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Abstract 
 
Ageing is the largest risk factor for a variety of non-communicable diseases. Model 
organism studies have shown that genetic and chemical perturbations can extend 
both life- and health-span. Ageing is a complex process, with parallel and interacting 
mechanisms contributing to its aetiology, posing a challenge for the discovery of new 
pharmacological candidates to ameliorate its effects. In this study, instead of a target-
centric approach, we adopt a systems level drug repurposing methodology to 
discover drugs that could combat ageing in human brain. Using multiple gene 
expression datasets from brain tissue, taken from patients of different ages, we first 
identified the expression changes that characterise ageing. Then, we compared 
these changes in gene expression with drug perturbed expression profiles in the 
Connectivity Map. We thus identified 24 drugs with significantly associated changes. 
Some of these drugs may function as anti-ageing drugs by reversing the detrimental 
changes that occur during ageing, others by mimicking the cellular defense 
mechanisms. The drugs that we identified included significant number of already 
identified pro-longevity drugs, indicating that the method can discover de novo drugs 
that meliorate ageing. The approach has the advantages that, by using data from 
human brain ageing data it focuses on processes relevant in human ageing and that 
it is unbiased, making it possible to discover new targets for ageing studies. 
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Introduction 
 
Life expectancy has increased steadily in many countries worldwide. Since ageing is 
the major risk factor for multiple pathologies, including cardiovascular diseases, 
neurodegenerative disorders, and cancer (Niccoli & Partridge, 2012), finding 
interventions that can increase health during ageing is of importance. Lifespan of 
laboratory model organisms can be greatly extended by genetic and environmental 
interventions, which also improve health and function during ageing (Clancy et al., 
2001; Lucanic, Lithgow, & Alavez, 2013; Xiao et al., 2013). Many of these 
interventions target components of the nutrient-sensing network, and decrease the 
activity of IGF/Insulin and/or TOR signalling (Fontana, Partridge, & Longo, 2010). 
Moreover, dietary restriction (DR), decreased food intake without malnutrition, can 
increase lifespan, and further supports the importance of nutrient sensing pathways 
in ageing (Fontana & Partridge, 2015).  
 
Pharmacological intervention can also extend animal lifespan. The DrugAge 
database reports drug-induced lifespan extensions up to 1.5-fold for C. elegans, 1.1-
fold for D. melanogaster, and 31% for M. musculus (Barardo et al., 2017). Some of 
these chemicals may mimic the effects of DR (Fontana et al., 2010). For example, 
resveratrol, which induces a similar gene expression profile to dietary restriction 
(Pearson et al., 2008), can increase lifespan of mice on a high-calorie diet, although 
not in mice on a standard diet (Strong et al., 2013). Rapamycin, directly targets the 
mTORC1 complex, which plays a central role in nutrient sensing network and has an 
important role in lifespan extension by DR (Mair & Dillin, 2008). Rapamycin extends 
lifespan by affecting autophagy and the activity of the S6 kinase in flies. However, it 
can further extend the fly lifespan beyond the maximum achieved by DR, suggesting 
that different mechanisms might be involved (Bjedov et al., 2010). Nevertheless, the 
mechanisms of action for most of the drugs are not well known.   
 
Several studies have taken a bioinformatics approach to discover drugs that could 
extend lifespan in model organisms. For instance, the Connectivity Map, a database 
of drug-induced gene expression profiles, has been used to identify DR mimetics, 
and found 11 drugs that induced expression profiles significantly similar to those 
induced by DR in rats and rhesus monkeys (Calvert et al., 2016). Another study 
generated a combined score reflecting both the ageing relevance of drugs based on 
the GenAge database and GO annotations as well as the likely efficacy of the drugs 
in model organisms, using structural analyses and other criteria such as solubility 
(Ziehm et al., 2017). A machine learning approach has been used to identify pro-
longevity drugs based on the chemical descriptors of the drugs in DrugAge database 
and GO annotations of their targets (Barardo et al., 2017). By using DrugAge as a 
training set, the results reflect the known pathways in ageing, and thus identified anti-
cancer and anti-inflammatory drugs, compounds related to mitochondrial process 
and gonadotropin-releasing hormone antagonists. Another study took a 
pharmacological network approach to characterise anti-ageing drugs, first screening 
a large library of 1280 compounds for lifespan extension in C. elegans. The 60 hits 
from the screen were used to construct a pharmacological network, and clustered in 
certain pharmacological classes, mainly related to oxidative stress (Ye, Linton, 
Schork, Buck, & Petrascheck, 2014).  
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While most studies have focussed on model organisms, one study used the known 
pro-longevity drugs from the Geroprotectors database (Moskalev et al., 2015) and 
asked if these could be functional in humans (Aliper et al., 2016). Using young and 
old human stem cell expression profiles, they calculate a geroprotective score based 
on the GeroScope algorithm, which scores drugs based on the drug targets and age-
associated expression changes in related pathways (Zhavoronkov, Buzdin, Garazha, 
Borisov, & Moskalev, 2014). Testing the top hits in senescent human fibroblast 
cultures, they suggest several geroprotectors for humans as well as showing the 
potential in using human gene expression data for drug studies. 
 
