
COSSMO: Predicting Competitive Alternative Splice
Site Selection using Deep Learning

Hannes Bretschneider1,2, Shreshth Gandhi1, Amit G Deshwar1,3, Khalid Zuberi1, and
Brendan J Frey1,2,3

1Deep Genomics Inc., Toronto, ON
2Department of Computer Science, University of Toronto

3Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto

Abstract

Alternative splicing selection is inherently competitive and the probability for a
given splice site to be used depend strongly on the strength of neighbouring sites.
Here we present a new model named Competitive Splicing Site Model (COSSMO)
that improves on the start of the art in predicting splice site selection by explicitely
modelling these competitive effects. We model an alternative splicing event as the
choice of a 3’ acceptor site conditional on a fixed upstream 5’ donor site, or the
choice of a 5’ donor site conditional on a fixed 3’ acceptor site. Our model is a cus-
tom architecture that uses convolutional layers, communication layers, LSTMS,
and residual networks, to learn relevant motifs from sequence alone. COSSMO
is able to predict the most frequently used splice site with an accuracy of 70% on
unseen test data, which compares to only around 35% accuracy for MaxEntScan.

1 Introduction

RNA splicing has long been known as a main driver of transcriptional diversity and a large number
of regulatory mechanisms have been described. More recently, efforts have shifted from describing
isolated regulatory mechanisms to building computational models, known as splicing codes [Wang
and Burge, 2008], that can accurately predict splice site usage from sequence directly or a library of
hand-engineered, sequence-derived features.

The first practical splicing code was introduced by Barash et al. [2010] and predicted tissue dif-
ferences of cassette splicing events in mouse. Subsequent versions of the splicing code introduced
a Bayesian neural network and predicted absolute splicing levels [Xiong et al., 2011]. Since then,
Bayesian neural networks [Xiong et al., 2015] and deep neural networks [Leung et al., 2014] capable
of predicting absolute splicing levels in human tissues as well as splicing changes caused by variants
have improved on the state of the art in predicting exon skipping from sequence context.

These splicing codes have so far all modelled cassette splicing events. Busch and Hertel [2015]
present a model that differentiates between exons that are constitutively spliced, exons that undergo
alternative 5’ or 3’ splice-site selection, and alternative cassette-type exons using support vector ma-
chines, but their model does not directly model splicing levels rather than just discriminate between
different classes of alternatively spliced exons.

In this paper, we present a new splicing code that we call COSSMO, for competitive splice site
model. COSSMO is much more general than previous splicing models and is capable of predicting a
usage distribution of multiple splice sites conditional on a constitutive opposite site. In particular, we
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(b) Alternative donor event.

Figure 1: Illustration of alternative acceptor and donor events modeled by COSSMO.

can model the usage distribution of multiple alternative acceptor sites conditional on a constitutive
donor site or vice versa.

We train two versions of this model, one for alternative acceptor sites and one for alternative donor
sites. Figure 1a shows an example of an alternative acceptor event. In the case of alternative ac-
ceptors we always condition on a constitutive donor site. In this example we model four alternative
acceptor sites, but the model can dynamically adapt to any number of sites. The COSSMO model
will use these alternative sites along with the constitutive site as input and predict a discrete proba-
bility distribution over the alternative sites indicating the frequency with which they are selected.

Figure 1b shows an analogous case of alternative donor selection, where multiple donor sites are
selected amongst to be spliced to a constitutive acceptor site.

2 Dataset Construction

In this section we describe how to construct a genome-wide dataset of quantified percent selected
index (PSI) values of alternative splice site events from genome annotations and RNASeq data from
the Genotype-Tissue Expression Project (GTEx) [GTEx Consortium, 2013]. The PSI value is the
frequency with which each splice-site is selected versus all other splice sites in the same event with
PSI values for each event/training case summing up to one.

We create two datasets: one of alternative acceptor events conditional on constitutive donor sites
and one of alternative donor sites conditional on constitutive acceptor sites.

