 50 and 100 traits was only possible
with LiMMBo.
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Fig 4. Power comparison for multivariate and univariate LMMs of
high-dimensional phenotypes. Each panel shows the influence of one simulation
parameter on the power to detect the causal SNPs. When investigating one parameter,
the other parameters were fixed at a certain value. For each set-up, 50 independent
datasets were simulated and analysed. A. Influence of the number of traits: proportion
of traits affected and the total genetic variance fixed at a = 1 and h2 = 0.2, respectively.
B. Influence of proportion of traits affected: trait size and total genetic variance fixed to
P = 50 and h2 = 0.2 respectively. C. Influence of total genetic variance: trait size and
proportion of traits affected fixed to P = 100 and a = 0.6.
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Multi-trait GWAS in yeast 180

Next, to illustrate the utility of LiMMBo, we applied the model to a QTL dataset of 181

growth rates measured in a yeast cross cross for 41 different conditions [2], which is a 182

well-placed complexity of traits given our simulations. Fig. 5A depicts results from a 183

multi-trait GWAS based on LiMMBo covariance estimates, as well as a single-trait 184

GWAS analysis, where each trait was analysed separately. Multi-trait GWAS with 185

LiMMBo (blue) detected more significant associations, identifying 384 associations 186

versus 275 associations (accounting for linkage disequlibriium, r2 < 0.8 in a 3kb window; 187

see below) in the single-trait GWAS (orange; minimum p-value per SNP across all 41 188

single-trait GWAS, adjusted for multiple testing). This increase in detected associations 189

was consistent across different ranges of LD criteria to define individual loci 190

(Supplementary Tab. S5), with on average 29% more significant loci in the multi-trait 191

GWAS. In contrast there are a few significant loci for the single-trait GWAS where the 192

multi-trait analyses either does not reach significance (e.g. on chromosome 7) or does 193

not detect any association (e.g. on chromosome 4). For these loci, the underlying 194

genetics seem to be trait specific to magnesium sulfate and hydroquinone, respectively 195

(Supplementary Fig. S5. 196

In addition to the significance of an association, linear mixed models provide effect 197

size estimates for the tested SNPs. By analysing the effect sizes of significantly 198

associated SNPs across traits, we can explore pleiotropic effects of these significant loci. 199

We limited the analysis to the multi-variate effect size estimates from significant 200

variants located within a gene body to ensure we could link the variants to specific 201

genes for downstream analysis. Subsequently, we pruned these variants for LD (r2 > 0.2, 202

3kb window; see methods) to remove potential bias in the clustering due to an 203

over-representation of variants from large loci. 204

Most of these resulting 210 loci have strong effect size estimates for more than one 205

trait, i.e., most loci seem to be pleiotropic (Fig. 5B, non-zero effect sizes in columns). 206

Furthermore some traits have striking contributions from multiple loci across the 207

genome, in particular xenobiotic growth conditions e.g. zeocin [25] and neomycin [26] 208

(Fig. 5B, large effect sizes across rows). 209

To gain more insights into the trait architecture, we analysed the effect size estimates 210

across loci and traits using hierarchical clustering (robustness of the clustering assessed 211

via a bootstrapping-based method (pvclust, [27])). Overall, we observed 14 stable trait 212

and 136 stable variant clusters, many of which are nested; these clusters collapsed into 6 213

trait and 19 variant exclusive groupings at the highest branch (Supplementary Fig. S3). 214

These six significant clusters for traits (Fig. 5B, blue row dendrogram) include 215

classically linked carbon metabolism sources (lactose, lactate and ethanol), and other 216

clusters which there is literature support for. For example, there is consistent gene 217

expression changes upon treatment such as DNA replication agents hydroxyurea and 218

4-nitroquinoline-l-oxide (x4NQO) [28] or trehalose and sorbitol which have previously 219

been shown to have synergistic effects on viability in yeast [29]. For other clusters, such 220

as SDS and Hydroxybenzaldehyde or magnesium sulfate and berbamine we were unable 221

to find literature support but this could be a candidate clustering of these growth 222

phenotypes for further investigation. Out of the 19 stable SNP clusters (Fig. 5B, blue 223

column dendrogram), many clusters include disjoint regions across a chromosome and 224

twelve clusters (Fig. 5B, grey boxes) span multiple chromosomes. Some of the clusters 225

extending across chromosomes have suggestive common annotation, such as cluster a 226

which has two members of the nuclear pore complex (NUP1, NUP188), and cluster b 227

with a common set of vesicle associated genes (ATG5, PXA1,VPS41; Fig. 5B, labelled 228

boxes). The small size of clusters inhibited any systematic gene ontology based 229

enrichment, but the ability to explore both multiple traits and multiple loci from the 230

multi-trait GWAS provides stimulating hypothesis generation. 231
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A