Here, we extended the approaches to identification of new anti-ageing drugs, by 
focusing directly on human ageing. We used a framework that does not require any 
prior knowledge and is thus robust to biases in the literature and databases on 
ageing. Through a meta-analysis of multiple gene expression datasets, we first 
compiled a robust signature that characterises ageing in human brain. We then used 
drug-induced RNA expression profiles deposited in the Connectivity Map (CMap) 
(Lamb, 2006) to identify a list of potential drug candidates that could influence human 
brain ageing. We then assessed the performance of the method in relation to 
previous knowledge and identified novel candidate geropotective drugs. 
 
Results 
 
Analysis of age-related changes in RNA expression in human brains. We 
analysed data from seven, published, microarray-based studies of age-related 
changes in RNA expression (Barnes et al., 2011; Berchtold et al., 2008; Colantuoni 
et al., 2011; Kang et al., 2011; Lu et al., 2004; Maycox et al., 2009; Somel et al., 
2010, 2011). The data came from 22 different brain regions, and the ages of the 
donors ranged from 20 to 106 years (Figure 1a, Figure S1). The data for each brain 
region in each study were analysed separately, resulting in 26 datasets.   
 

 
Figure 1: a) Age distribution of the brains from which the datasets used in the study were derived. The 
error bars show the standard deviation of the sample frequency for different brain regions in data 
sources with multiple brain regions. b) Hypothetical gene expression plots, demonstrating how 
Spearman’s correlation coefficient and p-value behave when the association is weak or non-
monotonic. c) Pairwise Spearman’s rank correlation coefficients across datasets. The intensity of the 
colours on the heatmap shows the magnitude of the correlation coefficient. 
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To characterise the association between the gene expression and age, we calculated 
the Spearman's correlation between the expression level and age, for each gene, in 
each dataset separately. We first calculated the number of significant changes (FDR 
corrected p<0.05) in each dataset (Figure S2). While there were two datasets with a 
large number of significant changes, most of the datasets did not show substantial 
significant change. This can be explained by several factors, most importantly i) most 
of the datasets had a small sample size, providing insufficient power to detect 
changes in most of the cases, and ii) Spearman's correlation test calculates 
significant monotonic changes, whereas it is likely that many of the changes are not 
exclusively monotonic throughout ageing. Thus, we applied another approach, using 
the correlation coefficient to capture significant trends across datasets, instead of 
within a dataset (see Methods). While the p-value is affected by the number of the 
samples and the strength of the monotonic relationship (Figure 1b), the sign of the 
correlation coefficient can be used to capture consistent trends of up- or down-
regulation once coupled with an appropriate testing scheme. This strategy requires 
the datasets to be concordant and reflect genuine age-related changes. We first 
investigated if this assumption was valid. To assess the concordance among 
datasets, we used Spearman's correlation coefficients and calculated the correlation 
between expression-age correlations between datasets (Figure 1c). We observed a 
weak correlation with a median pairwise correlation coefficient of 0.29. To calculate 
the significance of this correlation, we developed a stringent permutation scheme 
specifically designed to account for the dependence between genes as well as the 
datasets (see Methods for detail). We concluded that a median correlation coefficient 
of 0.09 would be expected by chance and that our observation (median rho=0.29), is 
statistically significant (p<0.001). Based on these correlations, datasets clustered 
according to the data source rather than to the brain region. This observation is in 
line with the previous studies suggesting that ageing-related changes are small and 
heterogeneous, making them difficult to detect (Somel, Khaitovich, Bahn, Pääbo, & 
Lachmann, 2006). We therefore tested for significant correlations across datasets 
from different studies. When we excluded the correlation coefficients among the 
datasets generated by the same studies, we still observed a significant correlation 
coefficient of 0.22 (permutation test p<0.001, rho=-0.002 would be expected by 
chance), showing that we have significant correlations among different data sources 
as well. Using these correlations, we proceeded to compile the ageing-signatures, 
reflecting consistent trends. 
 
Defining the ageing signature. To construct a robust ageing signature, we 
identified the age-related changes that were observed across all datasets, 
irrespective of the effect size. We thus focussed on global age-related changes in the 
brain, rather than region-specific changes, and the set of genes that showed gene 
expression changes in the same direction across all datasets (Figure 2a). This profile 
consisted of only 100 up- and 117 down-regulated genes (Table S2, Figure S3-4), 
'the ageing signature'. 
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Figure 2: Method summary for a) compiling the ageing signature and b) the CMap algorithm 
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To establish the robustness of the ageing signature, we calculated the statistical 
significance of the number of consistent changes with the same permutation scheme 
used to test the correlations among datasets. This methodology randomizes the age 
of each individual, making it possible to test the null hypothesis where there is no 
association between expression and age while retaining the dependence between 
genes and datasets (see Methods for details). The number of consistent expression 
changes across brain regions was significant (p<0.001, Figure S6a-b), establishing 
that the ageing signature indeed has biological meaning.   
 