We mine an initial set of splicing events from genome annotations and then expand it with de-novo
splicing events detected from the aligned GTEx RNA-Seq data. We further augment this set with
decoy splice sites. This is to increase the variability of features seen by the model and help train the
model to discriminate between splice sites and non-splice sites.

Each example in the alternative acceptor dataset consists of multiple putative acceptor splice sites
and a constitutive donor splice site. In the alternative donor dataset, each example consists of multi-
ple putative donor splice sites and a constitutive acceptor splice site.

Following the construction of these events, we quantify the PSI distribution for each example from
RNA-Seq junction reads using the Bayesian bootstrap estimation method by Xiong et al. [2016],
allows us to quantify the uncertainty of our PSI values by producing a posterior distribution.

2.1 Genome Annontations

We use the Gencode v19 annotations to construct our initial dataset. We start with a dataset of
all exon-exon junctions by creating a training example for each annotated donor site and adding
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Acceptor Donor

Number of events 173,164 169,650
Avg # of annotated sites/event 1.158 1.184
Avg # of de-novo sites/event 3.744 3.696
Avg # of soft negative sites/event 61.443 56.612
Avg # of hard negative sites/event 22.451 11.877

Table 1: Dataset statistics
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Figure 2: Histogram showing the complexity of annotated splicing events. For each annotated donor
we count how many acceptors splice to it (left) and for each annotated acceptor we count how many
donor sites are spliced to it (right).

all acceptor sites that splice to this donor to the training example as alternative acceptors of type
annotated.

Then we construct the initial alternative donor dataset analogously by finding the set of donors that
splice to each acceptor site.

Figure 2 shows histograms of the number of alternative acceptors per donor and alternative donors
per acceptor, respectively. As can be seen from the histogram, we do not only include splice sites
that are annotated as alternatively spliced, but also constitutive exons. We do this in order to learn a
general model of splice site strength. Summary statistics of the dataset are given in Table 1.

2.2 De-novo Splice Sites from Gapped RNA-Seq Alignments

Parsing genome annotations provides us with an initial set of alternative splicing events to form
the core of our data set. Next, we add de-novo events from the GTEx RNA-Seq data. We start by
aligning the GTEx RNASeq reads to the genome using the HISAT2 aligner [Kim et al., 2015]. Next,
we iterate through the data set we built in Section 2.1. For the alternative acceptor data set we iterate
through all donor sites and for each site, we add all junction reads in GTEx that use this site as one
end of a gapped alignment. We then add the other side of the gapped alignment as an alternative
acceptor to the example. The procedure for adding de-novo splice sites to the alternative donor data
set is analogous: we iterate over all acceptor sites, find junction reads that use that acceptor site as
one side of a gapped alignment and add the other end of the gap as an alternative donor site.

Some filtering of those de-novo sites is necessary both because the RNA splicing process itself is
noisy and sequencing and alignment introduce their own biases and artifacts, which would otherwise
result in large numbers of low-certainty splice sites. We only utilize de-novo sites that are observed
in at least two tissues from at least two subjects. This procedure results in a large expansion of
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possible splice sites, adding an average of 3.74 de-novo splice sites to each acceptor event, and 3.70
de-novo sites to each donor event (Table 1).

2.3 Negative splice site examples

The above procedure gives us a data set of high-confidence annotated and de-novo splice sites.
However, we supplement this data set with additional, verified, non-splice sites. This is done to
increase the amount of variation in the features when training the model. For example, the core
di-nucleotides GU at the donor site and AG at the acceptor site are almost always a necessary feature
for splicing to occur and will therefore be present in all examples of real splice sites (apart from
examples using the minor spliceosome, Turunen et al. [2013]). If we trained a splicing model only
on true splice sites, the model might in fact learn to ignore the core di-nucleotide motif since it will
not provide any signal to the model. However, if we add some examples of non-splice sites to the
data set, then the model has an opportunity to learn that the presence of a core di-nucleotide motif
is necessary for recognition of the site. We call examples like this hard negatives and we generate
them by simply sampling random locations from a region that (when constructing an alternative
acceptor dataset) starts 20nt downstream of the donor site and ends 300nt downstream of the most
distant alternative acceptor site.

