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Abstract 45 
Understanding the statistical structure of the environment is crucial for adaptive 46 
behavior. Humans and non-human decision-makers seem to track such structure 47 
through a process of probabilistic inference, which enables predictions about 48 
behaviorally relevant events. Deviations from such predictions cause surprise, which 49 
in turn helps improve the inference. Surprise about the timing of behaviorally 50 
relevant sensory events drives phasic responses of neuromodulatory brainstem 51 
systems, which project to the cerebral cortex. Here, we developed a computational 52 
model-based magnetoencephalography (MEG) approach for mapping the resulting 53 
cortical transients across space, time, and frequency, in the human brain. We used 54 
a Bayesian updating model to estimate the predicted timing of the next stimulus 55 
change in a simple visual detection task. This model yielded quantitative trial-by-trial 56 
estimates of temporal surprise. The model-based surprise variable predicted trial-57 
by-trial variations in reaction time more strongly than the externally observable 58 
interval timings alone. Trial-by-trial variations in surprise were negatively correlated 59 
with the power of cortical population activity measured with MEG. This surprise-60 
related power suppression occurred transiently around the behavioral response, 61 
specifically in the beta frequency band. It peaked in left lateral prefrontal as well as 62 
in frontal midline regions, and its cortical distribution was distinct from the 63 
movement-related suppression of beta power in motor cortex. Our results indicate 64 
that surprise about sensory event timing transiently suppresses ongoing beta-band 65 
oscillations in association cortex. This transient suppression of frontal beta-band 66 
oscillations might reflect an active reset triggered by surprise, and is in line with the 67 
idea that beta-oscillations help maintain cognitive sets. 68 
 69 
  70 
Significance statement 71 
Agents continuously track the statistical structure of the environment, in order to 72 
make predictions about behaviorally relevant sensory events. Deviations from such 73 
predictions cause surprise, which in turn drives phasic responses of 74 
neuromodulatory brainstem systems that project to the cerebral cortex. We 75 
developed a computational model-based magnetoencephalography approach, 76 
which enabled us to map out transients changes in cortical population dynamics 77 
elicited by surprise about sensory event timing, across space, time, and frequency, 78 
in the human brain. The model-based estimates of surprise predicted behavior as 79 
well as a transient suppression of beta frequency-band oscillations in frontal cortical 80 
regions. Our results are in line with conceptual accounts that have linked neural 81 
oscillations in the beta-band to the maintenance of cognitive sets.  82 
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Introduction 83 
Humans and other organisms continuously adapt their behavior to the statistical 84 
structure of their environment. This suggests that the brain is equipped with 85 
powerful machinery for statistical learning, which can interact with the neural 86 
processes driving goal-directed behavior. Of particular importance here is surprise 87 
(Dayan and Yu, 2006; O’Reilly et al., 2013), a violation of one’s expectation about 88 
the next event, which might indicate a sudden change in the environmental 89 
structure, which might transiently boost central arousal state, increasing the 90 
organism’s sensitivity and learning rate  (Yu and Dayan, 2005; Nassar et al., 2012). 91 

Expectation, uncertainty, and surprise are intricately related concepts. The 92 
precision of expectations scales with uncertainty, that is, the width of the 93 
distribution of events: high uncertainty precludes forming precise expectations. 94 
Violations of expectations cause surprise, the level of which depends on the 95 
difference between the expected and actually observed event (often termed 96 
prediction error). These intuitions can be readily formalized within the framework of 97 
Bayesian statistics and used to search for neurophysiological correlates (see 98 
Materials and Methods: Bayesian model of surprise and uncertainty). 99 

One dimension of environmental statistics that has profound effects on 100 
behavior is the timing of behaviorally relevant sensory events (Gibbon et al., 1997; 101 
Nobre et al., 2007) Two lines of work have studied the neural basis of temporal 102 
expectation effects. One has shown that environments with rhythmic (i.e., precise) 103 
temporal structure entrain neural oscillations in the cerebral cortex, the phase of 104 
which then modulates sensory cortical responses, perception, and cognition 105 
(Lakatos et al., 2008; Schroeder and Lakatos, 2009; Rohenkohl and Nobre, 2011; 106 
Rohenkohl et al., 2012; Riecke et al., 2015; van Ede et al., 2017). Because in these 107 
periodic contexts, surprise is minimized (once the structure is learned expectations 108 
match observations), this work has not identified neural correlates of surprise.  109 

Another line of work has instead studied neural responses of subcortical, 110 
neuromodulatory centers (specifically, dopaminergic midbrain) to sensory events 111 
(specifically, rewards). Because event timing here varied non-periodically from trial 112 
to trial as in many natural environments, this work could link phasic 113 
neuromodulatory responses to temporal surprise (Hollerman and Schultz, 1998; 114 
Fiorillo et al., 2008). It is likely that such surprise-driven phasic responses also occur 115 
in other neuromodulatory systems (e.g., the noradrenergic system; Dayan and Yu, 116 
2006) with widespread projections to the cortical networks underlying goal-directed 117 
behavior. But little is known about the cortical responses to surprise about event 118 
timing. 119 

Here, we present a computational approach for comprehensively mapping 120 
cortical transients encoding temporal surprise across space, time, and frequency. 121 
We developed a Bayesian learning model that used previous interval durations to 122 
estimate the subjects’ belief about the temporal structure of the environment in a 123 
simple detection task. The model output enabled us to compute trial-to-trial 124 
measures of uncertainty and surprise. Correlating these computational quantities to 125 
brain-wide cortical dynamics measured with magnetoencephalography (MEG) 126 
pinpointed clusters in the time-frequency-space domain encoding surprise. This 127 
revealed widespread modulations of cortical dynamics in the beta band (around 20 128 
Hz). 129 
 130 
Materials & Methods 131 
This paper reports a re-analysis of an MEG data set that has previously been used 132 
for a study into decision-related feedback signals in visual cortex (Meindertsma et 133 
al., 2017). Here, we focus on those aspects of the experimental design that are most 134 
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relevant for the issue addressed in the current paper: uncertainty and surprise about 135 
the timing of the experimental events specified below. We refer to our previous 136 
paper (Meindertsma et al., 2017) for a more detailed description of the visual 137 
stimulus and the behavioral task. 138 
 139 
Participants 140 
Thirty-one volunteers participated in the experiment. Two participants were 141 
excluded due to incomplete data and one participant did not complete the 142 
experiment due to poor quality of simultaneously acquired pupil data. Thus, 28 143 
participants (17 female, age range 20 - 54 years, mean age 28.3, SD 9.2) were 144 
included in the analysis. All participants had normal or corrected-to-normal vision 145 
and no known history of neurological disorders. The experiment was conducted in 146 
accordance with the Declaration of Helsinki and approved by the local ethics 147 
committee of the Hamburg Medical Association. Each participant gave written 148 
informed consent. 149 
 150 
Stimulus 151 
MEG was measured while subjects viewed the intermittent presentation of a target 152 
(full contrast Gabor patch; diameter: 2°) and reported the on- and offset of the target 153 
(Figure 1A). The Gabor patch contained two cycles and flickered at 10 Hz. Target 154 
flicker was implemented by counter-phasing the sinusoid used to generate the 155 
Gabor patch. The target was located in either the lower left or lower right visual field 156 
quadrant (eccentricity: 5°, counterbalanced between subjects), surrounded by a 157 
rotating mask (17°x17° grid of black crosses), and superimposed on a gray 158 
background. The mask rotated at a speed of 160°/s. The target was separated from 159 
the mask by a gray “protection zone” subtending about 2° around the target 160 
(Bonneh et al., 2001). Subjects fixated on a fixation mark (red outline, white inside, 161 
0.8° width and length) centered on the mask in the middle of the screen. Stimuli 162 
were presented using the Presentation Software (NeuroBehavioral Systems, Albany, 163 
CA, USA). Stimuli were back-projected on a transparent screen using a Sanyo PLC-164 
XP51 projector with a resolution of 1024x768 pixels at 60 Hz. Subjects were seated 165 
58 centimeters from the screen in a whole-head magnetoencephalography (MEG) 166 
scanner setup in a dimly lit room. 167 
 168 