To further test the robustness of the ageing signature, we used an independent data 
set, consisting of gene expression in human brain generated by the GTEx 
Consortium (Ardlie et al., 2015), consisting of data from 99 individuals, 13 brain 
regions and ages between 20-79 (Figure S1, Table S1). These data were generated 
using RNA-Seq, allowing us to assess the robustness of the ageing signature to 
different technology platforms. We used pipeline previously applied to the microarray 
data to calculated age-related expression changes for each gene in each brain 
region separately.  The pairwise correlations between the GTEx datasets were higher 
than with the other dataset, and they tended to cluster together (Figure S5). We 
found 1189 up- and 1352 down-regulated genes that showed the same direction of 
change across all GTEx brain regions (Table S2), compared with only 100 and 117 in 
the microarray ageing signature. A likely explanation is that samples from different 
brain regions from the same individuals were used in GTEx, while the microarray 
ageing signature combined seven independent studies and different microarray 
platforms. The numbers of shared expression changes based on permutations were 
127 and 131.5, for down- and up-regulated genes, suggesting a higher false positive 
rate in the GTEx dataset. Nevertheless, the numbers of consistent up- and down-
regulated genes in the GTEx dataset were also significant (p=0.001, Figure S6c-d). 
The numbers of common up- and down-regulated genes across the GTEx and 
microarray signatures were 50 and 48, respectively, both statistically significant 
(binomial test p < 2.2e-16 for both), demonstrating that the ageing signature was 
reproducible.  
 
Biological processes associated with the ageing signature. We next investigated 
the biological processes associated with the microarray ageing signature. Using the 
genes that were consistently expressed in all data sources as background, we did 
Gene Ontology enrichment tests for consistently up- and down-regulated genes, 
separately (Figure 3, Table S3 (up-regulated), Table S4 (down-regulated)). Down-
regulated genes were enriched in synaptic functions and biosynthetic processes 
(FDR corrected p<0.05), while differentiation and proliferation-related categories 
showed enrichment for the up-regulated genes (FDR corrected p<0.05). These 
results are consistent with the findings of earlier brain ageing transcriptome studies 
(Lu et al., 2004; Naumova et al., 2012; Xue et al., 2007). Oddly, ossification-related 
biological processes also showed significant enrichment for the up-regulated genes. 
However, except for one gene, these ossification-related categories shared all genes 
with the more generic development-related categories. Thus, this result could be 
interpreted as a general up-regulation of the development-related processes rather 
than ossification-related categories.  
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Figure 3: Gene Ontology Biological Process Categories significantly enriched in a) down- and b) up-
regulated genes in the microarray ageing signature. Red circles represent the genes, diamonds show 
the significantly associated GO Categories, where FDR adjusted p<0.05. The size of the diamonds 
represents the effect size (odds ratio). 

We repeated the enrichment analysis using the GTEx ageing signature and found 
194 and 256 GO BP categories as significantly associated with down- and up-
regulated genes, respectively (TableS7-8). Since the number of genes in the GTEx 
signature is higher, we had more power to detect smaller changes and thus had a 
higher number of significant associations. However, the effect sizes (odds ratios) for 
each GO BP category calculated for microarray and the GTEx ageing signature were 
correlated (FigureS7). Correlations between the odds ratios calculated for all of the 
GO categories calculated in both methods were 0.46 and 0.37, for the enrichment in 
the down- and up-regulated genes, respectively. Correlations increase when we 
considered only the GO categories that are significantly associated with at least one 
of the ageing signatures; 0.55 and 0.60, for the enrichment in the down- and up-
regulated genes, respectively. This further shows that the ageing signatures are 
robust. The categories enriched in down-regulated genes included biological 
processes related to neuronal and synaptic functions, autophagy, post-translational 
modifications, and translation (see Table S7 for the full list). Processes related to 
response pathways, immune response, macromolecule organisation and lipid 
metabolism showed enrichment in up-regulated genes (see TableS8 for the full list). 
Interestingly, categories related to ossification were also among the GO categories 
significantly associated with up-regulation, based on GTEx data.  
 
