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ABSTRACT 

Non-invasive brain stimulation (NIBS) is a promising treatment for psychiatric and 

neurologic conditions, but outcomes are variable across treated individuals. This 

variability may be due in part to uncertainty in the selection of the stimulation site – a 

challenge complicated further by the variable organization of individual human brains. In 

principle, precise targeting of individual-specific brain areas serving outsized roles in 

cognition could improve the efficacy of NIBS. Network theory predicts that the 

importance of a node in network can be inferred from its connections; as such, we 

hypothesized that targeting individual-specific “hub” brain areas with NIBS would impact 

cognition more than non-hub brain areas. We first demonstrate that the spatial 

positioning of hubs is variable across individuals, but highly-reproducible when mapped 

with sufficient per-individual rsfMRI data. We then tested our hypothesis in healthy 

individuals using a prospective, within-subject, double-blind design. We found that 

inhibiting a hub with NIBS disrupted information processing during working-memory to a 

greater extent than inhibiting a non-hub area of the same gyrus. Furthermore, inhibition 

of hubs linking specific control networks and sensorimotor systems was retrospectively 

found to be most impactful. Based on these findings, we propose that precise mapping 

of individual-specific brain network features could inform future interventions in patients.  

 

SIGNIFICANCE STATEMENT  

The network organization of every person’s brain is different, but non-invasive brain 

stimulation (NIBS) interventions do not take this variation into account. Here we 

demonstrate that the spatial positions of brain areas theoretically serving important roles 

in cognition, called hubs, differs across individual humans, but are stable within an 

individual upon repeated neuroimaging. We found that administering NIBS to these 

individual-specific hub brain areas impacted cognition more than stimulation of non-hub 

areas. This finding indicates that future NIBS interventions can target individual-specific, 

but cognitively-relevant features of human brains. 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 30, 2018. ; https://doi.org/10.1101/254417doi: bioRxiv preprint 

https://doi.org/10.1101/254417


 3

INTRODUCTION 

There is widespread interest in using non-invasive brain stimulation (NIBS) as a 

treatment for psychiatric and neurologic conditions (1), including addiction (2), 

obsessive compulsive disorder (3), stroke (4), and depression (5). The outcomes of 

these interventions, however, are variable across treated individuals. In the most widely 

adopted, Federal Drug Administration approved application of NIBS – repetitive 

transcranial magnetic stimulation (TMS) for the treatment of medication refractory major 

depression – only 29% percent of patients respond positively (6). Variation in patient 

response has been attributed in part to uncertainty regarding free parameters inherent 

to NIBS (7), including the stimulation site. Because the effects of NIBS are believed to 

propagate from the stimulation site in a manner constrained by the connectivity of the 

targeted brain area (8, 9), appropriate stimulation site selection is likely critical for 

therapeutic success, as it will determine whether or not stimulation effects spread 

throughout clinically-relevant neural circuitry.   

 
Stimulation site selection strategies often focus upon anatomical landmarks (10, 11) and 

local tissue properties (12). The same anatomical area, however, exhibits different 

patterns of functional connectivity across individuals (13-16). In other words, the same 

stimulation site in different individuals is not necessarily functionally equivalent – which 

theoretically could contribute to the variable outcomes of NIBS interventions. The 

advent of techniques for precisely characterizing the areal (17, 18) and network 

organization (14, 15) of individual human brains has set the stage for the development 

of personalized NIBS protocols, which in principle can increase the likelihood of 

producing more consistent outcomes in patients (19).  

 
A connectomics framework, in which brain areas (“nodes”) engage in networked 

communication within and across brain networks (“modules”), is theoretically well-suited 

for mapping an effective stimulation site on an individual basis. This approach can 

capitalize on the idea that a node’s role in a network can be inferred from its 

connections (20). Of particular interest are select nodes, termed “connector hubs” 

(hereafter referred to as hubs), connected to multiple modules and critical for the 

function of many networks found in nature (21). Evidence from biophysical models (22, 
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23) and lesions in stroke patients (24, 25) indicates that hub brain areas could serve 

outsized roles in the human brain as well. For this reason, we predicted that 

administering NIBS to hubs mapped in single-subjects using resting-state fMRI (rsfMRI) 

would impact cognition more than non-hubs. rsfMRI is increasingly considered for the 

purposes of non-invasively mapping stimulation sites in NIBS therapies (26-28), in part 

because it circumvents task-related confounds (29). If this prediction is borne out, it 

would implicate hubs as compelling candidate targets in NIBS interventions. In addition, 

it would provide the first causal evidence for the importance of hub brain areas mapped 

prospectively in individual human brains.  