 169 
 170 
Figure 1: Behavioral task. A. Schematic depiction of the stimulus and task. A salient, flickering target 171 
(Gabor patch) temporarily appeared and disappeared on a rotating background. Subjects fixated on 172 
the red fixation mark and reported stimulus changes either by direct button press or silently counting 173 
the disappearances and reporting the total number at the end of the run. B. The interval duration 174 
between stimulus changes was randomly drawn from one of three distributions that corresponded to 175 
three hazard rates (left), resulting in distinct distributions of intervals (right, average histogram over 176 
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subjects). C. Example time courses of target presence (1 = present, 0 = absent) drawn from these 177 
distributions. 178 
 179 
Behavioral task and experimental design 180 
The subjects’ task was to maintain stable fixation and detect the physical offsets 181 
and onsets of the target, the predictability of which fluctuated from trial to trial, and 182 
the mean predictability of which varied systematically across blocks. To this end, 183 
the interval durations between stimulus changes were sampled from three different 184 
distributions in the different blocks. These distributions were computed so as to 185 
produce three predetermined so-called hazard functions, which describe the 186 
probability that an event will occur at a particular time, given that it has not occurred 187 
yet. The hazard function formalizes the expectation of a change and affects human 188 
reaction times in simple detection tasks (Luce, 1986). The hazard function can be 189 
computed as follows: 190 
 191 

𝜆! =  !!
!!!!

,              Eq. 1 192 
 193 
where λt is the value of the hazard function at time point t, ft is the value of 194 
distribution f on time point t, and Ft is the area under the curve of distribution f from 195 
−∞ to time t.  196 

We used the following procedure to construct three conditions, referred to as 197 
‘Short’, ‘Long’, and ‘Flat’ below. We first selected three hazard functions that 198 
systematically differed in their level of predictability (Figure 1B, C). We then 199 
computed the actual distributions of intervals by re-arranging Eq. 1 as follows: 200 
 201 
          𝑓! = 𝜆!  ∗ (1 − 𝐹!) ,                  Eq. 2 202 

 203 
The interval durations were then randomly selected from f. Specifically, the 204 
conditions were defined as follows:  205 

Short: The hazard function was a narrow Gaussian distribution with a mean of 2 206 
s and a standard deviation of 0.2 s. This resulted in nearly periodic and, thus, largely 207 
predictable intervals between events.  208 

Long: This condition used the same hazard function as the previous condition, 209 
but with a larger mean and standard deviation (6 s and 0.6 s, respectively) thus 210 
rendering event timings less predictable (Fiorillo et al., 2008). 211 

Flat: The hazard function was flat with a mean of 6s, yielding the least 212 
predictable interval durations. The resulting distribution of interval durations, ft, 213 
therefore, approximated an exponential distribution; characterizing a memory-less 214 
process (i.e. the timing of the next event could not be predicted from previously 215 
encountered intervals, Feller, 1959). 216 

Computational analysis with a Bayesian model (Fig. 2) described below 217 
confirmed that the sampled intervals from these three conditions gave rise to 218 
different mean levels of uncertainty and surprise (Fig. 2 D, E). The three experimental 219 
conditions were presented in separate blocks, which were divided in three-minute 220 
runs of continuous presentation.  221 

Subjects were asked to report the stimulus changes either by button press or 222 
by silently counting the number of target offsets for later report, a manipulation that 223 
was critical for the analyses reported in our previous paper (Meindertsma et al., 224 
2017). Those two conditions were randomly selected before each run under the 225 
constraint that both would occur equally often. The corresponding instructions were 226 
displayed on the screen before the run started. Subjects could only start the next 227 
run after they confirmed the instructions to the experimenter over the intercom. 228 
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Here, we focused on the condition entailing immediate behavioral report so as to 229 
study the impact of surprise on RTs and on response-related cortical dynamics. 230 
Subjects reported target offsets and onsets by pressing a button with the index 231 
finger and middle finger of their right hand. 232 

All subjects completed a total of 6 runs of the Short condition, and 16 runs of 233 
the other two conditions. Additionally, subjects performed a motion-induced 234 
blindness task and a functional localizer task, which were not relevant for the current 235 
study, but are reported in our previous paper (Meindertsma et al., 2017). The order 236 
of blocks was counter-balanced across subjects. 237 
 238 
Bayesian model of surprise and uncertainty 239 
We developed a Bayesian updating model to quantify surprise and uncertainty 240 
about the timing of sensory events (i.e., the target on- and offsets). The model 241 
tracked the evolving predictive distribution of upcoming interval durations; more 242 
specifically, it computes the posterior predictive of unobserved interval durations, 243 
conditional on the observed data, throughout each block of the experiment. We 244 
assumed that subjects’ tracked the temporal statistics of the task in a similar way, 245 
and we used the posterior predictive distribution as a proxy of the subjects’ belief 246 
states (i.e., their prediction of the timing of the next stimulus change). 247 

We assumed that the subjects used a model in which the observed intervals 248 
have been generated from a gamma distribution with parameters alpha (shape) and 249 
beta (scale). These parameters were given uninformative prior distributions (Lee and 250 
Wagenmakers, 2013), which were updated by the data to posterior distributions. 251 
Then we could obtain the expectations about to-be-observed intervals by 252 
generating posterior predictives (i.e., drawing an alpha-beta pair from the joint 253 
posterior distribution and then drawing a predicted interval from the associated 254 
gamma distribution; repeating this process many times yields a posterior predictive 255 
distribution for the to-be-observed intervals). We assumed that the subjects 256 
updated their belief state after each observation of a new interval duration. Likewise, 257 
the model was updated after every interval t by computing a new posterior 258 
predictive distribution, based on the durations of intervals 1:t and the prior.  259 

We generated posterior predictive distributions over intervals using Gibbs 260 
sampling (a Markov chain Monte Carlo, or MCMC, algorithm (Andrieu et al., 2003) in 261 
the software JAGS (Plummer, 2003) and Matlab (version R2013a). We used two 262 
Markov chains with different starting points of 10,000 samples per chain with 1000 263 
samples burn-in. We transformed the distribution of MCMC samples into a 264 
continuous probability density function by fitting a gamma function to the pooled 265 
distribution of both MCMC chains (Figure 2A,B): 266 
 267 
    𝑓! =  𝑔𝑎𝑚𝑚𝑎  𝛼! ,𝛽!  𝐷!:!),         Eq. 3 268 

 269 
where ft was the probability density after observing interval t and αt  and βt were the 270 
parameters of the gamma function and D1:t was the sampled distribution (i.e., the 271 
distribution of MCMC samples). 272 

To be able to relate trial-to-trial uncertainty and surprise to behavior and the 273 
MEG data, we extracted two information theoretic metrics from the time-evolving 274 
posterior predictive distribution (i.e., belief) ft.  275 

Uncertainty: We quantified trial-to-trial uncertainty about the timing of the next 276 
interval t+1 as the entropy of the posterior probability distribution: 277 

 278 
    𝐻! =  − 𝑓! 𝑥 ∗ log 𝑓! 𝑥  𝑑𝑥!

