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Abstract

Background

A-to-I RNA editing is a co-/post-transcriptional modification catalyzed by ADAR enzymes, that

deaminate  Adenosines  (A)  into  Inosines  (I).  Most  of  known editing  events  are  located  within

inverted  ALU repeats,  but  they  also  occur  in  coding  sequences  and may  alter  the  function  of

encoded proteins.  RNA editing  contributes  to  generate  transcriptomic  diversity  and  it  is  found

altered  in  cancer,  autoimmune and neurological  disorders.  However,  little  is  known about  how

editing process could be influenced by genetic variations, biological and environmental variables.

Results

We analyzed RNA editing levels in human blood using RNA-seq data from 459 healthy individuals

and identified 2,079 sites consistently edited in this tissue, that we considered the most biologically

relevant  editing  sites. As expected,  analysis of gene expression revealed that  ADAR is the major

contributor  to  editing  on  these  sites,  explaining  ~13% of  observed  variability.  After  removing

ADAR effect,  we  found  significant  associations  for  1,122  genes,  mainly  involved  in  RNA

processing. These genes were significantly enriched in genes encoding proteins interacting with

ADARs, including 276 potential  ADARs interactors  and 9 ADARs direct  partners.  In addition,

association analysis on 28 biological and drugs intake variables revealed several factors potentially

influencing RNA editing in blood,  including sex, age, BMI, drugs and medications. Finally, we

identified genetic  loci  associated to  editing levels,  including known  ADAR eQTLs and a  small

region on chromosome 7, containing LOC730338 lincRNA gene. 

Conclusions

Our data provides a detailed picture of the most relevant RNA editing events and their variability in

human  blood,  giving  interesting  insights  on  the  mechanisms  behind  this  post-transcriptional

modification and its regulation in this tissue.
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Background

 

RNA editing is a co-/post-transcriptional process based on the enzymatic deamination of specific

adenosines (A) into inosines (I). Since inosine has similar base-pairing properties to guanosine, it is

read  as  guanosine by both  splicing and translation machineries,  thus  generating different  RNA

molecules from those coded by DNA [1].  RNA editing contributes to the diversification of the

information that is encoded in the genome of an organism, thereby providing a greater degree of

complexity. Currently, the conversion of A to I is thought to be the most common RNA editing

process in higher eukaryotic cells [2]. 

RNA editing is catalyzed by adenosine deaminase enzymes (ADARs)  [3, 4]. In mammals, three

members of the ADAR family have been characterized so far. ADAR1 (gene name:  ADAR) and

ADAR2 (gene name: ADARB1) are active enzymes expressed in many tissues, while ADAR3 (gene

name:  ADARB2)  is  expressed  specifically  in  the  Central  Nervous  System (CNS).  To  date,  no

functional  RNA editing activity has been attributed to  this  enzyme. The critical  role  of ADAR

enzymes is shown by phenotypes of knockout mice that resulted in embryonic lethality or death

shortly after birth  [5–7], clearly indicating that A-I RNA editing is essential for normal life and

development. In addition, dysregulated RNA editing levels at specific re-coding sites have been

linked with a variety of diseases, including neurological or psychiatric disorders and cancer [2, 8,

9]. Interestingly, ADARs mRNA and protein expression levels do not always reflect RNA editing

levels  [10]. It has been shown that the subcellular distribution of ADAR enzymes  [11] and their

interaction with inhibitors [12, 13] and activators [14, 15] influence ADARs activities.

Originally, A-to-I RNA editing in mammalian cells was described for a low number of mRNAs and

it  was  responsible  for  deep  changes  of  protein  functions.  These  editing  sites  were  discovered

serendipitously comparing DNA and cDNA sequences by direct sequence analysis  [16, 17]. The

number of identified RNA editing sites has largely increased with the diffusion of RNA sequencing

(RNA-Seq) studies based on next generation sequencing technologies (NGS), reaching over two

millions  of  sites.  The  majority  of  RNA editing  sites  is  located  within  intragenic  non-coding

sequences: 5’UTRs, 3’UTRs and intronic retrotransposon elements, such as ALU inverted repeats
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[18, 19]. With lowering cost of NGS, many RNA-Seq datasets from human tissues, healthy and

pathological  conditions,  have  been  deposited  in  sequence  databases,  available  to  the  scientific

community. In parallel, the development of computational pipelines to search for RNA editing sites

on  RNA-Seq  data,  allowed  a  global  analysis  of  the  editing  reaction,  shedding  light  on  its

evolutionary conservation [20], tissues specificity  [21, 22], cellular specificity  [23] and its role in

diseases such cancer [24] or neurological disorders [9, 25].

About 2.5 million editing sites have been identified so far and are listed in RNA editing databases

[26, 27],  but only recently the dynamic and regulation of RNA editing has been systematically

investigated in human tissues  [22]. However, little is known about how editing process could be

influenced by genetic variations  [28, 29], biological and environmental variables  [30].  Here, we

want to go further in characterizing and understanding the complexity of RNA editing. Focusing on

the most likely biologically relevant sites, we will unveil possible correlations with gene expression

and genetic variations. To this aim, we investigated consistently edited sites from existing RNA seq

dataset of whole blood from 459 healthy subjects [31], correlating editing levels with a collection of

28 biological and pharmacological variables, as well as with genes expression and genotyping data.
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Results

RNA editing   sites consistently edited in   human blood samples  

Of the ~ 2M editing sites reported in RADAR database, our dataset of 459 RNA-seq samples had

adequate coverage for 709,184 sites, covering > 75% of the total sites reported for genes expressed

in blood according to GTEx data. (Additional file 1: Figure S1). Most of these sites are edited only

in a small fraction of samples and 691,304 (97.5%) have no detectable editing levels in our cohort

(Additional file 1: Figure S2). To provide a picture of the most biologically relevant editing sites in

human blood we focalized our attention on 2,079 consistently editing sites (CES), namely those

with at least 5% of editing level in at least 20% of individuals. These sites are mainly distributed in

ALU regions  (1,805;  86.5%) and 3’UTR regions (1,234;  59.4%),  distributed across 421 genes.

