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Predicting residue-residue contacts between interacting pro-
teins is an important problem in bioinformatics. The grow-
ing wealth of sequence data can be used to infer these con-
tacts through correlated mutation analysis on multiple sequence
alignments of interacting homologs of the proteins of interest.
This requires correct identification of pairs of interacting pro-
teins for many species, in order to avoid introducing noise (i.e.
non-interacting sequences) in the analysis that will decrease pre-
dictive performance. We have designed Ouroboros, a novel al-
gorithm to reduce such noise in intermolecular contact predic-
tion. Our method iterates between weighting proteins according
to how likely they are to interact based on the correlated muta-
tions signal, and predicting correlated mutations based on the
weighted sequence alignment. We show that this approach ac-
curately discriminates between protein interaction versus non-
interaction and simultaneously improves the prediction of in-
termolecular contact residues compared to a naive application
of correlated mutation analysis. Furthermore, the method re-
laxes the assumption of one-to-one interaction of previous ap-
proaches, allowing for the study of many-to-many interactions.
Source code and test data are available at www.bif.wur.nl/

Correspondence: aaltjan.vandijk@wur.nl

Introduction

Virtually any biological process requires, at some point,
recognition and interaction between specific proteins. Know-
ing which residues mediate a protein-protein interaction
(PPI) can lead to better understanding of its interaction
specificity. It is also useful for modeling protein complex
structures (1) and for designing drugs targeting PPIs (2).
Unfortunately, experimentally elucidating which residues
make contact across interfaces (by, for example, alanine
scanning or cocrystallization of the proteins of interest)
is low-throughput and laborious. Hence, a plethora of
computational methods have been designed for this task.
Amongst these, coevolutionary analysis has received much
attention in recent years, thanks to the expanding wealth of
sequence data and methodological advances.

Coevolutionary methods, applied to the study of interacting

proteins, use sequence information alone to predict contacts
between proteins. They rely on the emergence of shared evo-
lutionary constraints between interacting proteins to main-
tain the interaction, which can be observed as correlated mu-
tations (3). Revealing these correlated mutations requires
building large multiple sequence alignments (MSAs) of in-
teracting homologs of the proteins under study, which are
then analyzed using a variety of methods (Figure 1a). These
two MSAs are paired: each row needs to contain a pair of
interacting proteins. However, it is not trivial to avoid intro-
ducing non-interacting pairs of sequences, which adds noise
to the analysis and decreases predictive performance (Figure
1b), a widely recognized problem in the field (4—6). This can
be caused, for example, by gene duplication events, which
might result in divergence of interaction patterns in the re-
sulting proteins (7, 8). When analyzing prokaryotic proteins,
this is usually dealt with by filtering by genomic colocaliza-
tion: a protein will often interact with a paralog within the
same operon, and not with those outside. This does not hold
true for eukaryotic proteins, where coevolutionary analysis
has been a challenge.

Before the appearance of coevolutionary methods which re-
move indirect relationships between residues (9), approaches
to predict PPIs based on MSAs using coevolutionary infor-
mation had already been developed (10, 11), although they
were not applied to improve contact prediction. Algorithms
that address both removal of indirect relationships and PPI
prediction have only appeared recently (12, 13). These meth-
ods aim to maximize the coevolutionary signal by simultane-
ously matching pairs of interacting proteins within a species
and predicting the intermolecular contacts, with no a priori
knowledge of either.

In this paper, we present Ouroboros, a new approach to con-
currently predict protein-protein interactions and intermolec-
ular contacts, based on the expectation-maximization (EM)
algorithm. It relies on iteratively improving two models,
one of protein coevolution and another of independent evo-
lution, in order to discriminate between interacting and non-
interacting proteins and thus improve the coevolutionary sig-
nal. As the previously mentioned methods, it does so with no
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Fig. 1. Contact prediction between hypothetical proteins A and B by coevolution-
ary analysis of their paired MSAs. (a) Ideal case, where sequences in the MSAs
can be matched by their interaction status. This is approximated when analyzing
prokaryotic proteins by matching them by genomic colocalization. Circles indicate
residues predicted to participate in the interaction. (b) Case where interaction status
is unknown. Inadvertent introduction of non-interacting sequences (two last pairs of
sequences) leads to decreased contact prediction performance.