B

Fig 5. GWAS across 41 yeast growth phenotypes. A. Manhattan plot of
p-values from single-trait and multi-trait GWAS. The single-trait GWAS
p-values were adjusted for multiple testing and only the minimum adjusted p-values
across all 41 traits per SNP are shown. The significance line is drawn at the empirical
FDRstGWAS = 8.6× 10−6 B. multi-trait GWAS effects size estimates. Effect size
estimates of LD-pruned (3kb window, r2 > 0.2), significant SNPs located within a gene
were clustered by loci and traits (both hierarchical, average-linkage clustering of
Pearson correlation coefficients). Traits and SNPs in stable clusters (pvclust p < 0.05)
are marked in blue. Grey boxes indicate stable SNP clusters spread across at least two
chromosomes; a and b label two clusters for which suggestive common annotation was
found, for details see text.
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Finally, for comparison, we repeated the same clustering analysis based on the 232

results from the single-trait model. This identified only 9 stable traits and 117 clusters 233

(Supplementary Fig. S4,S6), compared to 14 and 136 clusters from the multi-trait 234

analysis. As the number of input significant variants differ substantially between the 235

two analyses, it is complex to directly compare the two clusterings. However, both the 236

higher number of variants and the larger number of clusters shows that there is a clear 237

advantage in the multi-trait analysis. 238

Discussion 239

We have developed LiMMBo, a new methods for estimating trait-covariances for 240

multi-trait LMMs, which offers substantially enhanced scalability using a bootstrap 241

strategy. The most important benefit of LiMMBo is the scalability to 100s of 242

phenotypes, both because of its sub-sampling method and due the practical aspect that 243

major aspects of the computation can be parallelised. Our implementation detects 244

multi-threaded cores automatically, thereby taking advantage of this opportunity. In 245

practice, this means that trait sizes up to 30 or 40 can be run in hours, rather than 246

taking several days when using existing, full maximum likelihood methods for inference. 247

Complex datasets of up to 100 traits, which cannot be analysed using existing 248

implementations, are tractable using LiMMBo. In simulations, we show that the 249

resulting covariance matrices are as good an estimator of the real covariance matrices as 250

the maximum likelihood methods, yielding well-calibrated test statistics when used for 251

genetic association analyses in LMMs. We applied LiMMBo to a multi-trait yeast 252

dataset [2], showing an increase of power for loci discovery, in particular pleiotropic loci, 253

and the ability to analyse the pleiotropic effects of each locus. LiMMBo is accessible as 254

an open source, python module (https://github.com/HannahVMeyer/LiMMBo) 255

compatible with the LIMIX package [20,30] for LMMs. 256

Much of the attraction of linear mixed models in genetics has been their ability to 257

model complex genetic relatedness. Unsurprisingly, simple linear models are not 258

suitable for analysing phenotypes with complex underlying genetic relatedness, whereas 259

LMMs with the covariance matrices estimated by LiMMBo are appropriate and possible 260

up to 100s of traits. Complex relatedness in populations is widespread in plant- and 261

animal breeding in particular [10,13], and increasingly common in human bottleneck 262

populations [14]. Furthermore, as the population numbers increase in human genetics, 263

complex cryptic relationship structures are more prevalent [31], meaning that methods 264

such as LiMMBo will be more applicable in the future in human genetics. 265

The robust estimation of large trait covariance matrices is a recurrent statistical 266

challenge in genomics, from statistical genetics to single-cell analysis. The ability to 267

accurately estimate large trait covariance matrices using this bootstrap method may be 268

applicable to domains other than GWAS, e.g. many gene expression studies use 269

covariance matrices. Previous work from Schaefer and colleagues [32] showed the large 270

gene dimensions coupled with small(er) sample sets meant that empirical covariance 271

matrices could not be accurately estimated; other investigators [33–35] used shrinkage 272

methods to create valid covariance matrices. The work from Teng and colleagues [36] 273

uses subsampling but with strong shrinkage priors to generate the final covariance 274

matrix. By fitting the bootstrap average to the closest true covariance, LiMMBo 275

ensures positive-semidefiniteness of the covariance while avoiding ill-conditioned 276

matrices, which usually introduces large biases in the final use of these models. We are 277

actively exploring the use of the LiMMBo covariance estimation in this and other areas. 278

Our ability to generate large cohorts of well phenotyped and genotyped individuals 279

has forced the development of many new methods in statistical genetics. With the 280

advent of genotyped human cohorts up to 500,000 individuals with over 2,000 different 281
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traits [37], and plant phenotyping routinely in the 1,000s of individuals from structured 282

crosses with 100s to 1,000s of image based phenotypes [3, 13], we need both informative 283

and scalable methods. LiMMBo extends the reach of linear mixed models into this new 284

regime, allowing for new complex genetic associations to be made and a more 285

informative exploration of the underlying biological effects. 286

Materials and Methods 287

The LiMMBo implementation and all analyses scripts can be found at 288

https://github.com/HannahVMeyer/limmbo and 289

https://github.com/HannahVMeyer/LiMMBoAnalysis 290

LiMMBo implementation 291

LiMMBo is implemented as an open-source python module based on the limix 292

(version:limix-v1.0.12, url:https://github.com/limix/limix) module of the LIMIX 293

framework for linear mixed models [20]. 294

Covariance estimation 295

Covariance estimation via LiMMBo can conceptually be separated into three steps: i) 296

division of the full dataset into subsets, ii) variance decomposition on the subsets using 297

the REML approach implemented in [19,20] and iii) combine the results obtained from 298

the subsets. 299

In detail, from the total phenotype set with P traits, b subset of s traits are 300

randomly selected. b depends on the overall trait size P and the sampling size s and is 301

chosen such that each two traits are drawn together at least c times (default: 3). 302

