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Abstract

Many research questions in visual perception involve determining whether stimulus properties are
represented and processed independently. In visual neuroscience, there is great interest in determining
whether important object dimensions are represented independently in the brain. For example, theories
of face recognition have proposed either completely or partially independent processing of identity and
emotional expression. Unfortunately, most previous research has only vaguely defined what is meant
by “independence,” which hinders its precise quantification and testing. This article develops a new
quantitative framework that links signal detection theory from psychophysics and encoding models from
computational neuroscience, focusing on a special form of independence defined in the psychophysics
literature: perceptual separability. The new theory allowed us, for the first time, to precisely define
separability of neural representations and to theoretically link behavioral and brain measures of sepa-
rability. The framework formally specifies the relation between these different levels of perceptual and
brain representation, providing the tools for a truly integrative research approach. In particular, the
theory identifies exactly what valid inferences can be made about independent encoding of stimulus di-
mensions from the results of multivariate analyses of neuroimaging data and psychophysical studies. In
addition, two commonly used operational tests of independence are re-interpreted within this new theo-
retical framework, providing insights on their correct use and interpretation. Finally, we apply this new
framework to the study of separability of brain representations of face identity and emotional expression

(neutral/sad) in a human fMRI study with male and female participants.
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Significance Statement

A common question in vision research is whether certain stimulus properties, like face identity and expression,
are represented and processed independently. We develop a theoretical framework that allowed us, for the
first time, to link behavioral and brain measures of independence. Unlike previous approaches, our framework
formally specifies the relation between these different levels of perceptual and brain representation, providing
the tools for a truly integrative research approach in the study of independence. This allows to identify what
kind of inferences can be made about brain representations from multivariate analyses of neuroimaging data
or psychophysical studies. We apply this framework to the study of independent processing of face identity

and expression.
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Introduction

A common goal in perceptual science is to determine whether some stimulus dimensions or components
are processed and represented independently from other types of information. In visual neuroscience, much
research has focused on determining whether there is independent processing of object and spatial visual
information (Ungerleider and Haxby, 1994), of object shape and viewpoint (Rust and Stocker, 2010), of
different face dimensions (Bruce and Young, 1986; Haxby et al., 2000), etc. A common approach is to use
operational definitions of independence, which are linked to rather vague conceptual definitions. This ap-
proach has the disadvantage that different researchers use different operational definitions for independence,
often leading to contradictory conclusions. For example, in the study of whether face identity and emotional
expression are processed independently, evidence for both independence and interactivity has been found
across a variety of operational tests. Evidence for independence was found by most lesion studies (Bate
and Bennetts, 2015), by lack of correlation between fMRI patterns related to identity and expression (Hadj-
Bouziane et al., 2008), by single neuron invariance (Hasselmo et al., 1989), by selective fMRI adaptation
release in fusiform face area (FFA) and middle superior temporal sulcus (STS) (Winston et al., 2004), and
by selective fMRI decoding of identity from anterior FFA and medial temporal gyrus (Nestor et al., 2011;
Zhang et al., 2016), and of expression from STS (Zhang et al., 2016). Evidence for a lack of independence
has been provided by overlapping fMRI activation during filtering tasks (Ganel et al., 2005), by non-selective
fMRI adaptation release in posterior STS (Winston et al., 2004) and in FFA—when adaptation is calculated
based on perception (Fox et al., 2009)—, and by non-selective fMRI decoding from right FFA (Nestor et al.,
2011).

Because the different operational definitions are not linked to one another through a theoretical frame-
work, the interpretation of such contradictory results is very difficult and necessarily post-hoc. Even more
difficult is to link the neurobiological results to the psychophysics literature on independence of face dimen-
sions, which itself is plagued by similar issues (for a review, see Soto et al., 2015).

General recognition theory (GRT, Ashby and Townsend, 1986; Ashby and Soto, 2015) is a multidimen-
sional extension of signal detection theory that has solved such problems in psychophysics, by providing a
unified theoretical framework in which notions of independence can be defined and linked to operational
tests. Hundreds of studies have applied GRT to a wide variety of phenomena, including face perception
(Thomas, 2001; Wenger and Ingvalson, 2002), recognition and source memory (Banks, 2000; Rotello et al.,
2004), source monitoring (DeCarlo, 2003), object recognition (Cohen, 1997; Demeyer et al., 2007), percep-
tion/action interactions (Amazeen and DaSilva, 2005), speech perception (Silbert, 2012), haptic perception

(Giordano et al., 2012), the perception of sexual interest (Farris et al., 2010), and many others.
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Here we present an extension of GRT to the study of independence of brain representations, by relating it
to encoding models and decoding methods from computational neuroscience (Ashby and Soto, 2016; Pouget
et al., 2003). Past neuroimaging studies have been limited to choosing between decoding methods, which
try to determine what stimulus information is processed in a brain region while ignoring the form of the
underlying representation, and encoding models, which assume a specific representation and compare its
predictions against data. (Naselaris et al., 2011). We propose the concept of encoding separability as a
fundamental way in which brain representations of stimulus properties can be considered independent, and
we identify the specific conditions in which a decoding analysis of neuroimaging data or a psychophysical
study allow inferences to be made about encoding separability. In doing so, we show that decoding methods
(and under some assumptions, psychophysics) can be useful to make valid inferences about encoding. We also
re-interpret previously-proposed tests of independence within our new theoretical framework, and provide
guides on their correct use. Finally, we apply this new framework to the study of separability of brain

representations of face identity and expression.

Materials and Methods

We recommend that readers skip directly to the Results section and read all the theoretical results first, and
come back to this section after reaching the section “An Application to the Study of Encoding Separability

of Face Identity and Expression.”

Participants

Twenty-one male and female right-handed students at the University of California Santa Barbara were
recruited to participate in this study. Each participant received a monetary compensation at a rate of
US$20/hour. This study was approved by the Human Subjects Committee at the University of California,

Santa Barbara, and written informed consent was obtained from all participants.

Experimental Task

The stimuli and task were identical to those used in a previous behavioral study of separability of face identity
and expression (Soto et al., 2015). Stimuli were four grayscale images of male faces, part of the California
Facial Expression database (http://cseweb.ucsd.edu/~gary/CAFE/). Each face showed one of two identities
with either a neutral or sad emotional expression. The faces were shown through an elliptical aperture in a
homogeneous gray screen; this presentation revealed only inner facial features and hid non-facial information,

such as hairstyle and color.
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Participants performed an identification task both outside and inside the MRI scanner. Each stimulus
was assigned to a specific response key and the participant’s task was to identify the image presented in
each trial. Each trial started with the presentation of a white crosshair in the middle of the screen for
200 ms, followed by stimulus presentation for a single frame (i.e., 16.667 ms at a 60 Hz refreshing rate).
Stimulus presentation was short to make it identical to that used in our previous behavioral study. After
stimulus presentation, participants pressed a response key; 500 ms later, feedback about the correctness of
their response was displayed on the screen for 500 ms (“Correct” in green font color or “Incorrect” in red
font color). If the participant took longer than 5 s to respond, the words “Too Slow” were presented on the
screen and the trial stopped. Feedback was followed by a variable inter-trial interval, obtained by randomly
sampling a value from a geometric distribution with parameter 0.5 and truncated at 5, and multiplying that
value by 1,530 ms (the TR value, see below). To obtain estimates of stimulus-related activity with other
events in the trial (crosshair and response) unmixed, we used a partial trials design in which 25% of the trials
included the presentation of the white crosshair not followed by a stimulus. Participants were instructed to
randomly choose a response on these partial trials.

Stimulus presentation, feedback and response recording were controlled using MATLAB augmented with
the Psychophysics Toolbox (psychtoolbox.org), running on Mackintosh computers. Participants practiced
the identification task on personal Mackintosh computers outside the MRI scanner for about 20 mins.
During this training, participants responded on a keyboard. During scanning, participants responded using
the Lumina Response Pad System (model LU400-Pair), with the same finger-stimulus mapping as during

pre-training.

Functional Imaging

Images were obtained using a 3T Siemens TIM TRIO MRI scanner with a 12-channel head coil at the
University of California, Santa Barbara Brain Imaging Center. Cushions were placed around the head to
minimize head motion. A T1l-weighted high-resolution anatomical scan was acquired using an MPRAGE
sequence (TR: 2,300 ms; TE: 2.98 ms; FA: 9°; 160 sagittal slices; 1 x 1 x 1 mm voxel size; FOV: 256
mm). Additional scans included a localizer and a GRE field map, neither of which were used in the analyses
presented here.

Functional scans used a T2*-weighted single shot gradient echo, echo-planar sequence sensitive to BOLD
contrast (TR: 1,530 ms; TE: 28 ms; FA: 61°; FOV: 192 mm) with generalized auto-calibrating partially
parallel acquisitions (GRAPPA). Each volume consisted of 28 slices (interleaved acquisition, 2.5 mm thick

with a 0.5 mm gap; 2.5 X 2.5 mm in-plane resolution) acquired at a near-axial orientation, manually adjusted
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to cover the ventral visual stream and lateral prefrontal cortex. There were a total of four functional runs
per participant (with the exception of five participants who completed three functional runs).

The first run was a standard functional localizer for face regions (Fox et al., 2009). Neutral faces,
emotional faces and non-face objects were each presented in different stimulus blocks, separated by fixation
blocks. Sixteen images of the same type were presented within a stimulus block, each with a duration of 500
ms and a 250 ms inter-stimulus-interval. Fixation blocks consisted of the presentation of a black screen with
a white fixation cross in the middle. The sequence started with a fixation block, followed by 6 blocks of each
image category (18 total), each followed by a fixation block, for a total of 37 blocks. Blocks lasted for 12
seconds, and the whole scan lasted about 7.5 mins. The order of image types (e.g., neutral-emotional-object)
was counterbalanced across blocks. To ensure attention to the stimuli, participants were asked to push a
button whenever an image was repeated in the sequence. Four of the 15 stimuli in a block were repetitions,
randomly positioned in the stimulus sequence.

In all other functional runs, which lasted about 10 mins each, participants performed the identification
task described earlier, without feedback. Each of the four images was repeated 25 times, for a total of 100

trials per run. Stimuli were viewed through a mirror mounted on the head coil and a back projection screen.

