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Abstract

Mathematical models that describe infection kinetics help elucidate the time scales, effectiveness, and mecha-
nisms underlying viral growth and infection resolution. For influenza A virus (IAV) infections, the standard viral
kinetic model has been used to investigate the effect of different IAV proteins, immune mechanisms, antiviral
actions, and bacterial coinfection, among others. We sought to further define the kinetics of IAV infections
by infecting mice with influenza A/PR8 and measuring viral loads with high frequency and precision over the
course of infection. The data highlighted dynamics that were not previously noted, including viral titers that
remain elevated for several days during mid-infection and a sharp 4–5 log10 decline in virus within one day as
the infection resolves. The standard viral kinetic model, which has been widely used within the field, could
not capture these dynamics. Thus, we developed a new model that could simultaneously quantify the different
phases of viral growth and decay with high accuracy. The model suggests that the slow and fast phases of
virus decay are due to the clearance rate changing as the density of infected cells changes. To characterize this
model, we fit the model to the viral load data, examined the parameter behavior, and connected the results
and parameters to linear regression estimates. The resulting parameters and model dynamics revealed that the
rate of viral clearance during resolution occurs 25 times faster than the clearance during mid-infection and that
small decreases to this rate can significantly prolong the infection. This likely reflects the high efficiency of
the adaptive immune response. The new model provides a well-characterized representation of IAV infection
dynamics, is useful for analyzing and interpreting viral load dynamics in the absence of immunological data, and
further insight into the regulation of viral control.

Introduction

Influenza A virus (IAV) is a leading cause of lower respiratory tract infections and causes a significant amount of

morbidity and mortality [18, 25, 34], with over 15 million individuals infected and more than 200,000 hospital-

izations each year in the U.S. [35]. Vaccination against influenza viruses remains the most effective measure to

prevent infection, but the large number of antigenically distinct strains, the emergence of new strains, and the

low efficacy of antivirals make combatting the disease challenging. New therapeutic strategies are thus necessary

and may require modulation of different viral control mechanisms, which are not entirely understood for IAV

infection. Thus, it is critical to gain a deeper understanding of the infection kinetics, including determining
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the time scales, magnitudes, contribution, and interrelatedness of different control processes throughout IAV

infection.

Kinetic modeling of in vivo infection processes provides important insight into viral growth and decay, host

immune responses, antiviral actions, and multi-pathogen interactions. Remarkably, as few as 3-4 equations for

target cells, infected cells, and virus can accurately describe viral load dynamics for a variety of virus infections

(e.g., IAV, HIV, HCV, Zika virus, and West Nile Virus [1, 2, 5, 20, 22]). For IAV infections, numerous studies

have used these simple models with great success to elucidate mechanisms during IAV infection and during IAV

coinfection with bacterial pathogens (reviewed in [3, 7, 27–29]). However, investigating mechanisms of immune

control is often inhibited by insufficient data, which limits effective model calibration and selection. Further, it

can be difficult to distinguish between mechanisms because a viral kinetic model that excludes equations and

terms for specific immune responses can fit viral load dynamics with ease.

To aid interpretation of model results and gain insight into the mechanisms of infection, previous studies have

used linear regression and approximate solutions to the viral kinetic model to identify how different processes

(e.g., virus infection, production, and clearance) contribute to viral load dynamics throughout the course of

infection. In the initial hours of infection, virus quickly infects cells or is cleared. Following an eclipse phase,

virus production begins and virus increases exponentially for ∼2–3 d. This initial growth can be approximated

by a linear function of the log10 viral titers or by V (t) = eλt, where λ is a combination of all infection processes

and is equivalent to the log-linear slope [31, 32]. After this growth phase, virus peaks and begins to decline

until the infection is resolved. Virus decay is typically exponential in nature and can be approximated in a

similar fashion as the growth phase. That is, V (t) = e−δt, where δ is the infected cell death rate and the sole

process dictating the viral decay dynamics. Here, the log-linear slope is an estimate of the infected cell death

rate [31, 32].

Although these dynamics and approximations have improved our knowledge of viral kinetics, some dynamical

features, such as the plateauing of virus following the peak (reviewed in [28]) cannot be explained by current

kinetic models that exclude equations for immune factors. One model could reproduce the plateauing of virus

through modeling interferon and an interferon-induced adaptive immune response [21]. The study concluded that

specific equations for the innate and adaptive responses were necessary. However, quantitative immunological

data was not used to support model selection, parameterization, and conclusions. This type of data is scarce

and has been a limiting factor of modeling studies. With viral loads as the most prevalent type of data, models

that limit the number of parameters and equations remain desirable.