prior information about protein interactions or intermolecu-
lar contacts. Algorithmic and statistical considerations aside,
our approach differs from the work of Bitbol et al. and Gueu-
dré et al. in that it relaxes their assumptions. Most impor-
tantly, both papers consider that a protein can only interact
with one protein (one-to-one interactions). Ouroboros, as we
show here, allows for many-to-many interactions. This is
particularly relevant given the prevalence of many-to-many
interactions in eukaryotes, for example, between members
of large protein families (Van Wijk et al. 14, Immink et al.
15, Reinke et al. 16).

We apply the newly developed algorithm on a dataset con-
taining many-to-many interactions and non-interacting pro-
teins. We show that Ouroboros is able to accurately discrim-
inate between interacting and non-interacting proteins using
only coevolutionary information. In turn, this allows it to im-
prove intermolecular contact predictions compared to a naive
application of coevolutionary analysis.

Materials and Methods

A. Data representation. Consider two multiple sequence
alignments (MSAs) M; and Ms, both containing S se-
quences of length L1 and Ls, respectively. Each row ¢ of
one of the matrices represents an aligned protein sequence.
The row 7 in the other matrix represents a protein sequence
that might interact with it. We will call these sequence pairs.
We transform the matrices M7 and M5 into the matrices
N; and Ny, where each element of the original matrices is
mapped to numbers in the set A € {0,...,20}, which repre-
sent the 20 standard amino acids plus the gap symbol (-). We
will refer to matrices N7 and Ny as numerical matrices, and
their columns serve as response vectors in our modeling ap-
proach.

The matrices N1 and N are, in turn, expanded to matrices
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Bj and Bj, containing S rows and L; - (JA| —1) resp. Lo -
(JA] — 1) columns. Each element of a numerical matrix is
turned into a set of | A — 1| elements of a binary matrix, where
a 1 indicates the amino acid present at a certain position; gaps
are denoted by zeros. We shall refer to matrices B and Ba
as binary matrices. These are used as explanatory variables
in our coevolutionary model.

Columns with a gap frequency equal to or greater than 0.5
are excluded from the analysis, as they yield insufficient in-
formation. Constant columns are also removed, given that
the method relies on finding covariant signals.

B. Modeling setup. Each sequence pair 7 in the alignments
is associated with a hidden variable z;, whose value indi-
cates a probability of interaction. To discriminate between
interaction and non-interaction, the algorithm uses two dif-
ferent models, which are described below. These models are
weighted by the values of z. To assign initial values to z, we
give each sequence pair the maximum weight possible in both
models described below, and simply follow the procedure de-
scribed in this section to estimate the model parameters and
assign values to z. Subsequently, the EM algorithm is ap-
plied, which iteratively applies two steps until convergence:
the two models are refined in the M step and new values of z
are derived in the E step.

B.1. Coevolutionary model. We break down searching for co-
variation between the two MSAs into a number of multiclass
classification problems. We model each column of each MSA
as a function of the sequences in the other MSA using multi-
nomial logistic regression, where each amino acid constitutes
a separate class. For each column in an MSA, the response
variable is the corresponding column of the pertinent numer-
ical matrix (N7 or Na); the explanatory variables are con-
tained in the binary matrix that represents the other protein
(B2 or By). Each sample is weighted by the associated hid-
den variable value z;. As we are only interested in inter-
molecular contacts, intramolecular covariation is not taken
into account in our model. In order to prevent overfitting, the
models are regularized using the elastic net penalty, which
linearly combines L1 and L2 penalties. Based on previous
work, the value of the mixing parameter is set to 0.99 (17).
This value emphasizes the L1 penalty. In our implementa-
tion, models are fitted and regularized using the SGDClassi-
fier in scikit-learn v0.19 (18).