! ,          Eq. 4 279 
 280 
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where Ht was entropy after interval t, x were all possible instances of the probability 281 
function (i.e., interval durations). Entropy depended on the width of ft, and thus 282 
uncertainty was higher when predictions of interval durations were less precise 283 
(Figure 2A,C). From here on, we will use the term entropy when referring to 284 
uncertainty, for the sake of mathematical precision.  285 

Surprise: For every succeeding event t+1, we computed the surprise about the 286 
corresponding interval duration in terms of the Shannon information conveyed by 287 
the interval duration xt+1, given the posterior predictive distribution (ft) estimated from 288 
the previous interval (i.e., based on intervals 1:t): 289 

 290 
𝐼!!! =  −log 𝑓!(𝑥!!!),          Eq. 5 291 

 292 
where It+1 was the information gained by adding interval t+1, given ft. Thus, surprise 293 
was defined as the negative log-likelihood of the next interval, given the intervals 294 
that had been presented so far, whereby the posterior distribution from the previous 295 
interval ft was used as prior distribution ft+1 for the next interval in the updating 296 
process. We added one further transformation in the computation of surprise . The 297 
surprise measures defined in Eq. 5 quantified the surprise about the current event 298 
timing based on the prior distribution estimated from all previous interval durations, 299 
but disregarding the time elapsed on the current trial. It is unlikely that exactly this 300 
distribution translated into subjects’ level of surprise: as time passed and no event 301 
occurred on a given trial, all interval durations shorter than the elapsed time became 302 
impossible. Subjects likely discounted these impossible intervals in their expectation 303 
of the timing of the upcoming event, which should have also affected their level of 304 
surprise. In other words, their internal representation of the prior distribution 305 
changed dynamically throughout each trial, as a function of elapsed time. To 306 
capture this process, we constructed a time-varying version of the prior distribution 307 
ft, which was also conditioned on the elapsed time on trial t. This version was equal 308 
to ft for elapsed time equal to 0 and then increasingly deviated from ft as elapsed 309 
time grew. We approximated this time-varying distribution, denoted as f’t in the 310 
following, by setting all probabilities in ft up to the current time point to zero and 311 
renormalizing the remaining distribution to integrate to 1. We then computed 312 
surprise based on this new distribution f’t using Eq. 5. The time-variant prior f’t 313 
converged to 1 as time passed, and thus surprise approached zero for longer 314 
intervals.  315 
 316 
Regressing computational variables against behavior  317 
We used reaction time (RT) during Detection-button as behavioral readout of the 318 
impact of uncertainty and surprise. Accuracy approached ceiling for all subjects, 319 
due to the high saliency of the target. We computed and compared mean RTs per 320 
condition and stimulus event (target off- and onset). Furthermore, we assessed the 321 
Pearson correlation between log-transformed single-trial RTs and the trial-to-trial 322 
estimates of surprise or entropy. RT was log-transformed to normalize the (skewed)  323 
distributions of ‘raw’ RT before computing correlation coefficients. Differences from 324 
zero and differences between conditions were tested using permutation tests over 325 
subjects (two-sided, 10,000 permutations). We tested the difference in magnitude of 326 
the correlation of previous interval of log(RT) compared to surprise and entropy to 327 
log(RT) by testing the difference in absolute value across subjects using permutation 328 
tests (Figure 3C) and computed within subject 95% confidence intervals using 329 
Steiger’s correlation test (Zou, 2007). 330 

 331 
MEG data collection 332 
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Magnetoencephalography (MEG) data were acquired on a CTF 275 MEG system 333 
(VSM/CTF Systems, Port Coquitlam, British Columbia, Canada) with a sample rate 334 
of 1200 Hz. The location of the subjects’ head was measured in real-time using 335 
three fiducial markers placed in the both ears and on the nasal bridge to control for 336 
excessive movement. Furthermore, electrooculogram (EOG) and electrocardiogram 337 
(ECG) were recorded to aid artifact rejection. All data were recorded in blocks of 338 
four runs of three minutes duration (or two runs at the end of a block), which 339 
corresponded to the runs of experimental conditions defined above. 340 
 341 
MEG data analysis 342 
Preprocessing. The data were analyzed in Matlab (version R2013a, The Mathworks, 343 
Natick, MA, USA) using the Fieldtrip (Oostenveld et al., 2011) toolbox and custom-344 
made software. 345 
 Trial extraction. In runs involving subjects’ reports, we extracted trials of 346 
variable duration, centered on subjects’ button presses, from the 3 min runs of 347 
continuous stimulation. We call this method for trial extraction “response-locked”. 348 
The following constraints were used to avoid mixing data segments from different 349 
percepts when averaging across trials: (i) The maximum trial duration ranged from 350 
−1.5 s to 1.5 s relative to report; (ii) when another report occurred within this 351 
interval, the trial was terminated 0.5 s from this report; (iii) when two reports 352 
succeeded one another within 0.5 s, no trial was defined; (iv) for the analysis of 353 
Detection-button runs, we included only those reports that were preceded by a 354 
physical change of the target stimulus within 0.2 to 1 s, thus discarding reports not 355 
related to stimulus changes. We used this method for the analyses related to 356 
surprise. In an alternative analysis of all Detection runs, trials were defined in the 357 
same way as described above, but now aligned to physical target on- and offsets 358 
(“stimulus-locked”). In the Detection-count conditions, no button responses were 359 
given during the run, so stimulus-locked trial extraction was the only option. We 360 
used this method for the analysis related to entropy (see Kloosterman et al., 2015b 361 
& Meindertsma et al., 2017 for a similar procedure). 362 
 Artifact rejection. All epochs that contained artifacts caused by 363 
environmental noise, eye-blinks, muscle activity or squid jumps were excluded from 364 
further analysis using standard automatic methods included in the Fieldtrip toolbox. 365 
Epochs that were marked as containing an artifact were discarded after every 366 
artifact detection step. For all artifact detection steps the artifact thresholds were set 367 
individually for all subjects. Both of these choices aimed at optimization of artifact 368 
exclusion. Line-noise was filtered out by subtracting the 50, 100, 150 and 200 Hz 369 
frequency components from the signal.  370 
 Time-frequency decomposition. We used a sliding window Fourier transform 371 
to compute the time-frequency representation for each sensor and each trial of the 372 
MEG data. The sliding window had a length of 200 ms and a step size of 50 ms, 373 
with one Hanning taper (frequency range 5-35 Hz, frequency resolution 2.5 Hz and 374 
bin size 1 Hz). The data was baseline corrected for every frequency bin and MEG 375 
sensor separately. The baseline was computed by averaging single-trial power over 376 
the baseline time window. The baseline time windows ranged from −1.25 to −0.75 s 377 
for response-locked and −1 to −0.5 s for stimulus-locked analyses, respectively. The 378 
time course of every frequency bin and sensor combination was first baseline 379 
corrected by subtracting the single-trial baseline and then normalized by dividing by 380 
the mean over the baselines of all trials within a condition (Short, Long or Flat). 381 
 Source reconstruction. We used an adaptive linear spatial filtering method 382 
called linear beamforming (Van Veen et al., 1997; Gross et al., 2001) to estimate 383 
single-trial modulations of MEG power at the source level. We computed a common 384 
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filter for a baseline time window (1 to 0.5 s before response), a ‘transient’ time 385 
window, and a frequency band of interest (0 to 0.5 s after response, 20 Hz +/- 4 Hz 386 
spectral smoothing, see dashed box in Figure 4A). The transient time window and 387 
frequency band of interest were selected based on cluster-based statistics at the 388 
sensor level (see next section). We used the measured head positions and individual 389 
single-shell volume conductor models, based on individual images from T1-390 
weighted structural MRI. We computed the power values, in both baseline and 391 
transient time windows, for each trial and source grid point (i.e., voxel) as follows. 392 
First, we projected the sensor-level MEG power values from the time window of 393 
interest as well as from a baseline time window through the common spatial filter. 394 
Second, we converted the estimated power values during the time window of 395 
interest into units of power modulation, again by subtracting and dividing by the 396 
corresponding baseline power values. 397 
 398 
Correlating single-trial computational variables to MEG power 399 
We correlated the MEG power modulation to our measures of entropy and surprise, 400 
as derived using our Bayesian model (see Bayesian model of surprise and 401 
uncertainty) across trials.  402 

