
 1

 
 
 
 
 
Precision inhibitory stimulation of individual-specific cortical 
hubs slows information processing in humans  
 
 
 
Charles J. Lynch1, Andrew L. Breeden1, Evan M. Gordon2, Joseph B. C. Cherry1, Peter 
E. Turkeltaub3,4, Chandan J. Vaidya1,6 
 

1Department of Psychology, Georgetown University, 2VISN 17 Center of Excellence for 
Research on Returning War Veterans, 3Neurology Department, Georgetown University 
Medical Center, Children’s Research Institute, 4Neurology Department, Georgetown 
University Medical Center, Children’s Research Institute,5Research Division, MedStar 
National Rehabilitation Hospital, 6Children’s National Medical Center, Washington DC 
 
 
 
Acknowledgements: This work was supported by Dean Toulmin’s Pilot Project Award 
from Georgetown University Medical Center to P.E.T and C.J.V. We would like to thank 
the research staff at the Center for Functional and Molecular Imaging and Junaid 
Merchant for their assistance with data collection. 
 
 
 
Addresses for correspondence: 
 
Charles J. Lynch  
306 White-Gravenor  
Department of Psychology  
Georgetown University, Washington, DC 20057  
Email: cl968@georgetown.edu 
 
Chandan J. Vaidya  
306 White-Gravenor  
Department of Psychology  
Georgetown University, Washington, DC 20057  
Email: cjv2@georgetown.edu 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/254417doi: bioRxiv preprint 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/254417doi: bioRxiv preprint 

https://doi.org/10.1101/254417
https://doi.org/10.1101/254417


 2

Abstract 
 

Non-invasive brain stimulation is a promising treatment for psychiatric and neurologic 
conditions, but outcomes are variable across treated individuals. This variability may be due in 
part to uncertainty regarding an optimal stimulation site – a challenge that may be complicated 
further by the variable organization of individual brains. Utilizing a network science framework, 
we predicted that stimulating “hubs” would have the greatest effect on cognition. First, using a 
publically available dataset, we discovered that different areas of cortex function as hubs in 
different individuals, but that hubs could be mapped reliably within an individual. We next used a 
prospective within-subjects double-blind design to demonstrate that inhibiting individual-specific 
hubs with transcranial magnetic stimulation disrupts information processing during working-
memory, more so than inhibiting nearby non-hubs. Finally, hubs could be retrospectively 
clustered into subtypes that yielded different outcomes when inhibited. Based on these findings, 
we propose stimulating hub subtypes relevant for patient symptomatology as an intervention 
strategy. 
 
Introduction 
 

There is widespread interest in utilizing non-invasive brain stimulation (NIBS) as a 
treatment for psychiatric and neurologic conditions [1], including addiction [2, 3], obsessive 
compulsive disorder [4], eating disorders [5], stroke [6], and depression [7, 8]. The outcomes of 
these interventions, however, are variable across treated individuals. In the most widely 
adopted, Federal Drug Administration approved application of NIBS – repetitive transcranial 
magnetic stimulation (TMS) for the treatment of medication refractory major depression – only 
29% percent of patients respond positively [9]. Variability in patient response has been 
attributed in part to uncertainty regarding free parameters inherent to NIBS, including the 
stimulation site. Because the effects of NIBS are believed to propagate from the stimulation site 
in a manner constrained by the connectivity of the targeted brain area [10], appropriate 
stimulation site selection is likely critical for therapeutic success, as it will determine whether or 
not stimulation effects spread throughout clinically-relevant neural circuitry.   
 

Strategies for selecting stimulation sites have largely focused upon anatomical 
landmarks [11, 12] and local tissue properties [13]. The same anatomical area, however, can 
exhibit unique patterns of connectivity in different individuals [14-17]. Thus, NIBS administered 
to the same anatomical area in different individuals may in practice target cortical areas serving 
different functional roles. The advent of specialized techniques for precisely characterizing the 
functional areal [18, 19] and network organization [15, 16, 20] of individual brains has set the 
stage for the development of personalized NIBS protocols. In principle, such an approach could 
reduce the variability introduced by selecting targets using traditional strategies, thus increasing 
the likelihood of positive clinical outcomes. 

 
Because the effects of NIBS are in part non-local [10], a network-centric framework in 

which brain areas (“nodes”) engage in networked communication within and across networks 
(“modules”) [21], is well-suited for identifying cortical areas where the effects of NIBS on 
cognition may be most pronounced. In many complex physical [22] and biological networks [23] 
select nodes, termed hubs, serve outsized roles due to their participation in multiple network 
modules. Brain areas with hub-like properties have been identified using resting-state functional 
magnetic resonance imaging (rsfMRI) [24, 25], and are thought to serve critical roles in cognitive 
function and behavior [26, 27]. We predicted that administering NIBS to hubs would have a 
greater effect on cognition and behavior than non-hubs. If this prediction is borne out, it would 
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implicate hubs as compelling candidate targets in NIBS interventions for psychiatric and 
neurologic conditions, especially those exhibiting distributed network pathologies [28].  
 