For each subset, the variance decomposition is estimated via 303

mtSet.pycore.modules.multiTraitSetTest and .fitNull i.e. the null model of the mvLMM 304

(Eq. 1). For each bootstrap, the s× s covariance matrices Cs
g and Cs

n are recorded. 305

The challenge lies in combining the bootstrap results in a way, that the resulting Cg 306

and Cn matrices are covariance matrices i.e. positive semi-definite, and serve as good 307

estimators of the true covariance matrices. First, the covariance estimates for each trait 308

pair are averaged over the number of times they were drawn. The covariance estimates 309

of the b subsets are then combined by a least-squares fit to the closest 310

positive-semidefinite matrices via the gradient-based low-memory 311

Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) [38,39] implemented in 312

fmin l bfgs b of the SciPy python library [40]. The average covariance estimates are 313

used to initiate the optimisation matrices via limix.CFreeFormCF and 314

.setParamsCovariance. The model makes use of a Cholesky decomposition of the initial 315

matrices to be fitted via .getParams(), resulting in 1
2P (P + 1) model parameters to be 316

fitted. Cg and Cn are fitted separately. 317

Genetic association testing with LiMMBo 318

Genetic association testing with LiMMBo is split into two parts. First, the full trait 319

covariance matrices of the genetic Cg and non-genetic Cn random effects are estimated 320

via the covariance estimation scheme outlined above. Second, the covariance estimates 321

are used as input parameters for the multivariate linear mixed model with the full 322

phenotype set as the response variable, the genetic variant of interest as fixed effect and 323

possible, further non-genetic covariate effects (Eq. 5). 324
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Data simulation 325

Genotypes. Genotypes were simulated similar to strategies described in [19,41]. A 326

cohort of 1,000 synthetic genotypes were generated based on real genotype data from 327

four European ancestry populations of the 1,000 Genomes (1KG) Project (populations: 328

CEU, FIN, GBR, TSI) [24]. Each newly synthesised individual is assigned to a specified 329

number of ancestors a from the original 1KG Project and their genome split into blocks 330

of 1,000 SNPs (thereby retaining realistic LD structure between SNPs). For each SNP 331

block, the ancestor is randomly chosen and its genotype is copied to the individuals 332

genome. Choosing a low number of ancestors for the simulation introduces relatedness 333

among individuals, while high numbers lead to unstructured populations. Two cohorts 334

were simulated, one with a low number of ancestors (a = 2, popStructure) and one with 335

a high number of ancestors (a = 10, noPopStructure). The latter is only used for the 336

comparison of calibration of the multivariate linear model to the multivariate linear 337

mixed model. The resulting population structures are depicted in Supplementary 338

Fig. S1. 339

Phenotypes. Phenotypes were generated as the sum of up to four components: i) 340

genetic variant effects, ii) infinitesimal genetic effects (based on population structure), 341

iii) covariate effects and iv) observational noise via [42]. All components have a 342

percentage of common effect, i.e. the effect was shared across traits and a specific effect. 343

A list and description of all simulation parameters can be found in Supplementary 344

Tab. S2. For each of the genotype cohorts described above, different phenotype 345

scenarios depending on percentage of variance explained by genetics h2 and number of 346

traits P were simulated: i) h2 = {0.2, 0.5, 0.8} and ii) P = {10, 20, ..., 100}. The 347

variance explained by every components was fixed by scaling each of the components 348

with a factor a such that their average column variance Vcol =
V1+...+Vp

p explains a 349

fraction x of the total variance: a =
√

x
Vcol

. 350

• Phenotypes for scalability and covariance comparison: for the simulated genotype 351

cohort with related individuals, ten independent phenotype sets composed of 352

infinitesimal genetic and observational noise effects with P ∈ {10, 20, 30, 50, 100}, 353

h2 ∈ {0.2, 0.5, 0.8} and parameters described in Supplementary Tab. S2 and S3 354

were simulated; 355

• phenotypes for calibration analyses: for the both simulated genotype cohorts, 356

phenotypes composed of infinitesimal genetic and observational noise effects with 357

P ∈ {10, 20, 30, 50, 100}, h2 ∈ {0.2, 0.5, 0.8} and parameters described in 358

Supplementary Tab. S2 and S3 were simulated (one phenotype set for each 359

parameter set-up) analyses; 360

• phenotypes for power analyses: for the simulated genotype cohort with related 361

individuals, phenotypes composed of genetic variant effects, infinitesimal genetic 362

effects, non-genetic covariates and observational noise effects with 363

P ∈ {10, 50, 100}, h2 ∈ {0.2, 0.5, 0.8} and parameters described in Supplementary 364