Overall,  we detected 1,266 sites  in exons of  protein coding genes,  including  10 recoding sites

(resulting in a missense substitution) and 12 synonymous sites. We also detected 53 sites annotated

on ncRNAs (Figure  1a, b). Detailed statistics of the 2,079 trusted sites are reported in Additional

file 2, while recoding sites in Table 1.

Considering mean values for each site, detected editing levels range from 0.05 to 1, with most sites

showing moderate  editing levels  between 0.05 and 0.30 (Figure 1c).  We also detected  33 sites

highly edited (mean value ≥ 0.9), located mainly in intronic regions (Figure 1d). Highly edited sites

are  reported  in  Additional  file  1:  Table  S1.  To  further  assess  reliability  of  detected  sites,  we

compared  the  CES editing levels  with  those reported  in  the  REDIportal  database  [26],  a  well-

established resources containing multi-tissue estimations of RNA editing levels. The comparison

revealed high concordance (concordance correlation coefficient 0.84, Additional file 1: Figure S3),

for 2,035 and 2,003  sites when considering the whole REDIportal  dataset or blood tissue data,

respectively. For the sites included in this study, the editing levels from REDIportal are reported in

Additional file 2.

We used Spearman correlation test to analyze correlation in editing level changes across the 2,079

CES to find sites with co-regulated RNA editing. We found 540 significant relationships (FDR <

0.05) involving  361 sites. Correlations were generally low with only  58 sites with relationships
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above 0.5 rho value. Correlations become stronger for close sites, especially below 50 bp distance,

with  60 out of  66 (91%) high rho (≥ 0.5) relationships located in this range. No strong negative

correlations (rho < -0.5) were observed (Additional file 1: Figure S4).

Genes   influencing the total editing rate of CES  

We performed regression analysis to identify genes whose expression is associated to the CES total

editing rate, calculated for each subject as the total sum of G-containing reads divided by the total

number of reads observed at all the 2,079 CES. The analysis revealed 4,719 genes associated to the

CES total editing rate (FDR < 0.05). Enrichment analysis on Gene Ontology biological processes

(GO-BP)  revealed  a  strong  enrichment  for  genes  involved  in  immune  system  and  interferon

signaling (FDR < 1e-6, Figure 2a). Among significant genes, ADAR emerged as the top influencing

factor,  explaining about 13% of the observed variability,  while  ADARB1 showed no significant

effect (Figure 2b). The influence of ADAR was similar on ALU (~10%) and non-ALU (~13%) sites,

while ADARB1 remains not associated also when considering groups separately (Additional file 1:

Figure S5). ADARB2 gene was not detectable in our gene expression data. When the same analysis

was repeated removing ADAR effect, we obtained 1,122 genes associated to CES total editing rate

(FDR <  0.05),  including  376  with  a  strong  association  at  FDR  <  0.01 (Additional  file  3).

Enrichment  analysis  on  GO-BP and  REACTOME  pathways  revealed  that  these  genes  mainly

impact ribonucleoprotein complex biogenesis and RNA metabolism / processing (Figure 2c).

To assess possible interactions between ADAR enzymes and genes whose expression is associated

with  CES  total  editing  rate,  we  performed  network  analysis  using  data  on  protein-protein

interactions  from STRING v.10,  BioPlex  and  BIOGRID databases. We created a  415 proteins

network including genes significantly associated with  CES total  editing rate (FDR < 0.01) that

interact with ADAR1 and ADAR2 proteins or one of their first neighbors (Figure 3a). Considering

top associated genes with FDR < 0.01 we found 285 out of 376 (76%) interactors. The observed

fraction  of  ADARs-connected  genes  represents  a  significant  enrichment  compared  to  random

groups (empirical  p-value  < 1e-06,  Figure 3b)  and these  genes  are  strongly enriched for  RNA

binding proteins (Figure 3c). Significant genes also includes  9 genes with direct interactions with
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ADARs (Table  2).  We estimated  the  role  of  each  node in  this  network  looking at  degree and

betweenness values. Degree value account for the number of interaction involving a single node in

the network, while betweenness is a measure of centrality based on shortest paths. Node with higher

betweenness centrality would have a major role in the network, because more information will pass

through that node. Among ADARs proteins, ADAR1 is  the main target of network interactions

(0.077  betweenness  centrality,  72  degree  values)  compared  to  ADAR2  (0.018  betweenness

centrality, 29 degree).  Among associated  genes with a direct interaction with ADARs,  ELAVL1,

RPA1 and  IFI16 act  as relevant hub nodes, with betweenness centrality values of 0.137, 0.028,

0.020, respectively (Figure 3d). Detailed network-based statistics are reported in Additional file 4,

together with adjusted P value for association with CES total editing rate.