Statistical Analyses
Anatomical scans

Processing of structural scans was done using FSL (www.fmrib.ox.ac.uk/fsl), and included brain extraction
using BET and nonlinear registration to MNI 2mm standard space using FNIRT nonlinear registration. The
inverse transformation was obtained to transform volumes from standard space back to subject space. For
visualization purposes, some statistical maps were converted from MNI standard space to the PALS-B12
surface-based atlas using CARET v.5.65 (www.nitrc.org/projects/caret/) and selecting the options average

of the mapping to all multi-fiducial cases and enclosing vozel algorithm.

Preprocessing of functional scans

Preprocessing of the functional scans was conducted using FEAT (fMRI Expert Analysis Tool) version 6.00,
part of FSL (www.fmrib.ox.ac.uk/fsl). Volumes from all three runs of the main identification task were
concatenated into a single series using fslmerge. Preprocessing included motion correction using MCFLIRT,
slice timing correction (via Fourier time-series phase-shifting), BET brain extraction, grand-mean intensity

normalization of the entire 4D dataset by a single multiplicative factor, and a high-pass temporal filtering
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(Gaussian-weighted least-squares straight line fitting, with sigma=>50.0s). The data from the functional
localizer were spatially smoothed with a Gaussian kernel of FWHM 4.0mm. The data used in the main
separability analysis were not spatially smoothed during preprocessing. Each functional scan was regis-
tered to the corresponding structural scan using boundary-based registration (BBR) in FLIRT with default

parameters.

Neural activity estimates

After preprocessing of the functional scans, estimates of single-trial stimulus-related activity were obtained
for the faces in the main identification task. We used the iterative FBR (finite BOLD response) method
described by Turner et al. (Turner et al., 2012) to deconvolve the BOLD activity related to each stimulus
presentation. This method avoids assumptions about the hemodynamic response function that are inherent
to parametric estimation methods and it is more successful than the latter in unmixing the responses to
temporally adjacent events in event-related designs (Turner et al., 2012). Instead of assuming a particular
shape of the hemodynamic response function, the full shape of the BOLD response to a stimulus is estimated
through a set of 12 FBR regressors that are ordered in sequence. In the regression matrix, each event is
represented by a set of 12 ones, starting at the beginning of the event. The method is called “iterative”
because it iterates through each trial to estimate the BOLD activity related to the stimulus presentation in
that trial only. To do this, a group of 12 regressors is created for the target stimulus, and separate groups of
12 regressors are created for the four stimulus classes in the experiment (the target trial was excluded from
the regressor of its class), and for the conjunction of crosshair presentation and response. This results in the
estimation of 12 regression coefficients for the target stimulus, which are kept while all other regressors are
discarded (they are included only to unmix their influence from the target estimates of the BOLD response).
As indicated above, the process is iterated for each trial, resulting in a set of spatiotemporal maps (one
for each stimulus presentation), representing estimates of the BOLD activity in each voxel and each of 12
TRs starting at the time of stimulus presentation. The algorithm was implemented in MATLAB (The
MathWorks, Natick, MA, USA).

Decoding separability test

Here we describe the procedures used to implement a decoding separability test. Theoretical results linking
this test to the notions of decoding separability, encoding separability and perceptual separability, as well as

a justification for the application of this test to neuroimaging data, can be found in the Results section.
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Step 1: Decoding
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Figure 1: A schematic representation of a test of decoding separability for neuroimaging data, implemented as
an extension to traditional linear decoding procedures. The simplified example considers the representation
of four stimuli in two voxels. Each point represents activity on a different trial, and each color represents
a different stimulus that has been repeatedly presented during the experiment. The dotted line represents
a classification bound that separates trials according to emotional expression. The line orthogonal to this
bound represents the direction in voxel space that best discriminates one expression from the other. Decoding
separability holds if the distributions along this dimension for a given value of the target dimension (emotional
expression) are equivalent across changes in the irrelevant dimension (identity). Adapted from:
http://figshare.com/articles/Test-of-separabilityof-neural-representations /1385406

Figure 1 is a schematic representation of the decoding separability test. In this simplified example, we
consider only two voxels. The estimates of activity are thus represented in a two-dimensional voxel space.
Each point represents activity on a different trial, with each color representing a different stimulus that has
been repeatedly presented during the experiment. Decoding facial expression from these two voxels using
a linear classifier involves finding a hyperplane in the activity space that best separates trials in which a
neutral face was shown from trials in which a sad face was shown (the dotted line in Figure 1). The line
orthogonal to the classification bound (sometimes called the classifier’s “decision variable”) represents the
direction in voxel space that best discriminates one expression from the other. Thus, it is reasonable to
assume that this is the direction in this specific voxel space along which expression is encoded. Using that

specific direction in voxel space is not a requirement of the decoding separability test to be valid (the only
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requirement is that a linear decoding scheme is used; see Results section), but it allows us to link the present
work to more traditional MVPA techniques. If we take all the observed data points and project them onto
this ”expression” dimension, we can use these projected points to estimate a distribution of decoded values.
Decoding separability holds if this distribution of decoded values is invariant across changes in the stimulus on
a second, irrelevant dimension. To test for decoding separability, the two distributions of points for a given
expression (e.g., the orange and green distributions for “sad”), each corresponding to a different identity,
can be compared to one another.

In the Results section, we link this decoding separability test to our main theory, and show that it is a
valid test of violations of separability in neural representations, even when it is applied to indirect and noisy
measures of brain activity, like those obtained from fMRI.

In two separate analyses, we tested the separability of emotion from identity and the separability of
identity from emotion; because both analyses are identical, we will describe the analysis in terms of decoding
separability of a “target” dimension from an “irrelevant” dimension. FEach of the regression coefficients
obtained in the previous step were standardized by column. We used a searchlight procedure (Kriegeskorte et
al., 2006) with a spherical mask that had a radius of three voxels. In each step of the analysis, the searchlight
was centered on a different brain voxel and the selected data were used to train a linear support vector
machine (SVM, using the LinearNuSVMC classifier included in pyMVPA) to decode the target dimension
using all the available data. Then the data were projected to the normal line to the classification hyperplane
to obtain a number of decoded values on the target dimension. Using Python augmented with the SciPy
ecosystem, the group of decoded values for each stimulus was used to obtain kernel density estimates (KDEs)
of their underlying probability distribution. A gaussian kernel and automatic bandwidth determination were
used as implemented in the SciPy function gaussian_kde. Let p;; (A) represent the KDE for a stimulus with
value ¢ on the target dimension and value j on the irrelevant dimension, evaluated at point A. The index
i can take one of two values representing, for example, “sad” and “neutral” when the target dimension is
emotional expression, as in the example given in Figure 1. Similarly, the index j can take one of two values
representing “identity 17 and “identity 2”7, as in this example identity is the irrelevant dimension. Then an
index of deviations from decoding separability (DD.S) was computed from all four KDEs obtained from the

target dimension (in this example, emotional expression), according to the following equation:

2 1,000

DDS = Z Z }1521 (Ak> — Pi2 (Ak)’ (1)

i=1 k=1
Each KDE was evaluated at 1,000 evenly-spaced points Ak, indexed by k = 1,2...1,000, starting at the

10
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minimum data point minus half the data range, and finishing at the maximum data point plus half the data
range. Note that the value p;; <Ak) —Pi2 (Ak> represents the difference between two distributions of decoded
values, both related to stimuli with the same value in the target dimension (e.g., “sad”, represented by the
index i) but different values in the irrelevant dimension (e.g., “identity 1” and “identity 2”, represented
by the indexes 1 and 2 in the equation). The index uses the absolute value of the difference between a
pair of distributions, which by definition is the L1 distance between the two (discretized) distributions (see
Equation 25 below). If separability holds, then the distance between distributions should be zero. However,
this is only true if we had access to the true distributions. Any error in the KDEs should produce differences
between distributions that are added to the DDS. This makes it difficult to statistically test for deviations
of separability, as the data from multiple participants cannot be combined (differences in the estimation
error of the KDEs produces differences in scale of the statistic) and the expected value of the statistic under
the null hypothesis is unknown. Under the assumption of decoding separability, two distributions that share
the same level of the target dimension but different levels of the irrelevant dimension are identical. That
is, data points from those distributions are exchangeable. Taking this into account, we standardized the
statistic in the following way: (1) we shuffled the level of the irrelevant dimension for each data point 200
times (separately for each level of the target dimension); (2) each time we computed the DDS, yielding
an empirical distribution function (EDF) of the statistic under the assumption of decoding separability; (3)
the final standardized value was the percentile of the observed DD.S in the EDF minus 50, representing
percentile deviation from the median of the EDF.

Repeating this process for all searchlights resulted in a DDS map for each participant, which were
converted to the participant’s anatomical space using FSL’s FLIRT linear registration and then to MNI
2mm standard space using FSL’s FNIRT nonlinear registration. The resulting DDS maps in standard space
were submitted to a nonparametric permutation test using FSL’s randomise program (Winkler et al., 2014),
with the option clusterm for correction for multiple comparisons (which uses the distribution of the maximum
cluster mass in the permutation test), a cluster threshold of 2.53 (corresponding to p=0.01, uncorrected),
variance smoothing with a sigma of 5 mm, and 5,000 permutations.

For visualization purposes, the volumes with significant statistics obtained from the permutation test
were converted to the PALS-B12 surface-based atlas using CARET v.5.65 (www.nitrc.org/projects/caret/),

and displayed together with the borders of face-selective areas from the localizer scan.

Face-selective regions

Face-selective regions were defined using the data from the functional localizer. Low-level analyses were

performed separately on the data from each participant. Three explanatory variables (EVs) were defined:

11
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Neutral Faces, Emotional Faces and Objects, each corresponding to a boxcar function covering the corre-
sponding blocks in the functional scan (see Functional Localizer description above). These boxcar functions
were convolved with the default Gamma hemodynamic response function in FSL, which has a mean lag of
6s and a standard deviation of 3s. A temporal derivative and temporal filtering were added to the design
matrix. Two contrasts were formed: Faces (Neutral Faces + Emotional Faces) > Objects, to define regions
selective to face information in general, and Emotional Faces > Neutral Faces, to define regions selective to
face emotional expression more specifically. Each of these contrasts resulted on a separate map of z statistics
for each participant. The individual z statistical maps were used as input to a high-level analysis, using a
mixed-effects model (the option FLAME 142 in FSL), to generate a group map for each contrast. Clusters
were first identified by thresholding the maps at z=2.3; the experiment-wise false positive rate (o = 0.05)
was controlled by using a threshold on cluster size derived from Gaussian random field theory.