The elastic net has an « parameter which controls the strength
of the regularization, which must be tuned. This parame-
ter is set independently for each column of the MSAs during
model initialization. We train models for each column over
arange of 15 « values spaced evenly on a log scale between
1 x 1073 plus some weaker regularization strengths (from 10
to 40) for some extreme cases. We select a suitable value us-
ing the Bayesian Information Criterion (BIC) (19), which is
computed as:

BIC = —2-log L+ k-1log(5) 1)

where log L is the log-likelihood of the data according to the
logistic model and & the number of model degrees of free-
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Fig. 2. Schematic overview of the algorithm.
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B Modeling setup

dom. The value of « that minimizes the BIC is chosen. Al-
though the BIC penalizes model complexity, this penalty can
easily be overcome by the goodness of fit achieved by sim-
ply adding a large number of explanatory variables that are
unrelated to the learning task. Thus, using the BIC in a high-
dimensional setting can easily lead to overfitted models, an
issue already described by several authors (see, for example,
Chen and Chen 20 and Bogdan et al. 21). In order to avoid
this, we set a threshold of 100 model degrees of freedom.
This has a physical justification: a given residue will only in-
teract with a limited number of residues. Once we have fitted
logistic models for each column, we can calculate the pos-
terior probability of each single residue according to them.
Thus, we can compute the likelihood of a sequence pair .S;
under the coevolutionary model, which is given by

L1 Lo
Leoen(Si) = [[ P(V1,,|B2,2) - [ [ P(N2,,1B1.2) (2)
j=1 j=1

Here, the likelihood of a sequence pair is expressed as a prod-
uct of two terms, one for each sequence of the pair. Each term
is a product over the likelihoods assigned to each position
(N1, ; or Na, ) according to the logistic regression models.

B.2. Model of independent evolution. The model of indepen-
dent evolution considers that two given proteins evolve inde-
pendently. Under this model, the probability of an amino acid
is the frequency of the amino acid in its column, weighted by
1 — z;. Thus, the likelihood of sequence pair \S; under the null
model is given by

Ly Lo
wl,j UJQJ'
Lnull(Si) = H S ' H S (3)
j=1 D=1 (1—zp) j=1 > =1 (1—2x)
s
wl,jzzfmli’leM(l—Zk) )]
k=1 '
s
wa ;= Z 6N2m. Na, (1—2z) &)
k=1

where d,;, denotes the Kronecker delta function, whose value
is 1 if @ = b and 0 otherwise.

B.3. Update of hidden variable values and convergence. In
the E step, we compare the two models to estimate interaction
probabilities. We derive new values of z using the equation

Lcoe'u (Sz)fznt
Leoev (Sz)fznt + Lnull (Sz)(l - fznt)
which can be derived from Bayes’ theorem. Here, f;,; is a
prior fraction of interacting proteins. The procedure is re-
peated until the algorithm reaches convergence. We consider
this happens when

s
Z|Zi,j_zi,j—1| <¢ 7
i=1
Here, z; ; indicates the current values of the hidden variables
and z; j_1 those in the previous iteration, and ¢ is a user-
defined convergence threshold (default 5 x 1073).
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C. Contact prediction. We have used the Julia implemen-
tation of plmDCA (Ekeberg et al. 22, 23) to predict inter-
molecular contacts on unfiltered alignments containing inter-
acting and non-interacting sequence pairs (naive approach)
and sequence alignments obtained from the EM-based ap-
proach described above.

D. Datasets.

D.1. PDZ-peptide interaction dataset. We have used a dataset
obtained by Tonikian et al. (24). In their study, the authors
identified binding peptides for 82 different PDZ domains (54
human domains and 28 from C. elegans) from a C-terminal
phage-displayed library of more than 10 billion random pep-
tides. We have used a large subset of 3066 canonically bind-
ing peptides.