Biological factors possibly influencing editing levels

In order to identify possible biological factors influencing editing levels, we studied the correlation

of the 28 biological / pharmacological variables described in Additional file 1, table S2 with CES

total  editing  rate  and  with  the  ADAR expression  level.  Overall,  5  variables  (age,  current  and

maximum BMI, sex and blood pressure medications) revealed a significant correlation (Figure 4,

complete results in Additional File 1: Table S3). The same variables, with the exception of sex,

resulted also significantly correlated with the expression level of  ADAR.  To better investigate the

effect of biological / pharmacological variables and of ADAR expression and identify correlations

between  these  variables  and  specific  groups  of  CES,  we  performed  principal  component  (PC)

analysis of CES editing levels. Even if the variance explained by single component is generally low

(PC1 ~ 0.025), our data revealed 24 factors with a significant correlation (p-value < 0.05) with one

of the first 5 PCs (Figure 5 and Additional file 1: Table S4). 

Sex, age and BMI, were confirmed as major contributors to editing variability being associated to

PC1 and 2 and influencing also lower components. Substance intake variables, including alcohol,

smoke  and  drugs  assumption,  were  clearly  associated  to  PC3,  even  if  few  of  the  observed

associations,  namely  alcohol  intake,  thyroid  and  cholesterol  lowering  medications,  may  be

influenced by sex biased distribution (Additional file 1: Table S5). As expected from the analysis of
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genes influencing  CES total editing rate,  ADAR expression level resulted associated to the first 2

PCs, confirming its pivotal role in shaping editing levels variability. Correlation of editing levels for

single sites with the first 5 PCs are reported in Additional file 5.

Identification of genetic var  iants influencing   CES total editing rate  

We  performed genome wide association analysis between genotyping data  of 573,801 SNPs and

CES total editing rate to  identify SNPs  associated to editing levels in human blood (Figure 6a).

Based on GRASP database of known SNP-phenotype associations, the 100 SNPs with the lowest p-

values are involved in 44 human phenotypes with strongest impact on ADAR expression and AraC

toxicity (Additional file 1: Table S6). Among these SNPs, 25 SNPs are known eQTLs regulating

expression of 19 genes in blood tissue (Additional file 1: Table S7). These genes resulted to be

nominally  enriched  for  genes  encoding  for  RNA-binding  proteins  involved  in  transcription

regulation and response to cytokines (Additional file 1: Figure S6).

After  variant  clumping,  our  analysis  identified  a  single  significant  locus  on  chromosome  7

(rs856554:  p-value  1.86e-7,  FDR  0.042),  containing  the  lincRNA  gene  LOC730338

(ENSG00000233539) (Figure 6b and Table 3). The SNP rs856554 showed a significant effect on

CES total editing rate and seems to influence  ADAR expression, despite this effect do not reach

statistical significance (Figure 6c). Association results for single SNPs with nominal p-value < 0.05

and for loci after variants clumping are reported in Additional file 6.

Taken together, the 36 known ADAR eQTLs present in genotyping data explain 5.5% of CES total

editing rate variability (p value 3.46e-4) and 5 of them resulted among the top 100 associated SNPs

(Additional file 1: Table S8). The effect of the top associated ADAR eQTL (rs6699825) on ADAR

expression and CES total editing rate is represented in Figure 6d. 
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Discussion

The process of A-to-I RNA editing has gained increasing attention in recent years, being implicated

in  multiple  aspects  of  human  physiology  and,  when  dysregulated,  in  human  diseases,  such  as

neurological disorders and cancer  [2, 9, 24]. Thanks to advances in next-generation sequencing

technology, the prevalence and dynamic of “RNA editome” have been recently characterized across

many tissues and developmental stages [18, 19, 21, 22]. 

Overall, more than 2 million editing sites have been described so far, but most of them occur at very

low level in inverted repeat ALU sequences and likely represent random editing with low impact on

biological functions [32]. To focus only on those sites that are most likely biologically relevant in

human blood, we first selected consistently edited sites (CES) across our dataset of about 450 RNA-

Seq samples, resulting in a group of 2,079 sites with at least 5 % editing in at least 100 individuals.

As expected, the majority of these sites are located in inverted repeat ALU sequences [18, 19] that

facilitate the formation of a RNA double stranded secondary structure with high affinity for ADAR

editing enzymes. Interestingly, near 60% of detectable editing sites are located in the 3’UTRs, that

are known preferred binding sites for miRNAs. This suggests a potential extensive role of editing

process in modulating the miRNA mediated regulation of gene expression in blood. Indeed, RNA

editing in the 3’UTRs might introduce nucleotide changes to miRNA target sites or stabilize RNA

secondary structure reducing the accessibility for AGO2-miRNAs complex [33–35].

We  identified  22 editing  sites  located  in  coding  sequences:  12  resulting  in synonymous

modifications and 10 inducing non-synonymous amino acid changes (re-coding sites). Among the

latter, there were well studied re-coding sites, such as the S/G site of AZIN1 [8], that mediates the

binding to antizyme and cell cycle progression; the G/R site of BLCAP [36], that is involved in the

regulation of STAT3 signaling pathway; and the L/R site of  NEIL1 [37], that might modulate the

DNA repair  capability of the enzyme. Their  editing levels range from high (75% of  NEIL1) to

medium-low (14% and 16% for BLCAP and AZIN1, respectively), indicating that both edited and

unedited isoforms are needed for the proper function of the tissues. Interestingly, among the re-

coding sites, we also detected sites with an high editing level, such as two sites edited at 70% on the
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small subunit processome component (UTP14C). It is worth to notice that in blood cells several

editing sites in 3’UTR and intronic regions reach an editing level of more than 90%. The high

efficiency of editing indicates a strong ADARs binding, affecting transcripts stability or structure

[38], but the actual functional effect of these fully edited sites remain elusive. Overall, RNA editing

process  in  human blood seems more  pervasive  than  previously reported,  prompting  for  further

analyses to understand its biological effects also in healthy subjects.

