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Abstract 

Planning an accurate reach involves the transformation of the neural 

representation of target location in sensory coordinates into a command for hand motion 

in motor coordinates. Although imaging techniques such as fMRI reveal the cortical 

topography of such transformations, and neurophysiological recordings provide local 

dynamics, we do not yet know the real-time dynamics of sensorimotor transformations at 

the whole brain level. We used high spatiotemporal resolution magnetoencephalography 

(MEG) during a pro-/anti-reaching task to determine (1) which brain areas are involved 

in transforming visual signals into appropriate motor commands for the arm, and (2) how 

this transformation occurs on a millisecond time scale, both within and across the regions 

involved. We performed time-frequency response analysis and identified 16 bilateral 

brain regions using adaptive hierarchical clustering (Alikhanian et al. 2013). We then 

computed sensory, motor, and sensorimotor indices for direction coding based on 

hemispherically lateralized de/synchronization in the α (7-15Hz) and β (15-35Hz) bands. 

Importantly, we found a visuomotor progression both within and across these areas, from 

pure sensory codes in some ‘early’ areas (V1/2, V3/3a and SPL), to a temporal transition 

from sensory to motor coding in the majority of parietal-frontal areas (SPOC, AG, POJ, 

mIPS, VIP, IPL, STS, S1, M1, SMA, PMd and FEF), to a pure motor code (PMv only), 

in both the α and β bands. Further, the timing of these transformations revealed a pro/anti 

cue influence that proceeded from frontal to posterior cortex. These data directly 

demonstrate a progressive, real-time transformation both within and across the entire 

occipital-parietal-frontal reach network that follows specific rules of spatial distribution 

and temporal order.  
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Introduction 

Planning a reach movement requires the transformation of visual signals into the 

motor signals suitable to activate the relevant muscle groups (Kalaska and Crammond 

1992; Soechting and Flanders 1992; Andersen and Buneo 2002; Crawford et al. 2011). 

Distinguishing the spatial tuning of visual and motor signals can be challenging because 

stimulus and movement direction often correspond. One way to address this problem is 

by coupling neurophysiological or neuroimaging recordings with tasks that dissociate the 

stimulus from the response (Connolly et al. 2000; DeSouza et al. 2003; Gail and 

Andersen 2006; Gail et al. 2009; Gertz and Fiehler 2015; Kuang et al. 2016; Cappadocia 

et al. 2017). However, the temporal limitations of fMRI do not allow recording of the 

real-time dynamics of sensorimotor transformations, whereas the local nature of invasive 

neurophysiological recordings do not allow observation of the sensorimotor 

transformations at the whole-brain level. Consequently, the dynamic, coordinated, 

mechanistic involvement of different human brain areas in visuomotor transformations, 

i.e. the distribution and order of cortical events in real time, remains largely unknown. 

Previous neurophysiological, imaging, and neuropsychological studies suggest 

that the parietal-frontal network is responsible for the sensory-to-motor transformation 

underlying reach planning (Buneo and Andersen 2006; Medendorp et al. 2011; Vesia and 

Crawford 2012). It is generally believed that visual stimulus direction is compared to 

initial hand position to calculate a movement vector in a cortical network that includes 

superior parietal-occipital cortex (SPOC), mid-posterior intraparietal cortex (mIPS), and 

dorsal premotor cortex (PMd) (Pesaran et al. 2006, 2010; Khan et al. 2007; Chang et al. 
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2009; Vesia et al. 2010). Further, it is thought that in occipital-parietal cortex these 

parameters are coded relative to the eye, whereas they are transformed by the parietal-

frontal network to result in effector-centered coordinates in frontal areas (Batista et al. 

1999; DeSouza et al. 2000; Snyder 2000; Kakei et al. 2001, 2003; Fernandez-Ruiz et al. 

2007; Khan et al. 2013). Finally, it has recently been noted that these transformations are 

not entirely serial; it appears that human occipital cortex is reactivated, perhaps through 

reentrant pathways and perhaps through imagining the goal, during the planning and 

execution of reaches (Singhal et al. 2013; Chen et al. 2014; Cappadocia et al. 2017).  

Previous neuroimaging studies have capitalized on lateralized direction 

selectivity, i.e., right target/movement representation in left brain vs. left representation in 

right brain, to investigate visuomotor transformations in human cortex (Medendorp et al. 

2003, 2005, Beurze et al. 2007, 2009, 2010; Fernandez-Ruiz et al. 2007; Bernier et al. 