To gain deeper insight into the mechanisms of viral resolution and improve predictive power of kinetic models,

we measured viral loads daily from the lungs of BALB/cJ mice infected with influenza A/Puerto Rico/8/34

(H1N1) (PR8). In addition, we tightly controlled the experimental conditions and repeated the experiment
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numerous times to ensure reproducibility and identify data with true biological heterogeneity versus data with

experimental heterogeneity. The high resolution of these data defined important dynamical features, including

a long plateau phase followed by a rapid decay phase. Because current viral kinetic models could not reproduce

these data, we developed a new model that incorporated a density-dependent decay of infected cells and could

accurately describe the observed viral load dynamics. We used a rigorous fitting scheme to estimate the model

parameters and infer important dynamics. Subsequent linear regression analysis and sensitivity analysis aided

effective interpretation of the model results and direct comparison with published results. The data, model, and

analyses provide a robust quantification of IAV infection kinetics and indicate that the rate of virus clearance

changes with respect to the density of infected cells.

Materials and Methods

Use of Experimental Animals

All experimental procedures were approved by the Animal Care and Use Committee at SJCRH under relevant

institutional and American Veterinary Medical Association guidelines and were performed in a Biosafety level 2

facility that is accredited by AALAAS.

Mice

Adult (6 week old) female BALB/cJ mice were obtained from Jackson Laboratories (Bar Harbor, ME). Mice

were housed in groups of 5 mice in high-temperature 31.2cm × 23.5cm × 15.2cm polycarbonate cages with

isolator lids. Rooms used for housing mice were maintained on a 12:12-hour light:dark cycle at 22 ± 2◦C with

50% humidity in the biosafety level 2 facility at St. Jude Children’s Research Hospital (Memphis, TN). Prior to

inclusion in the experiments, mice were allowed at least 7 days to acclimate to the animal facility such that they

were 7 weeks old at the time of infection. Laboratory Autoclavable Rodent Diet (PMI Nutrition International,

St. Louis, MO) and autoclaved water were available ad libitum. All experiments were performed under an

approved protocol and in accordance with the guidelines set forth by the Animal Care and Use Committee at

St. Jude Children’s Research Hospital.

Infectious Agents

All experiments were done using the mouse adapted influenza A/Puerto Rico/8/34 (H1N1) (PR8).
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Infection Experiments

The viral infectious dose (TCID50) was determined by interpolation using the method of Reed and Muench [23]

using serial dilutions of virus on Madin-Darby canine kidney (MDCK) cells. Mice were intranasally inoculated

with 75 TCID50 PR8 in 100 µl. Mice were weighed at the onset of infection and each subsequent day for illness

and mortality. Mice were euthanized if they became moribund or lost 30% of their starting body weight. We

repeated each experiment at least one time to ensure reproducibility.

Lung Titers

Mice were euthanized by CO2 asphyxiation. Lungs were aseptically harvested, washed three times in PBS, and

placed in 500 µl sterile PBS. Whole lungs were digested with collagenase (1mg/ml, Sigma C0130), and physically

homogenized by syringe plunger against a 40 µm cell strainer. Cell suspensions were centrifuged at 4◦C, 500 × g

for 7 min. The supernatants were used to determine the viral titers using serial dilutions on MDCK monolayers.

Mathematical Model

The standard viral kinetic model used to describe IAV infection kinetics tracks 4 populations: susceptible

epithelial (“target”) cells (T ), two classes of infected cells (I1 and I2), and virus (V ) [1]:

dT

dt
= −βTV (1)

dI1
dt

= βTV − kI1 (2)

dI2
dt

= kI1 − δ(I2)I2 (3)

dV

dt
= pI2 − cV (4)

In this model, target cells become infected with virus at rate βV per cell. Once infected, these cells enter an

eclipse phase (I1) at rate k per cell before transitioning to produce virus at rate p per cell (I2). Virus is cleared

at rate c and virus-producing infected cells (I2) are cleared according to the function δ(I2). The original model

assumes that infected cells are cleared at a constant rate (δ(I2) = δs) [1]. Here, we modify this model and let

the clearance rate vary with the number of infected cells such that

δ(I2) =
δd

Kδ + I2
, (5)

where δd/Kδ is the maximum rate of infected cell clearance and Kδ is the half-saturation constant.
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Parameter Estimation