Secondly, the genome also contains a large number of decoy splice sites. These are sites that look
very similar to real splice sites and in many cases have a core di-nucleotide motif, but are nev-
ertheless not used as splice sites. For example they may lack other necessary features such as a
polypyrimidine tract or a branch point, or are adjacent to a silencer motif. These cases are also
beneficial to include in our training set because they help the model detect the more subtle signals
beyond the consensus sequence that are necessary for a splice site to be actually recognized by the
spliceosome. We sample decoy splice sites by using MaxEntScan [Yeo and Burge, 2004] to scan
the intron and exon for any sites that have a score greater than 3.0. We then remove from this set all
sites that are either annotated as splice sites or if there are any junction reads aligned to them in the
GTEx RNA-Seq data. The remaining sites are therefore locations that are assigned a high score by
MaxEnt Scan and look very similar to true splice sites but for which there is no evidence that they
are ever used as splice sites from annotations or GTEx.

On average each acceptor event contains 22.45 soft negative sites and 61.44 hard negative sites.
Each donor event has on average 11.88 soft negative and 56.61 hard negative sites (Table 1).

2.4 PSI Estimation

After building the data sets of alternative acceptors and donors, we need to quantify the frequency
with which these sites are used. Our method for estimating PSI values is based on counting the
number of junction reads that are aligned to a splice site pair.

Assume, we are interested in a constitutive donor site with multiple alternative acceptor sites. We
could obtain a naive PSI estimate by counting the number of junction reads spanning from the
donor to each alternative acceptor and normalizing those values to obtain a probablility distribution.
In practice, it is well known that RNA-Seq alignments exhibit many biases such as read stacks
and other positional biases that make such naive estimates unreliable. Many methods have been
developed to ameliorate these issues as well as to obtain variance estimates of PSI values. We use
the positional bootstrap method by Xiong et al. [2016]. This method estimates a non-parametric
posterior distribution of PSI using a Bayesian positional bootstrap procedure. For the purposes of
estimating PSI from the GTEx RNA-Seq data, we pool the reads from all GTEx samples to estimate
an average PSI across all subjects and tissues.

3 Model

3.1 Motivation

We call our model COSSMO, short for Competitive Splice Site Model. Our primary design goal
is to construct a model that is able to dynamically predict the relative utilization of any number of
competing alternative splice sites. The inputs to the model are DNA and RNA sequences from a
window around the alternative splice sites as well as the intron length (distance between acceptor
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Figure 3: Kernel density estimator plot of PSI values in constitutively versus alternatively spliced
events. Constitutively spliced events are defined as having exactly one annotated splice site while
alternatively spliced events are all events with two or more annotated sites. Only acceptor dataset is
shown.

and donor sites) and the output is PSI (percent selected index), or the frequency at which a given
splice site is selected. Building this model requires a dynamic architecture that is invariant to the
number of splice sites. We achieve this by a network architecture that shares the same weights
between all splice sites and uses a dynamic softmax function at the output to adjust the size of the
output layer to the number of alternative splice sites in the example.

We first present the acceptor model, which predicts the PSI of multiple acceptor sites conditional
on a constitutive donor site, but the donor model is constructed completely analogously by swapping
acceptor and donor, as well as 3’ and 5’ everywhere.

Given a constitutive donor splice site const and K alternative acceptor splice sites
alt1, alt2, . . . , altK , COSSMO is a function f that predicts the conditional frequency of selecting
the i-th splice site,

p(alti|altk′ 6=i, const) = fi(alt1,...,K , const), i ∈ 1, . . . ,K. (1)

3.2 Features

We train COSSMO on both DNA and (spliced) mRNA sequence from a window around the splice
site and a single numerical feature which is the length of the intron. All sequence features are
represented as one-hot encoding using four channels that represent the four possible nucleotides.