Mapping the ageing signature onto drug-perturbed expression profiles. The 
Connectivity Map (CMap) is a database of drug perturbed gene expression profiles 
(Lamb, 2006). It consists of 6100 gene expression profiles for 1309 drug perturbation 
experiments performed on five different cell lines. The CMap algorithm uses a 
modified Kolmogorov-Smirnov test statistic to calculate the similarity of a drug-
perturbed expression profile to the gene expression profile used to query the 
database. A positive similarity score means that the drug-perturbed expression 
profile is similar to the query, whereas a negative score indicates a negative 
correlation (Figure 2b). Based on the random permutations, the statistical 
significance of the similarity score for each drug is calculated. Thus, the p-value 
shows the probability of finding the same association when a random signature is 
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supplied. We queried the CMap database and identified drugs that showed 
significant associations in either direction with the ageing signatures. To determine 
the robustness of this procedure, we queried the CMap data using the microarray 
ageing signature, and the top 500 up- and 500 down-regulated genes from the GTEx 
ageing signature (see Methods). The correlation was significant (r=0.52, p<2.2e-16, 
Figure S3a) showing that the two ageing signatures produce reproducible overlaps 
with the CMap database.   
 
Querying the CMap database, we identified 13 drugs significantly associated (FDR 
corrected p<0.05) with the microarray ageing signature (Table1, Figure 4). Four of 
these drugs were previously shown to extend lifespan in worms or flies in at least one 
experiment (Table S9). The number of pro-longevity drugs re-discovered using this 
methodology was statistically significant (p=0.004), and only one drug would be 
expected based on 10,000 random permutations of drugs. Repeating the same 
analysis with the GTEx ageing signature, we identified 18 drugs, seven of which were 
in common with the microarray results, including the four known pro-longevity drugs. 
In total, 24 drugs were significantly associated with at least one of the ageing 
signatures. The correlation between the drug similarity scores for these 24 drugs 
calculated based on the microarray and GTEx data was 0.88 (p<9.44e-09, Figure 
S3b), indicating high concordance. Since the similarity scores show high correlation, 
the rest of the results will be presented for the 24 drugs that are associated with at 
least one of the ageing signatures.  
 

 
Figure 4: a) Similarity score table for the drugs having at least one significant association to the ageing 
signatures. Each row corresponds to a drug and columns correspond to two independent ageing 
signatures – using the microarray and the GTEx datasets. The size of score labels indicates the 
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significance of the results (FDR corrected p<0.05). The row labels written in bold indicates the drugs in 
the DrugAge database. 

Overall, the method re-discovered seven known pro-longevity drugs in DrugAge 
database (p=0.00023, based on 100,000 random permutations); resveratrol, LY-
294002, wortmannin, sirolimus (also known as rapamycin), trichostatin A, 
levothyroxine sodium, and geldanamycin (Table S9). 
 

 
Figure 5: Schematic representation of the drug-target associations as a network. Blue and red labels 
show drugs and targets, respectively. The drugs with a light blue background are present in DrugAge 
database and the targets with a pink background are in either GenAge model organism or GenAge 
human databases. 

Targets of the drugs. Next, we investigated the targets of these 24 drugs, using the 
ChEMBL, PubChem and DrugBank databases as well as through manual curation of 
the literature (Table 1), and whether these targets were previously implicated in 
ageing, using GenAge human and model organism databases (Figure 5). Except for 
four (rifabutin, securinine, thioridazine, trifluoperazine); all drugs or their target genes 
had been previously implicated in ageing. Moreover, the drug-target association 
network showed several clusters with multiple drugs sharing the same targets: i) 
quinostatin was in the same cluster with two known pro-longevity drugs, wortmannin 
and LY-294002, targeting PI3K subunits, ii) tanespimycin and alvespimycin shared 
the same target with another DrugAge drug, geldanamycin, targeting HSP90, iii) 
vorinostat shared one of its targets, HDAC6, with trichostatin A, another DrugAge 
drug, iv) thioridazine and trifluoperazine had dopamine and serotonin receptors as 
targets and v) irinotecan and camptothecin shared TOP1 as their target. The fact that 
drugs targeting the same proteins / acting through the same mechanism had similar 
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CMap similarity scores (Figure 4) further shows that our results are biologically 
relevant and reflects potential mechanisms to target ageing.  
 
Table 1: The drugs that are significantly associated (FDR corrected p<0.05) with at least one of the 
ageing signatures. Drug names in bold shows the drugs in DrugAge database. ‘Score’ is the mean 
similarity score given in the CMap output, based on KS test. The similarity scores denoted with (*) 
show the significant associations. The list is ordered by the mean of the similarity scores from negative 
to positive. Target or mechanism of action is manually curated from literature (the relevant literature is 
given in the SI) or extracted from CHEMBL, DrugBank, and PubChem databases. The targets written 
in bold are found in the GenAge model organism or GenAge human databases.  