We first assessed the feasibility of mapping hubs using rsfMRI in individuals, and 
employing them as NIBS targets using the Midnight Scan Club (MSC) [17], a publically available 
dataset of highly-sampled individuals. We discovered that the spatial distribution of hub 
estimates was variable amongst individuals, and not represented accurately by a group-
average. Furthermore, hub estimates were unreliable within an individual when using typical 
quantities of per-individual data. We developed an approach that solved both of these 
challenges, allowing for accurate and reliable mapping of hubs in individuals for the first time. 

 
 In a first of its kind experiment, we mapped cortical areas functioning as hubs on an 

individual-basis in twenty-four healthy participants. We predicted that administering an inhibitory 
form of patterned TMS to hubs would give rise to slower, less effective information processing 
during the performance of a cognitive task, relative to inhibition of nearby non-hub brain areas. 
To test this prediction, we fit a drift diffusion model to each participant’s performance on an N-
back task [29] following hub and non-hub inhibitory stimulation (administered in counter-
balanced order in sessions >24 hrs. apart). We selected the N-back task, which requires the 
temporary maintenance and manipulation of information, as it involves component processes 
disrupted in many psychiatric and neurologic conditions, making it well-suited as a test-case in 
healthy individuals. The search space for TMS targets was constrained to right middle frontal 
gyrus, to ensure that both stimulation sites were in a region known to be relevant for N-back 
performance [30].  
  
Results 
 
Hubs are unique to individuals  
 

We estimated the degree to which parcels of cortex in the right middle frontal gyrus of 
each MSC participant function as hubs using the graph theory metric, participation coefficient 
[31] (Figure1b). Each participant’s entire 5-hr. rsfMRI dataset was used for this analysis. 
Parcels with higher participation coefficient values (“hubs”) participate in more brain networks 
than those with lower values (“non-hubs”) (Figure1a). Pairwise rank spatial correlations 
revealed that the spatial distribution of participation coefficients amongst individuals was not 
similar (Figure1c: avg. rs = -0.01 ± 0.26). Spatial correlations between participation coefficients 
defined in individuals and those from a group-average were higher (Figure1c: avg. rs = 0.09 ± 
0.21), albeit only modestly.  

 
The average distance between the Talairach coordinates corresponding to the centroid 

of the most hub-like parcel in each individual was 33 ± 21mm (Figure1d). Administering TMS to 
the group-average hub would have successfully stimulated the most hub-like parcel in at most 
30% of MSC participants (Figure1e), assuming an effective spatial resolution of 0.5-2cm [32-
34]. The immediate implication of this finding was that hubs needed be mapped at the individual 
level in our NIBS experiment. More broadly, it is notable that a group-average can fail to 
accurately represent salient topological features of individual brains. Thus, the practice of 
utilizing group-average derived regions-of-interest, either as NIBS targets or as nodes in 
network analyses, may be dubious in individuals.  
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Hubs can be mapped reliably within an individual  
 

To determine the quantity of rsfMRI data necessary for achieving high test-retest 
reliability of hub estimates, we randomly sampled non-overlapping epochs from each MSC 
participant’s 5-hour rsfMRI time-series. Participation coefficients for right middle frontal gyrus 
parcels were calculated separately using each epoch, and reliability was quantified using rank 
spatial correlation. This procedure was repeated 103 times per epoch, with epoch lengths 
ranging from 1 to 60 minutes (in 1-minute steps). The resultant time x reliability curves indicated 
low reliability when using typical amounts of fMRI data (i.e., 5-20 minutes) but higher reliability 
with additional data (see Figure1f for MSC01 and FigureS1 for all participants). For example, 
we observed an average rs of 0.82 ± 0.10 when using 45-minutes of rsfMRI data. Thus, test-
retest reliability of hub estimates is high when utilizing large amounts of per-individual data. For 
this reason, we collected 45-minutes of rsfMRI in the subsequent NIBS experiment.  
 