 
We first assessed the feasibility of mapping hubs using rsfMRI in single-subjects, and 

employing them as NIBS targets using the Midnight Scan Club (MSC) (16), a publicly-

available dataset of highly-sampled individuals. We discovered that the spatial 

positioning of hubs is variable across individuals, but highly-reproducible within 

individuals when mapped using large quantities of rsfMRI data. In a prospective, 

double-blind, within-subject NIBS experiment we then mapped a hub brain area in 

twenty-four healthy participants. We predicted that administering an inhibitory form of 

TMS to hubs would disrupt information processing during cognition more than inhibition 

of a non-hub area on the same gyrus. To test this prediction, we fit a drift diffusion 

model to each participant’s performance on an N-back working-memory task after a hub 

and non-hub area was inhibited using TMS (counter-balanced administrations >24 hrs. 

apart). Although hub inhibition theoretically should impact multiple forms of cognition, 

working-memory was selected because it is associated with increased communication 

between segregated brain networks (30, 31) that is potentially facilitated by hub regions 

(32). Stimulation sites were constrained to right middle frontal gyrus to ensure both 

targets were in a brain region thought to be relevant for working-memory a priori (33). 

 
RESULTS 

Single-subject hub estimates are highly-reproducible 

We estimated the degree to which discrete cortical areas (“parcels”) in each MSC 

participant function as hubs using the graph theory metric, participation coefficient (34). 

Nodes with higher participation coefficient values (“hubs”) have edges that are 
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distributed across more network modules than those with lower values (“non-hubs”) 

(Figure1A). We sought to first determine the amount of rsfMRI data necessary for 

achieving reproducible single-subject hub estimates. Non-overlapping epochs were 

randomly sampled from each MSC participant’s 5-hour rsfMRI time-series. A set of 

participation coefficients for parcels with a centroid in right middle frontal gyrus was 

calculated separately using each epoch, and reproducibility quantified as the rank 

spatial correlation of the two sets. This procedure was repeated 103 times per epoch, 

with epoch lengths ranging from 1 to 60 minutes, in 1-minute steps. Reproducibility was 

low when using commonly-utilized quantities of rsfMRI data (i.e., 5-10 minutes). With 

larger quantities of rsfMRI data, however, single-subject hub estimates were highly-

reproducible (see Figure1B for MSC01 and SI 1 for all participants). For example, we 

observed an average rs of 0.82 ± 0.10 when using 45 minutes of rsfMRI data.  

 
Hubs are idiosyncratic features of functional brain organization 

We next quantified inter-individual variation in the spatial distribution of hub estimates 

using pairwise rank spatial correlations (Figure1C). The spatial distribution of hub 

estimates across individuals was not similar (average rs = -0.01 ± 0.26). Furthermore, 

single-subject hub estimates were not similar to their collective group-average (rs = 0.09 

± 0.21). The practical implications of this finding for the proposed NIBS experiment was 

assessed by estimating the effective stimulation zone (Figure1D, red) surrounding the 

group-average hub (the highest participation coefficient parcel). Administering cTBS to 

this target would have theoretically failed to inhibit a hub in 70% of MSC participants 

(Figure1D), assuming a liberal spatial resolution of 0.5-2cm (35, 36). Thus, 

administering cTBS to a group-average hub might fail to impact hubs in some 

individuals. Collectively, these findings motivated the decision to map hub and non-hub 

stimulation sites on an individual basis using large quantities of rsfMRI data in the 

subsequent NIBS experiment. 

 
Precision mapping and inhibitory stimulation of hubs  

Twenty-four healthy participants completed all three sessions (Figure2A). An 

automated pipeline (Figure2B) mapped a hub (the highest-participation coefficient 

parcel) and non-hub (the lowest-participation coefficient parcel ≥ 20mm from the hub) in 
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the right middle frontal gyrus of each participant (Figure2C) using 45 minutes of rsfMRI. 