Given a parameter set θ, the cost C(θ) =
∑
vi

(V (θ, ti) − vi)
2 was minimized across parameter ranges using an

Adaptive Simulated Annealing (ASA) global optimization algorithm (details in the Supplementary Material)

to compare experimental and predicted values of log10 TCID50/lung. Errors of the log10 data were assumed to

be normally distributed. To explore and visualize the regions of parameters consistent with the models, we fit

Equations (1)–(5) to 1000 bootstrap replicates of each data set. For each bootstrap data set, the model was fit

10 times beginning from the best-fit parameters estimate θbest that was found by fitting the model to the data

then perturbing each parameter estimate uniformly within ±50%. If the three best bootstrap fits were within

0.05 of the best-fit, then the bootstrap was considered successful. For each best fit estimate, we provide 95%

confidence interval (CI) computed from the bootstrap replicates. All calculations were performed in MATLAB.

Bounds were placed on the parameters to constrain them to physically realistic values. Because biological

estimates are not available for all parameters, ranges were set reasonably large based on preliminary results

and previous estimates [32]. The rate of infection (β) was allowed to vary between 10−6 TCID−1
50 d−1 and

10−1 TCID−1
50 d−1, and the rate of viral production (p) between 10−1 TCID50 cell−1 d−1 and 103 TCID50 cell−1 d−1.

Bounds for the viral clearance rate (c) were 1 d−1 (t1/2 = 16.7 h) and 103 d−1 (t1/2 = 1 min). Previous estimates

of the eclipse phase rate (k) for IAV infection in mice resulted in estimates that fell outside the biologically fea-

sible range of 4-6 h [32]. To insure biological feasibility, the lower and upper bounds for the eclipse phase rate

(k) were 4 d−1 and 6 d−1. Limits for the half-saturation constant (Kδ) were 102 − 106 cells, and limits for the

infected cell clearance parameter (δd) were 1 − 4 × 106 cells/d.

The initial number of target cells (T0) was set to 107 cells [32, 33]. Because the initial viral inoculum rapidly

infects cells and/or is cleared within 4 h pi, as indicated by the undetectable viral titers at this time point

(Figure 1), the initial number of infected cells I1(0) was set to 75 cells to reflect an initial dose of 75 TCID50.

This is an alteration from previous studies, including our own, that either estimate the initial amount of virus

(V0) or set its value to the true viral inoculum. Fixing V (0) = 75 TCID50 or estimating its value did not

improve the fit and could not be statistically justified (see, for example, Table S1). Estimating I1(0) could also

not be justified and did not improve the model fit (e.g., as in Table S1 and Figure S3). The initial number of

productively infected cells (I2(0)) and the initial free virus (V0) were set to 0.

Linear Regression

We used the function polyfit in MATLAB to perform linear regression of the log10 values of viral titer during

the growth phase (4h, 1-2 d pi) and the two decay phases (3-6 d pi and 7-8 d pi). No data point was allowed to

be included in two phases.
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Results

Phases of Viral Load Kinetics

Mice infected with 75 TCID50 PR8 have viral load kinetics that can be separated into five distinct phases

(Figure 1). This is in contrast to the three phases that we previously defined [31]. In the first phase, virus quickly

infects cells and is undetectable within 4 h pi. In the second and third phases, virus increases exponentially and

peaks after ∼2–3 d pi. Following the peak, the viral decline can be separated into two phases. In the first decay

phase (3–7 d pi), virus decays slowly at a relatively constant rate. In the second decay phase (7–8 d pi), virus

declines rapidly (4–5 log10 TCID50). Sixty percent of mice had no detectable virus by 8 d pi. The remaining

mice resolved the infection by 9 d pi.

These data reduced the heterogeneity observed in a previous data set from infection with the same virus [32].

We discovered that the majority of heterogeneity in the previous data set could be attributed to inconsistent

infections and, thus, inocula that varied. We further reduced heterogeneity by normalizing the viral titer to the

total lung volume, rather than using units of TCID50/ml lung homogenate. As expected, some heterogeneity

remains at 1 d pi and at 8 d pi. These time points correspond to when virus is rapidly increasing and decreasing,

respectively.