2012; Vesia and Crawford 2012; Chen et al. 2014). In particular, this affords the 

opportunity to use simple stimulus-response dissociation tasks such as ‘anti-pointing’ to 

trace the progression of coding of remembered visual direction versus planned movement 

direction through a sensorimotor network (Curtis and D’Esposito 2006). In anti-reaching 

(like anti-saccades), participants are instructed to point or reach in the opposite direction 

to the visual stimulus, sometimes after a delay. Such studies have generally found 

contralateral stimulus coding in occipital cortex during target representation and 

movement direction coding in parieto-frontal cortex during movement planning and 

execution (Connolly et al. 2000; Chen et al. 2014; Gertz and Fiehler 2015). Further, a 

slow event-related fMRI design has shown a progression from visual to motor coding 

both within and across areas in the occipital-parietal-frontal axis (Cappadocia et al. 
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2017). However, the neurovascular underpinnings of fMRI do not allow the real-time 

characterization of dynamics, e.g. the temporal ability to discriminate feed-forward from 

feed-back mechanisms, or clearly discriminate oscillatory network behavior from discrete 

spiking activity (Logothetis 2008; Kuang et al. 2016).  

Conversely, single and multiunit recordings have the advantage of providing 

direct measures of neural activity and can discriminate action potentials from 

subthreshold and oscillatory network activity; e.g., Gail and colleagues have utilized this 

advantage in monkeys trained to perform the anti-reach task (Gail and Andersen 2006; 

Gail et al. 2009; Kuang et al. 2016). These experiments show that local field potentials in 

the primate parietal reach region (probably corresponding to mid posterior intraparietal 

and superior parietal-occipital cortex in the human) primarily encode the direction of 

visual input, whereas action potentials primarily encode the future movement direction. 

Like anti-saccade studies (Munoz and Everling 2004; Zhang and Barash 2004), these 

experiments show a capacity for multiple simultaneous codes and remapping of 

information within neurons. However, experiments in monkeys require extensive training 

to obtain results (potentially re-wiring the brain), are limited to one or a few brain areas, 

and may evoke species differences (Munoz and Everling 2004; Cappadocia et al. 2017). 

While both fMRI and animal electrophysiology are critical and complementary 

techniques, there is also the need for a technique that might bridge the technical gap 

between them. Magnetoencephalography (MEG) is a promising candidate, because it 

provides simultaneous recordings from the entire brain in untrained humans, yielding a 

relatively direct link to ensemble neuronal activity (compared to the neurovascular 

coupling in fMRI). MEG also naturally provides frequency-dependent measures of brain 
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oscillations, and millisecond temporal resolution. Spatial resolution and source 

localization in MEG have long been an issue, but this too has made recent advances 

(Alikhanian et al. 2013; Cheyne 2013). MEG has already been used to show that working 

memory-related γ band activity codes goal location rather than stimulus position in a 

delayed anti-saccade task (Van Der Werf et al. 2008). Such results point towards a 

gradual sensorimotor transformation across several brain areas, but a whole-brain 

analysis of anti-pointing has not yet been attempted.  

Here, to reveal the dynamics and source of the sensory-to-motor transformation 

for manual control at the whole-brain level, we combined high spatial-temporal 

resolution MEG with a delayed pro-/anti-pointing task designed to dissociate sensory 

from motor activity. Based on current models of sensory-motor transformations (see 

Discussion for details), we predicted to see either a gradual feed-forward transformation 

from sensory to motor coding along cortical space, or a transformation from sensory to 

motor coding across time within a single (or small group of) area – presumably within 

parietal-premotor cortex. Isolating sensory, sensorimotor, and motor codes in real time 

using a whole-brain source reconstruction analysis, we show 1) a lateralized sensory-to-

motor gradient along the occipital-to-parietal-to-frontal axis, 2) a progressive spatial 

transformation from sensory to motor coding both within and across these areas, and 3) 

an inverse frontal-to-posterior temporal transformation in response to the top-down 

pro/anti instruction. 
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Methods 

We used MEG to investigate the visual-to-spatial reference frame transformation 

in human cortex. MEG signals result through Maxwell’s law from the net local dendritic 

ionic currents produced during synaptic transmission in pyramidal cell layers of cortex 

(Murakami and Okada 2006; Hansen et al. 2010; Lopes da Silva 2013). MEG surface 

signals can be used to perform source reconstruction which is largely immune to tissue 

boundary effects (unlike EEG), resulting in high temporal AND spatial resolution (Baillet 

2017). Since MEG signals are most detectable from currents that are tangential to the 

scalp, the most reliable signals can be measured from cortical sulci (Hillebrand and 

Barnes 2002).  

Natural dynamics result in a variety of emergent, endogenous rhythms in the 

central nervous system. Synchronized oscillations in neural ensembles can occur due to 

synchronization from oscillatory activity of distant connected brain areas (Pikovsky et al. 