Native-image space coordinates corresponding to the hub and non-hub were then 

pseudo-randomly assigned as targets for two follow-up sessions (average interval 

between sessions = 5.8 ± 5.3 days). Immediately prior to performing an N-back fMRI 

task during these sessions, continuous theta burst stimulation (cTBS) (37) was 

administered offline and guided by neuronavigation. The aftereffects of cTBS are 

thought to last up to fifty-minutes (38), long-enough to complete the twelve-minute N-

back task. Notably, we retroactively determined that hub and non-hub stimulation sites 

did not significantly differ in their anatomical positioning, nodal degree, baseline N-back 

activation, or distance to the stimulating coil (SI 2). 

 
Hub inhibition disrupts information processing during working-memory  

We tested our hypothesis that inhibiting hubs with cTBS would disrupt information 

processing using a drift diffusion model. This model takes the mean and variance of 

response times for correct trials, and mean accuracy as inputs and calculates 

cognitively-relevant latent variables indexing the rate of information processing (“drift 

rate”), response conservativeness (“boundary separation”), and non-decision time. Of 

these three diffusion parameters, drift rate was most relevant for our prediction that hub 

inhibition will disrupt information processing, as slower drift rates index worse N-back 

performance (39). Slower drift rates can be interpreted as slower, more variable 

response times and fewer correct responses (Figure3A).  

 
A 2 x 4 repeated measures ANOVA (target x load) performed using drift rates revealed a 

main effect of target [F(1,23) = 8.60, pbonferroni = 0.02], such that drift rates following hub 

inhibition were slower than those after non-hub inhibition (Figure3B). This finding 

demonstrates, as predicted, that hub inhibition disrupts information processing more 

than inhibition of a nearby non-hub. Notably, this effect remained in ANCOVA models 

where differences in anatomical positioning, baseline activation, and distance to TMS 

coil were included as a between participant covariate (SI 3). As expected, we also 

observed a main effect of load [F(1,23) = 31.50, pbonferroni < 0.001], confirming that higher 

cognitive loads were more difficult than lower loads. Target and load did not interact 

[F(1,23) = 0.10, pbonferroni = 1.00], however, indicating that the difference in drift rate 
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following hub and non-hub inhibition did not vary significantly by cognitive load. ANOVA 

models were also performed on the response boundary and non-decision time 

parameters (SI 4). 

 
Hubs may belong to discrete, functional-relevant categories 

Our experimental design assumed that hubs belong to a single category of objects with 

global connections, akin to a “hub-spoke” network. Recent evidence, however, indicates 

that hubs instead tend to link discrete, non-random subsets of brain networks, and can 

be clustered using their cross-network profiles of functional connectivity into three 

categories (40). The three hub categories are termed according to their putative 

information processing roles – external, internal, and control (SI 5). We hypothesized 

post-hoc that the degree to which hubs targeted with cTBS in the present investigation 

resembled these hub types could account for variation in drift rate change (drift ratehub – 

drift ratenon-hub) averaged across cognitive loads. We tested this possibility in an 

exploratory analysis, using a stepwise linear regression model with hub type 

resemblances (Fisher-transformed correlation coefficients) as predictors. Resemblance 

with the external hub type was the only significant predictor (β = -0.41, ΔR2 = 0.17, p = 

0.04). The external hub type is distinguished by linking control networks, including the 

cingulo-opercular network and dorsal attention network, with processing systems 

thought to represent external information, including the visual and somatomotor 

networks.  

 
DISCUSSION 

We present three findings in this investigation. First, cortical hubs mapped using large 

quantities of per-individual rsfMRI are highly-reproducible, idiosyncratic features of 

functional brain organization. Second, inhibiting a hub area with cTBS impacted 

working-memory performance, as measured using a drift diffusion model, more than 

inhibiting a non-hub area of the same gyrus. Third, inhibiting hubs linking select control-

related networks with those relevant for processing external stimuli was most impactful. 

The theoretical and potential translational implications of these points are considered 

below. 
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On intra- and inter-individual variation in single-subject hub estimates 

The reproducibility curves for single-subject hub estimates reported here began low and 

rapidly reached asymptote, resembling sigmoid functions reported in similar analyses 

(41). Measurement error, due to the amount of per-individual data utilized, is thought to 

be a primary source of intra-individual variance in rsfMRI functional connectivity 

estimates. Other studies have also reported that small quantities of per-individual 

rsfMRI data fail to reliably characterize functional brain organization (16, 41, 42), likely 

due to the poor signal-to-noise ratio in BOLD fMRI data (43). Consistent with this 

perspective, we found that large quantities of rsfMRI data are needed for reproducible 

single-subject hub estimates. It is noteworthy that Gordon and colleagues (16) reported 

that whole-brain hub estimates were less reproducible. Our analysis, however, was 

constrained to right middle frontal gyrus. Thus, this difference could be explained by 

less intra-individual variation in rsfMRI functional connectivity estimates in this brain 

area (13, 44). 