To evaluate PPI prediction performance, we need not only an
interacting set, but also a non-interacting set. The dataset,
however, contains no information about non-interaction. As
done in previous work under the same circumstances (17, 25),
we randomize the interacting set in order to create a non-
interacting set. Nonetheless, randomly matching domains
and peptides could generate a sizeable proportion of pairs
that could actually interact. In order to minimize the chance
of this happening, we incorporate prior knowledge regard-
ing PDZ-peptide specificity detailed in the original paper,
where the authors defined different specificity classes. Do-
mains marked as having a unique specificity are grouped
together with their closest neighbour. The exception is the
PDLIM4-1 domain, which forms an outgroup in their classi-
fication scheme; we consider it as a separate class. To create
the non-interacting set, domains are randomly selected and
randomly matched with peptides different from those in their
own specificity class. However, some classes share a few
peptides, indicating these specificities have some small over-
lap. Thus, this procedure cannot guarantee that no interacting
pairs are accidentally generated. As a result, a small fraction
of pairs in the non-interacting set that we consider misclassi-
fied could actually interact.

To determine which pairs of residues are in contact between
the PDZ domain and the binding peptide, we used four dif-
ferent complex structures previously used by the authors of
the dataset (PDB IDs: 1BE9,1IHJ,IN7F,IN7T). We did not
use the other structures they used, because the two sequences
were fused and the observed contacts might be biologically
irrelevant. We consider that two residues are in contact if
there are 8A or less between their C[3 atoms (or, if the residue
is glycine, its Ca atom). To map these contacts to the se-
quences in the dataset, we align the sequences in the dataset
and those of the structures using MAFFT v7.310 (26), which
allows us to obtain a contact map between the domain and the
peptide sequences. Contacts that appear in any of the struc-
tures are included in the contact map. The resulting align-
ments (without the sequences extracted from the PDB files)
are used for coevolutionary analysis.

D.2. Synthetic data. We generated artificial MSAs containing
both covarying sequence pairs (to simulate interaction) and
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non-covarying sequence pairs (to simulate non-interaction) in
order to test the algorithm. The interacting pairs contain four
columns that covary between the two sequences, where the
residues in one column complement those in the other. On the
contrary, non-interacting sequences contain residues drawn
from the same distribution, but assigned at random, thereby
removing the correlation between the sequences. Nonethe-
less, by chance, some non-interacting pairs may end up with a
pattern of residues that resembles that of the interacting pairs.
Non-interacting pairs that contain the pattern of residues that
would be expected in an interacting protein in more than two
columns are removed. Also, to simulate positions that do not
participate in the interaction, these artificial MSAs contain
columns with random distributions of amino acids. Each ar-
tificial sequence contains 15 positions in total.

Results and discussion

E. Combination of coevolutionary analysis with ex-
pectation-maximization. Naive application of coevolution-
ary analysis of MSAs containing both interacting and non-
interacting proteins can lead to poor intermolecular contact
prediction. The problem with such naive application is that
we cannot properly estimate the parameters of the model de-
scribing residue couplings in a setting where the MSAs con-
tain non-interacting proteins. On the other hand, if the pa-
rameters of the model were available, we should be able to
identify pairs of sequences that do not follow these patterns
of coevolution, which would indicate non-interaction.

A way to approach this kind of problem is the expectation-
maximization (EM) algorithm. EM (27) is a general method
for finding the maximum likelihood estimate of the param-
eters of a statistical model when the model depends on un-
observed hidden variables (in this case, interaction or non-
interaction). EM alternates between two steps: deriving the
expected values for the hidden variables z based on the model
parameters 6 (E step), and re-estimating the model param-
eters 6 based on the values of z (M step). In this work,
we have combined a coevolutionary analysis algorithm (17)
with EM. In this way, we can simultaneously model inter-
molecular contacts and interaction/non-interaction status. By
weighting proteins in our models according to our predictions
of their interaction status, we aim to boost the coevolutionary
signal and improve predictions of intermolecular contacts.
To do so, we use two different models of protein evolution
to distinguish interaction from non-interaction. The coevolu-
tionary model considers that there is covariation between the
two proteins, which points to interaction. The null model,
however, assumes that the two proteins evolved indepen-
dently, which would indicate non-interaction. These two
models are updated iteratively until the algorithm reaches
convergence. An overview of the algorithm is provided in
Figure 2; the reader is referred to the Methods section for
further detail.