Kinetic Model with Density Dependent Viral Clearance

We first fit the standard viral kinetic model, which is given by Equations (1)–(4) and assumes only one mechanism

of constant clearance (δ(I2) = δs) [1], to the viral load data. This model was unable to capture the entire time

course of viral load dynamics, but was able to fit the data from infection initiation to 7 d pi (Figure S3). To

more accurately model IAV kinetics and simultaneously recapitulate the two phases of viral decline, we modified

the rate of infected cell clearance (δ(I2)) so that the rate changes with respect to the density of the infected

cell population (Figure 4A). That is, δ(I2) = δd/(Kδ + I2) (Equation (5)), where δd/Kδ is the maximum rate of

clearance and Kδ is the number of infected cells where the rate is half of its maximum.

Fitting this new model to the viral load data illustrated that the model can accurately reproduce the data

and simultaneously capture both phases of viral decline while excluding specific immune responses. The resulting

dynamics are shown in Figure 1, the parameter values and 95% confidence intervals (CIs) are given in Table 1,

and the parameter ensembles are shown in Figures 2 and S2. For this model, the basic reproduction number

(R0) is given by

R0 =
βpT0Kδ

cδd
(6)

Given the parameters in Table 1, R0 = 7.4.
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To understand how the addition of δ(I2) = δd/(Kδ + I2) influences the other parameters during the fitting

scheme, we plotted the resulting histograms and 2D parameter projections (Figure 2). As expected, strong cor-

relations exist between the rates of virus production (p) and virus clearance (c) and between the rate of infection

(β) and the infected cell death rate (δd/Kδ). The other correlations visible in Figure 2 were a consequence of

these two relations. Of note, δd was not strongly correlated with any of the other model parameters (Figure S2).

In addition, the confidence interval was small, particularly compared to the other parameters. Estimates for

the other parameters (β, p, c, and Kδ) with the exception of the eclipse phase rate (k) were well bounded such

that the 95% CIs fell within the upper and lower bounds imposed in the estimation scheme. Similar to previous

studies [1, 32], the eclipse phase rate (k) was not well defined. In support, the ASA algorithm search patterns

show a longer search time for k compared to the other parameters (Figure S1).

To further determine how the addition of δ(I2) = δd/(Kδ+I2) influences the sensitivity of the model solution

to changes in parameter values, we performed a one-at-a-time sensitivity analysis (Figure 3). The infected cell

clearance parameter (δd) is the most sensitive parameter and largely dictates the viral decay. Decreasing δd

significantly delays viral clearance while increasing δd leads to rapid viral resolution (Figure 3). In accordance

with previous results [31], all other parameters are less sensitive and collectively affect the exponential growth

phase and peak.

As illustrated in Figure 4A, the rate of infected cell clearance is rapid when these cells are in small numbers.

Given the parameters in Table 1, the maximum clearance rate is δ(I2) = 12.7 d−1, which corresponds to half-life

t1/2 = 1.3 h. The rate begins to slow when I2 > 104 cells and is minimal when I2 is at its maximum (8×106 cells).

When I2 is maximal, δ(I2) = 0.21 d−1 and t1/2 = 78 h. In our previous work, we discovered that linear regression

analysis could be used to accurately estimate the exponential growth rate, which was a combination of all model

parameters, and that the slope of the viral decay could provide an estimate of δ(I2) [31, 32]. To evaluate how

these relations correlate to parameters in the model with density dependence, we performed a linear regression on

the data during the growth phase (4 h – 2 d pi) and the two decay phases (3–6 d pi and 7–8 d pi) (Figure 4B). The

slope of the growth phase is 3.2 log10 TCID50/d (red line in Figure 4B). In accordance with the previous studies,

this slope is a good approximation to the model until shortly before the peak. The model then begins to deviate

from this estimate and suggests that the virus growth rate briefly increases prior to the peak. This nonlinearity

in the growth can be attributed to the decreasing infected cell clearance rate as the number of infected cells

increases. These results are in contrast to the standard viral kinetic model, which suggests that the virus growth

rate decreases prior to the peak [31, 32]. In the first phase of decay, the slope is −0.2 log10 TCID50/d (green

line in Figure 4B), which corresponds to δ(I2) = 0.4 d−1 (green diamond in Figure 4A). In the second phase of

decay, the slope is −3.8 log10 TCID50/d (blue line in Figure 4B), which corresponds to δ(I2) = 8.7 d−1 (blue

dot in Figure 4A).
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Discussion