 
The practical significance of inter-individual variation in topological features functional 

brain organization, including hubs, for future work will depend on whether precision is 

necessary for the context at hand. Consider, for example, that the average distance 

between single-subject and the group-average hubs was on the order of centimeters. 

Thus, a group-average map may reflect a central-tendency in the spatial positioning of 

hubs sufficient for purposes of cartography (45), but interventions employing high-

resolution techniques, such as TMS (35, 36), could benefit from targeting individual-

specific hubs. With this concern in mind, we mapped hubs on an individual basis in our 

NIBS experiment.  

 
Interpreting the drift diffusion model parameters     

The computational model applied in our investigation assumes an accumulation of noisy 

information supporting a decision process - whether or not the current stimulus matches 

one occurring N-trials ago. Conceptually, the drift rate parameter indexes the average 

amount of information accumulated per unit of time during this decision process (46). It 

is noteworthy that changes in drift rate, despite being conceptualized in terms of speed 

(i.e., faster or slower), are due to changes in both accuracy and response time 
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distributions, such that slower drift rates reflect slower, more variable, less correct 

responses. Slower drift rates after hub inhibition could result from a disruption in the 

integration of task-relevant information distributed amongst brain networks bridged by 

the inhibited hub (39). This scenario could explain why inhibiting some hubs disrupted 

information processing more than others (i.e., if task-relevant information was 

represented in a subset of discrete brain networks). While working-memory was 

identified a priori as one form of complex cognition theoretically involving hubs, we 

believe that it is unlikely that hubs subserve any single cognitive process. Instead, the 

extent to which hubs are functionally specialized is more likely with respect to broader 

domains of cognitive processing (e.g., externally- vs. internally-oriented cognition) (40). 

  
Inhibition of different hub types differentially affects behavior  

The network neuroscience literature generally conceptualizes hubs as a single class of 

nodes with uniform function and global connections (47, 48). Consistent with this 

perspective, our NIBS experiment was designed to inhibit a hub in each individual, 

without explicitly considering which networks it bridges. By retrospectively comparing 

hubs to independently identified categories of hubs (40), however, we assessed 

whether the variation in the behavioral effects of hub inhibition could be related to 

differences in cross-network connectivity. The degree to which hubs resembled a so-

called external hub type was a significant predictor. Although speculative, the 

topological positioning of the external hub type, at the intersection of select control and 

sensorimotor networks, is well-suited for enabling information processing during a visual 

working-memory task requiring a motor response. An item maintained in working-

memory is theoretically represented broadly in sensorimotor cortex and influenced by 

signals from control-related brain areas (49, 50). Thus, it is tempting to conclude that 

hub types could be specialized for specific forms of information processing. In principle, 

a future NIBS experiment could test this possibility empirically by prospectively mapping 

different hub types within an individual and testing for a dissociation.  

 
Implications for translational network neuroscience  

Network theory is a powerful and increasingly widespread conceptual framework in 

neuroscience (51, 52). This approach distills the complexity of the brain into simpler 
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mathematical representations (53), which in turn allows investigators to form and test 

tractable hypotheses regarding how a brain might process information in a networked 

fashion. Validating the core predictions of this framework is a necessary step towards 

establishing its translational value (54, 55). One of the most useful predictions in 

network neuroscience is that the role a brain area can be inferred from its connections 

(20). From this perspective, hub nodes should be more important than more peripheral 

nodes for network function. Evidence supporting this prediction to date in the human 

brain has come from biophysical models (22, 23) or lesions in stroke patients (24, 25), 

with no precise, causal manipulations of hubs mapped prospectively in single-subjects 

performed until the present investigation. Thus, beyond providing evidence for the 

importance of hub brain areas, this investigation highlights how network neuroscience 

could be leveraged in the future to inform personalized interventions in humans (56), 

including NIBS (57), but also neurofeedback or rehabilitation. 