F. Correlated mutations analysis accurately predicts
PPIs in the PDZ-peptide dataset with no a priori infor-
mation. We used a PDZ-peptide interaction dataset (Section
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Fig. 3. Differences between well predicted and systematically misclassified domains. (a) Boxplot showing the distribution of probabilities assigned by the coevolutionary
model at positions of the PDZ domain highlighted by PCA. Notches indicate the width of a 95% confidence interval of the median. (b) Violin plot illustrating distributions of
statistical energies at contacts made by these positions. Boxplots are plotted within the violins. (c) Gap frequencies for the contact between domain position 54 and peptide

position 6.

D.1), which contains 82 different PDZ domains and the dif-
ferent peptides they bind to, to test our algorithm. As PDZ
domains bind to multiple peptides, and some peptides bind
to multiple PDZ domains, our alignments describe many-to-
many interactions. We have created three different datasets
with different levels of noise (25%, 50% and 75% of inter-
acting proteins). All of these contain 3066 interacting se-
quence pairs, plus an added number of sequence pairs from
our generated non-interacting set. As explained in the Meth-
ods section, there is a random element in the generation of the
non-interacting set. To account for this variability, we have
tested the method using datasets generated with 10 different
random seeds.

Table 1 shows PPI predictive performance with different
amounts of noise. A sequence pair is predicted to interact
if its associated z value (i.e. its probability of interaction)
is greater than 0.5. The case in which only 25% of the se-
quence pairs interact shows that very large amounts of noise
can have a negative impact. Even though the algorithm still
performs better than random (mean Matthews correlation co-
efficient of 0.17 4= 0.007; 0 would indicate no better than ran-
dom performance), the predictions are rather poor compared
to the other cases. In these other cases, the algorithm accu-
rately discriminates between interacting and non-interacting
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% of Matthews
. . True True .
interacting ositive rate  negative rate Correlation
proteins P & Coefficient
25% 66.5+0.6% 522+0.7% 0.17 £0.007
50% 88.9+02% 91.1 £04% 0.80 &+ 0.004
75% 9124+03% 945+03% 0.78 £ 0.005

Table 1. PPI predictions in the PDZ-peptide dataset under different levels of noise,
using 10 different random seeds. Results are presented as the mean over all ran-
dom seeds and its standard error.

sequence pairs without the need to supply knowledge about
interactions, merely from covariance between MSA positions
(MCCs of 0.80 £ 0.004 and 0.78 % 0.005 for the 50% and
75% cases, respectively).

G. Changes in binding sites can lead to mispredic-
tions. Intriguingly, certain domains in the interacting set are
systematically misclassified as non-interacting (i.e., the me-
dian final value of z across all their appearances was below
0.5). These account for 5.5% of the interacting set. This con-
sistency suggests that their sequence has some property that
distinguishes them from others in the interacting set, although
we found that they do not belong to a particular species or
interaction specificity class. To ascertain whether the coevo-
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lutionary model has problems modeling certain positions, we
performed principal component analysis (PCA) of the matrix
of probabilities assigned by the model to the MSAs. This
matrix contains the probability assigned to each individual
residue in the alignments. The PCA showed some degree of
separation between systematically misclassified domains and
well classified domains. Most importantly, the top 3 variables
with the highest absolute loading in the first principal com-
ponent correspond to contact positions in the PDZ domain.
These are, in our alignments, position 54, 42, and 67, by or-
der of importance in the first principal component. Clearly,
the probabilities assigned by the coevolutionary model are
much lower in systematically misclassified domains than in
well classified ones (Figure 3a), which indicates the coevolu-
tionary model has problems in these three positions.