Further, we investigated the association of genes expression with total editing rate of CES. ADAR

(encoding ADAR1 enzyme) resulted as the top associated gene and its expression explained about

13% of observed variability,  while  ADARB1 (encoding ADAR2 enzyme) was not associated to

global  editing  level  even when ALU and non-ALU sites  were  considered  separately.  ADARB2

(encoding ADAR3 protein) is not expressed in blood cells, excluding that it could have a major

negative effect on the editing levels in blood as observed for brain tissues  [22]. Thus, ADAR1

emerges as the major contributor to editing process in blood, as already reported for human B cells

and other tissues [22, 39], while other ADAR enzymes seems to have only a limited effect. Overall,

association analysis revealed 4,719 genes that might have a potential effect on the editing process,

strongly enriched for genes involved in the immune system and interferon signaling. This supports

the association between inflammatory processes and A-to-I editing, that seems mediated by ADAR

expression modulation. Indeed, ADAR1 is present in two main isoforms, a constitutive p110 and an

interferon inducible p150 form that is active under an inflammatory response [40]. Moreover, RNA

editing,  especially  ADAR1  activity,  are  important  to  modulate  innate  immunity  [41,  42].

Modification in the global editing level has been reported after inflammation in mouse and in vitro

studies using several inflammatory mediators [43]. 

When the effect of ADAR expression is removed from our analysis, new genes associated to global

editing level emerged. These genes are mainly involved in RNA metabolism and ribonucleoprotein

complex processing, confirming what recently found after a global analysis of GTEx data [22] and

strengthening the role of RNA editing complex in the RNA processing [39].  

Associated genes after ADAR correction are strongly enriched for potential ADARs interactors, as

revealed  by  network  analysis  using  data  from protein-protein  interaction  databases.  Moreover,
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associated genes interacting with ADARs mainly encode for RNA binding proteins, as revealed by

enrichment analysis, suggesting that they could be involved in RNA recognition or assembly of the

editing complex. Network analysis showed that ADAR1 is the main target of these interactions,

confirming its prevalent role in blood samples, compared to the other editing enzymes. We also

identified 9 associated genes with direct interaction with ADARs. Among them, ELAVL1, RPA1 and

IFI16 emerged as relevant hubs in the network, aggregating most of the interactions directed to

ADARs  proteins.  The  stabilizing  RNA-binding  protein  human  antigen  R  (HuR),  encoded  by

ELAVL1,  has  been  recently  proposed  as  an  ADAR1  interactor  involved  in  the  regulation  of

transcripts  stability  in  human  B  cells  [39].  It  was  unclear  if  this  stabilizing  effect  is  editing

depended or not. However, ADAR1-mediated RNA editing of the 3’UTR of cathepsin S enables the

recruitment  of  HuR  to  the  3'  UTR,  thereby  controlling  the  cathepsin  S  mRNA stability  and

expression in endothelial cells and in human atherosclerotic vascular diseases  [30]. The observed

association between the global editing level and the ELAVL1 expression strengthens a general role

of RNA editing in RNA stability through the modulation of expression of genes involved in RNA

metabolism.  RPA1 and  IFI16 have  never  been  involved  in  ADARs activity  and represent  new

interesting partners that could expand the understanding of ADAR1 function and regulation. RPA1

gene encodes the largest subunit of the heterotrimeric Replication Protein A (RPA) complex, which

binds  to  single-stranded  DNA,  forming  a  nucleoprotein  complex  that  is  involved  in  DNA

replication,  repair,  recombination,  telomere  maintenance  and  response  to  DNA damage  [44].

ADAR1 presents Z-DNA binding domains, that are not present in the other editing enzymes [45],

helping  to  direct  ADAR1  to  active  transcription  sites  and  to  interact  with  DNA.  Thus,  the

interaction with RPA1 protein might broaden ADAR1 activity also in the field of DNA repair and

maintenance.  IFI16,  interferon gamma inducible protein 16, encodes a member of the HIN-200

(hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats) cytokines family.

This protein interacts with p53 and retinoblastoma-1 and localizes to the nucleoplasm and nucleoli

[46], where also ADAR enzymes are present. Both IFI16 protein and ADAR1 were associated to

response to viral DNA and regulation of immune and interferon signaling responses [46, 47]. Future

studies will  establish the actual functional meaning of these interactions and their  role in RNA
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editing.

Recently, global editing level have been investigated across tissues and in different species  [21,

22] and also correlated to the genetic background of human population [30] and to common disease

variants [29]. However, the published studies lack a detailed characterization of samples that allows

assessing the role of biological and environmental factors.

Relying on our dataset containing several demographic, biological and pharmacological variables,

we also investigated the potential impact of these external factors on RNA editing process genome-

wide.  Five variables  showed significant  correlations  with  CES total  editing  rate,  namely  blood

pressure medications, sex, age and body mass index (BMI, current and max). Except for sex, their

effect on editing levels seems mainly driven through modulation of ADAR expression. Correlation

between age and editing was already reported during brain development both in rat  [48] and in

primates  [49] and our data strengthens this  correlation also outside the central  nervous system.

Moreover,  it  has  been  been  previously  suggested  that  in  liver  cancer,  ALU  editing  is  gender

dependent, being lower in the tumor of female patients; however normal tissue do not showed this

difference [50].  Here we showed that, at least in blood, gender is a main factor influencing RNA

editing. Finally and for the first time, our study correlated CES editing levels with BMI and blood

pressure medications,  shedding light  on new medical  areas in  which editing regulation may be

involved.