 
Implications for rsfMRI-guided NIBS interventions  

There is growing interest in using rsfMRI to guide targeted NIBS therapies (26-28). This 

is because rsfMRI can efficiently characterize the intrinsic functional network 

organization of a brain that is present across many task states (58) but is not limited by 

task-related confounds (29). We found that inhibiting hub and non-hub brain areas, 

which differed only in their rsfMRI connectivity, produced significantly different 

behavioral outcomes, despite being separated by only a few centimeters on the same 

gyrus. It is noteworthy that NIBS investigations generally use either a sham condition or 

an active control that is anatomically distinct. Thus, utilizing a nearby non-hub as an 

active control is a highly rigorous element of our experimental design (59). The success 

of this approach highlights the precision at which rsfMRI and select NIBS techniques 

may be able to map and manipulate functionally discrete areas of cortex in patients. 

Finally, future work can evaluate whether NIBS interventions could benefit from 

stimulating hubs mapped using rsfMRI in single-subjects. This strategy would be a 

significant departure from existing proposals for network-centric targeting (28, 60), as 

hubs are positioned at the intersection of multiple networks, which could afford an 

opportunity to modulate a wider range of symptoms. This strategy is conceptually well-
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suited for populations, such as depression (61), with heterogeneous clinical profiles and 

abnormal functional connectivity between multiple brain networks (62). Recently 

engineered TMS mini-coils (63) may afford an opportunity to test this hypothesis in a 

rodent model of treatment-resistant depression (64).  

CONCLUSIONS 

This investigation joins an emerging field of precision connectomics (16, 41, 65)  

treating idiosyncrasies in functional brain organization as neurobiologically informative − 

and not noise. Our findings highlight how precise mapping of topological features of 

interest in single-subject connectomes could be leveraged in the future to guide 

interventions in the human brain. NIBS therapies may be particularly well-suited to 

adopt this approach. 

 
METHODS 
 
Midnight Scan Club   
 
Participants  

The Midnight Scan Club (MSC) dataset (16) was downloaded from OpenfMRI.org 

(ds000224). This dataset is comprised of ten participants aged 24-34 years (mean age 

= 29.1 years ± 3.3, 5F/5M) that underwent a total of 5-hours of rsfMRI (10x30 minutes, 

each session acquired at midnight on subsequent days). Further details regarding data 

acquisition and sample demographics are reported by (16). Details regarding analyses 

performed on the MSC dataset are included in the Supplementary Information.  

 
Non-invasive brain stimulation experiment 
 
Participants 
 
Twenty-four participants aged 18-28 years (mean age = 20.5 years ± 2.5, 11F/13M) 

were recruited from the Georgetown community after complying with the consenting 

guidelines of the Georgetown University IRB. Participants were screened for history of 

neurologic and psychiatric conditions, epilepsy, contraindications for MRI, and use of 

medications that increase likelihood of side effects following TMS.  

 
Data acquisition  
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All data was acquired on a Siemens Trio 3T with the participant’s head immobilized 

using head cushions. A high resolution structural T1 scan was acquired with the 

following parameters: MPRAGE: TR/TE = 1900/2.52 ms, 90-degree flip angle, 176 

sagittal slices with a 1.0 mm thickness. Functional echo-planar images were acquired 

with the following parameters during each imaging sessions: 3 mm isotropic 

resolution, TR = 2000 ms, TE = 30 ms, flip angle = 90°, FOV = 192 × 192 mm. A T1 and 

three resting-state runs, each lasting 15-minutes and acquired successively, were 

collected during the initial imaging visit. An N-back task consisting of 20 blocks (5 blocks 

each of 1-, 2-, 3-, and 4-back loads, in pseudo-randomized order) was administered 

during each study visit. Blocks consisted of 9 letters, each presented for a duration of 

500ms and with an inter-trial interval of 1500ms. Participants were instructed to provide 

a right-hand button press for targets and a left-hand button press for non-targets as 

quickly and accurately as possible. Of the 180 trials, 32 were targets, and either one or 

two targets were in any given block. Stimuli were presented on a back-projection screen 

using the E-Prime software. 