The volumes with significant clusters obtained from the two contrasts were converted to the PALS-B12
surface-based atlas and their borders were manually drawn using CARET v.5.65 (http://www.nitrc.org/projects/caret/).
These region borders were used as rough landmarks for the interpretation of the main results of the decoding
separability analysis.

The Faces > Objects contrast was additionally used to define face-selective functional regions of interest
(ROIs) using the Group-Constrained Subject-Specific (GSS) described by (Julian et al., 2012). First, indi-
vidual maps were thresholded at p < 0.05, uncorrected, and the resulting thresholded images were binarized.
It was necessary to use a much more liberal threshold than that used by Julian et al. (p < 0.0001) to
obtain ROI masks in most participants (even at this low threshold, we did not obtain an ROI for the OFA
in one participant), because our study was designed to carry out analyses at the group level (see below)
and therefore the contrast had less power than that of Julian et al. at the level of individual participants.
Second, we took the group-level “parcels” provided by Julian et al. in MNI 2mm standard space (available
at http://web.mit.edu/bes/nklab/GSS.shtml), and transformed them to the participant’s functional space
using FNIRT. Third, we intersected the individual binary maps and the group-level parcels to define ROIs
corresponding to the fusiform face area (FFA), occipital face area (OFA) and superior temporal sulcus face
area (STS) in each individual participant.

Additional anatomical ROIs were obtained, to serve as controls and explore the behavior of our decoding
separability test in different conditions. We obtained an ROI corresponding to primary visual cortex (PVC)
from the Juelich Histological Atlas, and an ROI corresponding to the lateral ventricles from the Harvard-
Oxfor Subcortical Structural Atlas; both atlas are included with FSL. The obtained ROIs were thresholded
at a value of 20 using fslmaths and binarized. These final ROI masks, which were in MNI 2mm standard

space, were transformed to each participant’s functional space using FNIRT.
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All ROIs were obtained for both the left and right hemispheres.

Results

Extending General Recognition Theory to the Study of Brain Representations

GRT is a multivariate extension of signal detection theory to cases in which stimuli vary on more than one
dimension (Ashby and Townsend, 1986; Ashby and Soto, 2015). As in signal detection theory, the theory
assumes that different presentations of the same stimulus produce slightly different perceptual representa-
tions. For example, as shown in Figure 2, repeated presentations of a face identity produce a variety of
values on the “identity” dimension (blue and red dots), which follow a probability distribution (red and
blue curves). According to GRT, there are many ways in which processing of a dimension of interest, or
target dimension, can be influenced by variations in a second, irrelevant dimension. GRT formally defines
such dimensional interactions and links them to operational tests of independence. This allows researchers
to determine whether a test can dissociate between different forms of independence, and to create new tests
specifically designed to target a specific form of independence.

Here we will consider the special case in which stimuli vary along two stimulus dimensions (or more
generally, components or properties), represented by A and B. However, the theory can easily be extended
to a larger number of dimensions. Specific values of dimension A used in an experiment are indexed by ¢ =
1,2,...L 4, and the specific values of dimension B are indexed by j = 1,2,...L. A stimulus in the experiment
is represented by a combination of these dimension levels, A; B;. This stimulus produces a random perceptual
effect in a two-dimensional perceptual space [z, y|, where x represents the perceptual effect of property A and
y the perceptual effect of property B. The random vector [z,y] can be described through a two-dimensional
joint probability density p (z, y|A;B;), with p (x|A;B;) and p (y|A;B;) representing the marginal densities of
the perceptual effects associated with components A and B, respectively (the distributions shown in Figure

2 are examples of such marginal densities).

Perceptual separability

A particularly important form of independence defined in GRT is perceptual separability, which holds when
the perception of the target dimension is not affected by variations in the irrelevant dimension. In Figure
2, an identity is presented with a neutral expression (in blue) or with a sad expression (in red). When
perceptual separability holds, the blue and red perceptual distributions overlap, and the face is just as easy

to identify in both cases. When perceptual separability fails, the blue and red perceptual distributions do
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Perceptual Separability
Holds Fails

Perceived Perceived
Identity Identity

Figure 2: Stimulus representation and definition of perceptual separability in GRT. The representation of a
given identity changes randomly from trial to trial (dots at the bottom) according to some perceptual distri-
bution (bell-shaped distributions at the top). Perceptual separability of identity from emotional expression
(neutral vs. sad) holds if the perceptual distribution for identity does not change with emotional expression
(left), and it fails if the perceptual distribution for identity does change with emotional expression (right).

not overlap, and the face is easier to identify when the expression is sad (there is more evidence for the
identity in this case).

Here we focus on perceptual separability because it is considered a particularly important form of inde-
pendence, for two reasons. First, because many questions in perceptual neuroscience can be understood as
questions about separability of object dimensions. For example, the question of whether object representa-
tions are invariant across changes in identity-preserving variables like rotation and translation is equivalent to
the question of whether object representations are perceptually separable from such variables (Stankiewicz,
2002). In face perception, configural or holistic face perception has been defined as non-separable processing
of different face features (Mestry et al., 2012; Richler et al., 2008), and the question of whether or not differ-
ent face dimensions are processed independently is usually investigated using tests of perceptual separability
(Fitousi and Wenger, 2013; Ganel and Goshen-Gottstein, 2004; Schweinberger and Soukup, 1998; Soto et
al., 2015). The second reason for the importance of perceptual separability is that higher-level cognitive
mechanisms seem to be applied differently when stimuli differ along separable dimensions rather than along
non-separable dimensions. For example, selective attention is deployed more easily to separable dimensions
than to non-separable dimensions (Garner, 1974; Goldstone, 1994), sources of predictive and causal knowl-
edge may be combined differently if they differ along separable versus non-separable dimensions (Soto et al.,
2014, 2015), and the performance cost of storing objects in visual working memory is different depending

on whether such objects differ from one another in separable versus non-separable dimensions (Bae and

14


https://doi.org/10.1101/254995
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/254995; this version posted January 29, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Flombaum, 2013).
Formally, perceptual separability of dimension A from dimension B occurs when the perceptual effect
of stimuli on dimension A does not change with the value of the stimulus on dimension B (Ashby and

Townsend, 1986)—that is, if and only if, for all values of z and i:

p(x|A;B1) = p(x|A;B2) ... = p(x|A;Br ) - (2)

Perceptual separability of dimension B from dimension A is defined analogously.

Neural encoding and encoding separability

Extending GRT to the study of neural representation requires linking it to our current understanding on
how dimensions are represented by neuronal populations. In the computational neuroscience literature, an
encoding model is a formal representation of the relation between sensory stimuli and the response of a single
neuron or a group of neurons (Pouget et al., 2000, 2003; Ma, 2010). In the case of stimulus dimensions, an
encoding model represents how changes in a dimension of interest are related to changes in neural responses.
Encoding models have been applied to describe neural responses at a variety of scales, from single neurons to
the average activity of thousands of neurons (Brouwer and Heeger, 2009; Pouget et al., 2000, 2003; Naselaris
et al., 2011). To discuss these models in their more general form, it is convenient to introduce the abstract
concept of a channel, which can be used as a placeholder for a single neuron, a population of neurons with
similar properties, or as an abstract construct to model the behavior of a human observer. A channel is
essentially a detector, sensitive to a particular stimulation pattern. It responds maximally to that target
pattern and progressively less to other patterns as they become different from the target. In other words,
the most important property of a channel is that it has tuning. The tuning of a channel can be modeled in
many ways, but perhaps the simplest is to choose a physical dimension of interest and model the channel’s
response as a function of the value of a stimulus on that dimension. For example, if we are interested in
dimension A (equivalent definitions can be given for B), then the response r. of the channel ¢ to a stimulus

A;B; is determined by a tuning function:

e (AiBj) = fc (AiBy). (3)

Common choices for f.(A;B;) in the literature are bell-shaped and sigmoidal functions (Pouget et al.,
2003). The channel response on a given trial may also be influenced by stochastic internal noise, which
can be assumed to be additive (independent of the channel’s response) or multiplicative (scaling with the

channel’s response). Common choices for the distribution of this noise in the literature are Gaussian and
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Figure 3: Schematic representation of multiple channels encoding a stimulus with a value of “3” in a target
dimension. If a stimulus with value “3” is presented, each channel gives an average response equivalent to
the height of the tuning function at that stimulus value (i.e., the height at the dotted line). The vector of
average responses is perturbed by random noise, producing the final channel output.

Poisson (Pouget et al., 2003; Ma, 2010). Because the noise is a random variable, the response of the channel

r. itself becomes a random variable that follows a probability distribution:

p(rc‘AiBjﬁe) ~n(fe (AiBj)re)v (4)

where ~ means “distributed as”, and 7 () is just a placeholder that stands for any probability distribution
(e.g., Gaussian) that depends on the channel’s tuning function and on a set of parameters 6 describing noise.

Researchers agree that encoding of a stimulus dimension requires a model with multiple channels, or
multichannel model. For example, the “standard model” of dimension encoding in the computational neu-
roscience literature is such a multichannel model (implementing a “population code” (Pouget et al., 2000,
2003)), and most applications in the neuroscience and psychophysics literature use at least two channels to
describe encoding of stimulus dimensions (Gold and Shadlen, 2001). Figure 3 shows encoding of a stimulus
dimension with four channels, each with its own tuning model represented by a curve of different color. The
tuning model is a formalization of how the channel responds to different stimulus values: each channel re-
sponds maximally to its preferred dimensional value and less to other values. The figure shows the response
of a multi-channel model to a stimulus with a value of 3 on the target dimension. A channel’s noise model
describes the stochasticity in the channel’s responses through a probability distribution. In Figure 3, the
average response of each channel is perturbed by random additive noise, represented by the dice. The final
channel output is equal to the average response (from the tuning model) plus noise (randomly drawn from
the noise model).