A more  detailed  analysis  using  principal  components  of  editing  levels  revealed  twenty-four

variables  potentially  influencing RNA editing  for specific  groups of  sites in  blood, even if  the

proportion of editing variability explained is low. Sex, age and BMI confirmed to have the strongest

effect  on RNA editing  levels,  being associated  to  the first  principal  component.  PC1 and PC2

components are also strongly associated with ADAR expression, supporting that the observed effect

of these biological factors could be due to modulation of  ADAR. This data indicates that, when

analyzing editing variations among different groups, such as in case / control studies, gender, age

and other biological characteristics should be taken into account carefully to avoid biased results.

Interestingly,  the  third  principal  component  is  associated  with  variables  related  to  drugs  and

substances intake, but only weakly with  ADAR expression, indicating that drugs might modulate
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editing levels also through alternative mechanisms. A role of drugs, in particular antidepressants,

have been reported for editing sites on specific neuronal transcripts [51–54]. Our analysis suggests a

broader impact of drugs, with several substances able to influence RNA editing process in blood.

Even  if  the  contribution  of  single  substances  seems  small,  (PC3  explains  ~0.7%  of  editing

variability), substances intake overall may have a larger effect, as suggested by association of global

intake variables (“all drugs” and “none treatments”) with multiple principal components. 

Finally, we analyzed genotyping data to identify SNPs associated to CES total editing rate. Known

ADAR eQTLs resulted among the SNPs with the best p-values and, taken together, they explain

about  5%  of  the  observed  variation  in  global  editing.  Our  data  confirmed  that  they  actually

influence expression of ADAR in blood and this explain also the observed effect on editing levels.

We found a single locus significantly associated with global editing level in blood, localized on

chromosome 7 and containing the lincRNA gene LOC730338. Long intergenic noncoding RNAs, or

lincRNAs,  are  long RNA transcripts  (longer  than 200 nucleotides)  that  have been identified in

mammalian genomes mainly by bioinformatic analysis of transcriptomic data. Despite thousands of

lincRNAs  are  now  validated,  the  exact  functional  role  remains  unknown  for  most  of  them.

lincRNAs  appear  to  contribute  to  the  control  of  gene  expression  and  have  a  role  in  cell

differentiation and maintenance of cell identity [55]. It has been recently reported in C. elegans that

lncRNAs are extensively down-regulated in the absence of ADARs as a result of siRNA generation

[56]. The authors suggests that ADARs can interfere with the generation of siRNAs by endogenous

RNAi and promote lncRNA expression. LOC730339 expression cannot be measured in our dataset

since it lack a poly-A tail; therefore, it is not possible to assess if the associated SNPs observed in

the  locus  could  act  as  eQTLs  for  this  lincRNA.  These  SNPs  seem  to  have  only  a  marginal

correlation  with  ADAR expression and  the  mechanism that  link  this  locus  and  LOC730339 to

editing process remain to be investigated. 

According to GRASP, HaploReg and GTEx databases, the 100 SNPs with the best p-values also

contain several SNPs reported in previous GWAS studies, as well as known eQTLs of genes coding

for RNA binding proteins involved in transcription, supporting a co-regulation of RNA editing and

transcription and a possible role of editing in several human phenotypes. Overall, this data indicates
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that genetic  variations,  especially those associated to  ADAR expression,  can influence observed

editing levels. The analysis of these SNPs should be taken into account when investigating editing

levels in different human populations both in physiological and pathological conditions.

Despite our RNA-seq dataset has only moderate coverage and thus may have limited power to

investigate sites with very low editing levels, we assume that biologically relevant sites should be

edited at detectable level consistently across samples [32] and thus our dataset is able to provide a

detailed picture of the distribution and regulation of the most relevant editing events.

Conclusion

This study provides a detailed picture of the most consistent RNA editing sites and their variability

in human blood. Our results  confirm the pivotal role of ADAR1 in the regulation of RNA editing

process in blood and suggest new genes, genetic variants, biological and environmental variables

that are involved in the RNA editing process. Future studies will be required to confirm and clarify

their role and their relationship with the ADAR family enzymes.
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Methods

Description of   data  

RNA-Seq raw data (aligned reads) was obtained from NIMH repository, NIMH Study 88 / Site 621,

dataset 7 (Levinson RNA Sequencing Data). The original data and samples details are described in

[31]. This dataset includes poly(A)+ RNA sequencing and genotyping data from blood samples of

922 subjects,  463 MDD patients and 459 control subjects. The present study focuses only on the

459 controls. Data are provided as aligned reads on hg19 human genome assembly with transcript

mapped to RefSeq canonical dataset. Samples are sequenced with a median of 65.6 M reads (31.6 -

258.3), resulting in a median of 14,289 (11,660 - 15,137) detectable genes addressed by at least 10

reads (Additional file 1: Figure S7). Only the 14,961 genes covered with at least 10 reads in at least

100 subjects were considered in the present study for association with editing levels.

A detailed phenotypic description including demographic, pharmacological and biological variables

is also included for each subject. Among them, we considered only those  relevant in at least 30

subjects and not related to MDD clinical evaluation or socio-economic variables. The 28 variables

considered in this study are reported in Additional file 1: Table S2. Moreover, each experiment is

annotated with a rich set of technical variables, representing quality metrics of RNA sequencing and

characteristics of the blood sample. Normalized gene expression data is given as residuals of ridge

regression  of  log-transformed  read  counts  with  35  technical  variables,  to  remove  the  effect  of

experimental biases (see the original paper [31]).