Precision mapping and inhibitory stimulation of hubs  
 

Twenty-four healthy participants completed three visits of a prospective within-subjects 
double-blind experiment (Figure2a). Forty-five minutes of rsfMRI and a high-resolution 
anatomical image from the initial visit were submitted to an automated pipeline (Figure2b) that 
mapped a hub (as the highest-participation coefficient parcel) and non-hub (as the lowest-
participation coefficient parcel ≥ 20mm from the hub) in the right middle frontal gyrus of each 
participant (Figure2c). The native-image space coordinates corresponding to the centroid of the 
hub and non-hub were then pseudo-randomly assigned as targets for two follow-up sessions 
(average interval between sessions = 5.8 ± 5.3 days). Immediately prior to performing an N-
back fMRI task during both sessions, continuous theta burst stimulation (cTBS) [35] was 
administered offline, double-blind, and guided by neuronavigation. cTBS was best-suited for our 
investigation, as the aftereffects are thought to last up to fifty-minutes [36], long-enough to 
complete the twelve-minute N-back task. Notably, we determined post-hoc that hub and non-
hub parcels did not significantly differ in their anatomical positioning, activation, or distance to 
the stimulating coil (FigureS2).  

 
Hub inhibition slows information processing  

 
We quantified differences in N-back performance using a drift diffusion model 

(Figure3a), a well-validated computational model that is advantageous to considering response 
times and accuracy in isolation from one another [37]. This model takes as input the mean and 
variance of response times for correct trials, and mean accuracy and calculates cognitively-
relevant latent variables indexing the speed and accuracy of information processing (“drift rate”), 
response conservativeness (“boundary separation”), and non-decision time. Of these three 
diffusion parameters, drift rate (Figure3b, “v”) was most relevant for our predictions, as worse 
task performance manifests as slower drift rates (i.e., slower, more variable, less accurate 
performance).    
 

A repeated measures 2x4 ANOVA (target x load) performed using drift rates revealed a 
main effect of target [F(1,23)=8.87, p=0.005], such that drift rates following cTBS to hubs were 
slower than those following cTBS to non-hubs (Figure3c). This finding demonstrates, as 
predicted, that hub inhibition impaired performance more so than non-hub inhibition. Notably, 
this effect remained in ANCOVA models where the difference in anatomical positioning, 
activation, network membership, and distance to TMS coil was included as a between 
participant covariate (TableS1). As expected, we also observed a main effect of load 
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[F(1,23)=23.98, p<0.001], confirming that higher cognitive loads were more difficult than lower 
loads. Load and cTBS target did not interact [F(1,23)=0.07, p=0.79]), indicating that the 
difference in drift rate following hub and non-hub cTBS did not vary by cognitive load.    

 
ANOVA models were also performed on response boundary (Figure3d) and non-

decision time (Figure3e) parameters. We observed main effects of load (response boundary: 
[F(1,23)=22.37, p<0.001]; non-decision time: [F(1,23)=10.89, p<0.001]), such that response 
conservativeness declined and non-decision time increased with higher N-back loads. However, 
there were no main effects of target (response boundary [F(1,23)=1.21, p=0.27]; non-decision 
time: [F(1,23)=3.02, p=0.08]) or target x load interactions (response boundary [F(1,23)=0.003, 
p=0.96]; non-decision time: [F(1,23)=0.02, p=0.89]). Thus, all three diffusion parameters were 
sensitive to cognitive load, and the effects of hub inhibition slowed drift rates, as predicted. 

  
Hubs can be partitioned into discrete subtypes  
 

We predicted post-hoc that the effects of hub inhibition might have varied depending on 
which sets of networks the targeted hub participated in. We tested this possibility in an 
exploratory analysis. Three hub subtypes were identified (Q = 0.17, z-score = 6.47) by 
clustering together hubs exhibiting similar profiles of cross-network connectivity (Figure4a). For 
example, the first subtype was distinguished by its participation in the cingulo-opercular, dorsal 
attention, and sensory-motor networks, whereas a third subtype participated more in the default 
mode, ventral attention, and salience networks (Figure4b). Next, we examined the change in 
drift rate associated with each hub subtype (Figure4c). Inhibition of the first hub subtype slowed 
drift rates more so than the other two [t(22)=2.06, p=0.05]. While this analysis is limited by few 
per-subtype instances, it nonetheless raises the intriguing possibility of targeting hubs bridging 
select networks.  

 
Discussion  
 

We presented three findings in this investigation. First, hubs were unique to individuals 
but could be mapped reliably within an individual. Second, inhibition of hubs with cTBS impaired 
N-back performance relative to inhibition of nearby non-hubs. Third, hubs could be clustered 
retrospectively into subtypes linking discrete sets of brain networks, which yielded different 
outcomes when inhibited. The broader implications of these points are considered further below. 