2002), or due to intrinsic neuronal properties and local connectivity leading to 

synchronous population resonance effects (Zeitler et al. 2009). Amplitude changes in 

ongoing natural rhythms (e.g., α: 7-15 Hz; and β: 15-35 Hz) can result from changes in 

local de/synchronization induced by sensory-motor or other events (Salmelin and Hari 

1994; Pfurtscheller et al. 1998; Pfurtscheller and Lopes da Silva 1999; Neuper and 

Pfurtscheller 2001; Jurkiewicz et al. 2006). We take advantage of this coupling to 

investigate how different cortical areas process sensory and motor information in a 

differential manner (Hansen et al. 2010). 
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Participants 

We recorded data from ten healthy adult participants (eight males and two 

females, 22-45 years old). We used this number of participants because we can collect 

many more repetitions per participant in MEG experiments than in typical fMRI 

experiments, and due to the mathematically precise nature of electro-magnetic coupling, 

appropriate statistics reduce the risk of false statistical positives (see Statistical Methods). 

Participants were screened prior to participation in this study; none of the participants had 

any known history of neurological dysfunction, injury or metallic implants and all (but 

one with amblyopia) participants reported normal or corrected-to-normal vision. This 

study was approved both by the York University and The Hospital for Sick Children 

research ethics boards. All participants gave informed consent. 

MEG setup, behavioral recordings and anatomical MRIs 

Participants sat upright in an electromagnetically shielded room with their head in 

the dewar (see Figure 1C) of a whole-head 151-channel (axial gradiometers, 5 cm 

baseline) CTF MEG system (VSM Medtech, Coquitlam, Canada) at The Hospital for 

Sick Children. Noise levels were below 3fT/√𝐻𝑧 above 1.0 Hz. Prior to MEG data 

acquisition, each participant was fitted with coils placed at three fiducial landmarks 

(nasion and pre-auricular points) that were localized by the MEG acquisition hardware to 

establish the position of the participant's head relative to the MEG sensors. Coil 

placements were carefully measured and photographed for off-line co-registration of 

recorded MEG data to anatomical MR images obtained for each participant. 
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Figure 1: Set-up. A. Time line of trials. Each trial started with a fixation cross. 500ms 

later, the cue was flashed for 200ms at one of 4 possible locations (see panel B). The cue 

was either red or green indicating whether subjects were in a pro- or anti-condition. After 

the cue onset, there was a 1500ms memory delay. Then the fixation cross was dimmed, 

which was the movement instruction for the participants. Participants had to perform 

either a pro- or an anti-pointing movement and had 1500ms to do so. Then the fixation 

cross disappeared for 500ms to indicate the end of the trial. Subjects were instructed to 

return to the central initial hand position during this period. B. Visual arrangement of 

display. Subjects were instructed to keep fixating the white cross during the whole trial. 

The gray doted outlines indicate the potential locations of the cue. The screen was 

approximately 80cm distant from the subjects and targets were located at 5 and 10cm on 

either side of the fixation cross. C. Photograph of the setup. Subjects sat upright in the 

MEG apparatus with their head inside the dewar. Their arm was held by a forearm rest. 

We used the wooden frame to hold the light interrupters that detected when subjects 

pointed to the left or right. 
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We measured participants’ horizontal eye movements through electro-

oculography (EOG) using two bipolar temporal electrodes. In order to quantify horizontal 

wrist pointing movements (see ‘Task’ below), we also measured the electro-myographic 

(EMG) activity of forearm muscles using a bipolar differential configuration with four 

pairs of 3 cm distant electrodes. Those pairs were placed on the Extensor Carpi Radialis 

Longior (ECRL), Extensor Communis Digitorum (ECD), Extensor Carpi Ulnaris (ECU), 

and Supinator Longus (SL) muscles. Electrodes for both EMG and EOG recordings were 

Ag/AgCl solid gel Neuroline (Ambu) electrodes of type 715 12-U/C. EMG and EOG 

channels were part of the CTF MEG recording system. In order to simplify EMG-based 

movement detection and movement direction, we also recorded the time when the 

participant’s finger passed through one of two light barriers mounted about 2cm left and 

right of straight-ahead wrist position.  

Visual stimuli were back-projected onto a translucent tangential screen at a 

distance of 1-m. Stimuli were rear-projected through the shielded room wall and 

controlled in real time by the Presentation program (Neurobehavioural Systems, Inc., 

Albany, CA, USA). Timing and condition information for each trial was sent to the CTF 

MEG recording system through a parallel port cable and was recorded in real time. 

Before or after the MEG recording, we also obtained structural (T1-weighted, 3D-

SPGR) MRI scans from a 1.5 T Signa Advantage System (GE Medical Systems, 

Milwaukee, WI). These scans were used for co-registration of the MEG dewar-based 

coordinate system to each participant’s brain coordinates by identifying the locations of 

the head localization coils on orthogonal slices of each participant's MRI. For each 
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participant, the inner skull surface was derived from T1-weighted MR data using the 

BrainSuite software package (Shattuck and Leahy 2002).  