Entropy: We correlated entropy to the MEG power modulation separately in 403 
every MEG sensor and frequency bin. This was done within subject and separately 404 
for the three hazard rate conditions. There are structural differences in entropy and 405 
surprise between these conditions (Figure 2D,E), thus pooling over these conditions 406 
might result in inflated correlations that reflect session differences instead of the true 407 
correlation between entropy and MEG power. We reasoned that entropy should 408 
affect baseline or tonic arousal, where high entropy should cause higher arousal. As 409 
our task was continuous, we considered the time window right before the stimulus 410 
change the best reflection of a baseline state. For this reason we averaged the MEG 411 
power over the time period right before a stimulus change (-0.5 to -0.25s with 412 
respect to the target disappearance or reappearance) before correlating to entropy. 413 

The results were then averaged over the three conditions and transformed with 414 
the Fisher z transformation (Fisher, 1915): 415 
 416 

    𝑧 = 0.5 ∙ ln (!!!
!!!

)           Eq. 6 417 
  418 
We used two-tailed permutation tests with a cluster-based correction for 419 

multiple corrections to test the correlation coefficients against zero (Efron and 420 
Tibshirani, 1998; Maris and Oostenveld, 2007).  421 

Surprise: Correlations between surprise and MEG power modulation were 422 
performed using the same method, with the following exceptions. First, we attuned 423 
the analysis in two ways to account for the correlation between surprise and RT 424 
(Figure 3). Because of this correlation, any post-stimulus correlations between 425 
surprise and MEG power modulation might reflect differences in the timing of the 426 
button press. We performed this analysis response-locked, because these RT 427 
differences are difficult to disentangle from genuine effects of surprise when the 428 
power modulations are time-locked to the stimulus change. Additionally, to account 429 
for confounding effects of RT and the duration of the previous interval, we also 430 
performed a partial correlation analysis between surprise and MEG power 431 
modulation with the interval duration preceding the stimulus change or RT as 432 
covariate. Second, for the correlation between surprise and MEG power modulation 433 
we did not average over a specific time window, but instead performed correlations 434 
separately for every time point, resulting in a 3-dimensional matrix of correlations 435 
(sensor * frequency bin * time point). Consequently, we also performed cluster-436 
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based permutation statistics over these three dimensions. The correlations that 437 
survived cluster correction were visualized by integrating (i.e. computing the area 438 
under the curve) over sensors and frequency bins (for the time course), sensors and 439 
time points (for the frequency spectrum), frequency bins and time points (for the 440 
topography) or just over sensors for the time frequency representation (see Hipp et 441 
al., 2012 for a similar approach).  442 

To assess the robustness of the emerging clusters we performed a cross-443 
validation analysis using a leave-one-out procedure. To this end, we repeated the 444 
analyses on all possible iterations of N-1 subjects, each time using the resulting 445 
cluster as a mask to calculate the average correlation in the left-out subject, 446 
separately for target offset and onset trials. These values were tested against zero 447 
and against each other across subjects using permutation tests (10.000 448 
permutations).  449 

Trial-to-trial surprise, and to a lesser extend entropy, correlated to log(RT) 450 
(Figure 3B). We interpreted this as evidence that our surprise metric indeed captures 451 
a process that is behaviorally relevant to the subjects. From this perspective, we 452 
predicted that the surprise-related MEG cluster was related to RT as well. To test 453 
this hypothesis we computed the correlation between trial-to-trial power modulation 454 
averaged over the whole cluster and log(RT). The resulting correlations were tested 455 
against zero across subjects using a permutation test. 456 

The transient modulations of MEG power estimated for each voxel in the source 457 
grid derived by means of source reconstruction (see MEG data analysis: Source 458 
reconstruction) was correlated to the trial-to-trial measure of surprise. This was 459 
done separately within each subject and the resulting correlations averaged over 460 
subjects after Fischer’s z-transformation (Eq. 6). For comparison, we also computed 461 
the average modulations of MEG power in the same time window and frequency 462 
band. The resulting maps of correlation or average power modulation were 463 
nonlinearly aligned to a template brain (Montreal Neurological Institute) using the 464 
individual images from structural MRI. 465 
 466 
Results 467 
Subjects (N=28) performed a simple visual detection task reporting on- and offsets 468 
of a small, but salient target stimulus (Figure 1A). In different blocks, target events 469 
were administered using three different temporal conditions (Figure 1B,C) translating 470 
into different overall levels of uncertainty and surprise about the timing of target 471 
events (Figure 2D,E). In order to quantify these two computational variables not only 472 
across conditions, but also across individual trials, we developed a Bayesian belief-473 
updating model. The model approximated subjects’ evolving beliefs (i.e. the prior or 474 
posterior predictive distributions in Bayesian terms) about the temporal intervals 475 
between the sensory events, which were dynamically updated across trials and 476 
even within trials (for surprise, see Materials and Methods). From these time-477 
evolving probability distributions, we extracted trial-by-trial measures of information-478 
theoretic entropy (quantifying uncertainty) and surprise.  479 
 480 
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481 
  482 
Figure 2: Bayesian updating model of belief about temporal structure A-C. The model estimated 483 
the posterior predictive distribution over timings of stimulus changes for each trial t. This distribution is 484 
denoted as ft. The gray histogram shows the frequency distribution of intervals from all trials up to trial 485 
t, denoted as D1:t. ft was estimated by fitting a gamma probability density function (red line) to D1:t; it 486 
was then used to extract two different information-theoretic computational variables for each trial: 487 
entropy and surprise. A. Entropy, a measure of the uncertainty about the timing of the interval duration 488 
from the current trial, computed from the complete distribution ft using Eq. 4 (see main text). The wider 489 
the distribution, the higher entropy. B. Surprise, a measure of information provided by each new 490 
interval duration, was also computed from the posterior predictive distribution, but with one extra step 491 
(see main text): the part of the distribution up to the current interval duration was truncated, and the 492 
remainder of the distribution re-normalized to integrate to 1 (f’t , black line). Surprise was defined based 493 
on this truncated function using Eq. 5 (see main text). C. Relationship between interval durations (white 494 
line in top panel, from the long Gaussian condition), posterior predictive distribution f (color coded in 495 
top panel), entropy (middle), and surprise (bottom). Red dot: exceptionally long interval (see duration in 496 
top panel). Surprise on this trial was low (bottom panel) because time dependent surprise decreased 497 
over time. After observing this interval entropy increased (middle panel) because the observed interval 498 
was longer than the expected duration, given previous intervals.  D. Regression of surprise on entropy. 499 
Thin colored lines, regression lines of single subjects; black lines, group average regression. E. Trial-500 
averaged surprise and entropy for the three experimental conditions defined in Fig. 1. Bars, group 501 
average; black dots, single subjects. *** p<0.001, permutation tests across subjects. 502 
 503 
 Estimates of entropy and surprise fluctuated across trials, especially in the 504 
early part of each block (Figure 2C). The trial averages of both measures within each 505 
block also varied lawfully between the different experimental conditions, scaling with 506 
the predictability of the stimulus changes (Figure 2D,E). Estimates were smallest for 507 
the Short condition, intermediate for the Long condition, and largest for the Flat 508 
condition. Further, variations in entropy and surprise were weakly correlated across 509 
trials (Figure 2D). This was expected, because both measures draw information from 510 
the same posterior predictive distribution. However, despite of this correlation the 511 
measures reflected functionally different concepts (uncertainty and surprise) and 512 
thus both merited further investigation. 513 
  514 
Surprise predicts reaction time 515 
The model-derived computational variables entropy and surprise predicted subjects’ 516 
reaction time (RT) in the detection task (Figure 3). Mean RT scaled with the 517 
experimental conditions in the same way as surprise, with the fastest RTs for Short 518 
and slowest RTs for the Flat condition (Figure 3A, compare with Figure 2E). In 519 
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addition, the trial-to-trial variations of surprise within conditions (and in some 520 
conditions entropy) were correlated to trial-to-trial variations in (log-transformed) RT 521 
(Figure 3B). For surprise (bottom panel), this correlation was significant for all 522 
experimental conditions, with the exception of target offsets on the Long condition, 523 
as well as in the average across conditions. For entropy (top) this correlation was 524 
only present in the Flat condition, but not the other two. The overall weaker 525 
correlation for entropy than surprise likely reflected the overall smaller fluctuations of 526 
entropy as time progressed throughout the blocks (Figure 2C); those fluctuations 527 
were particularly small during the Short and Long conditions but stronger during 528 
Flat.  529 