A multichannel model encodes information about dimension A through the combined response of N
channels (Pouget et al., 2000, 2003; Gold and Shadlen, 2001), indexed by ¢ = 1,2,...N. On each trial, the

model produces a (column) random vector of channel responses r = [r1,72,... 7n]T, where T denotes matrix
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transpose. Note that r depends on the stimulus A;B; according to a set of tuning functions:

£ (A;Bj) = [f1 (AiB;)), f2 (AiBj) , ...fn (A Bj)]", (5)

The probability distribution of r also depends on noise parameters 6:

p(r|AiB;,0) ~n(f,0). (6)

As indicated earlier, additive Gaussian noise is a common choice for the channel noise model. In that

case, the multichannel encoding model is described by a multivariate Gaussian distribution:

p(r|A;B)) ~ N (f (AiB;), 2 (AiBy)), (7)

where 3 (A;Bj) is an N x N covariance matrix describing channel noise. In most applications, noise is also
assumed to be independently distributed across channels, and all non-diagonal cells in X (A;B;) are zero.

This discussion suggests that a new form of separability can be defined for the neural representation
of a dimension: encoding separability. When a target dimension is encoded in the exact same way across
variations of an irrelevant dimension, we say that the former shows encoding separability from the latter.
For encoding separability to hold, both the tuning and noise models of all channels must be equivalent across
changes in the irrelevant dimension, which is equivalent to having a single encoding model representing the
target dimension, independently of the value of the irrelevant dimension.

Formally, encoding separability of dimension A from dimension B holds when encoding of the value of

A does not change with the stimulus’ value on B. That is, if and only if, for all values of r and :

p(r|A;B1,0) = p(r|A;B2,0) ... = p(r|AiBr,,0). (8)

Encoding separability of dimension B from dimension A is defined analogously.

Violations of encoding separability can happen for two reasons. The first possibility is that one or more
of the tuning functions in f change with the value of B. Tuning separability of dimension A from dimension
B holds when all tuning functions that encode dimension A depend only on the value of A—that is, if and

only if, for all channels ¢ and stimuli A;B;:

fe(AiBj) = [ (Ai) . (9)
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Tuning separability of dimension B from dimension A is defined analogously. Because p (r|A;B;, 0) depends
on f (see Equation 6), violations of tuning separability produce violations of encoding separability.

The second reason for a violation of encoding separability is that the noise for one or more channels is
distributed differently for different levels of B.

Because the Gaussian encoding model described in Equation 7 is completely characterized by the mean
vector f (A;B;) and the covariance matrix X (A4;B;), encoding separability of A from B holds if the following

two conditions are true for all stimuli A;B;:

f(AiB;) =f(A;)

X (AiB;j) = X (Ay)

Decoding separability

The term neural decoding refers both to a series of methods used by researchers to extract information about
a stimulus from neural data (Naselaris et al., 2011; Quiroga and Panzeri, 2009) and to the mechanisms used
by readout neurons to extract similar information, which is later used for decision making and other cognitive
processes (Pouget et al., 2003; Seung and Sompolinsky, 1993). If dimension A is encoded by N channels,
according to the scheme summarized in Equation 6 and depicted in Figure 3, then the decoded estimate of

a dimensional value A, will be some function of the channel responses:

A=g(r), (11)

where g () is a function from RY to R (i.e., from the multidimensional space of the channel responses to
the unidimensional space of the decoded dimension). Because r is a random vector (see Equation 6), the
decoded value A is a random value that follows a probability distribution p <A|AiBj, 0). In many cases,
knowledge about the encoding distribution from Equation 6 and the decoder from Equation 11 allows one
to derive an expression for p (/1|A14Bj, 9).

There are many possible decoding schemes, but the most popular among researchers (Seung and Som-
polinsky, 1993; Pereira et al., 2009), due to their simplicity and neurobiological plausibility, are simple linear
decoders

A=pB+bTr, (12)

where (3 is a scalar and b is a (column) vector of weights.

With a Gaussian encoding model like the one described by Equation 7, the distribution of linearly-decoded
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estimates of values on dimension A is:

p (A|AZ-B]-) ~ N (B+DbTE(A;B;),bTS (4;B;)b). (13)

When channel noise is independent, the variance of the decoded variable Ais simply Zszl bio2, where o
represents the N diagonal elements of 3 (A4;B;).

We define decoding separability as the situation in which the distribution of decoded values on the target
dimension is invariant across changes in the stimulus on a second, irrelevant dimension. That is, decoding
separability of dimension A from dimension B holds when the distribution of decoded values of A does not

change with the value of B in the stimulus—that is, if and only if, for all values of A and i

p (A\AiBl,e) =p (A|Ai32, 9) =p (A|AiBLB,9) . (14)

Decoding separability of dimension B from dimension A is defined analogously.

Relation between encoding separability and decoding separability

Decoding separability is easy to check by directly decoding dimensional values from a neuronal population.
Moreover, if the same decoding scheme is used for all values of the irrelevant dimension, then the relations

between encoding separability and decoding separability shown in Figure 4 hold, as we show in this section.

If encoding separability holds, then decoding separability must also hold. This proposi-
tion is represented by the green arrow in Figure 4. When encoding separability holds (see Equation 8),
p(r|A;Bj,0) = p(r|A;,0) for all values of r and j. Because we have assumed that decoding depends only
on the value of r (Equation 11), the function g () is also independent of the value of B;. Thus, regardless
of the shape of p (r|4;,6) and g (), the distribution of the decoded variable A is independent of the value of
Bj, and decoding separability (Equation 14) holds. In other words, for all values of B; the same decoding
transformation g () is applied to the same encoding distribution p (r|A;, @), resulting in the same decoding
distribution p (A|Ai, 9).

If encoding separability fails, then decoding separability may fail or hold. This is represented
by the red arrows in Figure 4. Our strategy to prove this proposition will be to disprove two universal
statements through counterexamples.

We start by offering a counterexample disproving the following universal statement: if encoding separa-
bility fails, then decoding separability must fail. Suppose that a dimension A is encoded through the model

with Gaussian channel noise described by Equation 7, and that we use a linear decoder to estimate fl, as
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Encoding Decoding
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Figure 4: Summary of the relation between encoding separability and decoding separability, according to
our extension to GRT. Arrows should be interpreted as conditional statements of the form “if X, then Y”.
These relations mean that a failure of encoding separability is a valid inference from the observation of a
failure of decoding separability. However, the presence of encoding separability cannot be validly inferred
from an observation of decoding separability.

described by Equation 12. Also suppose that there are violations of tuning separability (Equation 9) of A
from B in the encoding model. Without loss of generality, suppose that those violations are differences in
the tuning functions of A1 B; and Ay Bo:

f(A1B;1) #f(A1Bs),

or equivalently

£(A1By) = f (A, Bs) + 0,

where J represents a N X 1 vector of deviations from tuning separability, and § # 0.
Under the assumptions listed above, the tuning functions only affect the mean of the decoded variable
(see Equation 13), so we can ignore its variance. Now suppose that in this model decoding separability holds.

In that case, we have that:

B+DbTf(A1B)) = B+bTf(ABy)

bT (f (A By) +8) = bTf(AB,)

b’ = 0 (15)

For any given § # 0, there are an infinite number of b # 0 that satisfy this equation, yielding a model
in which encoding separability fails and decoding separability holds. The universal statement if encoding
separability fails, then decoding separability must fail is false.

We now offer a counterexample to disprove the alternate universal statement: if encoding separability
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fails, then decoding separability must hold. Following the same line of reasoning as before, we get that if

decoding separability fails then:

B+DbTf(A1B)) = [B+bTf(A1Bs)+d

bT [f (A1 By) + 0] bTf (A, Bs) +d

b’s = d, (16)

where d represents a scalar deviation from decoding separability in the mean of the decoding distributions.
As before, for any given § # 0 and d # 0, there are an infinite number of b # 0 that satisfy this equation,
yielding a model in which encoding separability fails and decoding separability fails. The universal statement
if encoding separability fails, then decoding separability must hold is false.

In summary, if encoding separability fails, then decoding separability may hold or fail. While no universal
statements can be made about decoding separability when encoding separability fails, a more specific relation
may hold for particular combinations of encoding models and decoding schemes. For example, it might
be that for some specific combination of an encoding model and decoding scheme, a failure of encoding
separability necessarily leads to a failure of decoding separability, eliminating the diagonal arrow in Figure 4.
If that was the case, it would be possible to infer encoding separability from a finding of decoding separability.
We will not explore these possibilities here and instead will leave them for future work. However, note that
the counterexamples offered here involve normally-distributed channel noise and a linear decoder, both of
which are common choices in the literature on encoding and decoding. That is, under common assumptions
and methods it is not possible to infer encoding separability from a finding of decoding separability.

One general result that must hold true is the following: if encoding separability fails and A = g(r)
is an injective (one-to-one) mapping, then decoding separability must fail. This is the case because when
encoding separability fails (without loss of generality) p(r|A1B1,0) # p(r|A1B2,0) for at least one r. If
¢ () is injective, then this difference in probability at r will translate to a difference in probability at the
corresponding transformed variable A. However, because g () is a transformation from RY to R, it is in most

cases not injective. For example, a linear g () from R to R cannot be injective.

Inferring encoding separability from tests of decoding separability

From the results of the previous section, which are summarized in Figure 4, we can conclude that the

observation of a violation of decoding separability in a particular brain region is diagnostic of a corresponding
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violation of encoding separability. This is because a violation of decoding separability cannot be produced
when encoding separability holds. On the other hand, when decoding separability holds nothing can be
concluded about encoding separability, as both encoding separability and failures of encoding separability
can lead to decoding separability, depending on features of the decoder. This allows an indirect test of
encoding separability, which is useful for cases where directly observing encoding separability is difficult

(e.g., when indirect measures of neural activity are used, as in fMRI).

Perceptual separability as a form of decoding separability

The concepts of encoding and decoding separability can be linked back to GRT by assuming that perception of
a dimensional value is a form of decoding. That is, the key is to assume that the perceptual representation of
a stimulus dimension in GRT (the “perceived identity” in Figure 2) is the outcome of decoding a dimensional
value from the activity of many channels distributed across the brain (like those shown in Figure 3). This
assumption is not new and has proven useful in applications of signal detection theory in the past (Gold and
Shadlen, 2001).