A general issue could be a shift in the amino acids present
at the positions highlighted by PCA or in positions in the
peptide that are in contact with these PDZ residues. To
evaluate this possibility, we used a statistical potential (28).
This potential is a function that assigns an energy to pairs
of residues based on observed and expected frequencies of
pairs of residues making contact in known protein structures.
More negative energies between residues indicate more fre-
quently observed, and therefore more favourable, interac-
tions. Changes in the distribution of energies assigned by the
potential would imply a change in the distribution of pairs of
residues.

Figure 3b shows the distribution of these statistical energies
in the different contacts made by the three PDZ residues
found to behave differently according to the PCA. We find
that in domain positions 42 and 67, for the consistently mis-
classified sequences, there is a shift towards residue pairs
with less favourable energies, especially in position 42. Po-
sition 67 still shows a higher median at all three contacts,
but the effect is more moderate, as would be expected by the
somewhat better probabilities assigned by the coevolutionary
model (Figure 3a). However, we do not observe such a dif-
ference for position 54.

This analysis cannot take into account the presence of gaps,
which could also be a problem. We observe that systemati-
cally misclassified domains have a much higher proportion of
gaps at position 54 and the peptide position it interacts with
(Figure 3c). Other positions did not show such an enrich-
ment.

These factors (differences in residue pair distribution and
high gap frequency in subsets of the dataset) can explain the
decrease in coevolutionary model log-likelihood that leads to
misclassification of this small subset of sequence pairs. In-
terestingly, both factors would also lead to less favourable
physical interactions. It is plausible that some of these mis-
classified domains bind peptides using an alternative bind-
ing mode. With our current algorithm, interactions involving
such alternative binding would be difficult to detect.

H. Accurate PPI prediction improves contact predic-
tion ranking in noisy alignments. After we obtain PPI
predictions for each sequence pair, we select those with a
probability of interaction greater than 0.5. These are used
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Fig. 4. Contact prediction performance on PDZ-peptide dataset, with (a) 25% inter-
acting proteins, (b) 50% interacting proteins, and (c) 75% interacting proteins. Naive
predictions are those performed on unfiltered alignments; after EM predictions are
done on alignments filtered using our method; predictions with 100% interacting
proteins represent the ideal case with no non-interacting proteins. Bands indicate
90% confidence intervals of the median precision over 10 different random seeds.
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to predict intermolecular contacts with plmDCA. As a base-
line, we also use the alignments that contain both interacting
and non-interacting proteins to predict intermolecular con-
tacts. Also, as an ideal case, we use alignments that con-
tain only interacting pairs. It must be noted that sequence
variation, frequently measured in coevolutionary studies as
the number of effective sequences, is an important factor for
correct identification of contacts (see Monastyrskyy et al. 29
and Schaarschmidt et al. 30 for more details). The rather low
number of effective sequences in this dataset (Nof =76 in
the set of 3066 interacting pairs, using a threshold of 80%
identity) makes it somewhat difficult to identify contacts.

Figure 4 shows contact detection precision for the different
datasets with increasing amounts of noise. We rank the list
of predicted contacts according to their assigned coupling
strength and determine the precision of the method at each
point of the ranking. As previously explained, the algorithm
did not manage to predict PPIs accurately in the case with
only 25% interacting proteins (Figure 4a), which reflects in
the poor contact prediction results. However, there is a clear
improvement in the other two cases (Figure 4b, 50% inter-
acting proteins, and Figure 4c, 75% interacting proteins),
where true contacts appear earlier in the ranking. The con-
tact prediction results obtained in noisy alignments after PPI
prediction are indeed closer to those obtained by using only
interacting pairs, with the last case (75% interacting pro-
teins) following the ideal results very closely. In contrast,
the naive approach of applying contact prediction to unfil-
tered MSAs (containing both interacting and non-interacting
sequence pairs) clearly ranks the contacts worse, even in the
case with 75% interacting proteins. Furthermore, the differ-
ences observed between the case with 25% interacting pro-
teins and the others show that accurate PPI prediction is a
necessary prerequisite to be able to improve contact predic-
tion in alignments containing non-interacting sequences.