We are agnostic to the precise inference process that our subjects used to 530 
track the temporal structure of the task. Specifically, we do not claim that they 531 
implemented the exact computations prescribed by the model. But in line with a 532 
substantial body of evidence from psychology (Sutton and Barto, 1998; Gold and 533 
Shadlen, 2007; Glaze et al., 2015), we did postulate that subjects integrated, in 534 
some way, observations throughout each block. Our model implements this by 535 
integrating across the entire history of the observations (here: of interval durations) 536 
and updating internal representations accordingly. The surprise and entropy metrics 537 
correlated to the actual interval durations (white line in Figure 2C), but deviated 538 
progressively from them as time progressed throughout the block. The assumption 539 
that subjects also integrated over more than just the previous interval was 540 
supported by the analysis below. 541 
 The duration of the interval preceding a stimulus change also correlated to 542 
RT, with longer interval durations corresponding to faster responses (Figure 3C, left 543 
panel). However, surprise predicted RT better than previous interval duration, 544 
reflected by a significant difference between the magnitudes of correlations between 545 
surprise/previous interval and RT (Figure 3C, ‘Difference surprise – prev. inter.’, 546 
permutation test). This indicates that the correlation between surprise and RT 547 
reflects subjects’ sensitivity to the temporal structure of the task, rather than just 548 
their growing expectation of a stimulus change as the interval evolves. As for the 549 
direct correlations between surprise and RT (Figure 3B), these differences were 550 
significant for all but the target offsets in the Long condition (figure 3D). This 551 
difference was not observed for entropy (Figure 3C,D). 552 
 553 

 554 
 555 
Figure 3: Link between computational variables and behavior. A. Average reaction time (RT) per 556 
interval distribution, separate for reports of disappearance and reappearance of the target. Bars show 557 
average over subjects; black dots depict average per subject. B. Correlation between log(RT) and 558 
entropy (top) and surprise (bottom) for each experimental condition. Bars, group average; black dots, 559 
individual subjects. C. Correlation between log(RT) (averaged across conditions) and the interval 560 
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duration preceding stimulus change, and the difference in correlation magnitude between 561 
surprise/previous interval and RT. Same for entropy. Bars show average over subjects; black dots 562 
depict average per subject. D. Difference between magnitude of correlation of surprise and log(RT) and 563 
previous interval duration and log(RT), per condition. Dots depict correlation difference per subject; 564 
error bars show 95% confidence intervals. *** p<0.001, ** p<0.01, * p<0.05; n.s., not significant; 565 
permutation tests.   566 
 567 

Taken together, the results from Figure 3 indicate that the surprise variable 568 
derived from the Bayesian model captured variations in behavior. We next searched 569 
the whole-brain MEG data for a dynamical neurophysiological signature of this 570 
process. To this end, we focused on the trial-to-trial fluctuations of surprise within 571 
conditions, which were more pronounced than the differences in mean surprise 572 
between Short, Long, and Flat conditions (recorded in separate MEG runs). 573 
 574 
Widespread cortical beta-band transient driven by surprise 575 
We mapped out the cortical responses to trial-to-trial fluctuations in surprise by 576 
correlating the model-based surprise measures to modulations of MEG power, 577 
around the time of subjects’ behavioral responses to sensory events. We did this in 578 
an exhaustive fashion across every time and frequency bin and MEG sensor and 579 
tested for clusters of significant correlations across these three dimensions, while 580 
applying cluster-based multiple comparison correction (Materials and Methods). 581 
This approach revealed negative correlations in the beta (~20 Hz) frequency range, 582 
indicating that higher surprise was associated with lower beta power. This negative 583 
correlation cluster started about 0.2 s before and peaked about 0.25 s after 584 
subjects’ report of the stimulus change. This cluster exhibited several peaks over 585 
central, left frontal, and to a lesser extend left parietal cortex (Figure 4A,C).  586 
 The surprise-related cluster was robust and not driven by outliers, and the 587 
effect was not specific to the type of stimulus event (target on- or offset; Figure 5). 588 
To assess these possibilities, we computed the correlation between surprise and 589 
power in the cluster (figure 4A), separately for target offsets and onsets. We found 590 
robust negative correlations for both event types, although the correlations were 591 
somewhat stronger for target onsets (Figure 4D). Furthermore, we used a leave-one-592 
out cross-validation procedure to test the robustness of the correlations on both 593 
target on- and offsets. Again, the correlation was significantly negative in both cases 594 
(Figure 4E).  595 

As expected from previous work on modulations of MEG power around 596 
motor responses (Donner et al., 2009), the overall modulation of MEG power in the 597 
time-frequency window of the cluster (16-24 Hz, 0 – 0.5 s from response) peaked in 598 
bilateral motor cortex (Figure 4B). But the component of beta-power modulations 599 
that correlated with trial-by-trial surprise showed a different cortical distribution, with 600 
negative correlations that peaked in the central sulcus, extending from motor- to 601 
more frontal cortex, and in left frontal and parietal cortex (compare Figure 4B and 602 
4C).  603 