More specifically, assume that the perceived value of dimension A, x, is the result of decoding a dimen-
sional value from the activity of many channels distributed across the brain, as in Equation 11. In other
words, the perceived value z is a special case of the decoded variable /1, but estimated by readout neurons
with the goal of guiding behavioral responses in a perceptual task. Denote the decoding function used by

these readout neurons to obtain the perceived value z as gg (), so that

z=ggr(r); (17)

this is just a special case of the more general decoding function shown in Equation 11, but limited only to

the decoding schemes that can be implemented by real neurons. We have that

p(z|A;Bj) = p(gr (r) |AiB;,0) (18)

is the marginal distribution of perceptual effects along x. Under these assumptions, perceptual separability
(Equation 2) is a form of decoding separability (Equation 14). As a consequence, from Figure 4 we know
that any failure of perceptual separability documented in the literature should be reflected in a failure of
encoding separability, in brain areas providing useful information for perceptual identification of dimensional
values. The exact brain regions that provide information to solve a particular task are usually unknown,
but we can assume that they encode such information in a relatively transparent (easily decodable) way.

The set of potential candidates can be reduced to areas known to provide useful information for behavioral
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performance. Novel methods to identify such areas, which combine information about decoded values in
a dimension and behavioral response times, have been recently developed (Grootswagers et al., 2018) and
seem very promising. For neuroscientists, this opens the opportunity to link new research on the separability
of neural representations with decades of accumulated psychophysical research on perceptual separability
(Ashby and Soto, 2015).

In addition, as we have seen in the previous section, the common assumption of a Gaussian distribution
of perceptual effects (Ashby and Soto, 2015; Soto et al., 2015) is met when the encoding model has addi-
tive Gaussian noise and the decoder is linear (see Equation 13), two assumptions that are common in the

literature.

Direct and Indirect Tests of Decoding Separability
Direct tests of decoding separability and perceptual separability

Assume that r is a vector of neural responses encoding dimension A in the brain. If we had access to
direct measurements of r (e.g., firing rates from single cell recordings or a measure of the activity of a
homogeneous neural population), we could use an experimenter-defined decoding function A= gE (r) to
estimate dimensional values. Obtaining a large number of decoded values A for each stimulus A;Bj allows
one to obtain a kernel density estimate (KDE) of p (A\AiBj, 9), represented by p (/1|AZ-B]-7 9). Comparison
of such KDEs constitutes a direct test of decoding separability (Equation 14).

Because perceptual separability is a form of decoding separability (Equation 18), the same procedure
can be used to obtain the first available direct test of perceptual separability, when a number of conditions
are met. First, the vector r should include all neural responses encoding dimension A in the brain. Second,
for all values of r, gg (r) = gr (r), so that gg (r) = x (each experimentally-decoded value is equal to the
perceptual effect). As the vector r cannot be identified and measured using currently available methods and

gr (r) is unknown, both assumptions appear very difficult to meet.

Indirect tests of decoding separability from neuroimaging data

The relations between encoding separability and decoding separability summarized in Figure 4 hold for any
decoder, but it can be shown that using a linear decoder allows for a valid test of decoding separability even
when indirect measures of neural activity contaminated with measurement error are used, as is the case with
fMRI data.

We have assumed the the channel output r. represents neural activity in a single neuron or a group of

neurons with similar properties (e.g., same tuning). Often we do not have access to such direct recordings;
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rather, we obtain indirect measures of neural activity, which are some function of the activity of several
different neural channels. Let a,, represent an indirect measure of neural activity, where m = 1,2,...M
indexes different instances of the same type of measure (e.g., different voxels in an fMRI experiment or
electrodes in an EEG experiment). The measures can be represented by a vector a = [a, as, ...aps], which

is a function of the activity of all channels in the encoding model:

a=¢p(r)+e, (19)

where e is a random vector representing measurement error:

e~ce(b.), (20)

€ denotes the probability distribution of measurement error, which depends on a set of parameters 6,.
Together, Equations 19 and 20 describe the measurement model for a.
In a typical multivariate analysis of neuroimaging data, we decode an estimate of a dimensional value A

directly from a. We can choose to use a linear decoder for this task, so that

A = B+DbTa
A = B+DbT(p(r)+e)
A = B+4+bTp(r)+bTe (21)

We can think of the estimate A as the sum of two independent random variables: A, = 8 + b7y (r),
which depends exclusively on the distribution of r, and A, = bTe, which depends exclusively on the error
distribution from Equation 20. The variable Ay depends on r through a composite function. We can think
of this composite function as a decoder: g (r) = 5+ by (r) and use p (Ar|AiBj, 9) to test for decoding sepa-
rability. Unfortunately, our measurements are contaminated by the variable A, with distribution P (Aewe).
Because A is the sum of two independent random variables, the distribution of A is a convolution of the

distribution of each of its components:

p (A|AiBj,9,oe) —p (Ar\AiBj,Q) p (Ae\ae) , (22)

where * denotes the convolution integral.

Thus, KDEs obtained from A decoded from neuroimaging data reflect the target decoding distribution
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convolved with an error distribution. This means that obtaining direct estimates of GRT perceptual dis-
tributions from neuroimaging data may not be possible. Still, it is possible to obtain a valid measure of
violations of decoding separability.

Without loss of generality, suppose that we want to measure differences between the distributions
P (AF|A1 By, 9) and p (Ar\Al By, 9). A number of measures of the distance between two probability densities
(such as the L1, L2 and Loo distances, see Martinez-Camblor & de Una-Alvarez, 2009) start by computing

a difference function:

5 (Ar) —p (flr|AlBl,0) —p (Ar\AlBQ,0>. (23)

From neuroimaging data, we obtain estimates of the distributions p (flr |A1 By, 9) *P (flewe) and p (AF|A1 B, 9) *
P (Aewe), where we have assumed that the measurement error model does not change with the value of the

stimulus in dimension B. The difference function between these two distributions is:

5(21) p(Ar|AlBl,)*p(A )
i)

[p (Ar|AlBl, ) | Ay Bo, )} *p(Aewe)

= 5 (4) «p(Acle.). (24)

Thus, the difference between noisy KDEs ) (A) ~ 0 (/1) is an estimate of the target difference function
) (Ar) convolved with the error kernel p (Ae|9e)- Note first that if decoding separability holds, then
) (Ar) = 0 and we expect ) (A) to approximate zero for all values of A as sample size increases. Any
deviations from a constant zero function indicate violations of decoding separability. If decoding separability
does not hold and § ( ) # 0 for some A, then the shape of the error kernel determines how it affects
) (/1,) Under the common assumption that measurement error e is Gaussian with zero mean and covariance
matrix X., p (Ae |95) will also be Gaussian with zero mean and variance bTX.b. In this case, the convolution
attenuates high-frequency fluctuations in the difference function ¢ (Ar> In general, the difference ) (A)
will capture some deviations from decoding separability, but not necessarily all of them.

In sum, as the number of data points used to obtain KDEs increases, a distance measure based on the
function & <A) will be approximately zero when there are no violations of decoding separability, and any
non-zero value will be the consequence of a violation of decoding separability. This makes such a measure a

valid indicator of violations of decoding separability. One measure based on B (fl) is the L1 norm:
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le/‘g(fl)

which is the basis for the DDS statistic that we use in our test (see Materials and Methods section).

; (25)

Linear decoders, which are necessary to obtain a valid indirect test of decoding separability, are also the
most widely used in the MVPA literature (Pereira et al., 2009). This allows us to link our framework to this

line of research in neuroimaging.

Relation to previous operational definitions of neural independence
Neural representation orthogonality

Suppose that an experimenter believes that two dimensions, A and B, are encoded as two directions in some
(Q-dimensional space. This space could represent () measures of neural activity, some transformation of such
measures that is of interest (e.g. obtained through multidimensional scaling, or MDS), or some physical
coordinate system defined within the brain (e.g., to study topographic maps). Let h4 be an estimate of the
direction along which dimension A is encoded, and hp an estimate of the direction along which dimension
B is encoded. Several authors have operationalized independence of dimensional encoding as orthogonality

of the vectors h4 and hp:

hs L hg. (26)

We call this neural representation orthogonality. Note that Equation 26 holds if the Pearson correlation
between h 4 and hp is zero, as the Pearson correlation of two vectors equals the cosine of their angle. Previous
researchers have used both the angle between vectors (Baumann et al., 2011; Kayaert et al., 2005) and their
correlation (Hadj-Bouziane et al., 2008) as measures of orthogonality.

Note that we have defined neural representation orthogonality in a very general way, to capture the
multiple ways in which the test has been used in the previous literature. In particular, we assume that the
vectors hy and hp may be found through a number of criteria, as long as they represent directions along
which dimensions A and B are assumed to be encoded. For example, Baumann et al. (2011) estimated h 4
and hp as directions in the physical space of a brain region (the inferior colliculus) along which two dimensions
of sound were encoded. Hadj-Bouziane et al. (2008) estimated h4 and hp as the result of unidimensional
contrasts (faces > objects and expressive face > neutral face), and thus they represent vectors connecting

the average activity for one side of the contrast (e.g., faces) and the other side of the contrast (e.g., objects).
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Kayaert et al. (2005) submitted patterns of neural firing rates to MDS, and estimated hy and hp as
directions in the MDS space representing changes in the stimulus dimensions of interest. Another possibility
is to estimate h4 and hp as directions in the space of activity measures that separate classes best, as seen in
Figure 1. Below we explore this last version of the test, and compare its results to those from the decoding
separability test presented earlier.

An important feature of neural representation orthogonality tests that should be considered when in-
terpreting them is that they are best suited to provide evidence of violations of orthogonality, rather than
evidence of its presence. More specifically, if hy and hg were random vectors, then one would expect their
correlation to be close to zero (i.e., orthogonal vectors), especially for high-dimensional vectors such as those
studied by Hadj-Bouziane et al. (2008). Under such circumstances, a finding of orthogonality is expected
even from completely random data. In addition, orthogonality corresponds to a single value (zero correlation
or 90-degree angle) and therefore evidence of orthogonality requires special statistical tests that can provide
evidence for that specific value (e.g., evidence for the null in a Bayes factor test, or a small confidence inter-
val containing the target value). Such tests have not been used in previous tests of orthogonality. Here, we
will explore whether it is possible to find violations of orthogonality in our data, rather than trying to find
evidence for orthogonality as in previous studies.