Mathematical models have been widely used to investigate IAV dynamics (reviewed in Refs. [3, 7, 27–29]). The

viral kinetic model given by Equations (1)–(4) with δ(I2) = δs [1] has been the standard in the field for over

10 years. We previously used this model together with data from murine infection to gain insight into IAV

virulence factors [32] and into coinfection with bacterial pathogens [26, 30, 33]. Although some predictions made

using this model have been experimentally tested and deemed accurate [10, 27, 30, 37], the data here suggested

that some dynamical features could not be accounted for and thus a new model was necessary. The model we

introduced here includes density-dependent infected cell clearance and better captures the entire course of IAV

infection dynamics, including the two-phase viral decay following the peak (Figures 1). Importantly, the model

added only a single parameter (the half-saturation constant, Kδ) while significantly improving the model fit to

viral loads from IAV infection without including additional equations detailing immune responses

By sampling with high frequency and controlling for experimental heterogeneity, we were able to obtain more

accurate data (i.e., smaller standard deviations and better reproducibility) that highlighted several important

dynamics, some of which were not previously observed. Our data showed that viral loads are maintained at

a high level between 2 d and 7 d pi (Figure 1). Sustained viral loads have been observed in several studies

[6, 9, 14, 16, 24, 32, 36]. In some data sets, the peak appears more pronounced and is often followed by the

plateau phase or a second, lower peak [1, 4, 6, 9, 13, 14, 16]. Our murine data do not indicate a second

peak, although there is a subtle increase in viral loads at 5 d pi. Previous modeling studies suggest that these

dynamics required equations/terms for the innate and adaptive immune responses [1, 8, 21]. Importantly, our

model here provides a means for capturing the changes in viral load decay without complicating the model or

inferring information about specific immune mechanisms, which are not well understood. However, the change in

clearance rate could reflect the change from innate to adaptive immunity. If this is the case, our estimates would

suggest that the adaptive response is 25 times more effective than the innate response (−0.2 log10 TCID50/d

between 3–6 d pi versus −3.8 log10 TCID50/d between 7–8 d pi; Figure 4B).

It is well accepted that the rapid decline in virus during the second decay phase is due to the infiltration of

CD8+ T cells (reviewed in [11, 15, 17]). These cells typically enter the infection site between 5–6 d pi and peak

between 8–9 d pi (e.g., as in [36]). The rapid rate of viral decline between 7–8 d pi suggests that these cells

are highly effective. However, the initial infiltration begins 1–2 d before a change in the rate of virus decay is

visible. Thus, there is a nonlinearity to this response. This may reflect a change in effectiveness proportional

to the density of infected cells or to the density of T cells. A handling-time effect, which could represent the

time required for immune cells to kill each infected cell and/or the time for immune cells to become activated,

may slow the per capita rate of clearance. Spatial constraints (e.g., crowding effect), where the number of

immune cells within an area is limited, may also play a role. In contrast, numerous clearance mechanisms
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(e.g., interferons, macrophages, neutrophils, natural killer (NK) cells) are thought to be important during early-

and mid-infection, but their contribution to the viral load kinetics is unclear. Using a model to distinguish

between these mechanisms is challenging given the close fit of simple kinetic models to viral load data (Figures 1

and S3). Further, neither the data nor the models can discriminate whether the maintenance of high viral loads

is due to a lack of clearance of infected cells (i.e., long infected cell lifespan/ineffective clearance) or to the

balance of new infections and clearance (i.e., short infected cell lifespan/rapid clearance coupled with rapid virus

infection/production). Thus, new and more diverse data is necessary.