For each splice site we extract the following sequence inputs:

Alternative DNA sequence: This is the pre-splicing sequence from a 80nt window around
the alternative acceptor site.

Constitutive DNA sequence: This is the pre-splicing sequence from a 80nt window around
the constitutive donor site (and thus it is the same for all splice sites in the same event).

mRNA sequence: This is the spliced mRNA sequence obtained by concatenating 40bp of
exonic sequence upstream from the donor site and 40nt of exonic sequence downstream
from the acceptor site.

To these sequence inputs we add a single feature representing the intron length, obtained by com-
puting the distance between the constitutive donor and alternative acceptor site and normalizing this
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Figure 4: COSSMO Architecture: A score is computed for each splice site separately using identical
sub-networks with weight sharing. The scores are then normalized with a softmax layer, allowing
the number of splice sites to vary.

distance by the mean and standard deviation of the length of an intron in the human genome [Hong
et al., 2006] to make it more numerically stable.

The COSSMO model consists of two primary components: a scoring network that produces a scalar
unnormalized score for a single splice site and a softmax layer that normalizes scores from multiple
scoring networks.

The requirements for the scoring network are that it will take a single splice site’s sequence as
input and produce a single scalar score. The output layer simply accepts the scalar scores as input,
normalizes them, and outputs the predicted PSI distribution over the alternative splice sites. The
high-level architecture is illustrated in Figure 4.

While the scoring network’s task is to predict a scalar score for each alternative splice site, we also
need an output layer that normalizes those scores to obtain a valid probability distribution over the
splice sites. The output layer applies a softmax function to the splice site strength score from the
scoring network. The softmax layer itself does not contain any variables, so it is compatible with
any number of alternative splice sites. Typically, we train and predict on mini-batches which contain
examples with different numbers of alternative splice sites. To accomodate such ragged arrays we
pad rows in the matrix of splice site scores that are shorter than the maximum number of columns
with the MIN FLOAT value which ensures that the softmax value of those elements is zero. When
training the model, we also ensure that masked out values in the target matrix are set to zero to
ensure that the gradients computed for the masked out matrix entries are always zero.

3.3 Scoring Network

As explained above, the scoring network takes inputs derived from one alternative splice site and
outputs an unnormalized strength score. Let si denote the strength of the i-th alternative splice site
such that

si = S(alti, const|θ), (2)
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Figure 5: Independent convolutional scoring network

where S denotes the scoring network and θ represents the parameters of the scoring network S.
Importantly, the parameters θ do not depend on i, but are shared between all splice sites.

We have implemented a variety of different architectures for the scoring network and evaluated their
performance carefully. The simpler architectures we evaluated use scoring networks that are inde-
pendent, such that the competitive behaviour of the model is achieved only through the requirement
that the PSIi, i ∈ 1, 2, . . . ,K sum to 1.

However, we also evaluate a number of architectures in which we allow lateral connections between
the alternative splice sites within the same event. In particular we utilize communication networks
[Sukhbaatar et al., 2016] and LSTMs, which are described in Sections 3.3.2, 3.3.3, and 3.3.4 respec-
tively.

3.3.1 Independent scoring networks

These types of networks take as input a set of splice site derived features and predict a scalar unnor-
malized score as in Eq (2) without any lateral connections to the other scoring networks. We use an
architecture in which we use a stack of multiple convolutional layers on each of the input sequences.
The outputs of each stack are concatenated with the intron length feature and followed by multiple
fully connected layers.
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Figure 5 shows the architecture of the independent convolutional scoring network. We use three
columns of stacked convolutions with independent parameters that each use one of the three se-
quence windows described in Section 3.2 as input. A convolution module contains the convolutional
layer itself, followed by a ReLU non-linearity, and a batch-normalization layer [Ioffe and Szegedy,
2015]. We typically do not use any pooling, because some filters, like the core splice site motif, can
be highly sensitive to the precise location and are not invariant to shifts.