How is neural representation orthogonality related to the framework presented here? As mentioned ear-
lier, neural representation orthogonality is an operational definition of independence, and as such cannot
be linked to the extended GRT framework—or any other framework providing theoretical definitions of in-
dependence-without further assumptions. A series of assumptions links neural representation orthogonality
to perceptual independence, as defined in GRT. Perceptual independence of components A and B holds in
stimulus A;B; if and only if the perceptual effects of A and B are statistically independent; that is, if and

only if:

p(z,y|AiBj) = p (x| AiB;) p (y|Ai B;) (27)

When stimulus A; B; is presented, it can be represented as a new vector in the same @)-dimensional space
that contains h4 and hp. If we assume that (i) the projection of this vector onto hy and hp corresponds
to the perceived values of dimensions A and B, then neural representation orthogonality is equivalent to
dimensional orthogonality (Tanner, 1956; Tucker, 1972). Ashby and Townsend (1986) showed that if, in
addition, (ii) the trial-by-trial perceptual effects have a multivariate Gaussian distribution, p (x,y|4;B;) ~

N (p, %), and (iii) ¥ does not depend on the stimulus (i.e., all perceptual distributions have identical
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variance-covariance matrices), then dimensional orthogonality and perceptual independence (as defined in
Equation 27) are equivalent.

Assumptions (i)-(iii), linking neural representation orthogonality and perceptual independence, seem
extremely strong and hard to meet. Assumption (i) is particularly problematic, as there seems to be no way
to guarantee that the estimates h 4 and hp must correspond to perceived stimulus dimensions. On the other
hand, assumptions (ii) and (iii) are common in the psychophysics literature and they may be justifiable.

It seems even more difficult to link neural representation orthogonality to any property of neural encoding.
The reason is that in most applications the QQ-dimensional space of h4 and hg is some transformation of
the N-dimensional space of the encoding model. Neural representation orthogonality is defined as a 90-
degree angle between h4 and hpg, and only rigid transformations (i.e., not even all linear transformations)
can preserve this angle. Thus, unless one assumes that h4 and hp are related to corresponding vectors in
the neural encoding space by a combination of rotation, scaling and translation, the neural representation
orthogonality test does not provide information about a corresponding property of neural encoding. However,
the test might provide useful information about other aspects of brain representation different from encoding,
as is the case when the Q-dimensional space of h4 and hp is itself interesting (e.g., physical space in studies
of functional brain topography, see Baumann et al., 2011).

In sum, neural representation orthogonality is an operational test of independence of neural representa-
tions, and several researchers have used some version of it in past studies. If some strong assumptions are
met, the test can be related to the concept of perceptual independence from GRT, which is conceptually
distinct from the several forms of separability on which we have focused here. In particular, perceptual
independence is a property of a single stimulus. It holds if different stimulus components are processed
independently of each other. In contrast, separability is a property of an ensemble of stimuli. It holds if
processing of one component is unaffected by changes in other components. In practical terms, we would
expect that violations of neural representation orthogonality would be unrelated to violations of decoding

and encoding separability, as they measure completely different concepts.

Classification accuracy invariance and generalization

A second operational test of independence of neural representations, more closely related to the separability
measures investigated in this article, has been recently used in research on invariance of face representation.
In this test, activity patterns in a given brain region are classified according to some target dimension. For
example, activity patterns in visual cortex could be classified according to the identity of faces presented
during an experiment . Then the classifier is tested with new patterns, produced during presentations of the

same identities but with changes in some irrelevant face dimension, such as viewpoint or expression (Anzellotti

28


https://doi.org/10.1101/254995
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/254995; this version posted January 29, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

and Caramazza, 2014, 2016; Anzellotti et al., 2014). If the classifier’s accuracy is significantly above chance,
it is concluded that the representations of the target dimension (face identity) are invariant to changes in
the irrelevant dimension. A simpler version of the test simply checks for significant classification accuracy
using all data (Nestor et al., 2011), but this is much less informative than a test based on generalization
after changes in the irrelevant dimension (Anzellotti and Caramazza, 2014).

Formally, let ¢; represent a label returned by the classifier indicating that it has estimated that level 4
of dimension A has been presented, and suppose the experiment includes a total of L4 different levels of

dimension A. Then classification accuracy generalization is defined in the following way:

if p(£i|AiB1) > —

Ly

1

then p(¢;|A;B;) >—, (28)
La

for all ¢ and j. That is, if the probability of correct classification of the level of A is higher than chance
(ﬁ) at level 1 of dimension B, then it must be higher than chance at all levels of B for classification accuracy
generalization to hold.

It is possible to indirectly relate classification accuracy generalization to encoding separability, through
its clear relation to decoding separability. We do this first for the case in which there is access to direct
measures of neural activity that are used to estimate fl, as in Equation 11. Because Ais a noisy estimate
that can assume any value in R, a classifier partitions this space into L 4 regions, one for each of the values
of dimension A included in the experiment. Let R; represent the region associated with label ¢;, so that the
classifier assigns this label to a neural pattern when A € R;. Each R; may be a single continuous interval
in R or composed of several such intervals, and the union of all R; completely covers the real line R. When

the decoding distribution is known, classification accuracy for level ¢ of dimension A is:

P (6| A:B;) = / p (A|AiBj, 9) dA. (29)

7

Equation 29 relates classification accuracy to the distribution of decoded values on the target dimension
A. From this we know that if decoding separability holds, then classification accuracy generalization must
hold. This is true because when decoding separability holds, the distribution p (A\AiBj,H) inside the

integral in Equation 29 is the same for all values of j, P (¢;|A;B;) is therefore the same for all values of j
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Figure 5: Summary of the relation between decoding separability, classification accuracy invariance and
classification accuracy generalization, according to our extension to GRT. Arrows should be interpreted as
conditional statements of the form “if X, then Y”.

and the relation in Equation 28 holds. On the other hand, if decoding separability fails, then classification
generalization may hold or fail. Without loss of generality, assume that decoding separability fails because
D (A\A,—Bhe) #£0p (/1|AiBg, 9). Regardless of the shape of p (A\AiBl,(?) and the region covered by R;,
there are an infinite number of other shapes for p (A|AZ-B2, 9) that will preserve the area under the curve
inside region R; constant, making the value of P (¢;|A;B;) constant across changes in j, which ensures that
the relation in Equation 28 holds. Alternatively, regardless of the shape of p (A|AiBl,9> and the region
covered by R;, there are also an infinite number of other shapes for p (A|A7;B27 9) that will change the area
under the curve inside region R;, making the value of P (¢;|A;B;) change across changes in j. Under such
circumstances, the relation in Equation 28 may or may not hold, depending on whether or not the shape of
P (A\AiBg, 9) produces an area under the curve inside R; that is larger than ﬁ

These considerations point toward an intermediate kind of invariance between decoding separability and
classification accuracy generalization, which we call classification accuracy invariance, defined as the case in
which classification accuracy for levels of dimension A is invariant across changes in the stimulus on a second,

irrelevant dimension. That is, classification accuracy invariance of dimension A with respect to dimension

B holds if and only if, for all values of ¢ and j:

P (6:|A;By) = P (6;|A;B) ... = P (6;|A;By,) . (30)

Decoding separability (Equation 14), classification accuracy invariance (Equation 30), and classification
accuracy generalization (Equation 28) are related to one another as described in Figure 5. The proofs offered
earlier relating decoding separability and classification accuracy generalization already include classification
accuracy invariance as an intermediate form of invariance for which the relations in Figure 5 hold.

What happens when classification accuracy invariance and generalization are evaluated through indirect
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measures of neural activity, such as those obtained from neuroimaging? This is the way in which such tests
have been most commonly applied (Anzellotti and Caramazza, 2014, 2016; Anzellotti et al., 2014; Nestor et
al., 2011). Remember that in this case, the addition of measurement and noise models (Equations 19 and
20) considerably changes the distribution of A estimates obtained from a linear decoder, which is the result
of convolving a distribution of decoded values and the distribution of measurement error. This is likely to
change the specific classification accuracies P (¢;|A;B;) but it should not change their relations as defined
in Equations 28 and 30, under the assumption that the measurement error model does not change with the
value of the stimulus on dimension B.

The theoretical results summarized in Figure 5 reveal two issues with the classification accuracy gener-
alization test as it is currently applied in the neuroimaging literature. The first and most important issue
is that finding that classification accuracy generalization holds does not provide any information about en-
coding separability. On the contrary, what provides information about violations of encoding separability
is finding a wviolation of classification accuracy generalization. Thus, while this test seems to be valid and
useful, it is currently applied and interpreted in the wrong way (Anzellotti and Caramazza, 2014, 2016;
Anzellotti et al., 2014; Nestor et al., 2011). It is possible that finding classification accuracy generalization
may provide information about other properties of encoding, but such properties are yet to be identified
within a formal framework like the one presented here. Another possibility is that classification accuracy
generalization could provide information about encoding separability in special circumstances (i.e., for a spe-
cific choice of encoding, decoding, measurement and error models), but again such possibilities are yet to be
shown. The second issue with the classification accuracy generalization test is that, given the relations shown
in Figures 4 and 5, it provides less information about encoding separability than the decoding separability
test proposed in the previous section. In Figure 5, each logical step away from decoding separability implies
that a number of violations of encoding separability might go undetected, due to the up-diagonal arrow at
each step. Thus, the classification accuracy generalization test is likely to be less sensitive to violations of
encoding separability than a decoding separability test. If the goal of a study is to learn about encoding
separability, then the wiser decision is to focus on a test of decoding separability, rather than on tests of
classification accuracy. An aspect of the lack of sensitivity of the classification accuracy generalization test is
the fact that it requires accuracies significantly above chance to be applied and thus should always be applied
using an optimal classifier. On the other hand, the decoding separability test offers a sensitive measure of
deviations from encoding separability regardless of what decoder is used, including situations in which the

decoder is not optimal and/or does not achieve significant classification accuracy.
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Summary of Theoretical Results

Here we summarize the previous theoretical results, with an emphasis on how they can be applied to the
empirical study of perceptual independence by psychologists and neuroscientists. First, because perceptual
separability can be considered a form of decoding separability, and due to the relations summarized in Figure
4, any failure of perceptual separability should be reflected in a failure of encoding separability somewhere in
the brain. This means that any psychophysical study reporting a failure of perceptual separability provides a
hypothesis to be tested by a neuroscientific study: that a corresponding failure of encoding separability should
be found, probably in sensory areas thought to encode the target dimension. Second, such neuroscientific
studies can be performed using direct measures of neural activity, such as those provided by single-cell
recordings or local field potentials, or indirect measures of neural activity contaminated by measurement
error, such as those provided by EEG and fMRI. Using traditional linear decoding strategies on indirect
measures of neural activity, the decoded dimensional values still offer a basis for a valid test of decoding
separability, and any violation of decoding separability found within a given brain region reflects a violation
of encoding separability by the neural population in that region. It must be stressed that a failure of encoding
separability is a valid inference that can be made from decoding of neuroimaging data, but such data do not
provide a basis to make any strong inferences about the presence of encoding separability. A weak inference
can be made, based on the lack of evidence for a violation, but this is analogous to accepting the null in
a traditional statistical test. A relatively stronger inference of encoding separability could be made on the
basis of assumptions about the neuroimaging measurement model, but researchers should clearly identify
such assumptions. Our recommendation to researchers is to be cautious about concluding that separability
(or “invariance”) holds at the neural level from neuroimaging data, or even from decoding of direct measures
of neural activity (Hung et al., 2005).