Task 

To dissociate between sensory and motor coding in the brain, we designed a pro-

/anti-pointing task (Figure 1A-B). At the beginning of each trial, a white fixation cross 

appeared at the center of the screen at eye level and participants were required to fixate 

that cross throughout the trial. 500 ms later, a green or red dot (5 mm diameter) appeared 

for 200ms either 5 cm (close) or 10 cm (far) left or right of the fixation cross. Target 

color indicated whether participants had to point towards the target (green: pro trials) or 

to its mirror opposite location (red: anti trials). Target color codes were counter-balanced 

across participants. Presenting the instruction cue together with the goal was crucial to 

our experimental design to uncover the sensory-to-motor transformation in real time. 

After a 1,500ms delay, the movement was cued by dimming the fixation cross on the 

screen.  

Participants performed four blocks of 400 trials each of this task. They carried out 

three blocks with their right hand in the pronation, upright and down postures 

respectively. Each block contained a pseudo-random balanced set of 50 trials for each 

condition (combination of: close/far, left/right, pro/anti). We chose two different target 

eccentricities to encourage participants to program each individual movement instead of 

recalling a default left or right movement, but we averaged across close and far target 

locations for each condition in the data analysis.  
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Data processing 

All analyses were done in Matlab (The Mathworks, Inc., Natick, MA, USA). 

MEG, EMG and EOG data were collected at 625 Hz. MEG data were online low-pass 

filtered at 200 Hz using synthetic third-order gradiometer noise cancelation. For detection 

of pointing movement onset, EMG data were band-pass filtered offline from 15 Hz to 

200Hz and full-wave rectified. Movement onsets were marked using an automated 

algorithm that detected when the EMG signals rose above 3 SD of the baseline EMG 

activity (measured before target onset). The first detection across all four muscles was 

used as the movement onset time and visually inspected and manually corrected, if 

necessary (<2% of trials). All data were then aligned to both cue onset (-500 ms to 

1,500 ms around cue onset) and movement onset (-1,500 ms to 500 ms around movement 

onset) and extracted for further analysis.  

We reconstructed instantaneous source power from the raw MEG sensor data 

using event-related Synthetic Aperture Magnetometry (SAM) beamforming (Cheyne et 

al. 2007). All further analyses were conducted in source space. For spatial averaging 

across participants, individual participants’ source activity was transformed into 

Talairach space using standard affine transformations in SPM and then projected onto a 

surface mesh of an average brain (PALS-B12 atlas (Van Essen 2005)) using Caret (Van 

Essen et al. 2001). To identify consistently activated brain regions, we used an adaptive 

clustering approach (Alikhanian et al. 2013). Note that with this approach, the 

identification of brain areas operates on the raw, non-contrasted, time-averaged whole-

brain activations and was thus orthogonal to our stimulus-condition contrasted analysis 

(see below), making this approach statistically valid and sound (Kriegeskorte et al. 2009; 
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Kilner 2013). We then placed “virtual sensors” in the identified areas and extracted trial-

to-trial source activity at those locations (using the same event-related SAM beamformer 

as above). These source data were used to compute time-frequency responses (TFRs) 

using the SPM-based Brainwave toolbox (http://cheynelab.utoronto.ca) and custom code. 

In all analyses, we considered the 500ms window prior to cue onset (-500 to 0ms) 

as the baseline (see Figure 1). All signals were referenced (i.e. normalized with respect 

to) to the frequency-dependent average power of the baseline period. For average whole-

brain analyses, individual participant source power was estimated for a given frequency 

range using the above-mentioned beamformer and individually referenced before 

averaging. Whole-brain activity plots were thresholded based on signal power, not 

statistical significance to better appreciate source power. For presentation purposes, data 

from left and right hemispheres are collapsed (subtraction), as this is commonly done 

(e.g. (Van Der Werf et al. 2008)). Similarly, TFR analyses were computed at the 

individual participant level as the relative changes of oscillatory power with respect to 

baseline and then averaged across participants. 

Data analysis 

We carried out an event-related analysis of MEG data during our delayed pro-

/anti-pointing task. To do so, we aligned individual trials to either cue onset times or 

wrist movement onset times, as measured by EMG. A typical trial is shown in Figure 2. 

Time series for EOG, EMG and selected MEG channels are shown along with two spatial 

snapshots of scalp magnetic fields. Movement onset for this particular trial can be seen 

easily in the EMG signals after the movement cue and EOG shows good fixation 

performance. Individual participant movement times are summarized in Table 1. In our 
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subsequent analysis, we focused on the conventional α (visual) and β (motor) frequency 

bands of MEG signals, because these are thought to relate to sensorimotor performance, 

as opposed to γ activity which is thought to relate more to memory / cognitive activity 

(Hansen et al. 2010; Lopes da Silva 2013). 