 
Data preprocessing 

Functional images were corrected for differences in motion and slice timing acquisition, 

and co-registered into each participant's anatomical image using SPM12 (Wellcome 

Department of Cognitive Neurology, London, United Kingdom). Functional data was 

denoised using the aCompCor strategy in the CONN toolbox. Denoising steps included 

linear de-trending and nuisance regression (5 principle components from white matter 

and cerebrospinal fluid masks from an MPRAGE segmentation; 6 motion parameters 

and first-order temporal derivatives; and point-regressors to censor time points with 

mean frame-wise displacement > 0.2mm). Residual time-series were band-pass filtered 

(0.01 Hz < f < 0.1 Hz). Temporal masks were created to flag motion-contaminated 

frames for scrubbing. Contaminated volumes were identified by frame-by-frame 

displacement (FD) calculated as the sum of absolute values of the differentials of the 3 

translational motion parameters and 3 rotational motion parameters. On average, 76 ± 

3% of the rsfMRI time-series was retained after motion censoring.  
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Surface file generation  

Following volumetric co-registration, white and pial anatomical surfaces were generated 

from each participant’s native-space MPRAGE using Freesurfer’s recon-all pipeline 

(version 5.0). The fsaverage-registered left and right hemisphere surfaces were then 

brought into register with each other in fs_LR space (66) and resampled to a resolution 

of 32k vertices using Caret tools. Denoised fMRI time-series within the cortical ribbon 

were mapped onto each individual’s midthickness surface and spatially smoothed 

(σ=2.55). Both left and right surfaces were combined into the Connectivity Informatics 

Technology Initiative (CIFTI) format using Connectome Workbench (67), yielding time 

courses representative of the entire cortical surface, excluding non-gray matter tissue, 

and sub-cortical structures. 

Automated pipeline for identifying stimulation targets  
 
All of the steps below were performed in a single automated pipeline, allowing both the 

cTBS administrator (CJL) and participant to remain blinded. First, a boundary-based 

areal-parcellation (18) was generated using each participant’s denoised resting-state 

CIFTI dataset. Parcels were generated using the watershed by flooding procedure. 

Parcels smaller than 10 vertices (~20mm2) were removed. The number of resultant 

parcels varied between individuals (mean parcel count: 548, range: 473-603), 

consistent with the number of parcels observed in other single-subject areal-

parcellations (16, 41). Second, parcels were assigned to a one of twelve canonical 

networks, defined in an independent sample of healthy adults (N=120) using the 

InfoMap algorithm (68), via a template matching procedure (14). Finally, the temporal 

correlation between each parcel and all other parcels was computed using the denoised 

motion-censored rsfMRI time-series, yielding a parcel X parcel functional connectivity 

matrix for each participant. Local connections (those < 30mm in geodesic space) were 

eliminated, to avoid local blurring of signals between adjacent parcels. The participation 

coefficient and nodal degree was calculated for each parcel. To do so, we first 

calculated ten participation coefficients and degree values for each parcel using 

binarized functional connectivity matrices, each with a unique density (1-10%, in 1% 

steps), following other investigations (69). The final participation coefficient and degree 
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for each parcel was the average of these ten values. Participation coefficient was 

calculated using the equation below, where M is the total set of networks, ki is the 

number of edges associated with node i, and ki (m) is the number of edges between 

node i and all nodes in network m.  
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Because the participation coefficient of a node with few edges is dubious, we eliminated 

from consideration parcels with a degree in the bottom quartile of whole-brain values. 

Remaining parcels with a centroid falling within right middle frontal gyrus, defined using 

Freesurfer gyral labels, were identified. The hub was defined as the parcel with the 

highest participation coefficient value. The euclidean distance between the hub and all 

other parcels in right middle frontal gyrus was calculated. The non-hub was defined as 

the parcel with the lowest participation coefficient value >20mm from the centroid of the 

hub parcel in euclidean space. This minimum distance was enforced to enable selective 

targeting of the two parcels, given evidence that the spatial resolution of TMS is 0.5-

2cm (35, 36). Native-space MPRAGE coordinates for the hub and non-hub were 

pseudo-randomly assigned to the two follow-up sessions.  

 
Continuous theta-burst stimulation and MRI-guided neuronavigation  
 
cTBS was applied at 80% of active motor threshold using a MagPro x100 device 

(MagVenture, Inc., Atlanta, GA) with a passively coiled MCF-B70 figure 8 coil. cTBS is a 

safe (70) and inhibitory form of patterned TMS involving three 50Hz pulses in trains 

repeated at 200-ms intervals (37). Parcel centroids were targeted using the Brainsight 2 

Frameless stereotactic system for image guided TMS research (Rogue Research, 

Montreal, Canada). This system uses infrared reflectors attached to a headband worn 

by the subject to co-register the MPRAGE with the participant’s head. The coil was co-

registered via infrared reflectors. Active motor threshold was defined as the intensity 

required to induce a motor evoked potential in the contralateral FDI muscle when pulses 

were applied to right motor cortex during a mild sustained contraction. Muscle twitches 
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were measured using surface electrodes placed on the FDI muscle, which are 

connected to an electromyography device incorporated into the BrainSight system.  