 
Implications for neuroimaging individuals  
 

Our analysis of the MSC dataset challenged two common neuroimaging practices, and 
held critical implications for the design of neuroimaging experiments, including the present NIBS 
experiment. First, the spatial positioning of hubs was not similar across participants, and that a 
group-average map was an inaccurate representation of hubs in some individuals. Thus, the 
practice of using a group-average map (e.g., [24, 25]) to infer whether a given brain area 
functions as a hub in an individual [27, 38] is dubious. Second, hub estimates were unreliable 
when mapped with commonly utilized amounts of per-individual rsfMRI data. This finding is not 
entirely surprising given the low signal-to-noise ratio in BOLD fMRI data [39], and previous 
reports that small quantities of per-individual data fail to accurately characterize functional brain 
organization [17, 40, 41]. Our solution to these challenges was to map hubs in each individual 
using a large quantity of per-individual data, which yielded reliable hub estimates. High test-
retest reliability was notable, as it suggests that inter-individual variability was neurobiologically 
meaningful, not noise. Gordon and colleagues [17] reported that whole-brain participation 
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coefficient estimates less reliable, regardless of how much per-individual data is utilized. Our 
analysis, in contrast, was constrained to right middle frontal gyrus. Thus, the test-retest reliability 
of network metrics may differ between anatomical regions, a possibility that should be 
investigated in future work.  
 
Implications for network neuroscience  
 

Network science is a powerful and widespread conceptual framework in neuroscience 
[42, 43]. This approach distills the complexity of the brain into simple mathematical 
representations [21], which in turn allows one to form and test tractable hypotheses. It is critical, 
however, to validate the predictions of any conceptual framework against known variables.  
For example, if the importance of a node for network functioning can indeed be inferred from its 
topological positioning, then hub brain areas should serve outsized roles [24, 44, 45]. To date, 
evidence supporting this prediction has been either been correlational [25, 46, 47] or lesion-
based [27, 38], both of which have limited interpretability. Here, we tested this prediction directly 
by precisely mapping hubs in individuals and temporarily inhibiting them with cTBS. Our finding 
that hub inhibition slowed information processing more than non-hub inhibition is conclusive 
evidence that hubs mapped using rsfMRI represent causal linchpins underlying cognition – not 
epiphenomena. 
 

Which sets of networks a hub node participates in may be as critical to understanding 
the role of that node in a network as its generic status as a hub. There is no consensus, 
however, regarding the functions performed by many brain networks, making a purely 
hodological approach to estimating hub roles difficult [24]. For this reason, we did not attempt to 
map hubs participating in specific sets of networks a priori. Hubs were instead clustered post-
hoc, and the relevance of each resultant subtype for N-back performance assessed objectively 
based on the change in drift rate following inhibition with cTBS. Information processing was 
slowed the most by inhibiting the hub subtype distinguished by its participation in select control 
(cingulo-opercular [48-50] and dorsal attention [51]) and sensory-motor networks (visual and 
dorsal somatosensory) networks. Interestingly, this subtype was weakly affiliated with the fronto-
parietal network which, given its role in higher-order cognition [49], might have been predicted a 
priori as the network most critical for performing an N-back task. This finding is consistent, 
however, with the hypothesis that hubs serve outsized roles because they facilitate interactions 
between sets of networks [45], and not due to their affiliation with any single network (see 
TableS2). The specific subtypes identified in this investigation should be considered 
preliminary, however, as we only clustered hubs in located in right middle frontal gyrus, and 
additional work on this topic is warranted.  

 
Interpreting diffusion model parameters     
 

The computational model applied in our investigation assumes an accumulation of noisy 
information supporting a decision process - whether or not the current stimulus matches one 
occurring N-trials ago. Conceptually, drift rate indexes the average rate at which this information 
accumulates, and in practice, faster drift rates manifest as faster, less variable response times 
and more correct responses. Thus, slower drift rates indicate an impairment in performance, 
whereas instructions that emphasize speed at the expense of accuracy reduce the response 
boundary parameter [52, 53]. For this reason, we predicted that hub inhibition would slow drift 
rates.  

 
Slower drift rates may indicate a disruption in the accumulation and transfer of task-

relevant information distributed amongst brain networks bridged by the hub. Although 
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speculative, such a scenario could account for why inhibiting one hub subtype slowed drift rates 
more than the others (i.e., if task-relevant information was present in networks associated with 
that hub subtype more than others). As an analogy, two international airports (i.e., hubs) can 
both serve critical roles in facilitating air travel, but a disruption in one can impede travel 
between some countries (i.e., modules) more so than others.  

 
Although one might have predicted that hub inhibition would slow drift rates more during 

higher cognitive loads, as cross-network connectivity increases linearly with cognitive load [54, 
55], we did not observe such an interaction. One potential explanation is that hub inhibition led 
to a different route of information transfer between brain networks, which was less efficient by a 
fixed amount, regardless of cognitive load. Finally, while our data cannot address whether our 
findings would generalize to a different cognitive process, future work can test our prediction 
that excitation or inhibition of a hub will facilitate or inhibit performance to the extent that 
interactions between networks bridged by that hub are necessary.  