Following any number of convolution modules, the final filtermaps from the three convolution
columns are flattened and concatenated with the auxiliary features. These activations are the input
to the following sequence of fully connected modules, each consisting of a fully connected layer, a
ReLU function, and a batch-normalization layer.

The final fully connected module, as in all other architectures, has an output size of one to connect
to the softmax output layer.

3.3.2 Communication Networks

When the scoring networks for competing splice sites are independent, they can only interact linearly
through the softmax layer in the output network. We use an approach that is similar to Communica-
tion networks [Sukhbaatar et al., 2016] to model more complicated interactions between the splice
sites, which we adapt to convolutional layers.

In our version of communication networks, a convolutional layer uses two sets of filters: one which
operates on the current splice site and one which operates on a shared buffer that contains the average
inputs of all splice sites. Each splice site’s consecutive hidden layer then takes both the shared
communication buffer’s activations and the activations from the splice site’s own previous hidden
layer as input.

We apply communication to the convolutional layers in the following way: the output of a convolu-
tion layer with communication for a given splice site k is the sum of a global bias term, the response
of a filter to the k-th input and the response of a second set of filters to the inputs averaged across all
splice sites k̃ = 1, . . . ,K.

The output yk,g,j for splice site k, output filter g at position j is

yk,g,j = bg +
F∑

f=1

l∑
i=1

(
wg,f,ixk,f,j+i + vg,f,i

1

K

K∑
k′=1

xk′,f,j+i

)
, (3)

where bg is the bias of the g-th filter, l is the filter width, wg,f,i is the filter value of the g-th filter to
the f -th channel at position i, xk,f,j+i is the input value of splice site k in the f -th channel at the
j + i-the position, vf,i is the weight of the g-th communication filter to the f -th channel, at position
i, and 1

K

∑K
k′=1 xk′,f,j+i is the input averaged across all splice sites in channel f at the j + i-th

position.

Figure 6 further illustrates the communication network concept.

3.3.3 Output LSTM

Communication networks are one possibility to model the interaction between splice sites, but an
alternative that explicitely takes the ordering of the splice sites into account are Long Short-Term
Memory (LSTM) networks [Hochreiter and Schmidhuber, 1997]. LSTM networks are a type of
recurrent neural network architecture, that uses memory cells with gates that control the flow of
information and can be learning by backpropagation.

LSTMs can be used on any kind of sequential or time-series data such as strings of words in Machine
Translation or frames of speech recordings. For the purpose of alternative splicing prediction we
apply LSTMs to the sequence of splice sites. We use bidirectional LSTMs with one LSTM cell
modelling the sequence of splice sites from 5’ to 3’ and one LSTM cell from 3’ to 5’.

A single LSTM cell for splice site k outputs a value mk depending on an input xk as
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Figure 6: Convolutional layer with communication: This is a variant on the typical 1-D convolutional
layer in case we apply a convolution to multiple sequences such as a set of alternative splice site. For
a given sequence k = 1, . . . ,K, the output of this layer is the sum of a bias term, the filter responses
to the sequence k, as well the responses to a second set of filters which are applied to the average of
all inputs across k.

mk = ok � tanh(ck) (4)
ok = σ(Woxxk +Wommk−1 + b0) (5)
ck = fk � ck−1 + ik � tanh(Wcx +Wcmmk−1 + bc) (6)
fk = σ(Wfxxk +Wfmmt−1 + bf ) (7)
ik = σ(Wixxk +Wimmt−1 + bi) (8)

In the equations above, mk is the cell output activation vector at step k, ok is the output gate, ck is
the cell activation vector, fk is the forget gate, and ik is the input gate. W denote the weight matrices
(e.g. Wix is the weight matrix from the input gate to the input) and b variables denote the bias terms
(i.e. bi is the input gate bias vector).

We implement a hybrid architecture in which we keep the lower convolutional layers from the in-
dependent scoring networks ( Section 3.3.1) and replace that models fully connected layers with a
bidirectional LSTM which consists of one LSTM running from 3’ to 5’ and the other one from 5’ to
3’ (this is easily implemented by replacing k − 1 by k + 1 everywhere in Eqs.(4)–(8).