Assessment   of editing levels and selection of consistently edit  ed sites  

The  original  aligned  reads  were  de-duplicated  using  Picard  and  the  editing  levels  were  then

determined  genome-wide  from  BAM  files  using  REDITools  v.1.0.4  [57] with  the  following

parameters: -t25 -m20 -c10 -q25 -O5 -l -V0.05 -n0.05. Only sites with a minimum coverage of 10

reads were considered, otherwise their editing level was considered as missing.

To reduce the chance of measuring false-positive editing sites, we selected only sites that met the

following criteria: i) sites reported within RefSeq genes by RADAR database [27] and never seen as
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Single Nucleotide Variants in the human population according to 1000G phase3 and ExAC v.0.3.1;

ii)  sites occurring in regions were incorrect alignments could have generated artifacts in editing

detection were filtered out: known pseudogenes from GENCODE v25; segmental duplication with

≥ 99% identity; single exon genes, that are often retrotransposed genes with high similarity to the

corresponding parent gene. 

The filtered dataset resulted in 709,184 sites, representing > 75% RADAR editing sites occurring in

blood expressed genes. Finally, to provide a picture of most biologically relevant editing events in

blood, we decided to focus only on sites with detectable editing levels (at least 5%) in at least 100

subjects (~20% of total individuals) for subsequent quantitative analysis, resulting in a final dataset

of 2,079 sites (consistently edited sites, CES).

Comparison with   REDIPortal   dataset  

We compared editing levels detected in CES from blood samples with similar data obtained from

REDI Portal [26]. Editing levels were retrieved directly from REDIPortal database, containing RNA

editing values calculated from 55 body sites of 150 healthy individuals from GTEx project. Mean

editing levels of our 2,079 CES were compared with corresponding data reported for blood tissue in

REDI  portal.  To  assess  concordance  between  the  two  datasets,  we  calculated  concordance

correlation coefficient between mean editing values detected in our data and reported in REDIPortal

blood tissue for overlapping sites.

Correlation between editing levels across sites

Using Spearman correlation test, we analyzed correlation of editing levels across the 2,079 CES.

Each site was analyzed against all other sites for a total of 4,322,241 tests. FDR correction modified

as in [58] was used to account for multiple tests with related variables. Corrplot R package v.0.84

was used to analyze correlation matrices and generate correlation plots.

Association between   CES total editing rate   and gene expression  

To investigate which genes could influence the editing process, we used robust linear regression
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(robust v.0.4 R package) to assess the association between gene expression levels and the CES total

editing rate in each subject. CES total editing rate for each subject was calculated as in Equation 1.

The sum of number of G-containing reads (Gi) observed at all CES (m), divided by the sum of total

reads observed (Ci) at all CES.

CES total editing rate was determined also for Alu sites and non-Alu sites, separately. To choose the

set of phenotypic, biological and pharmacological variables to include as covariates in regression

analyses, a stepwise model selection by AIC was performed (using stepAIC from MASS R package

v.7.3-5). The 6 included variables are indicated in Additional file 1: Table S1. Moreover, since there

was a correlation between the variance observed at each editing site and its sequencing coverage for

sites with coverage below ~ 40 X (Additional file 1: Figure S8), the log2 of reads count was also

included as covariate in the analysis. The strength of the association was determined by ANOVA

test comparing the null (‘background’) model that includes only the set of covariates with the full

model (covariates plus normalized expression levels). FDR was used to correct for multiple tests.

Subsequently,  association  analyses  were  repeated  including  ADAR  expression  as  additional

covariate, to remove the effect of ADAR expression.

Gene set enrichment analysis and gene network analysis

The impact on biological functions and cellular pathways of genes found associated with CES total

editing  rate  was  investigated  using  hypergeometric  test.  We  tested  the  over-representation  of

pathways among the subset of significant genes at 5% FDR level compared to all expressed genes.

Enrichment analysis was performed separately for the following sets from MSigDB v.6.0: cellular

pathways from REACTOME and the three main Gene Ontology categories (Cellular Components,

GO:CC;  Biological  Process,  GO:BP;  Molecular  Function,  GO:MF).  To  verify  if  the  proteins

encoded by these genes could interact with ADAR proteins, the major enzymes involved in RNA-

editing,  we  explored  human  protein-protein  interaction  (PPI)  data.  First,  we  created  a
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comprehensive human PPI network combining data from 3 different sources: BioPlex 2.0  [59],

BioGRID 3.4.15 [60] and STRING 10.0 [61]. For the BioGRID dataset, only interactions marked as

physical  were  taken  in  to  account,  whereas  for  the  STRING  dataset  only  interactions  with  a

combined score above 400 and physical/biochemical evidences were considered. Proteins of the

ubiquitin gene family were removed from the network, resulting in a final PPI dataset with 22,913

proteins (nodes) and 833,686 interactions, containing 108 direct interactors of ADARs (ADAR1,

ADAR2 and ADAR3 proteins). Among the 376 genes strongly associated with global editing level

(FDR < 0.01), we assessed the number of  encoded proteins interacting with ADAR1, ADAR2 or

one of their first neighbors. To test the significance of these overlap, we performed a random test on

the overall set of 14,961 genes addressable in our RNA-Seq data (background genes). We randomly

sampled among background genes 1 million groups of N genes (N = 376) and for each simulated

group we counted how many elements interacts directly with ADARs or one of their neighbors.

Empirical p-value was then calculated as the number of test resulting in an equal or higher number

of interactors. Cytoscape v.3.4.0 [62] was used to visualize the PPI network and calculate network

related statistics.