  
Implications for clinical applications  
 

An effective stimulation site was mapped in individuals by applying areal-parcellation 
and network science techniques to rsfMRI data. Thus, our investigation is distinct from previous 
work reporting that N-back performance following TMS is different from a sham (i.e., placebo) 
condition [56, 57]. In contrast, we found that N-back performance following active stimulation of 
two areas differing only in their rsfMRI connectivity, and separated by only 3cm on average, 
nonetheless produced significantly different behavioral outcomes. This finding is compatible with 
an attractive hypothesis that variable outcomes in clinical NIBS interventions are due in part to 
functional heterogeneity within a prescribed gross anatomical target. For example, seminal work 
by Fox and colleagues has reported that connectivity between the stimulated area of 
dorsolateral prefrontal cortex and the subgenual cingulate predicts response in patients with 
depression [58, 59]. This previous work was retrospective and utilized group-averaged 
connectivity estimates from 1000 healthy individuals [60]. Whether the personalized, network-
centric strategy presented here is advantageous is an important question for future work.  
 

There is growing interest in using non-invasive neuroimaging to guide NIBS 
interventions [61, 62]. Thus, a critical next step will be to evaluate whether the strategy outlined 
in this investigation can improve the therapeutic efficacy of NIBS interventions. Key challenges 
will need to be considered first. For example, it is unlikely that any hub can serve as a 
transdiagnostic target. Instead, it may be necessary to target hubs that participate in specific 
sets of brain networks relevant for a patient’s unique cognitive and behavioral deficits. This 
strategy is a major conceptual advance over targeting nodes of individual networks [58, 62], as 
hubs are positioned at the intersection of multiple networks, which affords an opportunity to 
modulate a wider range of symptoms. The ability to modulate multiple symptoms via hubs is 
appealing in populations with heterogeneous clinical profiles, such as depression [63]. For 
example, a hub participating in affective and control networks might be targeted in patients with 
self-referential processing and executive deficits, whereas a hub participating in networks 
supporting reward and motor functioning might be targeted for treating anhedonia and 
psychomotor retardation.   
 
Conclusions 
  

The prevailing strategy in the field of human neuroimaging is to average rsfMRI data 
from a large group of individuals, which has proven effective for characterizing coarse, albeit 
reliable [60] and cognitively-relevant [64], features of functional brain organization. However, 
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this group-average approach obscures salient topological features unique to individuals [17], 
limiting its ability provide clinically actionable information. As a result, there is growing need to 
generate high-fidelity maps of individual brains [65, 66], and to establish which brain features 
may be clinically useful as sites for intervention. Here we validated hubs mapped in individuals 
using rsfMRI as causal linchpins serving outsized roles in cognition, and propose stimulating 
hubs participating in networks relevant for patient symptomatology as a novel intervention 
strategy. 
 
Methods  
 
Midnight Scan Club analyses  
 
Participants  
 

The Midnight Scan Club (MSC) dataset [17] was downloaded from OpenfMRI.org 
(ds000224). This dataset is comprised of ten participants aged 24-34 years (mean age = 29.1 
years ± 3.3, 5F/5M) that underwent a total of 5-hours of rsfMRI (10x30 minutes, each session 
acquired at midnight on subsequent days). This dataset included previously generated 
individual-specific areal parcellations [19] and network structures [67]. In addition, a group-
average areal-parcellation and network-structure was generated here to enable comparisons 
between individual-specific hub estimates and those derived using a group-average approach. 
Further details regarding data acquisition and sample demographics are reported by [17].  
 
Establishing the necessity and feasibility of mapping hubs in individuals 
 

Participation coefficients were calculated using each MSC participant’s 5-hr. rsfMRI 
dataset, following the procedure outlined in the “Automated pipeline for identifying stimulation 
targets” section of this Methods section. To quantify the spatial variability of participation 
coefficients within right middle frontal gyrus amongst MSC participants, a matrix was 
constructed, where the entry ij denotes the similarity of participation coefficients in participant i 
relative to those in participant j. This analysis required comparing participation coefficients in 
participants with unique areal parcellations. In order to do so, a best match for each parcel in 
participant i was defined in participant j as the parcel with a centroid closest in geodesic space, 
similar to how individual-specific system patches were matched in [16]. Similarity of matched 
parcels was assessed using rank correlation. A second matrix was constructed, where entries 
denoted the distance in euclidean space between the Talairach coordinates corresponding to 
the centroid of the highest participation coefficient parcel in each individual’s right middle frontal 
gyrus. Test-retest reliability of participation coefficients within each MSC participant was 
quantified in an iterative split-half analysis. Two sets of participation coefficient values were 
calculated using two epochs of rsfMRI data ranging from 1- to 60-minutes (in 1-minute steps). 
For each epoch, we randomly and iteratively (103 times) selected two equal sized, non-
overlapping, and motion censored epochs of resting-state time-series data.  
 