 

Figure 2: Typical trial. Time series of EOG, EMG and example MEG channels are 

shown for a single trial. Snapshots of scalp potentials at two different time points (125ms 

and 255ms after cue onset) are represented above the time series and show how the MEG 

amplitude can change over scalp space and time within a single trial. Flat EOG signal 

shows good fixation performance. EMG signals clearly demonstrate movement onset in 

Extensor Carpi Radialis Longior (ECRL), Extensor Communis Digitorum (ECD), 

Extensor Carpi Ulnaris (ECU), and Supinator Longus (SL) muscles. MEG channel labels 

(starting with M) indicate right/left occipital lobe (LO and RO), right/left parietal lobe 

(RP and LP) and right/left central lobe (LC and RC) sensor locations (bold sensors on 

scalp potential plots). We used the 500ms fixation period prior to cue onset as the 

baseline for all further analyses. 
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Table 1: Movement time analysis. Mean, STD and percentiles are shown in s after cue 

onset. The move instruction was at 1.5s.  

Subj. ID Mean STD 10% 25% 50% 75% 90% 

1 1.9412 0.1530 1.7904 1.8464 1.9184 2.0096 2.1104 

2 1.8547 0.1295 1.7248 1.7760 1.8416 1.9168 2.0078 

3 1.7856 0.2198 1.6371 1.6912 1.7552 1.8468 1.9408 

4 1.9606 0.4440 1.6128 1.7440 1.8960 2.1920 2.5360 

5 1.6868 0.1783 1.5344 1.6176 1.6912 1.7492 1.8128 

6 1.6881 0.2639 1.4384 1.6064 1.6976 1.7952 1.9120 

7 1.7593 0.1239 1.6704 1.7056 1.7488 1.8000 1.8528 

8 1.7565 0.4443 1.3344 1.5552 1.6800 1.9440 2.3232 

9 1.7696 0.1888 1.6496 1.6928 1.7456 1.8064 1.8928 

10 1.6031 0.1404 1.4176 1.5232 1.6256 1.6752 1.7328 

Merged 1.7890 0.2786 1.5680 1.6704 1.7600 1.8768 2.0416 

Averaged 

STD 

1.8154 

0.0829 

0.2642 

0.1090 

1.5937 

0.1330 

1.6893 

0.0855 

1.7749 

0.0833 

1.9048 

0.1261 

2.0826 

0.2034 

 

Our behavioral paradigm was designed to dissociate sensory from motor-related 

activity. In particular, pro- and anti-pointing trials required the same spatial stimulus to 

be transformed into different motor plans. In addition, we made use of the brain’s 

lateralization in spatial coding to separate sensory and motor coding in a fashion similar 

to the analyses employed successfully in recent neurophysiology (Kuang et al. 2016) and 

neuroimaging (Gertz and Fiehler 2015; Cappadocia et al. 2017) anti-reach studies. We 

thus extracted spatially selective brain activation by subtracting TFR results obtained 

from right and left stimulus/movement direction (depending on the analysis). 

Specifically, we hypothesized that sensory coding should discriminate between left and 

right stimulus location and should be independent of motor outcome (pro or anti). How 
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this works is illustrated in Figure 3. To look for sensory coding, we thus computed the 

differential TFR of the following experimental conditions:  

Sensory coding = SL|pro+anti – SR|pro+anti     Eq. 1 

, where SL/R stands for left and right stimulus direction irrespective of movement 

direction, i.e. adding pro- and anti-effects together. By adding pro- and anti-trials 

together, any motor-related effects should average out because pro- and anti-trials result 

in spatially oppositely directed movements. Any significant component in the TFR would 

thus point towards a sensory code in the brain area under investigation. Conversely, to 

look for motor coding, we subtracted pro- and anti-trials because both result in opposite 

movements, thus emphasizing this difference while subtracting out any sensory coding 

effects, as illustrated in Supplementary Figure 1: 

Motor coding = SL|pro-anti – SR|pro-anti = ML|pro+anti – MR|pro+anti   Eq. 2 

, where ML/R stands for left and right movement directions irrespective of stimulus 

location. This differential activity for investigating sensory coding and motor coding was 

computed both for the sensory (cue) and motor (movement) alignments of the data, i.e. 

highlighting early (stimulus-related) and late (movement-related) coding schemes during 

the sensory-to-motor transformation. Since we were not interested in posture effects here 

and to increase statistical power of our results, we averaged data across all three right arm 

postures (left arm data were not included).  
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Figure 3: Sensory and motor coding predictions. A. Prediction for time-frequency 

response (TFR) results if an area codes sensory information (left) or motor information 

(right). For sensory information, activation patterns should be similar for left (L) and 

right (R) target locations, irrespective of the actual movement required, i.e. whether it is a 

pro- or anti-trial. For motor information, activation patterns should be similar for left 

(proL, antiR) and right (antiL, proR) movement directions, irrespective of the cue 

location. B. Stimulus-related averaged α-band TFR of the right medial intraparietal sulcus 

(mIPS) aligned to cue onset and averaged across pro, anti, L and R (red: re-

synchronization; blue: desynchronization). C. Average-subtracted TFR for individual 

conditions for right mIPS. The similarity of left pro and anti, and right pro and anti TFRs 

points towards a sensory code. D. Subtracted activations for sensory coding (left panel, 

eq. 1) and motor coding (right panel, eq. 2). 