I  dentification of biological factors   correlated with   editing levels  

To investigate  which biological and pharmacological  variables could influence editing levels in

blood, we studied associations between the 28 biological / pharmacological variables described in

Additional file 1: Table S2 and CES total editing rate across subjects. For the 5 variables resulting

in significant associations, we also analyzed their correlation with ADAR gene expression levels. To

further investigate the effect of biological and pharmacological variables on editing levels in blood,

we studied their correlation with the Principal Components of editing levels (PCs). To compute

PCs, the missing values of the sites were first imputed using a nonparametric imputation method

based on random forest (missForest R package v.1.4 [63]).  The PCs were then determined on the

complete data using the prcomp R package.  To identify the number of PCs to account for, we

evaluated the percentage of explained variance by the top 30 PCs, and identified the 5 th component

as the point at which the explained variance plateaus. 
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In both analyses, Kruskal-Wallis test, Mann-Whitney-Wilcoxon test and Pearson’s product-moment

correlation test were used to assess association for categorical, binary and continuous variables,

respectively. To identify which editing sites were most correlated with each PC, we analyzed the

loadings,  that  could be interpreted as correlation coefficient  between the original  variables  and

components. Moreover, given a high number of sites and low loading values, to deepen the role of

each site in the computation of the PCs, we performed the Pearson correlation test. We considered a

“moderate” correlation when its absolute value was between 0.3 and 0.5 and the test passed the

Bonferroni  threshold,  while  a  “weak” correlation was considered when the correlation absolute

values  ranged  between  0  and  0.3  and  the  respective  p-values  were  significant  for  Bonferroni

correction.

Association study for   SNPs   and   global editing levels  

To identify SNPs associated to global editing level, we analyzed genotyping data and global editing

levels in the  459 human blood samples. Starting from genotypes provided in  the original dataset

[31],  we filtered raw data removing  SNPs strongly deviating from  Hardy-Weinberg equilibrium

(fisher test p-value < 1e-4) and with a minor allele frequency below 0.10, to ensure that the least

represented genotype accounts for at least 5 individuals. The final dataset contained 573,801 SNPs.

We used plink v.1.9 linear association analysis with additive model, including the same 7 covariates

used for analysis of gene expression (see above, Additional file 1: Table S1). FDR was used  to

correct for multiple tests. After association analysis, we used GCTA [64] to evaluate the impact of

ADAR known eQTLs on observed global editing levels, using the same set of covariates included

for the plink association analysis. This analysis was performed including 36 known ADAR eQTLs

present in our genotyping data. The top 100 associated SNPs were overlapped with GRASP 2.0

[65] database,  to assess their  role in human phenotypes and diseases. We then evaluated genes

potentially  regulated  by  the  top  100 SNPs  based on known blood  eQTLs  from  HaploReg  4.1

[66] and GTEx [67]. Enrichment analysis was conducted for potentially regulated genes on GO:BP,

GO:MF, GO:CC and REACTOME pathways using hypergeometric test. Background gene group

was obtained as all genes with a known eQTL among all the 573,801 tested SNPs. To identify
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significant  loci associated to  global  editing level,  we performed variant  clumping based on the

association results, using plink with 1Mb window and 0.5 R2 thresholds. In this way all SNPs in

1Mb window and with R2 ≥ 0.5 are grouped together around the index SNP, that is the SNP with

the lower association p-value.

List of abbreviations

CES:  Consistently  edited  site(s);  GO:MF:  Gene  Ontology  Molecular  Function;  GO:BP:  Gene

Ontology Biological Processes; GO:CC: Gene Ontology Cellular Component: eQTL: expression

Quantitative Trait Locus.
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Tables

Table 1. Editing levels detected for the 10 recoding sites identified in human blood

Site id 
(hg19) Gene Strand Aa

change Alu Editing
Minimum

Editing
Mean

Editing
Maximum

chr3_49398423 RHOA - Lys->Arg yes 0.19 0.33 0.64

chr4_2835556 SH3BP2 + Arg->Gly no 0.05 0.08 0.16

chr4_2940026 NOP14 - Asn->Ser yes 0.1 0.23 0.56

chr4_77979680 CCNI - Arg->Gly no 0.05 0.08 0.19

chr8_103841636 AZIN1 - Ser->Gly no 0.07 0.16 0.45

chr13_52604264 UTP14C + Ser->Gly no 0.24 0.64 1

chr13_52604880 UTP14C + Gln->Arg no 0.45 0.85 1

chr15_75646086 NEIL1 + Lys->Arg no 0.27 0.73 1

chr16_3292200 MEFV - Stp->Trp yes 0.05 0.16 0.36

chr20_36147563 BLCAP - Gln->Arg no 0.05 0.14 0.33

Table 2. Network based statistics for the 9 ADARs direct partners 

Gene Betweenness
centrality Degree Association

adjusted p
Associated genes

rank
ELAVL1 0.137 168 0.0312 840
HDLBP 0.001 15 0.0400 986

HNRNPUL1 0.007 39 0.0004 10
IFI16 0.020 66 0.0055 246
RPA1 0.028 96 0.0140 496

SDAD1 0.002 19 0.0253 713
SUZ12 0.007 52 0.0022 110
THOC1 0.002 17 0.0184 587
USP39 0.002 20 0.0190 596

The table reports betweenness centrality and degree values for the 9 genes directly interacting with 

ADARs in PPI databases and significantly associated to global editing levels (adjusted p < 0.05). 