Non-invasive brain stimulation experiment 
 
Participants 
 

Twenty-four participants aged 18-28 years (mean age = 20.5 years ± 2.5, 11F/13M) 
were recruited from the Georgetown community and completed three study sessions (average 
interval between sessions = 5.86 ± 5.34 days) after complying with the consenting guidelines of 
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the Georgetown University IRB. Participants were screened for history of neurologic and 
psychiatric conditions, epilepsy, contraindications for MRI, and use of medications that increase 
likelihood of side effects following TMS.  
 
Data acquisition  
 

All data was acquired on a Siemens Trio 3T with the participant’s head immobilized 
using head cushions. A high resolution structural T1 scan was acquired with the following 
parameters: MPRAGE: TR/TE = 1900/2.52 ms, 90-degree flip angle, 176 sagittal slices with a 
1.0 mm thickness. Functional echo-planar images were acquired with the following parameters 
during each imaging sessions: 3 mm isotropic resolution, TR = 2000 ms, TE = 30 ms, flip angle 
= 90°, FOV = 192 × 192 mm. A T1 and three resting-state runs, each lasting 15-minutes and 
acquired successively, were collected during the initial imaging visit. An N-back task consisting 
of 20 blocks (5 blocks each of 1-, 2-, 3-, and 4-back loads, in pseudo-randomized order) was 
administered during each study visit. N-back fMRI data was not analyzed for the purposes of 
this investigation. Blocks consisted of 9 letters, each presented for a duration of 500ms and with 
an inter-trial interval of 1500ms. Participants were instructed to provide a right-hand button 
press for targets (i.e., letters matching those presented N-trials ago) and a left-hand button 
press for non-targets (i.e., letters not matching those presented N-trials ago) as quickly and 
accurately as possible. Of the 180 trials, 32 were targets, and either one or two targets were in 
any given block. Stimuli were presented on a back-projection screen using the E-Prime 
software. 
 
Data preprocessing 

Functional images were corrected for differences in motion and slice timing acquisition, 
and co-registered into each participant's own high-resolution anatomical space using SPM12 
(Wellcome Department of Cognitive Neurology, London, United Kingdom). Functional data was 
denoised using the aCompCor strategy in the CONN toolbox. Denoising steps included linear 
de-trending and nuisance regression (5 principle components from white matter and 
cerebrospinal fluid masks derived from an MPRAGE segmentation; 6 motion parameters and 
first-order temporal derivatives; and point-regressors to censor time points with mean frame-
wise displacement > 0.2mm). Residual time-series were band-pass filtered (0.01 Hz < f < 0.1 
Hz). Temporal masks were created to flag motion-contaminated frames for scrubbing. 
Contaminated volumes were identified by frame-by-frame displacement (FD) calculated as the 
sum of absolute values of the differentials of the 3 translational motion parameters and 3 
rotational motion parameters. On average, 76 ± 3% of the rsfMRI time-series was retained after 
performing motion censoring.  

Surface file generation  

Following volumetric co-registration, white and pial anatomical surfaces were generated 
from each participant’s native-space MPRAGE using Freesurfer’s recon-all pipeline (version 
5.0). The fsaverage-registered left and right hemisphere surfaces were then brought into 
register with each other in fs_LR space [68] and resampled to a resolution of 32k vertices using 
Caret tools (http://brainvis.wustl.edu/wiki/index.php/Caret:Operations/Freesurfer_to_fs_LR). 
Denoised fMRI time-series within the cortical ribbon (those situated between the white and pial 
surfaces) were mapped onto each individual’s midthickness surface (the average of the white 
and pial surfaces) and spatially smoothed (σ=2.55). Both left and right surfaces were combined 
into the Connectivity Informatics Technology Initiative (CIFTI) format using Connectome 
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Workbench [69], yielding time courses representative of the entire cortical surface, excluding 
non-gray matter tissue, and sub-cortical structures. 

Automated pipeline for identifying stimulation targets  
 

The following portion of the methods section details the steps applied to each 
participant’s denoised rsfMRI CIFTI file from the baseline study visit. All of the steps below were 
performed as part of a single automated pipeline, allowing both the cTBS administrator (CJL) 
and participant to remain blinded.  
 