 

We also computed a sensory-motor coding index to capture whether a given 

bilateral brain area predominantly codes information in sensory or motor coordinates. To 

do so, we used the above sensory coding (SC) and motor coding (MC) schemes as 

follows: 
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𝒊𝒏𝒅𝒆𝒙 =
𝑆𝐶−𝑀𝐶

𝑚𝑎𝑥(𝑆𝐶)+𝑚𝑎𝑥(𝑀𝐶)
       Eq. 3 

The sign of SC and MC were adjusted so that all main effects were positive. As a 

result, index=1 corresponds to perfect sensory coding, whereas index=-1 would be ideal 

motor coding (note that index=1 values can only be obtained in noise-free data). We 

used the dominant α-band and β-band frequencies (10Hz and 20Hz, 1Hz band width) 

respectively and computed this index separately for each frequency and each trial, 

resulting in meanSD for each time point and frequency. We then combined both time 

series in a statistically optimal fashion independently at each time point according to 

standard unbiased Bayesian integration with a Gaussian assumption. Results in Figure 8 

are thus across-frequency sensory-motor coding indices.  

Statistical analysis 

All contrasts (Eqs. 1-3) were computed for a given ROI source location from the 

clustering results on an individual-participant level and then averaged across participants. 

Statistical significance tests were conducted at the participant population level for 

individual time series of a given frequency based on TFR analyses. To evaluate statistical 

significance of this single-source analysis, we determined when the source power / 

sensory-motor index across participants was different from zero for at least 100ms 

(temporal clustering) in order to account for the multiple comparison problem (Maris and 

Oostenveld 2007). We used a conservative combined criterion, i.e. both 2-sided t-test and 

Wilcoxon rank-sum tests had to be significant (p<0.05) for a given time point. Since we 

identified significantly activated relevant brain areas using adaptive clustering 

(Alikhanian et al. 2013), thus did not perform statistical testing for whole-brain plots.  
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Results 

General predictions and results 

Since we were interested in the dynamics of individual brain areas during the 

sensory-to-motor transformation, we first performed source reconstruction and identified 

relevant brain areas showing significant activation in our task for each individual 

participant using adaptive clustering (see Methods). A total of 16 identified brain areas of 

interest were detected in each hemisphere and the coordinates are summarized in Table 2 

for both hemispheres. We then placed virtual sensors in these locations and extracted 

single-trial time courses for each participant. This allowed us to compute time-frequency-

responses (TFRs) separately for each participant and condition and analyze results across 

participants to obtain between-participant statistics. Note that (unlike BOLD activation in 

fMRI), the relevant variables here are desynchronization and resynchronization, both 

indicating a change in functional processing. Resynchronization is believed to arise from 

an increase of synchronous spike timing or membrane fluctuations in neurons and 

generally arises from internal recurrent processing in the brain, such as observed during 

motor preparation; desynchronization is observed when the natural rhythm of a brain area 

is disrupted, as is the case when sensory signals are being processed (Haken 1996; 

Pfurtscheller and Lopes da Silva 1999; Hansen et al. 2010).  

To investigate whether a brain area would carry sensory or motor information (or 

both), we extracted the sensory code and motor code from our data, as described in the 

methods. The underlying assumption was that if an area only coded sensory aspects, then 

only the target location would determine the activation of that area, independently of the 

movement direction, i.e. regardless of whether it was a pro- or anti-trial. Conversely, 
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motor coding would result in same TFR activation patterns for same movements, 

independently of target location.  

 

Table 2: Average Talairach coordinates (mm) of brain areas. Areas were identified 

using an adaptive clustering approach (Alikhanian et al. 2013) and from literature 

(indicated by references). 

Brain area Left hemisphere Right hemisphere 

V1/2 -8,   -91, 0 7,   -89, 1     (Martínez et al. 1999) 

V3/V3a -21, -85, 16 20, -87, 15   (Tootell et al. 1997; Martínez et al. 1999) 

SPOC -9,   -71, 37 10, -77, 34 

AG -35, -61, 35 32, -70, 35 

POJ -18, -79, 43 16, -79, 43    (Prado et al. 2005) 

SPL -23, -54, 46 27, -55, 49 

mIPS -22, -61, 40 23, -62, 40 

VIP -37, -40, 44 37, -44, 47 

IPL -43, -35, 49 41, -41, 39 

STS -45, -57, 15 49, -41, 12 

S1 -40, -26, 48 39, -26, 40 

M1 -35, -23, 54 37, -23, 52 

SMA -4,   -9,   52 3,   -7,   49 

PMd -27, -14, 61 21, -14, 61   (Connolly et al. 2007) 