 604 
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 605 
Figure 4: Widespread cortical beta-band transient driven by surprise. A. Exhaustive correlation 606 
between trial-to-trial measures of surprise and MEG power modulation in all sensors, time and 607 
frequency bins results in one cluster (cluster-based correction for multiple comparison, p < 0.05, two-608 
sided) of negative correlation. Different panels show different dimensions of the cluster by integrating 609 
over the other dimensions; top left: time course, top right: spatial topography, bottom left: time-610 
frequency representation; bottom right: frequency spectrum. B. Source reconstruction of the power 611 
modulation in the time window in which surprise-MEG correlation was strongest (dashed box in panel 612 
A). C. Source-reconstructed illustration of the correlation between transient modulation and trial-to-trial 613 
surprise depicted in panel B. These source maps are not statistically thresholded, but instead serve for 614 
comparing the correlation’s spatial distribution with the transient power modulation in panel B. D. 615 
Comparison of correlation between surprise and power modulation between target offsets and onsets. 616 
Correlations are evaluated within the cluster from panel A. E. Leave-one-out cross-validation of the 617 
cluster found in panel A, separately for target offsets and onsets. Cluster-based permutation was 618 
performed on N-1 subjects and the average correlation in the resulting cluster was computed for the 619 
remaining subject (black dots); bars show averages over subjects. Correlation values were tested 620 
against 0 (permutation test; ** p<0.01). F. Correlation between MEG power in the cluster and log(RT) for 621 
separate distributions and average RT; *** p<0.001, ** p<0.01, * p<0.05; permutation tests. 622 
 623 

The surprise-related cluster for target offsets exhibited a bimodal pattern in 624 
both the time and frequency domains: next to the peak around 20 Hz just after 625 
response, an additional peak was evident in the lowest frequency bin resolved (5 Hz) 626 
around 0.5 s before response. The topography showed peaks over parietal and 627 
occipital cortex and over left frontal cortex (Figure 5A). By contrast, the cluster for 628 
target onsets exhibited a single peak around 20 Hz just after response (Figure 5B). 629 
Taken together, our results suggest that perceptual surprise about both target on- 630 
and offsets elicited cortical transients in the beta-band. We consider them general 631 
dynamical correlates of temporal surprise monitoring. In addition, target offsets 632 
seem to have recruited additional processes expressed in the very low (<= 5 Hz) 633 
frequency range. This latter modulation might have been specific to the 634 
experimental context, which entailed monitoring illusory target disappearances in 635 
other runs, analyzed in previous reports (Kloosterman et al., 2015b; Meindertsma et 636 
al., 2017).  637 
 Finally, we asked whether the trial-to-trial fluctuations in beta-power 638 
modulations also predicted trial-to-trial variations in subjects’ (log-transformed) RTs. 639 
Here, we used the Pearson correlation values (i.e., without regressing out RT; 640 
Materials and Methods). Just as surprise, beta-power in the cluster also robustly 641 
predicted RT (Figure 4F). These correlations were negative, as expected based on 642 
the negative correlation between surprise and beta-power (Figure 4A).  643 
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We excluded several potential confounding factors in separate correlation 644 
analyses. The negative correlation was present for (i) the ‘raw’ correlation between 645 
surprise and MEG power (data not shown), (ii) the partial correlation including the 646 
interval duration preceding the stimulus change as a covariate (data not shown), as 647 
well as (iii) the partial correlation using RT as a covariate. The latter is the more 648 
conservative measured and shown here. 649 
 650 
 651 
No robust correlations between MEG baseline power and entropy 652 
We did not find any evidence for a correlation of the raw baseline (-0.5 to 0 s with 653 
respect to stimulus change) MEG power with uncertainty, as measured in entropy. 654 
Correlations between entropy and MEG power spectra in the time window before 655 
stimulus change did not result in any significant (sensor-frequency) clusters that 656 
survived multiple-comparison correction (data not shown). It is likely that this lack of 657 
robust correlation reflected the continuous reduction in trial-to-trial variations of 658 
entropy over the course of each block (Figure 2C), which also translated into only 659 
minor effects on RT (Figure 3B). 660 
 661 

662 
Figure 5: Separate correlations for offsets and onsets. Correlation analysis and cluster-based 663 
statistics performed separately for target offsets (A) and target onsets (B). 664 
 665 
 666 
Discussion 667 
In this study, we comprehensively mapped cortical transients elicited by surprise 668 
about the timing of sensory events. We used a Bayesian updating model to estimate 669 
trial-to-trial variations of surprise and correlated these to subjects’ behavior as well 670 
as to neural dynamics, across the cortical surface. The model-derived surprise 671 
estimates robustly predicted across-trial and condition variations in RT. The surprise 672 
estimates also predicted transient suppressions of beta-band power in a 673 
widespread network comprising motor-, prefrontal and parietal cortical regions, 674 
predominantly in the left hemisphere. The model-derived surprise estimates were 675 
more closely related to both behavior and cortical dynamics than the mere trial-to-676 
trial variations in externally observable interval timings.  677 
 The signatures of surprise we uncovered in the beta frequency band were 678 
quite similar around target on- and offset (Figure 5). This stands in sharp contrast to 679 
the opposite beta-band modulation during (illusory or veridical) target 680 
disappearances and reappearances, proposed to reflect a decision-related 681 
feedback signal to in visual cortex (Meindertsma et al., 2017). The beta-band 682 
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transients identified here likely reflected a distinct process that did not encode the 683 
content of the perceptual change, but rather the level of surprise about it.  684 
 We also measured average pupil responses during the three different 685 
conditions, the results of which were reported previously (Kloosterman et al., 686 
2015a). This revealed differences in the transient pupil response amplitude for the 687 
three conditions that were in line with encoding surprise. In this study, we did not 688 
find such a relation between pupil size and the trial-to-trial metric of surprise. 689 
Although we here mapped the condition-wise distributions and trial-to-trial 690 
variations of interval timings with the same metric of surprise (Figure 2), it is possible 691 
that these two types of variations recruit separate neural computations. Future work 692 
using more widely spaced intervals to enable reliable trial-by-trial tracking of pupil 693 
response amplitudes is needed in order to better understand the role of pupil-linked 694 
arousal systems (de Gee et al., 2017) in the cortical correlates of the surprise 695 
computations which we have studied here. 696 
 Temporal expectation has been extensively studied in the context of 697 
temporal difference learning and the activity of the dopaminergic system of the 698 
midbrain (Hollerman and Schultz, 1998). Phasic neural responses in the striatum, as 699 
well as in dopaminergic nuclei, encode not only reward, but also the expected 700 
timing of reward arrival. The strength of these phasic neuronal responses inversely 701 
scales with condition in line with encoding the predictability of the reward timing, 702 
and it also predicted behavioral anticipation reward (i.e. licking behavior) in monkeys 703 
(Fiorillo et al., 2008). Our current study provides a critical complement to this 704 
previous work, by unraveling the cortex-wide dynamics elicited by surprising events. 705 
Our design did not involve rewards but rather neutral, yet behaviorally relevant 706 
sensory events. Still, it is likely that phasic neuromodulatory responses were 707 
nonetheless here driven by temporal expectation and surprise, possibly also in other 708 
systems such as the noradrenaline system (Dayan and Yu, 2006). Phasic 709 
neuromodulator release in cortex is a possible candidate source of the widespread 710 
transient modulations of beta-band activity observed here (Belitski et al., 2008; 711 
Donner and Siegel, 2011).  712 
 It is tempting to relate our results to conceptual accounts of the functional 713 
role of beta-band oscillations in the brain (Engel and Fries, 2010; Spitzer and 714 
Haegens, 2017). One account (Engel and Fries, 2010) holds that beta-band 715 
oscillations help maintain the current sensorimotor or cognitive state (termed the 716 
‘status quo’). Another account (Spitzer and Haegens, 2017) holds that beta-band 717 
oscillations help activate the currently relevant task sets. In both frameworks, the 718 
need for maintaining the current status quo, or task set, is low when surprise (the 719 
violation of expectation, or probability of change in the environment) is high, in line 720 
with our observation of a suppression of beta-band oscillations under high surprise. 721 
Our current results point to the phasic release of neuromodulators, in particular 722 
dopamine, as a mechanistic source of the modulations of ongoing cortical beta-723 
band oscillations, an idea not explicitly incorporated in either of these proposals so 724 
far.  725 