Tab. S2 and S3 were simulated. For each design, 50 random phenotype sets were 365

generated, each with 10 normally distributed non-genetic covariate effects. For 366

each phenotype set, 20 SNP genetic effects were added to a subset of traits (subset 367

sizes in proportion of total number of traits: a ∈ {0.2, 0.4, 0.6, 0.8, 1}). For all 368

simulations, the mean genetic variance across all traits was kept constant and was 369

fixed at 1% of total phenotypic variance. In total, 370

3 h2 × 3 trait sizes× 100 permutations× 5 subset sizes = 4,500 phenotypes were 371

simulated. 372
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Models 373

Genetic relationship Population structure and relatedness between individuals can 374

be captured in a genetic relatedness matrix, which accounts for the pairwise genetic 375

similarity between individuals. The relatedness matrices were estimated via ‘plink 376

‘–make-rel square gz’ option based on an LD-pruned marker set (pruned for variants 377

with r2 > 0.2) with a window size of 50kb. 378

Multivariate linear models. In the simple multivariate linear model (mvLM), a 379

phenotype Y ∈ RN, P with P traits and N samples is modelled as the sum of a genetic 380

fixed effect x ∈ RN, 1, covariate fixed effects of Kcovariates F ∈ RN, K and i.i.d. 381

residual noise Ψ. 382

Y = FAWα + xβTWβ + Ψ, (4)

A ∈ RK, M and βT ∈ R1, L are the effect size matrix of the covariates and the effect 383

size vector of the genetic variant effects. The trait design matrices Wα and Wβ allow 384

different scenarios of the cross-trait architecture of the fixed effects on the phenotype. 385

For all analyses in this study, an ‘any effect’ model allowing for independent effects 386

across all traits was chosen, corresponding to W = IP. 387

Multivariate linear mixed models. The multivariate linear mixed model
(mvLMM) is an extension of the mvLM through the addition of a genetic random effect
G:

Y = FAWα + xβTWβ + G + Ψ, (5)

G ∼MNN,P (0,R,Cg) , (6)

Ψ ∼MNN,P (0, IN,Cn) , (7)

where the random effects G and Ψ are described by matrix-normal distribution with 388

column covariance Cg and Cn and row covariance R and IN, respectively. Cg and Cn 389

are the P × P trait covariance estimates, R the N ×N genetic relationship matrix and 390

IN a N ×N identity matrix. 391

Univariate linear mixed models. In the univariate linear mixed model (uvLMM), 392

the genetic background and residual noise are modelled as random effects with a scalar 393

estimate for the genetic G and noise trait-variance Ψ, σ2
g and σ2

e . 394

y = FA + xβT + g +ψ, (8)

g ∼ NN×1
(
0, σ2

gR
)
, (9)

ψ ∼ NN×1
(
0, σ2

eIN
)

(10)

Covariance comparison 395

The covariance matrices Cg and Cn were estimated via REML and LiMMBo and the 396

goodness of the estimation evaluated based on the root mean square deviation (RMSD) 397

from the true simulated covariance matrices: RMSD =

√∑n
t=1(Ĉsimulated−Cestimate)2

n . 398

Calibration 399

LiMMBo and the standard REML approach were used to estimate the trait covariance 400

matrices Cg and Cn of the simulated phenotypes without genetic variant effects (null 401
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model). Cg and Cn were then used as input for a multi-trait GWAS against all 402

genome-wide SNPs. The calibration of the multi-trait GWAS with LiMMBo and 403

standard REML derived trait covariance estimates was visually assessed by comparison 404

against a theoretically expected p-values distribution (quantile-quantile plot). For the 405

comparing the calibration of p-values from the mvLM and mvLMM under the null 406

model, the family-wise error rates (FWERs) of the multi-trait GWAS were estimated by 407

counting the number of tests that exceeded a given threshold divided by the overall 408

number of tests conducted, hence the number of genome-wide SNPs. 409

Power analyses 410

For each of the 20 causal SNPs, a mvLMM and uvLMM against the phenotypes was 411

conducted and the percentage of causal SNPs that were detected i.e. were significantly 412

associated were recorded. The significance was assessed by comparing the p-values 413

obtained from the mvLMM and uvLMM to p-values obtained from mvLMM and 414

uvLMM on 1,000 permutation of the genotypes. For the uvLMM, p-values were 415

adjusted for multiple testing by the number of traits that were tested and the minimum 416

adjusted p-value across all traits for a given SNP recorded. For each SNP, the number 417

of times the (adjusted) p-value of the permutation was less or equal to the observed 418

p-value was recorded and divided by the total number of permutations, yielding an 419

empirical p-value per SNP. 420

GWAS of yeast growth traits 421

Data. A publicly available dataset of a yeast cross grown in 46 different conditions [2] 422

was used as a case study to show the feasibility of LiMMBo. It consists of phenotype 423

and genotype data for 1,008 prototrophic haploid Saccharomyces cerevisiae segregants 424

derived from a cross between a laboratory strain and a wine strain strain. It contains 425