FEF -28, -1,   43 31, -2,   45 

PMv -50,  5,   21 48,  8,   21 

 

Our process for computing sensory vs. motor coding is illustrated in Figure 3 

using Right mIPS and Supplementary Figure 1 using Left PMv as examples (see Figure 4 

legend for area acronym definitions). Panel A shows the idealized predictions for sensory 

and motor coding respectively. For sensory coding the responses to left (or right) targets 
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should be similar, regardless of the pro-anti instruction. In the case of motor coding, the 

‘anti’ instruction reverses the movement direction, so now the diagonals should provide 

matching data. Panels B shows the average TFR across left/right targets and pro/anti 

conditions, which we use as a baseline to subtract directionally non-specific activation. 

Panels C shows the average-subtracted activation for each condition separately, spatially 

arranged in the same fashion as the prediction panels. In the case of mIPS the resulting 

pattern clearly resembles the sensory prediction (i.e., red/resynchronized in right panels 

and blue/desynchronization in left panels). Other areas showed a pattern more consistent 

with motor coding (e.g., PMv, shown in Supplementary Figure 1). Finally, the data were 

subtracted (so that either the sensory response sums (and motor cancels) or vice versa, as 

shown in panel D of Figure 3 (and Supplementary Figure 1). As expected, this results in 

an early, predominantly sensory code for mIPS (Figure 3) and a late, predominantly 

motor code for PMv (Supplementary Figure 1). For the remainder of our analysis, we 

used these sensory coding and motor coding subtractions to represent our results.  

To provide an overview of the results of this analysis, we performed these sensory 

and motor subtractions, averaging across both time (500ms window) and frequency (7-35 

Hz) at the whole-brain level, averaged across participants, and then rendered the results 

over an average brain (see Methods). This is illustrated in Figure 4, which shows sensory 

coding over the period of 0-500ms following cue onset (upper panels) and motor coding 

during the period of -500 to 0ms preceding movement onset (lower panels), for both 

cortical hemispheres. On average, these datasets were separated by 815±83ms (see Table 

1). The convention for this rendering is based on presentation of leftward 

targets/movements, where (due to the above-detailed subtractions), blue represents 
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desynchronization and red represents resynchronization of activity relative to baseline. 

We also highlight average locations of the brain areas identified for each participant for 

further analysis (Table 2). 

 

Figure 4: Whole-brain identified sensory and motor areas. Average 7-35Hz source 

power across all participants for sensory (top, cue-aligned, 0-500ms after cue onset are 

averaged) and motor (bottom, movement aligned, -500-0ms before movement onset are 

averaged) coding separately. Analyzed brain areas are highlighted. SMA: supplementary 

motor area; VIP: ventral intraparietal are; SPL: superior parietal lobe; mIPS: medial 

intraparietal sulcus; SPOC: superior parietal-occipital cortex; V3/a: visual area 3/3a; AG: 

angular gyrus; IPL: inferior parietal lobe; STS: superior temporal sulcus; FEF: frontal eye 

fields; PMv: ventral premotor area; PMd: dorsal premotor area; M1: primary motor 

cortex; S1: primary somato-sensory cortex; POJ: parietal-occipital junction; V1/2: 

primary visual areas 1/2. 

 

 From this first pass, several trends emerge. First, for sensory coding during the 

cue response (Figure 4 top panels) a massive patch of occipital-temporal-parietal cortex 

containing V3, SOC, mIPS, SLP, AG, IPS, and STS shows sensory coding in response to 
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the cue, with contralateral desynchronization and ipsilateral resynchronization 

(exceptions being the opposite trend in some posterior areas of left cortex and several 

frontal areas in right cortex). Second, for motor tuning preceding the action (lower 

panels) these areas show a somewhat diminished extent of contralateral 

desynchronization / ipsilateral resynchronization in their motor tuning, but this trend also 

appears in more frontal somatomotor areas like S1 and PMv (with exceptions in some 

temporal and prefrontal areas). Third, other than the exceptions noted above, there is a 

high degree of inverse de/resynchronization symmetry between the two hemispheres for 

both sensory and motor coding. Post-hoc analysis was conducted (below) to further 

examine these trends.  

Sensory and motor coding in specific regions of interest 

Our next aim was to examine sensory and motor coding for specific regions of 

interest (Table 2), specific frequencies, i.e., α (7-15Hz) and β (15-35Hz), and through 

time. In order to simplify this and increase the power of our data, we followed a practice 

of previous MEG studies (e.g. (Van Der Werf et al. 2008)); supported by our 

observations of bilateral inverse symmetry, we collapsed data across bilateral brain areas 

by subtracting data from corresponding left and right areas.  