Boundary-based parcellation  
 

A boundary-based parcellation was generated by applying the procedures developed by 
[19] on each participant’s resting-state CIFTI dataset. In a boundary map, boundaries represent 
transition points in whole-brain functional connectivity patterns along the cortical surface. 
Parcels were generated using the “watershed by flooding” procedure. Parcels smaller than 10 
cortical vertices (~20mm2) were removed. The number of resultant parcels varied between 
individuals (mean parcel count: 548, range: 473-603). Group-level parcellations yield fewer and 
larger parcels (e.g., 333 parcels in [19], 360 in [70]). The number of parcels reported here was 
judged to be biologically plausible, however, with consideration to recent work [41] estimating a 
similar number of parcels (616) in a highly-sampled individual brain.  
 
Network template-matching  
 

Calculation of participation coefficients requires a known community structure (i.e., a 
network affiliation for each node included in the calculation). Unsupervised clustering or 
community detection algorithms are often used to identify collections of nodes that comprise 
functional networks. This approach, however, can identify a variable number of networks across 
individuals or those with no clear functionality. In contrast, our goal was to match parcels with a 
common set of known functional brain networks. For this reason, we utilized the template 
matching procedure developed by [15], which matches each parcel to 1 of 12 canonical network 
templates generated in an independent sample of healthy adults (N=120) using the InfoMap 
algorithm [67]. We selected this approach as it assigns parcels to a common set of functional 
networks, which aids comparison amongst participants. Supplementary FigureS3 includes the 
areal-parcellation and network structure for each participant.  
 
Identification of hub and non-hub cTBS targets 

 
The temporal correlation between each parcel and all other parcels was computed using 

the denoised motion-censored rsfMRI time-series, yielding a parcel X parcel functional 
connectivity matrix for each participant. Local connections (those < 20mm in geodesic space) 
were eliminated, to avoid local blurring of signals between adjacent parcels. The participation 
coefficient and nodal degree was calculated for each parcel. To do so, we first calculated ten 
participation coefficients and degree values for each parcel using binarized functional 
connectivity matrices, each with a unique density (1-10%, in 1% steps). The final participation 
coefficient and degree for each parcel was the average of these ten values. Participation 
coefficient was calculated using the equation below, where M is the total set of networks, ki is 
the number of edges associated with node i, and ki (m) is the number of edges between node i 
and all nodes in network m.  
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Native-space MPRAGE coordinates corresponding to the centroid of a hub and non-hub 

parcel in each participant’s right middle frontal gyrus were identified using the following 
procedure. First, as the participation coefficient of a parcel with few connections is dubious, we 
eliminated from consideration parcels with a degree in the bottom quartile of whole-brain values. 
Remaining parcels with a centroid falling within right middle frontal gyrus, defined using 
Freesurfer gyral labels, were identified. The hub was defined as the right middle frontal gyrus 
parcel with the highest participation coefficient value. Next, the euclidean distance between the 
hub and all other parcels in right middle frontal gyrus was calculated. The non-hub was defined 
as the parcel with the lowest participation coefficient value >20mm from the centroid of the hub 
parcel in euclidean space. This minimum distance was enforced to enable selective targeting of 
the two parcels, given evidence that the spatial resolution of TMS is 0.5-2cm [32-34]. Native-
space MPRAGE coordinates corresponding to the hub or non-hub centroid were pseudo-
randomly assigned as the stimulation sites for the two follow-up sessions.  
   
Continuous theta-burst stimulation and MRI-guided neuronavigation  
 

cTBS was applied using a MagPro x100 device (MagVenture, Inc., Atlanta, GA) with a 
passively coiled MCF-B70 figure 8 coil. cTBS is a safe [71] and inhibitory form of patterned TMS 
involving three 50Hz pulses in trains repeated at 200-ms intervals [35]. cTBS was administered 
in a room adjacent to a “ready-to-scan” magnet environment (i.e., MRI-safety questionnaire 
completed, scanner console & E-prime set-up prepared), which minimized the delay between 
cTBS administration and task performance. Parcel centroids were targeted using the Brainsight 
2 Frameless stereotactic system for image guided TMS research (Rogue Research, Montreal, 
Canada). This system uses infrared reflectors attached to a headband worn by the subject to 
co-register the MPRAGE with the participant’s head. The stimulating coil was similarly co-
registered via infrared reflectors allowing for precise control of the stimulation site. Each 
participant’s active motor threshold was defined as the intensity required to induce a motor 
evoked potential in the contralateral FDI muscle when pulses were applied to right motor cortex 
during a mild sustained contraction. The stimulus intensity was 80% of active motor threshold. 
Muscle twitches were measured using surface electrodes placed on the FDI muscle, which are 
connected to an electromyography device incorporated into the BrainSight system. During 
cTBS, the parcel was delineated on the subject’s native MPRAGE.  
 