 
Drift diffusion modeling of task performance   
 
A drift diffusion model is a well-validated computational model that is advantageous to 

considering response times and accuracy in isolation from one another (71). We 

selected an EZ-diffusion model (71), in place of alternative diffusion fitting routines, as it 

is more effective in resolving individual differences in parameter values (72) and does 

not require characterizing the distribution of incorrect response times, making it well-

suited for use in populations where the error rate is relatively low. An EZ-diffusion model 

does not perform well if there are contaminants (e.g., an extremely fast response, 

indicative of a guess) present (73). For this reason, we removed trials with a response 

time <300ms from consideration. A 2 x 4 (target x load) repeated measure ANOVA was 

performed on each of three diffusion model parameters - drift rate, boundary separation, 

and non-decision time. Tables containing summary statistics for diffusion model inputs 

can be found in S6 & S7. Reported p-values were bonferroni corrected, to account for 

the three ANOVA models that were performed.  

 
Clustering hubs into discrete subtypes  
 
We calculated the average functional connectivity between hub parcels and all parcels 

of each brain network that were >30mm in geodesic space. The similarity of these 

resultant hub cross-network connectivity profiles to three hub type templates was 

calculated (details regarding the creation of the hub type templates is described in S5). 

This resulted in a 24 x 3 (participant x hub type) array of Fisher-transformed correlation 

coefficients. A stepwise linear regression analysis was performed using these 

coefficients as predictor variables and the change in drift rate (drift ratehub – drift ratenon-

hub) averaged across loads as a dependent variable. Note that we used stepwise linear 

regression because the average hub type profiles were not independent from one 

another. Stepwise linear regression was performed using the Matlab function 

(“stepwiseglm”). 
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FIGURE LEGENDS 
 
Figure1 – Hub nodes link multiple network modules, and have a high participation 

coefficient, whereas non-hub hub nodes have edges constrained within their network 
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module, and have a low participation coefficient (A). Reproducibility of single-subject 

hub estimates improves with greater quantities of per-individual rsfMRI data in. Shaded 

red error denotes standard deviation (B). Similarity matrix summarizes inter-individual 

variation in spatial distribution of participation coefficients (C). Distances between 

example individual-specific hubs (green foci) and the group-average (“G”) hub. Red line 

and area of cortex surrounding the group-average hub (black foci) represents an 

estimated spatial resolution of TMS (D).  

 

Figure 2 - A prospective, within-subjects, double-blind experimental design (A). 45-

minutes of rsfMRI and a high-resolution structural image collected during an initial study 

visit was submitted to an automated pipeline (B). Major pipeline steps include the 

construction of an individual-specific areal parcellation (red denotes boundaries 

between functional areas) and network structure (colors denote unique networks), and 

sparse functional connectivity matrices (a spring graph with a density of 1% for 

visualization). Participation coefficients for parcels with a centroid in right middle frontal 

gyrus were calculated. Parcels with the highest (“hub”) and lowest (“non-hub”) 

participation coefficients were pseudo-randomly assigned as targets for follow-up 

sessions [C: hubs (red) and non-hub (gray) cTBS targets in nine example participants]. 

DMN = default mode network, VIS = visual, FP = fronto-parietal, DAN = dorsal attention 

network, SAL = salience, VAN = ventral attention, AUD = auditory, dSM = dorsal 

somatosensory, vSM = ventral somatosensory, mPar = medial parietal, CAN = 

contextual association network, CON = cingulo-opercular. 

Figure3 – Drift diffusion modeling of N-back performance following hub and non-hub 

inhibition with cTBS. A correlation matrix, where entries denote the pairwise 

relationships of input (mrt = mean response time, vrt = variation in response time) and 

output (v = drift rate, a = response boundary, ter = non-decision time, acc = mean 

accuracy) parameters, was constructed to aid in the interpretation of diffusion 

parameters (A). A 2 x 4 repeated measures ANOVA (target x load) performed on drift 

rates revealed that hub cTBS disrupted drift rates more than non-hub cTBS (B). 
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