I. PPI predictions are robust to the choice of prior in-
teracting fraction. As previously explained, the values of z
depend on a prior fraction of interacting proteins f;,¢. Al-
though this parameter might be set using existing biological
knowledge, we could have to set this value without any prior
knowledge. In order to determine the influence that this pa-
rameter might have on the results and how it could be set
without prior knowledge, we turn to our synthetic data, since
we understand its underlying model and because it is free
from previously mentioned confounding factors (e.g. possi-
bly interacting negative cases). We have used synthetic data
with different fractions of interacting proteins (75%, 50% and
25%), and ran the algorithm on them over a range of values
for f int-

Model performance, as measured by the Matthews correla-
tion coefficient, remains stable and close to its maximum of
1 over a wide range of settings for f;,;, and only deviates
when the value is quite far from the true value (Figure 5a) for
all three datasets. Note that here, in contrast to results ob-
tained on the PDZ-peptide dataset, we obtain good predictive
performance when we only have 25% of interacting proteins.
One possible reason is the larger amount of sequence varia-
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Fig. 5. Results on synthetic MSAs. (a) Model performance remains stable over a
wide range of settings for f;,:. (b) Model performance peaks together with the
log-likelihood of the data in all three datasets. The value of f;, is indicated next to
the points. The asterisk and the triangle indicate all used values of f;,+ from 0.10
to 0.75 (50% interacting proteins) and from 0.10 to 0.99 (75% interacting proteins),
respectively.

tion in this dataset (N r=550 at a threshold of 80% identity,
using only the interacting set).

Furthermore, model performance correlates extremely well
with the log-likelihood of the solution reached by the algo-
rithm (which is a function of the model parameters, and can
be computed without prior knowledge of protein-protein in-
teraction) (Figure 5b). Thus, in the absence of prior knowl-
edge, the value of f;,; can be set in a principled way by test-
ing several values and choosing the one that yields the maxi-
mum log-likelihood.

Conclusions

We have designed Ouroboros, a combination of coevolution-
ary analysis and EM to approach the problem of predicting
intermolecular contacts using MSAs containing both inter-
acting and non-interacting proteins. We have shown that the
method is able to precisely predict the interaction status be-
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tween two given proteins. This, in turn, allows us to reach our
goal of improving contact prediction performance in noisy
MSAs.

Although here we have focused on the use of sequence data,
other sources of information could be incorporated to guide
the algorithm. For instance, if the interaction status between
certain sequence pairs in the alignments is known, this could
be used as a constraint for EM (see, for example, Ganchev
et al. 31). This could make it reach convergence faster and
improve PPI prediction performance (and, by extension, con-
tact prediction performance). This would be particularly rel-
evant for cases that contain a large number of non-interacting
sequence pairs or where there is low sequence diversity.
Likewise, knowledge on interaction sites (based, for exam-
ple, on mutagenesis data) may also prove useful.

We have also found that high gap frequency and substitu-
tions at contact positions in subsets of the MSAs can be
a confounding factor and lead to PPI misclassification. It
is possible that pairs of proteins where this occurs have
developed a different binding mode, with other positions
compensating the loss of contacts. In a similar fashion, it
has been highlighted that subfamily-specific signals can be a
confounding factor in coevolutionary analysis of homomeric
interactions (32). The concepts and methodology detailed
in this paper could be further developed to accomplish an
additional objective related to these confounding factors:
distinguishing between subgroups of proteins in either
type of interaction, thereby revealing these specific signals
without prior knowledge of the subgroups.

In addition, although we have focused on the task of contact
prediction, coevolution-based methods for PPI prediction
offer an interesting alternative to methods that rely on
sequence similarity. This is especially important for the
study of protein families with similar sequences but highly
divergent interaction patterns.

In summary, the developed algorithm can successfully im-
prove contact prediction in MSAs with non-interacting pro-
teins without a priori knowledge of interactions. Further-
more, it allows for many-to-many interactions, and thus
opens the way for the study of interactions that were previ-
ously out of reach.
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