Finally, we have shown that operational tests of independence available in the literature can be formally
defined and re-interpreted within the framework presented here. We showed that, when some strong as-
sumptions are met, the neural representation orthogonality test (Baumann et al., 2011; Hadj-Bouziane et
al., 2008; Kayaert et al., 2005) is related to the concept of perceptual independence from the traditional
GRT, but it is unlikely to be related to a corresponding property of stimulus encoding. On the other hand,
the classification accuracy generalization test promoted by Anzellotti and Caramazza (Anzellotti et al., 2014;
Anzellotti and Caramazza, 2014, 2016) can lead to valid inferences about encoding separability. However,
the way in which the test has been applied might lead to conclusions of invariance or separability that are in
general unjustified, unless one is interested in decoding separability only, and not in the separability of un-

derlying brain representations. In addition, the classification accuracy generalization test is likely to provide
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less information than our decoding separability test.

An Application to the Study of Encoding Separability of Face Identity and Ex-

pression

Information about a number of properties can be extracted from a single face, including identity and emo-
tional expression. The influential model of Bruce and Young (Bruce and Young, 1986) proposed that these
two face dimensions are processed independently, motivating a large number of psychophysical studies aimed
at testing this hypothesis (Baudouin et al., 2002; Fitousi and Wenger, 2013; Fox and Barton, 2007; Fox et
al., 2008; Ganel and Goshen-Gottstein, 2004; Gao and Maurer, 2011; Lander and Butcher, 2015; Pell and
Richards, 2013; Schweinberger and Soukup, 1998; Soto et al., 2015; Soto and Wasserman, 2011; Stoesz and
Jakobson, 2013; Wang et al., 2013). Neurobiological theories of visual face processing (Haxby et al., 2000;
O’Toole et al., 2002) also propose relatively independent processing of face emotion and identity, through
anatomically and functionally differentiated pathways. A ventral pathway projecting from the occipital face
area (OFA) to the fusiform face area (FFA) would mediate the processing of invariant aspects of faces, such
as identity. A dorsal pathway projecting from the OFA to the posterior superior temporal sulcus (pSTS)
would mediate the processing of changeable aspects of faces, such as emotional expression. Recent reviews
(Duchaine and Yovel, 2015; Bernstein and Yovel, 2015) conclude that the two pathways are indeed relatively
separated and functionally differentiated, with the ventral pathway being involved in the representation of
face form information—including invariant aspects of face shape such as identity—, and the dorsal pathway
involved in the representation of face motion information—including rapidly changeable aspects of faces such
as expression. According to this revised framework, both identity and expression information may be en-
coded in either pathway, but exactly what information about each dimension is encoded would differ between
pathways.

The psychophysical and neurobiological lines of research in this area have remained relatively independent
across the years, with no attempt to integrate results across levels of analysis despite the similarity of the
central questions guiding their research. In addition, both lines have relied largely on operational definitions
of independence that, while having face validity, are usually not linked to any theoretical definition. As
indicated in the introduction, this approach makes it difficult to interpret contradictory results.

Thus, the study of independence of face identity and expression is a particularly good testing ground for
the theory presented here. Our theory can provide a much-needed theoretical integration across levels of
analysis and tests, as well as more rigorous definitions of independence and ways to measure it. In addition,

we have recently performed a GRT analysis of psychophysical data to study the perceptual separability of
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identity and expression (Soto et al., 2015). The results from that study provide specific predictions to be
tested in a neuroimaging study, and thus a proof of concept for our framework. Our behavioral results
suggested that, for the stimuli used in that study and after accounting for decisional factors, emotional ex-
pression was perceptually separable from identity, but identity was not perceptually separable from emotional
expression. From these results, our current framework (see Figure 4) predicts that encoding separability of
identity from expression must fail somewhere in the areas representing face information, and that our de-
coding separability test should be able to find those areas. The predictions regarding encoding separability
of emotional expression are less straightforward: as there are no violations of perceptual separability in the
behavioral data, we may or may not find violations of encoding separability.

Here, we acquired fMRI data from participants while they looked at the same stimuli and completed the
same task as in our previous psychophysical study (see Materials and Methods). This was a simple stimulus
identification task, which required participants to pay attention to both identity and expression to attain
good performance. Performance in the task during scanning session was high, with a mean of 81.67% (SE
= 5.18%). Single-trial estimates of stimulus-related activity were used as input to the decoding separability
test described earlier. Because we did not have specific hypotheses about the location of areas showing
failures of encoding separability, we performed a whole-brain searchlight analysis (Kriegeskorte et al., 2006),
to determine which small circular regions (radius of 3 voxels) showed violations of decoding separability, and
therefore violations of encoding separability. To spatially localize violations of encoding separability relative
to areas in the face network, we found such areas with the help of a standard functional localizer.

The results from this analysis did not reveal any significant violations of decoding separability, either
for identity or emotion. Further exploration revealed that our standardized DDS index was consistently
below the value of 0.5 that would be expected under the null hypothesis, suggesting that our method of
standarization might have produced an index that is too conservative. We reasoned that one solution would
be to use the difference in DDS index between the identity and emotion analyses as the main test statistic,
to allow one map to serve as control for the other. This provides only indirect evidence of violations of
separability, but would solve the problem of our statistic being overly conservative. Figure 6 shows the main
results of this analysis, displayed over a flat cortical map. Face-selective areas found through the functional
localizer are outlined in the figure. Outlined in green are face-selective areas showing higher activity during
the presentation of faces than during the presentation of other objects. Outlined in red are areas showing
higher activity during the presentation of emotional faces than during the presentation of neutral faces. The
figure also shows clusters of significant violations of decoding separability, depicted in red-yellow for the
identity > emotion contrast. A single large cluster (483 2mm voxels) was found to be significant, covering

parts of the left STS and superior temporal gyrus (peak location in MNI coordinates: -60, -14, 2). This
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Figure 6: Results of the searchlight decoding separability test. Yellow-red clusters represent regions in
which violations of decoding separability of identity were stronger than violations of decoding separability
of emotional expression. There were no regions in which violations of decoding separability of emotional
expression were stronger than violations of decoding separability of identity. Green and red lines delimit
face areas from the functional localizer.

cluster only slightly overlapped with an area of the face network in the pSTS (green contour). No significant
violations were found for the emotion > identity contrast.

The results shown in Figure 6 are in line with our predictions, as they provide evidence of stronger viola-
tions of decoding separability for identity than for emotional expression, but not the other way around. This
asymmetry in the separability of neural representations is analogous to the asymmetry in perceptual separa-
bility found in our previous psychophysical study, and thus makes intuitive sense. Although this asymmetry
was not a strong prediction from the theory (which simply predicts violations of decoding separability for
identity, but is ambiguous about violations of decoding separability for emotional expression), it suggests
that there is at least an empirical correspondence between asymmetries of separability in perceptual and

brain representations.

Comparison with neural representation orthogonality

We implemented a version of the neural representation orthogonality test (Baumann et al., 2011; Kayaert
et al., 2005) discussed earlier. At each searchlight, we measured representation orthogonality by correlating
the weights from the classifier used in the previous analyses of identity and emotion. A correlation of zero
is equivalent to orthogonality of the two weight vectors, and therefore any deviation from a zero correlation
is indicative of a violation of neural representation orthogonality. As mentioned earlier, finding such viola-
tions of orthogonality is more informative than finding evidence for orthogonality. The resulting individual
orthogonality maps were submitted to the same permutation test previously used for separability maps. No

violations of neural representation orthogonality were found in this analysis.
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Note that this finding of neural representation orthogonality has been taken by other researchers to mean
that information about face identity and emotional expression is represented independently in the visual
system (Hadj-Bouziane et al., 2008). Our theoretical results allow us to draw a different conclusion: neural
representation orthogonality cannot be easily linked to a corresponding property of stimulus encoding, as
even a linear transformation from the space of the encoding model to the space of indirect measures of neural
activity does not necessarily preserve angles.

From the point of view of GRT, decoding separability and neural representation orthogonality seem
to measure unrelated properties of perception and neural encoding. From the point of view of perception,
decoding separability is related to the GRT concept of perceptual separability, whereas neural representation
orthogonality is related to the GRT concept of perceptual independence. In both cases, however, the tests
are related to the corresponding GRT concepts through a number of strong assumptions. From the point
of view of encoding, decoding separability is related to the concept of encoding separability, whereas neural
representation orthogonality seems difficult to relate to any property of encoding. For these reasons, we
expected the magnitude of violations of orthogonality and violations of separability to be unrelated. To
test this hypothesis, we took the group statistical maps obtained from the permutation test in the analysis
of decoding separability and computed their Pearson correlation with the corresponding maps from the
current analysis of representation orthogonality. There was a small but significant correlation between the
orthogonality map and both the map of deviations of separability for identity, r=-0.1162 (p<0.0001), and
the map of deviations of separability for emotion, 7=0.0666 (p<0.0001). These correlations are significant
due to the large number of voxels used to calculate them, but their magnitudes are very small. With these
correlations, only 1.35% of the variability in the separability map for identity and 0.44% of the variability in
the separability map for expression can be explained by variability in the orthogonality map. Still, the fact
that the correlations are significant in real data is important, and some unknown relation between neural
representation orthogonality and decoding separability may underlie these results. Future theoretical work

will be necessary to clarify these points.