DRUG NAME ARRAY 
SCORE 

GTEX 
SCORE TARGET OR MECHANISM OF ACTION 

Securinine -0.65 (*) -0.50 (*) GABRA1-5, GABRB1-3 
Levothyroxine sodium -0.41 -0.47 (*) THRA, THRB 
Cinchonine -0.2 -0.65 (*) CYP2D6  
Geldanamycin -0.45 (*) -0.38 (*) HSP90AA1  
15-delta prostaglandin 
J2 -0.38 (*) -0.42 (*) PPARG  

Rifabutin -0.16 -0.6 (*) BCL6  
Atropine oxide -0.35 (*) -0.17 - 
Tanespimycin -0.18 -0.31 (*) HSP90AA1 
Alvespimycin -0.08 -0.33 (*) HSP90AA1  
Vorinostat 0.02 -0.41 (*) HDAC1, HDAC2, HDAC3, HDAC6 
Trichostatin A 0.09 -0.3 (*) HDAC6, HDAC7, HDAC8  
Trifluoperazine 0.32 (*) 0.13 DRD2, DRD3, DRD4, HTR2A, HTR2C 
Tretinoin 0.42 (*) 0.12 RARA, RARB, RARC 
LY-294002 0.38 (*) 0.21 (*) PI3KCG  
Thioridazine 0.35 (*) 0.25 DRD2, DRD3, DRD4, HTR2A, HTR2C 
Sirolimus 0.28 (*) 0.33 (*) mTOR 
Wortmannin 0.29 (*) 0.42 (*) PI3KR1, PI3KCA, PI3KCG 

Resveratrol 0.42 0.48 (*) 

SULT1B1, YARS, LTA4H, TTR, NQO2, PTGS2, 
PTGS1, MAT2B, CSNK2A1, CYP3A4, ESR1, 
PPARG, SIRT1, SIRT5, CYP1A2, CYP1A1, 
CYP1B1, NCOA2, TNNC1 

Emetine 0.52 (*) 0.41 Protein Synthesis Inhibition 
Daunorubicin 0.43 0.52 (*) TOP2A, TOP2B  
GW-8510 0.47 0.55 (*) CDK2, CDK5  
Irinotecan 0.39 0.78 (*) TOP1  
Camptothecin 0.63 (*) 0.56 TOP1  
Quinostatin 0.86 (*) 0.76 (*) PI3KCA  
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Drugs can act both by reversing ageing effects and mimicking responses. The 
general expectation from an ‘omics-based drug repurposing study is the identification 
of drugs that can reverse the abnormalities detected in the disease state i.e. 
identification of drugs with negative similarity scores (Duran-Frigola, Mateo, & Aloy, 
2017). Following the same logic, one might expect drugs with anti-ageing potential to 
have negative scores. Interestingly, some of the known pro-longevity drugs had 
positive similarity scores to the ageing signatures, meaning that the drug-induced 
profile was similar to the ageing signature. A plausible explanation for this 
observation is that ageing signatures may partly reflect cellular defense responses, 
helping to alleviate the damaging effects of ageing.  
 
Characterising the biological functions associated with pro-longevity drugs. 
In order to identify the biological processes associated with the changes that were 
reversed or mimicked by the pro-longevity drugs, we used the drugs documented in 
DrugAge, that were re-discovered in our analysis. We grouped the microarray ageing 
signature into five categories, based on the expression changes in ageing (up or 
down), and the pro-longevity drug-induced profile (up, down or inconsistent) 
(TableS5). To compile the pro-longevity drug profile, for each probe-set in the 
microarray ageing signature, we asked if the seven DrugAge drugs induced similar 
changes. If the same direction of change was induced by more than half of these 
DrugAge drugs, then we included these changes in the pro-longevity drug profile 
(see Methods for the details). We then analysed the biological processes associated 
with the genes in these categories. The number of genes is small, with no significant 
changes after multiple test correction. We therefore report the associations based on 
the highest odds ratios only. For genes down-regulated in ageing, the changes 
mimicked by the drugs were associated with autophagy and metabolic processes 
(Table S6), while for up-regulated genes, pro-longevity drugs tended to mimic the 
changes in protein complex / cellular complex assembly-related functions and to 
reverse the changes observed in protein localisation and immune-related functions 
(TableS6). These findings are consistent with the mechanism of action for the most 
well-known pro-longevity drugs. For example, sirolimus (rapamycin) is an 
immunosuppressant approved for human use, and similar drugs can enhance the 
response of elderly humans to immunization against influenza (Mannick et al., 2014).
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Discussion 
 
In this study, using gene expression data, we identified a set of drugs that are likely 
to modulate ageing in the human brain. Using a meta-analysis approach, we 
generated a reproducible ageing signature that represents multiple brain regions and 
is independent of the platform used for the detection of expression. Using the 
Connectivity Map, we identified drugs highly associated with this ageing signature. 
Based on the DrugAge database, seven of these drugs were previously tested on 
model organisms and prolonged lifespan in at least one experiment. The fact that we 
successfully re-discovered a statistically significant number of known lifespan 
modulators, without using any prior drug ageing information, suggests that the other 
drugs that we identified also have a high potential to be modulators of the ageing 
process / lifespan. Eleven of these had targets implicated in ageing, based on 
GenAge database (Tacutu et al., 2017). These targets include extensively studied 
ageing-modulators such as PI3K subunits and histone deacetylases. We also 
identified a group of novel candidates that are not in ageing databases, which can 
offer new targets and mechanisms to modulate ageing. These include drugs 
targeting serine / threonine, muscarinic acid, and GABA(A) receptors, protein 
translation, and BCL6 gene. A literature research presented in SI provides more 
information on potential mechanisms and suggests the list includes drugs that can 
influence both life- and health-span in humans.   
 