Figure 7 shows the architecture we have chosen. As in the independent scoring network, three
different sequence windows from each splice site are first processed by a series of 1D convolutional
modules before being concatenated with the intron length and are further passed through several
fully connected modules. However, now the signal from splice site k is further processed by two
LSTM cells which will connect to the adjacent splice sites k−1 and k+1, allowing for propagation
of information between the splice sites.
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Figure 7: Architecture of our Bidirectional LSTM Model. Features for splice site k are extracted from
the DNA/RNA sequences using a series of convolutional modules. The filtermaps for the different
sequences are concatenated with the intron length feature. The concatenated features are then futher
processed by several fully connected modules and two LSTM cells. The forward cell is connected
to splice site k − 1 and the backwards cell is connected to splice site k + 1.

3.3.4 Resnet + LSTM

Resnets [He et al., 2015] are a class of models that enable training neural networks that are much
deeper than previously possible by explicitly reformulating the layers as learning residual functions
with reference to the layer inputs, instead of learning unreferenced functions. Instead of learning a
mapping H(x) directly, a resnet implements the residual mapping F (x) = H(x) − x. The desired
mapping H(x) can then be reformulated as F (x) + x. In practice, resnets add shortcut connections
that skip one or several layers. These shortcut connections can be added almost anywhere, for
example around convolutional or fully connected layers.

In our implementation we replace the convolutional layers from the LSTM model (Section 3.3.3)
with the Resnet-26 model [He et al., 2015], while keeping the higher level fully-connected layers
and LSTM the same. Table 2 shows the parameters of the Resnet-26 architecture.

4 Results

4.1 Genome-wide performance

We trained each of the models presented above on both our acceptor and donor datasets. We use five-
fold cross-validation by splitting our datasets according to the following method: using a transcript
database, we start with a set of intervals that each span two consecutive genes initially. Then we
iteratively merge all regions that are less than 250nt apart until merging is no longer possible. Then
we randomly split the resulting genomic regions into five folds for cross validation.

Figure 8 plots the cross-entropy error over time during training. It is evident that the LSTM and
Resnet models are able to significantly better fit the training data and achieve a lower final training
loss.
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Parameters

Bottleneck Block width out dim oper dim stride

1 24 8 1 1

2 8 32 8 1

3 8 64 16 2
8 64 16 1

4 8 128 32 2
8 256 64 1

5 8 256 64 1
8 256 64 1

Table 2: Resnet-26 architecture: This residual network replaces the convolutional layers in the
LSTM model for the Resnet+LSTM model. Each bottleneck block can be skipped with a residual
connection. Within each bottleneck block there are one or more convolutional layers parametrized
by width (the width of the convolutional filter), out dim (the number of output filters), oper dim (the
number of filters in the middle of the bottleneck block), and stride (the stride of the convolution
operation).

We train each model by training on four of the folds and using the held out data as test set. We
compute the accuracy and loss on each fold, then we report the mean score across the folds as well
as the standard error. Table 3a shows the accuracy of the different COSSMO models as well as
MaxEntScan on the same data. We define the accuracy as the frequency with which COSSMO
correctly predicts the splice site with the maximal PSI value.

Whereas MaxEntScan can only predict the strongest splice site with a probability of 32.2% (ac-
ceptor), or 37.1% (donor), even the simple independent COSSMO model is able to significantly
outperform it (52.0% on acceptor and 56.9% on donor). Our best model which uses an LSTM,
achieves 70.0% on the acceptor dataset and 71.1% on the donor. Despite being a deeper, more pow-
erful model, the Resnet with an LSTM achieves slightly worse performance than the ”LSTM only”
model. As a conclusion we recommend the LSTM model as the one that achieves the best balance
of capacity and generalization error.