Drift diffusion modeling of task performance   
 

A drift diffusion model was utilized to quantify task performance. We selected an EZ-
diffusion model [37], in place of alternative diffusion fitting routines, as it is more effective in 
resolving individual differences in parameter values [53] and does not require characterizing the 
distribution of incorrect response times, making it well-suited for use in populations where the 
error rate is relatively low. A 2x4 (target x load) repeated measure ANOVA was performed on 
each of three diffusion model parameters - drift rate, boundary separation, and non-decision 
time. Tables containing summary statistics for accuracy and response times can be found in the 
Supplementary Tables S3 & S4.  
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Partitioning hubs into subtypes  
 

The percentage of hub edges to each network module was calculated for each 
participant (number of edges with network i divided by nodal degree) across a range of graph 
densities (1-10%, in 1% steps). A correlation matrix was then generated, where the entry ij 
indicated the degree to which the distribution of edges amongst network modules was 
correlated in participants i and j. The Louvain community detection algorithm [21] was applied to 
this weighted, signed correlation matrix 103 times, and a consensus partition generated using an 
association-recluster strategy [72]. In an association-recluster framework, modularity 
maximization identifies a consensus partition from an association matrix, where entries denote 
the frequency with which nodes co-occur in a community across iterations. The significance of 
this consensus partition was quantified as a z-score, by comparing the associated modularity 
function (“Q”) against a null distribution (103 iterations) of Q values derived from random graphs 
with preserved signed degree distributions [73]. 

 
Figure Captions 

 
Figure1 – Establishing the necessity and feasibility of high-fidelity hub mapping in individuals. 
Hub nodes participate in more network modules, and have a high participation coefficient, 
whereas non-hub hub nodes participate in fewer network modules, and have a low participation 
coefficient (a). A participation coefficient was calculated for each parcel in the right middle 
frontal gyrus of the highly-sampled MSC participants (b). Inter-individual variability in spatial 
distribution of participation coefficients (c) and distance in euclidean space between the highest 
participation coefficient parcel in each participant was summarized in matrices (d). Distances 
between individual-specific hubs and the group-average (“G”) hub. Red line represents an 
estimated spatial resolution of TMS (e). Test-retest reliability of hub estimates within individuals 
improves with greater quantities of per-individual data (f).  
 
Figure2 – A prospective, within-subjects, double-blind experimental design to test if hubs serve 
outsized roles in cognition (a). 45-minutes of rsfMRI and a high-resolution structural image 
collected during an initial study visit was submitted to an automated pipeline (b). Major pipeline 
steps include the construction of an individual-specific areal parcellation (red denotes 
boundaries between functional areas) and network structure (colors denote unique networks), 
and sparse functional connectivity matrices (a spring graph with a density of 1% for 
visualization). Participation coefficients for parcels with a centroid in right middle frontal gyrus 
were calculated. Parcels with the highest (“hub”) and lowest (“non-hub”) participation 
coefficients were pseudo-randomly assigned as targets for follow-up sessions [c: hubs (red) and 
non-hub (gray) cTBS targets in nine representative participants]. DMN = default mode network, 
VIS = visual, FP = fronto-parietal, DAN = dorsal attention network, SAL = salience, VAN = 
ventral attention, AUD = auditory, dSM = dorsal somatosensory, vSM = ventral somatosensory, 
mPar = medial parietal, PO = parieto-occipital, COP = cingulo-opercular. 
 
Figure3 – Drift diffusion modeling of N-back performance following hub and non-hub inhibition 
with cTBS. The drift diffusion model (a) takes as input the variance and mean response time for 
correct trials and the mean accuracy for each cognitive load and calculates latent variables 
representing the speed of information processing or drift rate (“v”), response conservativeness 
(“a”), and the amount of time unrelated to the decision process (“ter”). Correlation matrix, where 
entries denote the pairwise relationships amongst input and output drift diffusion model 
parameters using Pearson correlation (b). Hub cTBS slowed drift rates across N-back loads, 
relative to non-hub cTBS (c), but did not have an effect on response-boundary (d) or non-
decision time (e). Gray bars = non-hub inhibition, red bars = hub inhibition. 
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Figure4 – Hubs can be clustered into subtypes (a) that participate in discrete sets of network 
modules (b).  Average change in drift rate (vs. non-hub inhibition) following inhibition of each 
hub subtype (c). DMN = default mode network, VIS = visual, FP = fronto-parietal, DAN = dorsal 
attention network, SAL = salience, VAN = ventral attention, AUD = auditory, dSM = dorsal 
somatosensory, vSM = ventral somatosensory, mPar = medial parietal, PO = parieto-occipital, 
COP = cingulo-opercular.  
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