‘Omics-based drug repurposing studies, such as the CMap, aim to identify drugs 
reversing the profile induced by a biological state of interest. However, when the 
biological state of interest composes of subtle changes, the ‘omics profile may also 
reflect the cellular response to the biological state as well as the causative ones. 
Ageing is a time-dependent, complex phenomenon, which induces subtler changes 
compared to development (Dönertaş et al., 2017), or to a disease state such as 
Alzheimer’s (Avramopoulos, Szymanski, Wang, & Bassett, 2011). In order to 
discover if the nature of the association between drugs and ageing, we provide a 
selection of the information available in the literature for each drug as supplementary 
information.  
 
It is important to note that none of the cell lines used to generate the CMap data 
originates from the brain. The assumption for using the CMap algorithm is that the 
effect we see in diverse cell-lines reflects the global profile of the drug perturbation 
and thus should be also transferable to the brain. However, it is possible that drugs 
have cell or tissue-specific effects. Nevertheless, the evidence in the literature 
regarding the drugs we identified, and their targets suggests that these are plausible 
hits. It is also possible that there are drugs which can target brain ageing with more 
potency, but we cannot identify them because we do not have drug-induced 
expression profile for the brain cells. Another important technical drawback is that the 
data we used to generate the ageing signature are bulk RNA expression datasets, 
where the expression profile is an average of all the cell types in the human brain. 
Focusing on the changes that are observed ubiquitously across all brain regions, we 
aimed to focus on global changes which are unlikely to be driven by minor cell type 
differences. However, future datasets generated using single-cell expression profiling 
can greatly improve the understanding of both the ageing process itself and how the 
interventions work.  
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To summarise, this study provides an unbiased identification of drugs that can target 
human brain ageing. We first compiled a set of gene expression changes that can 
characterise human brain ageing and asked if there are drugs which alter the 
expression of the same genes. We identified 24 drugs, seven of which were among 
known pro-longevity drugs. Our analysis suggests that anti-ageing drugs may act by 
mimicking the response while it is also possible that they can reverse the detrimental 
changes in ageing. Based on the literature research, we concluded that some of the 
drugs we identified can directly modulate the lifespan, whereas some are more likely 
to function by improving the cognitive functions and promoting the healthy ageing. 
We are in the process of experimentally testing a group of the drugs that we have 
identified. We hope the information presented in this study will guide research 
community to further test and identify chemical modulators of the ageing process in 
humans.  
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Methods 
 
Data pre-processing 
Microarray datasets: We used seven microarray-based RNA expression studies with 
samples from 22 brain regions, that are not mutually exclusive (Table S1). Data from 
different brain regions are processed and analysed separately, resulting in 26 
datasets. The number of individuals in each dataset ranges between 11 and 148. 
The total number of individuals is 304, and the total number of samples is 805 (after 
removing the outliers). Some studies include samples covering the whole lifespan. 
However, in this study, we only considered samples above 20 years of age, which 
corresponds to the age at first reproduction in human societies (Walker et al., 2006). 
Previous human brain ageing studies using transcriptome data have also suggested 
gene expression patterns before and after the age of 20 are discontinuous 
(Colantuoni et al., 2011; Dönertaş et al., 2017). Since we are interested in finding 
consistent tendencies in terms of the direction of change, which can characterise 
ageing, we only included samples above 20 years of age. As a result, the samples 
included in the analysis had ages between 20-106. The microarray data were 
downloaded from NCBI GEO (Barrett et al., 2013) using the accession numbers in 
Table S1. Using “affy” (Gautier, Cope, Bolstad, & Irizarry, 2004) or “oligo” (Carvalho 
& Irizarry, 2010) libraries in R, RMA background correction is applied to the 
expression data. The data is then log2 transformed, and quantile normalized (using 
“preprocessCore” library in R). By visual inspection of the first and second principal 
components of the probe-set expression levels, outliers were excluded from the 
further analysis (Table S1). The age distributions for the datasets after outlier 
removal are given in Figure S1. Gene annotations for the probe-sets are obtained 
from the Ensembl database (Yates et al., 2015) using the ‘biomaRt’ library (Durinck, 
Spellman, Birney, & Huber, 2009) in R. Because the annotations for the probe-sets 
used in Kang2011 and Colantuoni2011 are not available in Ensembl, we used the 
GPL files deposited in GEO. If Ensembl gene IDs are not provided in the GPL files, 
Entrez gene IDs were extracted and converted to Ensembl Gene IDs using the 
‘biomaRt’ package. Probe-set level expression information is then mapped to gene 
IDs. In order not to duplicate expression values, we excluded the probe-sets 
corresponding to multiple genes. Expression values for the genes with multiple 
probe-sets were summarised using the mean expression levels. RNA-seq dataset: 
We analysed 13 different brain region transcriptome data generated by GTEx project 
(v6p)(Ardlie et al., 2015). Samples are filtered based on the cause of death 
circumstances (4-point Hardy Scale). Only the cases with a death circumstance of 1 
(violent and fast deaths due to an accident) and 2 (fast death of natural causes) are 
used for the downstream analysis and the samples with illnesses are excluded. The 
final set that we analysed includes 623 samples from 99 individuals. The genes with 
median RPKM value of 0 are also excluded from data. The RPKM values provided in 
the GTEx database are log2 transformed and quantile normalized for the 
downstream analysis. Similar to the microarray data, we excluded the outliers based 
on the visual inspection of the first and second principal components (Table S1). 
Distribution of the ages after outlier exclusion is given in Figure S1.  
 