11,623 unique genotypic markers for all 1,008 segregants (no missing genotypes) and 46 426

phenotypic traits. For the phenotyping, segregants were grown on agar plates under 46 427

different conditions, including different temperatures, pH and nutrient addition (see 428

labels in Supplementary Fig. S8). The traits were defined as end-point colony size in a 429

given condition normalised relative to growth on control medium. Out of the 1,008 430

segregants, 303 were phenotyped for all 46 traits. Missing values were imputed in 431

segregants that were phenotyped for at least 80% of the traits. The final dataset 432

contained 981 segregants with phenotypes for 41 traits each (a detailed description for 433

the imputation strategy can be found in Supplementary Section 1). 434

Genetic relationship matrix and LD pruning. The genetic relationship matrix 435

of the yeast segregants and different sets of genome-wide SNPs with markers in 436

approximate linkage equilibrium were estimated via plink [43]. Pruning SNPs that are 437

in linkage disequilibrium (LD) was done via ‘–indep-pairwise kb-window 5 0.2’, where 438

the kb-window was varied from 3kb to 100kb. The relationship matrix was estimated 439

via the ‘–make-rel square gz’ option based on an LD-pruned marker (pruned for variants 440

with r2 > 0.2) set with a window size of 3kb. 441

GWAS Association of the 11,623 unique genotypic markers with the 41 growth traits 442

was analysed both via mvLMM (Eq. 5), mapping all traits jointly and uvLMM (Eq. 10), 443

mapping each trait individually. In the latter analysis, the p-values obtained were 444

adjusted for multiple testing by the effective number of tests Meff [44]: 445

Meff =
(
∑M

i=1

√
λi)

2∑M
i=1 λi

, where λ are the eigenvalues of the trait-by-trait correlation matrix. 446

For both analyses, an empirical false discovery rate (FDR) was estimated via 447
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permutations, following approaches of previous association studies in yeast 448

crosses [45–47]. With a conservative, theoretical significance threshold of pt = 10−5, at 449

most one SNP is expected to be false positive in a total of s = 11, 623 SNPs . To find 450

the empirical FDR corresponding to this threshold, k = 50 permutations of the 451

genotypes were generated and the LMMs fitted against these permutation. These 452

p-values were used as the empirical p-value distribution and for pt = 10−5, empirical 453

FDRs estimated as FDRmtGWAS = 1.2× 10−5 and FDRstGWAS = 8.6× 10−6. 454

Effect size analyses The following effect size analysis was conducted independently 455

for the effect sizes from the single-trait and multi-trait analyses. All SNPs passing the 456

respective FDR threshold (single-trait or multi-trait) were pruned for LD (r2 > 0.2, 3kb 457

window; as described above) and location within a gene body (yeast genome assembly: 458

ScerevisaeR64-1-1). The effect size estimates of these SNPs were clustered both across 459

traits and SNPs based on their correlation coefficients via pvclust [27] (number of 460

iterations: 50,000 for traits and 10,000 for SNPs). pvclust yields bootstrap-based 461

p-values as a measure for the stability of a given cluster. Clusters with p < 0.05 were 462

considered significant and extracted via pvpick, setting max.edge to FALSE. 463
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1 Supplementary Data 635

LMM inference schemes 636

Supplementary Tab. S1 summarises commonly used frameworks and describes their 637

computational complexity1. 638

Table S1. Linear mixed model frameworks for genetic association studies.
A list of popular LMM frameworks, grouped by their usage of covariance estimates
when fitting the alternative model (first column: E: exact, A: approximate). The
complexity describes the complexity for fitting a single LMM as specified in the original
publication or summarised elsewhere, as indicated by the footnotes. P indicates the
trait size that the model was designed for (according to the original publication).
Models with specific parameters are described in more detail in the text
(FaST-LMM-select and TASSEL). N : number of samples; sc: number of SNPs used for
singular value decomposition; c: compression factor with c = N

g for g individuals per
group; t, t1andt2: average number of iterations needed to find parameter estimates.
GRAMMAR-Gamma, FaST-LMM-select: t steps of the Brent’s algorithm; GEMMA,
MTMM: t1 steps of the EM algorithm, t2 steps of the NR algorithm; BOLT-LMM: t
steps of the variational Bayes and conjugate gradients; TASSEL: t steps of the
ProcMixed algorithm in SAS; mtSet: t steps of the L-FBGS.