Viral titers remain the most frequently used data to calibrate models and assess infection dynamics. This is

because collecting immunological data is more laborious and expensive. Thus, we seek models that are simple

yet accurate and that can be used in the absence of immunological data. The standard viral kinetic model

includes the minimal number of parameters and equations needed to recapitulate viral load dynamics. However,

viral load data is insufficient to uniquely define all 6 parameters [19, 32]. Fortunately, this has not limited

our ability to make robust predictions about the underlying biology or to estimate accurate parameter values

even when correlations are present [12, 30, 33]. Here, the resulting parameter ensembles were well-bounded

and correlations were observed in two sets of parameters (Figure 2). The correlation between the rates of

virus production (p) and virus clearance (c) indicates the balance of these processes. This is expected because

viral loads measure the amount of virus present and slow virus production/clearance would be indistinguishable

from fast production/clearance. Similarly, the rates of infection (β) and infected cell clearance (δd/Kδ) were

correlated, which indicates a balance of cells becoming infected and being cleared. This is visible in Figure 4B,

where the log-linear fit to the data in the growth phase (red line) deviates from the model solution (black dashed

line).

Analyzing infection kinetics with mathematical models provides a means to quantify different infection pro-

cesses. By modeling viral load data, we can make meaningful predictions about the time scales, magnitudes,

and rates of different processes even if we cannot directly define specific mechanisms. Further, having a well-

characterized model allows us to design new experiments and to perform in silico experiments that evaluate

situations where data is challenging to obtain. Here, our data, model, and analyses suggest that the clearance

rate of infected cells is variable and depends on their density such that clearance slows when infected cells are

numerous and fast when they are in low numbers. Understanding how the rate changes should facilitate a deeper

understanding of other viral infections and of immunological data, as it becomes available. Further establishing

how the virus and host components work together and how they can be manipulated will undoubtedly aid the

development of therapies that prevent or treat IAV infections.
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Tables

Table 1: Parameters and 95% confidence intervals obtained from fitting the density-dependent model (Equa-
tions (1)–(5)) to viral titers from mice infected with 75 TCID50 PR8.

Parameter Description Units Value 95% CI

β Virus infectivity TCID−1
50 d−1 5.5 × 10−5 [1.5 × 10−5, 3.8 × 10−2]

p Virus production TCID50 cell−1 d−1 3.2 [0.72, 100]
c Virus clearance d−1 18.6 [4.1, 694]
k Eclipse phase d−1 4.0 [4.0, 6.0]
δd Infected cell clearance cell−1 d−1 1.7 × 106 [1.4 × 106, 2.0 × 106]
Kδ Half saturation constant cells 1.4 × 105 [1.5 × 102, 2.5 × 105]
T (0) Initial uninfected cells cells 1 × 107 -
I1(0) Initial infected cells cells 75 -
I2(0) Initial infected cells cells 0 -
V (0) Initial virus TCID50 0 -
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Figures

Figure 1: Fit of the Density-Dependent Viral Kinetic Model. Fit of the density-dependent viral kinetic
model (Equations (1)–(5)) to viral lung titers from individual mice (10 mice per time point) infected with 75 TCID50

PR8. The solid black line is the optimal solution and the gray shading is the model solution using parameter sets
within the 95% CIs. Parameters are given in Table 1. Data are shown as mean ± standard deviation.
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Figure 2: Parameter Ensembles and Histograms. Parameter ensembles and histograms resulting from fitting
the density-dependent kinetic model (Equations (1)–(5)) to viral titers from mice infected with 75 TCID50 PR8.
Two main correlations are evident between the rates of virus production (p) and clearance (c) and between the
rates of infection (β) and infected cell clearance (δd/Kδ). The axes limits reflect imposed bounds. All parameters
except the eclipse phase rate (k) are well bounded. Additional plots (e.g., for R0) are in Figure S2.
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Figure 3: Sensitivity of the Density-Dependent Viral Kinetic Model. Solutions of the density-dependent
viral kinetic model (Equations (1)–(5)) for the best-fit parameters (black line, Table 1) and with the indicated
parameter increased (red) or decreased (blue) 50% from the best-fit value.
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Figure 4: Density-Dependent Infected Cell Clearance Rate and Correlation to Linear Regression.
(A) The infected cell clearance rate (δ(I2), Equation (5)) is plotted over for different values of infected cells (I2).
The green diamond and the blue dot indicate the corresponding infected cell clearance rates during the slow and
fast phases of virus clearance, respectively. These correspond to linear regression estimates in Panel B. (B) Linear
regression fits to the viral load data (white squares) during the growth phase (4 h – 2 d pi, red line), the first
phase of virus decay (3–6 d pi, green line), or the second phase of virus decay (7–8 d pi, blue line). The dashed
black line is the fit of the density-dependent viral kinetic model (Equations (1)–(5)) to the viral load data.
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