Age-related expression changes and the ageing signature 
The Spearman’s rank correlation coefficients between age and gene expression 
levels are used to measure age-related expression changes.  In each dataset, we 
calculated the Spearman’s correlation for each gene, separately. As a result, each 
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gene had two measures to assess its age-related expression: 1) a correlation 
coefficient (rho), indicating the strength and the direction of change with age and 2) a 
p-value, showing the significance of the association. The p-values are corrected for 
multiple testing using p.adjust function in R, with method=“FDR” argument. As the 
power to detect significant changes in each dataset is different and the sample size is 
small for most of the datasets, for the downstream analysis we only used the 
correlation coefficients (rho) and assessed the significant gene expression change 
tendencies that are observed in all datasets. When a gene is up-regulated by age 
throughout the lifespan, then it would have a positive Spearman’s correlation 
coefficient that is close to one. In contrast, a gene would have negative correlation 
coefficient if it is down-regulated. When the association is not strong, the magnitude 
of the correlation coefficient decreases, but the sign still reflects the direction of 
change that is observed in most of the time-points. We used the sign of correlation 
coefficient, i.e. the direction of change, to compile the set of genes that show 
consistent changes across all datasets. This set of genes are referred to as the 
‘ageing signature’. The ageing signature, thus, does not reflect the dramatic changes 
in gene expression but captures consistent trends that are observed across all 
datasets. The statistical significance of the ageing signature is calculated using a 
permutation scheme, testing the significance of the consistency.  
 
Permutation test 
We used a permutation scheme that we developed earlier (Dönertaş et al., 2017), to 
simulate the null hypothesis that there is no association between age and the gene 
expression, while retaining the dependence between genes and the datasets. 
Particularly, the ages of individuals in each study are permuted (randomised) 1,000 
times and if that individual donated multiple samples for different brain regions, each 
sample is annotated with the same age. Then, the Spearman’s correlation coefficient 
between these randomised ages and the gene expression value for all genes are 
calculated. In this way, we retain the dependence between genes (e.g. those 
regulated by the same transcription factor) and the samples (e.g. donated by the 
same individuals). Permutations are performed using ‘sample’ function in base R.  
 
Using the correlation coefficients calculated through permutations performed as 
explained above, we tested i) significance of the correlations among datasets, ii) 
significance of the finding the same or a higher number of consistently up- or down-
regulated genes, i.e. the ageing signature. In order to test the significance of the 
correlations among datasets, we calculated the correlations between the expression-
age correlation coefficients calculated using the permutations. We constructed the 
distribution for the median correlation coefficient among datasets (distribution of the 
1,000 values), and calculated how many times the randomized values have higher 
correlation than the value we calculate using the real ages. In this way, we calculate 
an empirical p-value. The median of the permuted values reflects the value that 
would be expected by chance. Similarly, in order to test the significance of the ageing 
signature, we compiled permuted ageing signatures, for 1,000 times, and asked how 
many times we have the same or higher value than the calculated number of genes 
in the microarray or GTEx ageing signatures. In this way, we calculate the empirical 
p-value and median of the number of shared tendencies based on permutations, 
reflecting what would be expected by chance. 
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Gene Ontology Enrichment 
Using “topGO” and “org.Hs.eg.db” libraries in R, we performed a functional analysis 
of the ageing signature. Using GO categories with more than 10 annotated genes, 
we applied an enrichment test for the Gene Ontology (GO) (Ashburner et al., 2000) 
Biological Process (BP) categories.  
 