Our current study provides a comprehensive picture of the cortical transients 726 
elicited by surprise, by systematically mapping these transients across the cortical 727 
surface and time-frequency plane. Previous work in humans has also studied neural 728 
correlates of model-derived measures of surprise, although this entailed surprise 729 
about stimulus identity and not timing. Electrophysiological work found surprise 730 
about cue identity to modulate the P3 component of the event-related potential as 731 
well as motor cortical excitability (Bestmann et al., 2008; Mars et al., 2008). 732 
Functional magnetic resonance imaging work linked surprise about the spatial 733 
location of stimuli to transients in posterior parietal cortex (O’Reilly et al., 2013). An 734 
EEG study dissociated oscillatory neural signatures of surprise and evidence 735 
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accumulation (Gould et al., 2012). This study also found surprise-related modulation 736 
of beta-band power primarily at frontal and parieto-occipital electrodes, but the 737 
underlying cortical distribution was not estimated. Future studies of surprise in other 738 
domains (e.g. about cue identity) should use a similar approach to assess if 739 
surprise-related cortical transients are domain-general or -specific.  740 
 Some previous work on the P3 component of the electroencephalogram 741 
(EEG) showed that this component is sensitive to the expected timing of events 742 
(Polich et al., 1994; Mertens and Polich, 1997; Polich, 2007). Although we used 743 
more continuous interval distributions that were computed from specific hazard 744 
functions, our task is similar to the ones used in these studies, and would thus likely 745 
induce a P3 response. We did not detect a clear P3-like component in the event- 746 
related fields (data not shown), in line with earlier studies (Schurger et al., 2015). It is 747 
possible that the surprise signature we observed in beta-band is a different 748 
reflection of the same widespread cortical process that also drives the P3. Our 749 
current signal is functionally most closely related to the P3b component, which is 750 
observed in response to the occurrence of attended but rare stimuli (Polich, 2007). 751 
Indeed, the P3b has been proposed to by driven by the phasic release of 752 
noradrenaline in cortex (Nieuwenhuis et al., 2005). 753 
 Another line of work has investigated the functional role of externally 754 
entrained low-frequency oscillations in temporal expectation. For fixed intervals, 755 
alpha phase in sensory cortices was found to be predictive of expected time of 756 
target arrival and lowered the threshold for sensory detection (Lakatos et al., 2008; 757 
Cravo et al., 2011, 2013; Rohenkohl and Nobre, 2011). Alpha oscillations might 758 
reflect rhythmic fluctuations in cortical excitability, entrained by rhythmic sensory 759 
input, which aids stimulus processing and perceptual performance (Schroeder and 760 
Lakatos, 2009). The high variability in interval durations (see Figure 1B,C inset) might 761 
explain the lack of alpha-band effects in our study. First, the range of possible 762 
durations was too broad to form predictions that fall within a specific phase of an 763 
alpha cycle. Second, even when oscillatory phase was modulated by temporal 764 
expectation in our task, the trial-to-trial variability would make it difficult to align 765 
trials and make these modulations visible.  766 
 While our current work presents an important first step towards unraveling 767 
the modulation of cortical dynamics by surprise, it is limited in that we only studied 768 
environments with constant statistical structure within each block. Once a posterior 769 
distribution has been learned, there remains no unexpected uncertainty, only 770 
expected uncertainty (Yu and Dayan, 2005). By contrast, the statistical structure of 771 
natural environments is often volatile. Richer experimental designs, that are volatile 772 
and include unmarked changes, allow for probing into richer, presumably 773 
hierarchical dynamics (Sugrue et al., 2004; Nassar et al., 2012; Meyniel et al., 2015). 774 
Our ongoing work aims to push beyond these limits by using richer environmental 775 
statistics that require more complex inference processes. 776 
 To conclude, we here uncovered a novel signature of temporal surprise that 777 
affected an elementary perceptual decision (target detection) and was characterized 778 
by a temporally focal, but spatially widespread, modulation of cortical population 779 
activity. This modulation might be instrumental in translating inferences about the 780 
behaviorally-relevant temporal structure into its consequences for action.  781 
 782 
References 783 
Andrieu C, de Freitas N, Doucet A, Jordan MI (2003) An Introduction to MCMC for 784 

Machine Learning. Mach Learn 50:5–43. 785 
Belitski A, Gretton A, Magri C, Murayama Y, Montemurro MA, Logothetis NK, 786 

Panzeri S (2008) Low-frequency local field potentials and spikes in primary 787 
visual cortex convey independent visual information. J Neurosci 28:5696–5709. 788 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2018. ; https://doi.org/10.1101/254060doi: bioRxiv preprint 

https://doi.org/10.1101/254060
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Bestmann S, Harrison LM, Blankenburg F, Mars RB, Haggard P, Friston KJ, 789 
Rothwell JC (2008) Influence of uncertainty and surprise on human 790 
corticospinal excitability during preparation for action. Curr Biol 18:775–780. 791 

Bonneh YS, Cooperman A, Sagi D (2001) Motion-induced blindness in normal 792 
observers. Nature 411:798–801. 793 

Cravo  a. M, Rohenkohl G, Wyart V, Nobre  a. C (2011) Endogenous modulation of 794 
low frequency oscillations by temporal expectations. J Neurophysiol 106:2964–795 
2972. 796 

Cravo AM, Rohenkohl G, Wyart V, Nobre AC (2013) Temporal expectation enhances 797 
contrast sensitivity by phase entrainment of low-frequency oscillations in visual 798 
cortex. J Neurosci 33:4002–4010. 799 

Dayan P, Yu AJ (2006) Phasic norepinephrine: a neural interrupt signal for 800 
unexpected events. Network 17:335–350. 801 

de Gee JW, Colizoli O, Kloosterman NA, Knapen T, Nieuwenhuis S, Donner TH 802 
(2017) Dynamic modulation of decision biases by brainstem arousal systems. 803 
Elife 6:e23232. 804 

Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. 805 
Trends Cogn Sci 15:191–199. 806 

Donner TH, Siegel M, Fries P, Engel AK (2009) Buildup of choice-predictive activity 807 
in human motor cortex during perceptual decision making. Curr Biol 19:1581–808 
1585. 809 

Efron B, Tibshirani RJ (1998) An Introduction to the Bootstrap. Boca Raton, FL: 810 
Chapman & Hall/CRC Press. 811 

Engel AK, Fries P (2010) Beta-band oscillations-signalling the status quo? Curr Opin 812 
Neurobiol 20:156–165. 813 

Feller W (1959) An Introduction to Probability Theory and Its Applications (Shewhart 814 
WE, WIlks SS, eds)., Second. Wiley Publication in Statistics. 815 