ROI-based decoding separability test

An additional ROI-based analysis was performed, with three goals in mind. First, we wanted to deter-
mine whether directly testing face-selective regions would result in some evidence of violations of decoding
separability, as the only cluster showing such deviations in the searchlight analysis overlapped very little
with face-selective regions from the localizer (see Figure 6). Second, we wanted to more clearly determine
whether there are meaningful variations in the amount of separability between different regions. Finally, we

wanted to explore the behavior of our decoding separability analysis in control regions. The included ROIs
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are face-selective areas (OFA, FFA, STS) and two control regions: V1, which is known to be sensitive to
low-level visual features and thus might show deviations of decoding separability (any change in the faces
would produce changes in low-level features), and the lateral ventricles, which give us information about
the behavior of our statistic when there is very little underlying signal. Some information may be available
at the ventricle ROIs that is leaked from adjacent regions, but we would expect that here our statistic
should show decoding separability, as the decoding distributions should be almost completely determined by
measurement noise.

Results are shown in Figure 7. Figure 7 shows mean standardized DDS values across all ROIs included
in the analysis, with error bars representing standard errors of the mean. We tested whether any of these
means was significantly higher than the value of 0.5 expected under decoding separability through t-tests
(directional, uncorrected). The only ROIs showing significant violations of decoding separability were the left
V1 in the analysis of identity, ¢(15)=2.04, p<.05, and the right STS in the analysis of emotion, ¢(20)=2.05,
p<.05. Due to the large number of tests and the fact that our experiment was not originally designed with
ROI-based analyses in mind, none of the tests is significant after the application of a correction for multiple
comparisons. For this reason, the results shown in Figure 7 should be taken as only suggestive and ex-
ploratory. Still, the evidence is encouraging as it suggests that: (1) deviations from decoding separability are
not significant in the control areas assumed to include mostly measurement noise (left and right ventricles),
(2) deviations from decoding separability are significant in one of the control areas thought to involve such
deviations (left V1), and (3) deviations from separability were very low across face-selective areas, with the
exception of the right STS, which showed a significant deviation from decoding separability of emotion from
identity. Also note that, for most face-selective regions, the mean DDS is consistently below the value of
0.5 which, as mentioned earlier, suggests that the DDS is a conservative measure of failures of decoding

separability, at least in areas thought to encode the dimensions under study.
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Figure 7: Results of the ROI-based decoding separability test. The y-axis reports the standardized deviations
from decoding separability (DDS) statistic. The points represent mean values and the error bars represent
standard error of the mean. When decoding separability holds, this index should have a value around 0.5,
which is represented with a horizontal dotted line. Mean statistics that were found to be significant (¢-test,
uncorrected) are marked with an asterisk.

Discussion

Here we have linked multidimensional signal detection theory from psychophysics and encoding models from
computational neuroscience within a single theoretical framework. This allowed us, for the first time, to link
the results from psychophysical and neurobiological studies aimed at determining independent processing
of stimulus properties. Unlike previous approaches, our framework formally specifies the relation between
behavioral and neural tests of separability, providing the tools for a truly integrative research approach in
the study of independence.

In the past, neuroimaging studies have been limited to a choice between decoding and encoding approaches
to data analysis (Naselaris et al., 2011). Decoding approaches focus on answering questions about what is
encoded in a given brain region, while making no assumptions about how exactly that information is encoded;
this lack of commitment to an encoding model is both their strength, as they provide useful results regardless
of how information is encoded, and their weakness, as they are limited regarding what kind of question they
can answer. In contrast, encoding approaches focus on answering questions about how a specific stimulus
property is encoded in a brain region, but they do this by assuming the encoding model and determining

whether it can help to accurately predict data. Their weakness is that there are a very large number of models
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that could be tested, and no way of knowing a priori whether the best model is included in the analysis. The
theory presented here allowed us to identify some properties of encoding models (i.e., encoding separability)
that can be inferred from the results of a decoding study. We hope that future theoretical research in this line
will allow researchers to link other properties of encoding models to the results of decoding tests, and more
generally to the results of any analysis involving measures that are some transformation of the underlying
neural activity, as is the case in fMRI and psychophysics.

Although we focused on developing a decoding separability test, the GRT framework presented here is
useful to understand the results of other tests of independence as well (Bate and Bennetts, 2015; Haxby et al.,
2000; Ganel et al., 2005; Hadj-Bouziane et al., 2008; Hasselmo et al., 1989; Nestor et al., 2011; Anzellotti et
al., 2014; Zhang et al., 2016; Fox et al., 2009; Winston et al., 2004). Here, we re-interpreted two operational
tests of independence previously applied in the literature within our extended GRT framework. We showed
that, when some strong assumptions are met, the neural representation orthogonality test (Baumann et al.,
2011; Hadj-Bouziane et al., 2008; Kayaert et al., 2005) is related to the concept of perceptual independence
from the traditional GRT, but it is unlikely to be related to a corresponding property of stimulus encoding.
On the other hand, a test based on generalization of classification accuracy (Anzellotti et al., 2014; Anzellotti
and Caramazza, 2014, 2016) can provide information about encoding separability. However, the test is likely
to provide less information than a decoding separability test and it has been applied incorrectly, yielding
conclusions of separability (invariance) that are in general unjustified. Application of our framework to
additional operational tests may require the development of models linking neural activity to the specific
measurements made in each test.

The framework and test proposed here are applicable not only to fMRI data, but also to the analysis of
single-cell recordings, LFPs; EEG and MEG. This breadth of scope across operational definitions and levels
of analysis (single neurons, neural populations at many scales, perception, and behavior), which is rarely
seen in neuroscience, is a very important contribution of the present work.

We applied our new framework to the study of independent representation of face identity and emotional
expression. Previous research found that, for the set of stimuli studied here, identity is not perceptually
separable from emotional expression, whereas emotional expression is perceptually separable from identity
(Soto et al., 2015). Our results revealed that such lack of perceptual separability is reflected in stronger
violations of decoding separability for identity than for emotion in the left temporal cortex, but no stronger
violations of decoding separability for emotion than for identity in any brain region.

Several previous fMRI studies have explored the question of whether emotional expression and identity
are represented independently in the brain, and an important question is what value is added by a study

based on our extended GRT. We believe that our framework provides at least two advantages. The first
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advantage is the provision of clear links between the results of neuroimaging and behavioral studies using the
same stimuli. No previous study could directly link behavior to neural representation in a meaningful way, as
in the present study. We started our study with clear predictions about how fMRI results should reflect the
behavioral results, which is preferable to the approach of linking neural and behavioral results through post-
hoc theorizing. The second advantage offered by our framework is that it improves our ability to interpret
new results in the light of previous results. For example, our data suggest violations of decoding separability
of identity from emotion. This does not contradict previous reports of orthogonality of neural representations
(Hadj-Bouziane et al., 2008), as we know that decoding separability and neural representation orthogonality
measure different concepts. Researchers have also found that emotion can be decoded from areas linked to
processing of identity (Nestor et al., 2011; Skerry and Saxe, 2014), and identity can be decoded from areas
linked to processing of emotion (Anzellotti and Caramazza, 2017). The issue of whether or not a particular
kind of information can be decoded from a brain region is orthogonal to the issue of whether or not it
shows encoding separability. Accurate decoding from a particular area indicates that information about a
dimension is present in that area but, as indicated earlier, decoding methods are agnostic as to how that
information is encoded. The same is true about inaccurate decoding from a particular area. On the other
hand, an example of a test that is related to encoding separability is the classification accuracy generalization
test of Anzellotti and Caramazza (Anzellotti and Caramazza, 2014; Anzellotti et al., 2014; Anzellotti and
Caramazza, 2017). However, this test has not been applied to the study of independence of identity and
emotional expression, but rather to the study of identity across changes in viewpoint and modality.

Our application to face perception research is useful to highlight the kinds of questions that can be
answered with the new framework and the type of analysis that should be performed to answer such questions.
However, there are several limitations of the present study that should be noted. First, we found evidence
for our hypothesis through exploratory analyses, as our planned analyses seemed too conservative. More
computational research will be necessary to improve our test of decoding separability. Second, results
were obtained using a small set of naturalistic stimuli, so they should not be over-generalized. There is no
guarantee that the same results will hold for other stimulus sets, and more research is needed before reaching
any general conclusion about the separability of identity and emotional expression. Third, our experiment
and analyses were performed at the group level. This was done to obtain a statistically-powerful test that is
sensitive to violations of separability that are consistent across participants. However, the results may not
be representative of individual subjects. We expect that the study of encoding separability at the individual
level will require obtaining more data from each participant than what was acquired in the present study.

Our theoretical work might also require further refinement. In particular, the decoding separability test

can detect when encoding separability is violated, but it cannot detect when encoding separability holds
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(see Figure 4). For many researchers, concluding that a dimension is encoded in a separable manner in
a given brain region might be considered more interesting; still, an important contribution of our work is
showing that this is not possible through indirect measures of neural activity or psychophysics. Perhaps
specific assumptions about the measurement model producing the data will make it possible to establish a
more direct link between decoding and encoding separability, but such assumptions need to be clearly spelled
out by researchers, and data should be provided to back them up. An additional issue has to do with our
proposed DDS statistic, which as indicated above should be studied and improved further.

The notion of independent processing is central to many theories in perceptual and cognitive neuroscience,
but its study has lacked the rigor and integration offered by a formal framework, like the one presented here.
This framework allows development of theoretically-driven tests of independence of neural representations,
which are more clear and rigorous than the operational tests used thus far. The availability of more rigorous
definitions and tests to study separability is likely to advance knowledge in a number of areas in visual

neuroscience interested in the notions of independence of processing and representation.
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