Adjusted p-values are calculated as FDR corrected p values from robust regression of global editing

level and gene expression. The rank position among top associated genes is also reported.
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Table 3. Top 4 SNPs associated to CES total editing rate define a locus on chromosome 7

SNP Chr Position A1 Beta
p value

(FDR clumped
association)

R2 Gene (distance)

rs856554* 7 46760129 G 0.00352 1.87 x 10-07

(0.042) - LOC730338]
(23.4kb)

rs856589 7 46734307 A 0.00326 2.44 x 10 -07 0.73 [LOC730338]

rs6463347 7 46780614 C 0.00328 5.14 x 10-07 0.76 LOC730338]
(43.9kb)

rs856565 7 46721854 A 0.00327 8.16 x 10-07 0.88 [LOC730338]

For each SNP the table reports distance from LOC730338 gene. Gene name within square brackets 

indicate SNPs located within the gene, while single bracket indicate 3’ distance. Index SNP is 

marked with * and the FDR of association for LD-clumped association analysis is reported. R2 with

the index SNP is reported for other SNPs in the locus. Genomic coordinates refer to hg19 genome 

assembly.
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Figure legends

Figure 1. Distribution of 2,079 consistently edited sites (CES) analyzed in the study

(a) Distribution of the 2,079 CES within ALU regions and (b) based on functional classification. (c)

Density plot representing overall distribution of editing levels. (d) Density plots of editing levels for

different editing site categories and ALU/non-ALU sites.

Figure 2. Association between gene expression and CES total editing rate

We analyzed association between CES total editing rate and gene expression for 14,961 human 

genes. (a) Gene set enrichment analysis by hypergeometric test on GO-BP categories and 

REACTOME pathways revealed that associated genes are mainly involved in immune system 

response mediated by interferon I and alpha / beta. (b) When we analyze distribution of CES total 

editing rate and ADAR gene expression, ADAR expression levels explains ~ 13% of observed 

variability. No significant effect is observed for ADARB1 expression. ADAR and ADARB1 

expression levels are reported as residuals of ridge regression with technical covariates (see 

description of data in methods section). The graphs report adjusted p-value and R2 value from 

robust regression analysis. (c) The 1,122 genes associated to CES total editing rate after removing 

ADAR expression effect were enriched for genes mainly involved in ribonucleoprotein and RNA 

processing. 

Figure 3. Genes associated with CES total editing rate are enriched for ADAR interactors

(a) Reconstructed PPI network including ADARs and best genes significantly associated with 

global editing levels (FDR < 0.01). Among these genes, we observed 285 potential ADARs 

interactors, including 9 direct partners of ADARs proteins. (b) Boxplot of number of ADARs 

interacting genes observed in 1M random simulations. The observed number of interactions (285) 

resulted in empirical p-value < 1e-6. (c) ADARs interactors are strongly enriched for RNA binding 

proteins in GO-MF categories. (d) Distribution of degree and betweenness centrality values among 

network nodes are represented by violin plots. ADAR1 protein has a major role (higher values) 
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among ADAR proteins. Among ADARs direct partners, ELAVL1, RPA1 and IFI16 showed high 

values of degree and betweenness centrality, suggesting a central role in the network.

Figure 4. Impact of biological / pharmacological factors on CES total editing rate

Our analysis revealed significant associations with CES total editing rate for blood pressure 

medication (a), BMI current (b), Age (c) and Sex (d). The first three variable resulted associated to 

ADAR expression level, as well. Significance level (p) is reported in each plot based on Mann-

Whitney-Wilcoxon or Pearson’s product-moment correlation test for binary and continuous 

variables, respectively. For continuous variables the Pearson correlation coefficient (r) is also 

reported.

Figure 5. Impact of biological / pharmacological factors on PCs of editing levels

We analyzed correlation between 28 biological / pharmacological variables and principal 

components (PCs) calculated from editing levels of 2,079 CES. The heathmap represents strength 

of association, with significant p values < 0.05 colored in yellow-red scale. Sex, age and BMI are 

the strongest factors, correlated to PC1, while substance / drug intake variables were mostly 

associated with PC3. For each PC, variance explained is represented by the bar plot in the upper 

side, while association with ADAR expression with is represented in the lower panel.

Figure 6. Association study for SNPs and CES total editing rate

(a) Manhattan plot representing the association between 573,801 SNPs and CES total editing rate, 

where black line represents threshold for the top 100 SNPs (p value ~ 10e-4). (b) Detailed view of 

genotyped SNPs located in the region at chromosome 7 that showed significant association with 

CES total editing rate. Known GWAS associations for human phenotypes from GRASP database 

are reported in the lower panel. (c) The top associated SNP (rs856554) showed a significant effect 

on global editing level and seems to influence also ADAR expression, despite this effect is not 

significant. (d) The top associated ADAR eQTL (rs6699825) showed significant effect on both. P 

values reported in box-plots are based on Tukey post-hoc pairwise test in ANOVA. ADAR gene 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 5, 2018. ; https://doi.org/10.1101/254045doi: bioRxiv preprint 

https://doi.org/10.1101/254045
http://creativecommons.org/licenses/by-nc-nd/4.0/


expression level is reported as residual of ridge regression with technical covariates (see description

of data in methods section).
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Additional materials

Additional file 1 (pdf). Supplementary tables and figures

Supplementary tables S1-S8. Supplementary Figures S1-S8

Additional file 2 (xls). Detailed statistics for the 2,079 editing sites considered in the study

Additional file 3 (xls). Complete results of robust regression between CES total editing rate and

gene expression levels where we removed the effect of ADAR expression.

Additional file 4 (xls). Node properties in the protein-protein interaction network including genes

associated  to  CES total  editing  rate  (FDR<0.01)  interacting  with  ADARs or  one  of  their  first

neighbors

Additional file 5 (xls). Association of editing sites with principal components of editing.

Additional file 6 (xls). Results of genome-wide association study for CES total editing rate

Association results for single SNPs and loci identified after variant clumping are reported.
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