Fiorillo CD, Newsome WT, Schultz W (2008) The temporal precision of reward 816 
prediction in dopamine neurons. Nat Neurosci 11:966–973. 817 

Fisher RA (1915) Frequency Distribution of the Values of the Correlation Coefficient 818 
in Samples from an Indefinitely Large Population. Biometrika 10:507. 819 

Gibbon J, Malapani C, Dale CL, Gallistel C (1997) Toward a neurobiology of 820 
temporal cognition: advances and challenges. Curr Opin Neurobiol 7:170–184. 821 

Glaze CM, Kable JW, Gold JI (2015) Normative evidence accumulation in 822 
unpredictable environments. Elife 4:1–27. 823 

Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev 824 
Neurosci 30:535–574. 825 

Gould IC, Nobre AC, Wyart V, Rushworth MFS (2012) Effects of decision variables 826 
and intraparietal stimulation on sensorimotor oscillatory activity in the human 827 
brain. J Neurosci 32:13805–13818. 828 

Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) 829 
Dynamic imaging of coherent sources: Studying neural interactions in the 830 
human brain. Proc Natl Acad Sci U S A 98:694–699. 831 

Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical 832 
correlation structure of spontaneous oscillatory activity. Nat Neurosci 15:884–833 
890. 834 

Hollerman JR, Schultz W (1998) Dopamine neurons report an error in the temporal 835 
prediction of reward during learning. Nat Neurosci 1:304–309. 836 

Kloosterman N a., Meindertsma T, van Loon AM, Lamme V a. F, Bonneh YS, Donner 837 
TH (2015a) Pupil size tracks perceptual content and surprise. Eur J Neurosci 838 
41:1068–1078. 839 

Kloosterman NA, Meindertsma T, Hillebrand A, Van Dijk BW, Lamme VAF, Donner 840 
TH (2015b) Top-down modulation in human visual cortex predicts the stability 841 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2018. ; https://doi.org/10.1101/254060doi: bioRxiv preprint 

https://doi.org/10.1101/254060
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

of a perceptual illusion. J Neurophysiol 113:1063–1076. 842 
Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of 843 

Neuronal Oscillations as a Mechanism of Attentional Selection. Science (80- ) 844 
320:110–113. 845 

Lee MD, Wagenmakers E-J (2013) Bayesian Cognitive Modeling: A Practical Course, 846 
1st ed. New York: Cambridge University Press. 847 

Luce RD (1986) Response Times: Their Role in Inferring Elementary Mental 848 
Organization, 1st ed. Oxford University Press, USA; 849 

Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-850 
data. J Neurosci Methods 164:177–190. 851 

Mars RB, Debener S, Gladwin TE, Harrison LM, Haggard P, Rothwell JC, Bestmann 852 
S (2008) Trial-by-trial fluctuations in the event-related electroencephalogram 853 
reflect dynamic changes in the degree of surprise. J Neurosci 28:12539–12545. 854 

Meindertsma T, Kloosterman NA, Nolte G, Engel AK, Donner TH (2017) Multiple 855 
Transient Signals in Human Visual Cortex Associated with an Elementary 856 
Decision. J Neurosci 37:5744–5757. 857 

Mertens R, Polich J (1997) P300 from a single-stimulus paradigm: Passive versus 858 
active tasks and stimulus modality. Electroencephalogr Clin Neurophysiol - 859 
Evoked Potentials 104:488–497. 860 

Meyniel F, Schlunegger D, Dehaene S (2015) The Sense of Confidence during 861 
Probabilistic Learning: A Normative Account. PLOS Comput Biol 11:e1004305. 862 

Nassar MR, Rumsey KM, Wilson RC, Parikh K, Heasly B, Gold JI (2012) Rational 863 
regulation of learning dynamics by pupil-linked arousal systems. Nat Neurosci 864 
15:1040–1046. 865 

Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3, and the 866 
locus coeruleus-norepinephrine system. Psychol Bull 131:510–532. 867 

Nobre A, Correa  a., Coull J (2007) The hazards of time. Curr Opin Neurobiol 868 
17:465–470. 869 

O’Reilly JX, Schüffelgen U, Cuell SF, Behrens TEJ, Mars RB, Rushworth MFS (2013) 870 
Dissociable effects of surprise and model update in parietal and anterior 871 
cingulate cortex. Proc Natl Acad Sci U S A 110:E3660-9. 872 

Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: Open source 873 
software for advanced analysis of MEG, EEG, and invasive electrophysiological 874 
data. Comput Intell Neurosci 2011:156869. 875 

Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models 876 
using Gibbs sampling. Proc 3rd Int Work Distrib Stat Comput (DSC 2003):20–877 
22. 878 

Polich J (2007) Updating P300: An integrative theory of P3a and P3b. Clin 879 
Neurophysiol 118:2128–2148. 880 

Polich J, Eischen SE, Collins GE (1994) P300 from a single auditory stimulus. 881 
Electroencephalogr Clin Neurophysiol Evoked Potentials 92:253–261. 882 

Riecke L, Sack AT, Schroeder CE (2015) Endogenous Delta/Theta Sound-Brain 883 
Phase Entrainment Accelerates the Buildup of Auditory Streaming. Curr Biol 884 
25:3196–3201. 885 

Rohenkohl G, Cravo AM, Wyart V, Nobre AC (2012) Temporal Expectation Improves 886 
the Quality of Sensory Information. J Neurosci 32:8424–8428. 887 

Rohenkohl G, Nobre  a. C (2011) Alpha Oscillations Related to Anticipatory Attention 888 
Follow Temporal Expectations. J Neurosci 31:14076–14084. 889 

Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments 890 
of sensory selection. Trends Neurosci 32:9–18. 891 

Schurger A, Sarigiannidis I, Naccache L, Sitt JD, Dehaene S (2015) Cortical activity 892 
is more stable when sensory stimuli are consciously perceived. Proc Natl Acad 893 
Sci 112:E2083–E2092. 894 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2018. ; https://doi.org/10.1101/254060doi: bioRxiv preprint 

https://doi.org/10.1101/254060
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Spitzer B, Haegens S (2017) Beyond the Status Quo: A Role for Beta Oscillations in 895 
Endogenous Content (Re-) Activation. eneuro:ENEURO.0170-17.2017. 896 

Sugrue LP, Corrado GS, Newsome WT (2004) Matching Behavior and the 897 
Representation of Value in the Parietal Cortex. Science (80- ) 304:1782–1788. 898 

Sutton RS, Barto AG (1998) Reinforcement Learning : An Introduction, First. 899 
Cambridge: MIT Press. 900 

van Ede F, Niklaus M, Nobre AC (2017) Temporal Expectations Guide Dynamic 901 
Prioritization in Visual Working Memory through Attenuated α Oscillations. J 902 
Neurosci 37:437–445. 903 

Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain 904 
electrical activity via linearly constrained minimum variance spatial filtering. 905 
IEEE Trans Biomed Eng 44:867–880. 906 

Yu AJ, Dayan P (2005) Uncertainty, neuromodulation, and attention. Neuron 46:681–907 
692. 908 

Zou GY (2007) Toward Using Confidence Intervals to Compare Correlations. 909 
Psychol Methods 12:399–413. 910 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 1, 2018. ; https://doi.org/10.1101/254060doi: bioRxiv preprint 

https://doi.org/10.1101/254060
http://creativecommons.org/licenses/by-nc-nd/4.0/