Framework Complexity O P Reference

E
FastLMM-select Ns2c +N2 + tN 1 [48]

GEMMA
N3 +N2P+

10
[18]

t1NP 2 + t2NP 6 [18]

A

MTMM
t1N

3P 3 + t2N
3P 7

2 [17]
2

+N2P 2

EMMAX N3 + tN +N2 1 [12]
TASSEL 1

c3
N3 1 [49]

GRAMMAR-
N3 + tN +N 1 [50]Gamma

BOLT-LMM tN 1 [41]
mtSet N3 +N2 + tNP 5 10 [19]

Among the exact methods, FaST-LMM-select reduces the complexity best in terms 639

of sample size by selecting the number of SNPs to use for the estimation of the 640

relatedness matrix. However, it can only be applied in univariate analyses while MTMM 641

and GEMMA extend to multivariate cases. BOLT-LMM scales best with increasing 642

samples sizes in the group of approximate tests, by directly using the genotypes and not 643

computing or storing the relatedness matrix. All other methods have an upfront O(N3) 644

operation for the eigendecomposition of the relatedness matrix. TASSEL reduces this 645

complexity based on grouping of the samples and thereby effectively reducing the size of 646

the relatedness matrix 647

Simulations 648

Genotypes. 649

The synthetic genotypes were generated based on real genotype data from four 650

European ancestry populations of the 1000 Genomes (1KG) Project (populations: CEU, 651

1The computational complexity and algorithms for the GCTA implementations [15] of multivariate
genetic variance estimation [16] and LMM for association testing [13] could not be found in the original
publications and are therefore not listed
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FIN, GBR, TSI) [24] (see main methods). The genetic relatedness matrices and scatter 652

plots of the first two principal components for each cohort are shown in Supplementary 653

. S1. 654

Fig S1. Kinship matrices and principal components of two simulated
European ancestry cohorts. The genotypes were simulated based in genotype data
from four European ancestry population. Depending on the choice and number of
ancestors a for the sampling of chromosomes to simulate an individuals genotype,
cohorts with differing levels of population and relatedness structure will arise. A.
unrelated individuals a = 10. B. related individuals a = 2.
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Phenotypes. 655

Table S2. Parameters for phenotype simulation. For each, the total variance is
the sum of both effect variances and has to add to 1. Each component has a certain
percentage of its variance that is shared across traits, while the rest is independent.

variance explained shared independent

genetic effects
total h2
SNP h2h

s
2 θ 1-θ

infinitesimal h2h
g
2 η 1-η

noise effects
total (1-h2)
covariates (1-h2)δ γ 1-γ
observational noise (1-h2)(1-δ) α 1-α

Table S3. Parameter values of simulated phenotypes for assessing
scalability, calibration and power. P are the different traitset sizes that were
simulated. The parameters that follow are described in Tab. S2 and specify the variance
explained by each of the phenotype components. A variance explained equals zero
means that this component was not simulated and corresponding non-applicable
variance terms are designated with ‘-’.

Parameter values

Parameter Scalability Covariance comparison Calibration

Genotypes relatedNoPopstructure relatedNoPopstructure relatedNoPopstructure
unrelatedPopstructure

P 10, 20, . . ., 100 10, 20, 30, 50, 100 10, 20, 30, 50, 100
hs2 0 0 0
hg2 1 1 1
h2 0.8, 0.5, 0.2 0.8, 0.5, 0.2 0.8, 0.5, 0.2
(1-h2)δ 0 0 0
(1-h2)(1-δ) 1 1 1
(1-h2) 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8
θ - - -
η 0.8 0.8 0.8
γ - - -
α 0.8 0.8 0.8

24

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/255497doi: bioRxiv preprint 

https://doi.org/10.1101/255497
http://creativecommons.org/licenses/by/4.0/


Parameter Power

Genotypes relatedNoPopstructure

P 10, 50, 100
hs2 0.05,0.02, 0.0125
hg2 0.95,0.98,0.9875
h2 0.8, 0.5, 0.2
(1-h2)δ 0.4
(1-h2)(1-δ) 0.6
(1-h2) 0.2, 0.5, 0.8
θ 0.6
η 0.8
γ 0.6
α 0.8

Model calibration: linear mixed model versus simple linear 656

model 657

We compared the calibration of mtGWAS using a mvLMM to the calibration of a 658

simple multivariate linear model (LM, Eq. 4). The LM does not require the variance 659

decomposition into different random effects, i.e. avoids the computational bottleneck, 660

but simply uses principal components of the genotypes as fixed effects to adjust for 661

population structure. Supplementary Tab. S4 shows the type I error estimates for both 662

GWAS approaches. The LMM (Eq. 5) approach performs well across all trait sizes and 663

thresholds of significance. In contrast, the LM is poorly calibrated and clearly 664

demonstrates the difficulty of adjusting for population structure via fixed effects in 665

highly structured populations. 666

Table S4. Type I error estimates for mtGWAS. Type I errors estimates for
mvLMM and mvLM across all genome-wide SNPs for three trait set sizes assessed at
two different levels of significance. For the mvLMM, covariance estimates were derived
via LiMMBo. In the mvLM, population structure was adjusted for via the first ten PCs
of the genotype data. The mvLMM controls well for Type I errors at both thresholds,
while the mvLM leads to inflated test-statistics.