Accuracy is intuitive to interpret but only takes into account whether COSSMO predicts the strongest
splice site in a large set correctly, but not how well it fits the complete PSI distribution. Table 3b
shows the cross-entropy error of the four different COSSMO models. It is evident that COSSMO
vastly outperforms MaxEntScan as well on negative cross-entropy, meaning COSSMO is not only
more likely to predict the correct dominant splice site but will also fit the PSI distribution better
overall.

4.2 Performance on alternatively spliced events

The majority of the events in our dataset has only one annotated splice site (Figure 2). To gain a
deeper understanding of COSSMO’s performance versus MaxEntScan, it also helps to stratify the
dataset and only look at events that are geniunely alternatively spliced (have more than one anno-
tated splice site). The performance of MaxEntScan and COSSMO on this subset can be seen on the
right hand column of Table 3. This is a much more challenging subset of the data and performance
of MaxEntScan and COSSMO is both impacted when more than one annotated site is present. How-
ever, while MaxEntScan accuracy drops by almost half on this subset (56%), COSSMO’s relative
drop in performance is much lower, with the more complicated models (“LSTM” and “LSTM +
Resnet”) seeing a smaller relative drop in accuracy than the simpler models (“Independent” and
“Comm-net”).

5 Discussion

In this work we introduced COSSMO - a computational model that for the first time enables accurate
prediction of competitive alternative splice site selection from sequence context alone. We described
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All events Alternatively spliced

Model Acceptor
n = 345, 840

Donor
n = 344, 420

Acceptor
n = 40, 802

Donor
n = 49, 898

MaxEntScan 0.322 0.371 0.181 0.210
Independent 0.520 (± 0.004) 0.569 (± 0.003) 0.331 (± 0.003) 0.376 (± 0.002)
Comm-net 0.540 (± 0.008) 0.653 (± 0.001) 0.350 (± 0.007) 0.482 (± 0.005)
LSTM 0.700 (± 0.004) 0.711 (± 0.002) 0.533 (± 0.006) 0.548 (± 0.005)
Resnet + LSTM 0.698 (± 0.005) 0.701 (± 0.003) 0.526 (± 0.008) 0.540 (± 0.005)

(a) Accuracy of our COSSMO models. Accuracies are computed as the average of five cross-validation folds
with standard errors given in brackets. The right columns shows accuracy only for those events that contain
two or more annotated splice sites.

All events Alternatively spliced

Model Acceptor
n = 345, 840

Donor
n = 344, 420

Acceptor
n = 40, 802

Donor
n = 49, 898

MaxEntScan 2.836 2.244 3.819 3.043
Independent 1.583 (± 0.008) 1.401 (± 0.020) 2.384 (± 0.006) 2.253 (± 0.041)
Comm-net 1.490 (± 0.021) 1.107 (± 0.003) 2.254 (± 0.018) 1.777 (± 0.020)
LSTM 1.017 (± 0.012) 0.944 (± 0.006) 1.689 (± 0.021) 1.602 (± 0.012)
Resnet + LSTM 1.014 (± 0.010) 0.955 (± 0.009) 1.688 (± 0.010) 1.603 (± 0.009)

(b) Cross-entropy loss of our COSSMO models. Loss is computed as the average of five cross-validation folds
with standard errors given in brackets. The right columns shows loss only for those events that contain two or
more annotated splice sites.

Table 3: Performance of COSSMO and MaxEntScan on our datasets.
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Figure 8: Training cross-entropy loss.

how we generated a genome-wide dataset for training and evaluation by combining positive splice
site examples from genome annotations and large-scale RNA-Seq datasets, as well as negative ex-
amples from random genomic background sequences as well as decoy splice sites that receive high
scores from MaxEntScan, but lack evidence of splice site usage from RNA-Seq data.

We designed several novel neural network architectures that can adapt to a variable number of alter-
native splice sites and carefully evaluated them using genome-wide cross-validation and found that
our LSTM-based model achieves close to twice the accuracy of MaxEntScan.
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Our work demonstrates that it is possible to use deep learning to predict splice site choice with high
accuracy which can be extended to predict how genomic variation affects splice site choice through
mechanisms like splice site variants or cryptic splice site activation.
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