Connectivity Map Analysis 
A list of genes showing a consistent change in ageing (the ageing signature) is used 
to query the Connectivity Map (Lamb, 2006). Since the Connectivity Map input 
requires probe-set ids, the “biomaRt” package in R is used to convert the gene list to 
the probe-set ids that are compatible with the CMap data. The probe-sets that are in 
both up- and down-regulated probe-set lists are excluded from both lists. The final 
lists are used to query CMap database to associate the ageing signature with the 
drug perturbed expression profiles in the database. The resulting p-values are FDR 
corrected to account for multiple testing and adjusted p<0.05 is used as the 
significance threshold.  
 
The ageing signature compiled using the GTEx data had more than 500 probe-sets 
in both up and down lists.  Since the algorithm requires an input with less than 500 
entries, we used the ones with the higher magnitude of expression change (median 
Spearman’s rank correlation coefficients across 13 brain regions). In order to show 
that this does not bias the results, we repeated this step for 1,000 times by randomly 
selecting 500 of the probe-sets in the GTEx ageing signature. In order to automatize 
this process, we re-implemented CMap algorithm in R and calculated the drug 
similarity scores using the ‘rankMatrix.txt’ data provided on the CMap website. Drug 
similarity scores generated using the top 500 and randomly selected 500 of the GTEx 
ageing signature showed a significant correlation (median rho = 0.81, range = 
(0.80,0.82)), suggesting that this approach does not bias the results. 
 
Searching the drug databases for CMap drugs 
Entries in the Connectivity Map are composed of the drug names, which are 
generally the catalogue names for the drugs from chemical vendors. Similarly, 
DrugAge drugs also do not have an ID that is possible to map across different 
databases. The DrugAge database was retrieved on 11th May 2017, from the 
DrugAge website. In order to compare the drugs in the Connectivity Map and the 
DrugAge, we first used the PubChem database (Kim et al., 2016) to make a 
transition across different sources. We obtained PubChem compound IDs for each 
drug in the Connectivity Map and DrugAge using PubChem API accessed through R 
programming environment and ‘RCurl’ and ‘jsonlite’ libraries.  
 
Targets of the drugs that are significantly associated with ageing 
We compiled the drug-target associations for the drugs significantly associated with 
ageing mostly through literature research. For the cases where the database entries 
are manually curated and consistent, we used CHEMBL (Bento et al., 2014), 
DrugBank (Law et al., 2014), and PubChem (Kim et al., 2016). We downloaded 
GenAge model organism and human datasets (Tacutu et al., 2017) on 10th October 
2017 using GenAge website. Using the human orthologues for the model organisms 
(genage_models_orthologs_export.tsv) and the human dataset, we asked if any of 
the drug targets were previously shown to be implicated in ageing. In order to 
construct the drug – target network, we used ‘ggnetwork’ package in R.  
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The Pro-Longevity Drug Expression Profile 
In order to compile a set of gene expression changes that can be associated with the 
known pro-longevity drug profile, we first downloaded the pre-processed data matrix 
with the drug-induced expression changes (‘amplitudeMatrix.txt’ from CMap FTP 
server ftp://ftp.broadinstitute.org/distribution/cmap). Using this matrix, for the seven 
pro-longevity drugs in DrugAge that are among the significant associations according 
to our analysis, we generated a pro-longevity drug profile. We first identified the drug-
induced gene expression changes for each of these seven drugs and each of the 
probe-sets that are in the microarray ageing signature. For each drug – probe-set 
pair, we take the direction of change that is observed in at least 60% of the 
experiments (using different doses or different cell lines) as the effect of that drug on 
the expression of that probe-set. After deciding on the individual drug effects, we took 
the type of change observed in at least four of seven drugs as the pro-longevity drug 
profile. The reason why we do not seek a perfect overlap among different drugs is to 
allow potentially different mechanism of actions to be included in the pro-longevity 
drug profile. As a result, we got five categories: 1) increase in ageing, increased by 
the drugs; 2) increase in ageing, decreased by the drugs; 3) decrease in ageing, 
increased by the drugs; 4) decrease in ageing, decreased by the drugs; and 5) the 
ones that are not affected consistently by the drugs. The full list of genes in the first 
four categories is given as TableS5. We also asked if any of the GO Biological 
Processes is enriched in any of the first four categories and thus did an enrichment 
analysis. We calculated the odds ratio for each GO category by keeping the type of 
change in ageing the same. For example, we asked if a GO category is enriched in 
genes that increase in ageing and also increased by the drugs, compared to the 
genes that increase in ageing but decreased by the drugs. Because the number of 
genes is small, it is not possible to detect significant associations after correcting for 
multiple testing and thus we only report the odd’s ratios for the categories (Table S6). 
We also compared the known pro-longevity drug profile we compiled with the profile 
induced by the 24 drugs identified in the study (Figure S9). We calculated the 
percentage of probe-sets that show the same type of change as the pro-longevity 
drug profile. For this, we again only considered probe-sets that show the same type 
of change in at least 60% of the experiments per drug.  
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