Type I Error estimates

Traits Significance level mvLM mvLMM

10 5.00E-05 2.17E-03 4.51E-05
5.00E-08 2.32E-05 <5E-08

50
5.00E-05 1.09E-02 1.93E-05
5.00E-08 2.08E-04 <5E-08

100 5.00E-05 3.17E-02 2.28E-05
5.00E-08 1.01E-03 4.56E-08
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Power analyses 667
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Fig S2. All parameter combinations of power comparison for multivariate
and univariate LMM of high-dimensional phenotypes. Each panel shows the
influence of one simulation parameter on the power to detect the causal SNPs: rows
show the influence of the proportion of traits affected by the genetic variant effects,
columns show the influence of the overall phenotypic variance explained by genetics.
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Multi-trait association study of yeast growth traits 668

Table S5. Comparison of significant loci in single-trait and multi-trait
GWAS. In column ‘All SNPs’, the absolute number of SNPs beyond the significance
threshold for multi-trait and single-trait GWAS as well as their ratio
(multitrait:singletrait) are depicted. In order to limit the potential bias in the counting
of the loci (different degrees of linkage disequilibrium (LD) for different loci and
genotyping parameters), the genome-wide SNPs were LD pruned and the ratio of
significant SNPs determined for five different LD window sizes. The maximal LD
window covering between 6% (chromosome 4) and 43% (chromosome 1) of total
chromosome length.

All SNPs LD pruned with r2 ≥ 0.2

3kb 10kb 30kb 50kb 100kb

NrSNPs 11623 4105 1028 264 161 107
multitrait 1132 384 101 24 15 9
singletrait 695 275 72 20 13 7
multitrait:singletrait 1.63 1.4 1.4 1.2 1.15 1.29
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Fig S3. Dendrograms of hierarchical cluster analyses of multi-trait effect
size estimates. The effect size estimates of significant SNPs from the multi-trait
GWAS were filtered for SNPs located in a gene body and subsequently LD-pruned (3kb
window, r2 > 0.2). The resulting set of 210 SNPs was independently clustered across
traits and SNPs, using a hierarchical clustering based on the correlation of the effect
size estimates. The clustering was repeated 50000 (for traits) and 10000 (for SNPs) via
pvclust [27], allowing for the estimation of stable clusters – recurring clusters,
approximately unbiased (‘au’) values of greater or equal to 0.95. ‘au’ values are depicted
on the vertices of the dendrogram. Stable clusters with vertices of au ≥ 0.95 are
enclosed by a red box (generated with pvclust::pvpickPlot and pvclust::pvpickRect).
Some stable clusters enclose other, smaller stable clusters (for instance right-most large
cluster in A) A. Clustering of growth traits based on effect size estimates: 14 stable
clusters B. Clustering of SNPs based on effect size estimates (SNP labels are omitted):
136 stable clusters.
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Fig S4. Dendrograms of hierarchical cluster analyses of single-trait effect
size estimates. The effect size estimates of significant SNPs from the single-trait
GWAS were filtered for SNPs located in a gene body and subsequently LD-pruned (3kb
window, r2 > 0.2). The resulting set of 179 SNPs was independently clustered across
traits and SNPs, using a hierarchical clustering based on the correlation of the effect
size estimates. The clustering was repeated 50000 (for traits) and 10000 (for SNPs) via
pvclust [27], allowing for the estimation of stable clusters – recurring clusters,
approximately unbiased (‘au’) values of greater or equal to 0.95. ‘au’ values are depicted
on the vertices of the dendrogram. Stable clusters with vertices of au ≥ 0.95 are
enclosed by a red box (generated with pvclust::pvpickPlot and pvclust::pvpickRect).
Some stable clusters enclose other, smaller stable clusters (for instance right-most large
cluster in A) A. Clustering of growth traits based on effect size estimates: 9 stable
clusters B. Clustering of SNPs based on effect size estimates (SNP labels are omitted):
117 stable clusters.
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A

B

Fig S5. Manhattan plot of traits with strong single-trait associations.
Single-trait GWAS of A. magnesium sulfate and B. hydroquinone. The loci marked with
a grey star are only found for these two traits and cannot be detected in the multi-trait
GWAS (Fig. 5), pointing to purely single-trait association that is burdened by the
multi-trait testing based on 41 degrees of freedom. The p-values were adjusted for
multiple testing by the effective number of tests (Meff = 33). The significance line is
drawn at the empirical FDRstGWAS = 8.6× 10−6.
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Fig S6. Single-trait GWAS effects size estimates. Significant SNPs (695 SNPs;
adjusted for multiple testing, passing the threshold FDRstGWAS = 8.6× 10−6) of the
single-trait GWAS for the 41 yeast growth traits were LD-pruned (3kb window,
r2 > 0.2) and filtered for SNPs located within a gene body (final SNP count: 179). The
effect size estimates of these SNPs were clustered by loci and traits (both hierarchical,
average-linkage clustering of Pearson correlation coefficients ). Traits and SNPs in
stable clusters (pvclustp < 0.05) are marked in blue.
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Imputation of missing phenotypes in yeast dataset 669

The dataset consists of phenotype and genotype data of 1,008 prototrophic haploid 670

Saccharomyces cerevisiae segregants derived from a cross between a laboratory strain 671

and a wine strain strains [2]. It contains 11,623 unique genotypic markers obtained via 672

short-read sequencing for all 1,008 segregants (no missing genotypes). For phenotyping, 673

segregants were grown on agar plates under 46 different conditions, including different 674

temperatures, pH and nutrient addition (see labels in Supplementary Fig. S8). The 675

phenotypes were defined as end-point colony size normalised relative to growth on 676

control medium. In the following, a trait is defined as the normalised growth size in one 677

condition. 678

Out of the 1,008 segregants, 303 were phenotyped for all 46 traits. Missing 679

phenotypes are not evenly distributed with some traits such as cobalt chloride being 680

present for almost all samples while others such as sorbitol or raffinose are lacking in 681

more than a third of the samples. The distribution of trait missingness across all 682

samples is depicted in Supplementary Fig. S7A. 683

The LMM framework relies on all samples being fully genotyped and phenotyped 684

and does not accept missing values. In order to use the largest possible subset of the 685

data, imputation strategies for the missing phenotypes were sought. We used the subset 686

of 303 fully phenotyped samples to determine traits suitable for imputation. We 687

simulated data with a similar pattern of missingness as observed in the original dataset 688

by subsampling the full dataset to the subset size and overlaying the observed 689

missingness pattern onto the subset of 303 fully phenotyped samples. The resulting 690

pattern is depicted in Supplementary Fig. S7B. Similar results in frequencies of fully 691

phenotyped samples and combination of missing/non-missing traits can be observed 692

when comparing it to the original frequencies and patterns (Supplementary Fig. S7A). 693

We chose the MICE framework [52] with PMM as the imputation method to determine 694

the most suitable imputation parameter settings in the simulated dataset which would 695

then be applied to impute the real missing values in the full dataset. The predictor 696

variables for each trait were determined based on their pair-wise Spearman’s rank 697

correlation coefficient ρ with all other traits in the dataset (Supplementary Fig. S8). In 698

addition, only predictor traits that had been measured in at least 20% of the samples in 699

the dataset were considered. Different predictor variable set-ups were examined based 700

on increasing thresholds for Pearson’s correlation coefficient: r2 ∈ {0, 0.1, 0.2, 0.3}. 701

Further parameters for MICE are the number of multiple iterations m (set to m = 20) 702

and the number of iterations maxit (set to maxit = 30). For each predictor set-up, 703

MICE was initiated with the same seed for the random number generator to ensure 704

comparability. The goodness of the imputation was evaluated by computing the 705

correlation of the imputed values (averaged across iterations m) to the experimentally 706

observed ones. Traits where the imputed values correlated to the original ones by more 707

then 95% in at least one of the predictor set-ups were retained in the analysis. For five 708

traits (cadmium chloride, hydrogen peroxide, raffinose, YNB:ph8, YPD:4C), no suitable 709

predictors could be determined and these were excluded from further analyses 710

(Supplementary Fig. S9, red labels). For each trait, the predictor scheme that yielded 711

the highest correlation between the imputed and observed data was chosen for the 712

imputation of missing values in the full dataset. Missing values were imputed in 713

segregants that were phenotyped for at least 80% of the traits. The final dataset 714

contained 981 segregants with phenotypes for 41 traits each. 715
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Fig S7. Frequencies and distributions of missing values in the yeast
phenotype data. In both panels, the aggregation plot (middle) depicts all existing
combinations of missing (blue) and non-missing (orange) values in the traits. The bar
chart on its right shows the frequencies of occurrence of the different combinations. The
histogram on the top shows the frequency of missing values for each trait (R Package:
VIM [51]). A. The full dataset contains normalised colony sizes for growth in 46
different conditions of 1,008 genotyped yeast segregants. 306 segregants are fully
genotyped (bar chart, orange bar). B. Fully-phenotyped dataset of 306 segregants with
simulated missing values based on the observed missingness pattern for the entire pool
of 1,008 segregants. Generated via R function VIM::aggr.
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Fig S8. Pair-wise correlations of 46 growth traits in Saccharomyces
cerevisiae. For each trait pair, Pearson’s correlation coefficient r2 and the p-values of
the correlation were computed. The p-values were adjusted for multiple testing
according to Benjamini and Hochberg’s method [53]. The strength and the direction of
significant correlations (p < 0.05) are depicted above. Non-significant correlations are
left blank. The traits are clustered based on complete-linkage clustering of (1− r2) as
distance measurement (R Package: corrplot).
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Fig S9. Correlation between imputed and experimentally observed trait
values. In the subset of 306 fully phenotyped samples, missing values were introduced
and subsequently imputed via MICE. Different predictor sets were tested, differing in
the predictors traits included. Sets were constructed based on different Spearman’s rank
correlation coefficient: traits were considered predictors if their correlation with the
target trait was greater than a given threshold. For each predictor setup
(ρ ∈ {0, 0.1, 0.2, 0.3}, m = 20 multiple imputations and maxit = 30 iterations of MICE
were conducted. The goodness of the imputation was evaluated by computing the
correlation of the imputed values (averaged across iterations m) to the experimentally
observed ones. Traits with at least one correlation greater than the 0.95 (black vertical
line) were retained in the dataset. For traits labelled in red, the imputation was
considered to be unreliable and the traits were excluded from further analyses (R
Package: mice [52]).
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