The steps in this analysis are illustrated in Figure 5. This uses the same example 

area as Figure 3 (mIPS) and begins where that analysis ends. Figure 5 shows sensory 

(upper row) and motor (lower row) power across multiple frequencies for left, right, and 

right-left mIPS respectively, followed by temporal plots of the α and β bands (left to 

right, all averaged across participants). As illustrated above, mIPS demonstrated very 

strong sensory coding. This is evident bilaterally in the strongly anti-symmetric 
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synchronization and desynchronization in the first two panels, which results in a strong 

contralateral desynchronization in the following subtraction. The temporal plot shows 

this occurring in both the α and β bands at around 300 ms post-stimulus. Following the 

same sequence for the motor subtraction (lower row) reveals less power, but enough to 

yield bilateral contralateral synchronization in the α band, which peaks about 700ms 

before the movement. Other example analyses (V3a showing purely sensory coding, and 

PMv showing only motor coding) are provided in Supplementary Figures 2 and 3. We 

followed the same procedure for all of the areas listed in Table 2, resulting in time 

courses for 16 bilateral cortical areas. 

 

Figure 5: Time-frequency response (TFR) analysis of sensory-motor coding area 

mIPS. Top row shows sensory coding with cue alignment, bottom row shows motor 

coding with movement alignment. TFRs for left and right mIPS are shown separately in 

the first 2 columns. Red/resynchronization and blue/desynchronization with respect to 

baseline and with respect to left target/movement (due to left-right subtractions, see 

Methods). Taking advantage of the brain’s contra-lateral visual organization, we 

subtracted left from right TFRs in the third column to provide a single picture of 

activation. Since this is the result of L-R cue (movement) subtractions, red colors 
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correspond to re-synchronization and blue correspond to de-synchronization of the brain 

area with respect to contra-lateral stimulus (movement) direction. Time course of α band 

power (10Hz) and β band poser (20Hz) is shown in the last column. Black curve and gray 

area indicate across participant mean and 95% confidence intervals. Red lines show 

activations that are significantly different from zero, i.e. different from baseline. mIPS 

showed strong sensory coding in α and β bands after cue onset and motor coding in α and 

β bands before movement onset. 

 

To illustrate the results of this analysis, we plotted the average cue-related and 

movement-related whole-brain activations for each frequency band separately and added 

individual time courses of activation for each of our 16 bilateral regions of interest. These 

plots are shown in Figure 6 for the sensory code and Figure 7 for the motor code. For the 

whole brain analysis, the sensory code was computed during the 500ms post cue-onset 

(approximately the time window of peak sensory response) and the motor code was 

calculated during the 500ms before movement onset (approximately when motor 

planning responses peaked), with a mean temporal gap between these datasets of 

815±83ms. Note that the whole-brain activations plotted on these figures show average 

power regardless of significance.  
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Figure 6: Summary of sensory coding across time in the whole brain. A. Whole-brain 

source power in the α band averaged across the first 500ms after cue onset and averaged 

across all participants. Individual time courses of sensory coding in the α band (10Hz) are 

shown for each brain area of interest. B. Same analysis for the β band (20Hz). Almost all 

areas (aside from PMv) showed significant changes in synchronization related to the 

sensory cue. Black curves and gray area indicate across participant mean and 95% 
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confidence intervals. Red lines show activations that are significantly different from zero, 

i.e. different from baseline. 

 

As can be observed from Figure 6, most brain areas showed significant sensory 

coding during the delay period. This sensory response usually peaked 300 to 500ms after 

the cue onset, but sometimes persisted for more than 1 second. This was observed for 

both α (Fig. 6 A) and β (Fig. 6 B) bands and effects were strongest in occipital-parietal 

cortex, and tended to diminish along the posterior-to-anterior continuum of brain areas, 

with more frontal areas showing weaker and more variable sensory coding in both the α 

and β bands. Of interest is that while cue-related activation usually resulted in a 

desynchronization (relative to contralateral stimulation), some more traditionally motor-

related areas (e.g. SMA, PMd, FEF) showed a cue-related re-synchronization of brain 

activity. It is also noteworthy that the initial sensory response, whenever present, appears 

to spread rapidly through the brain, almost appearing synchronously throughout occipital, 

parietal, and frontal cortex.  

Inspecting motor-related activity in Figure 7, significant activations were 

observed in both α (Fig. 7 A) and β (Fig. 7 B) bands. Overall movement-related codes 

were less directionally selective and had more variable timing than the sensory code. 

Again, the α band signal was somewhat more stable through time, with more temporal 

variability in the β band. Earliest α and β motor activations occurred in STS, S1, VIP and 

M1, and were more prominent in motor-related areas (SMA, mIPS, PMv, IPL) closer to 

movement onset. However, overall the α band did not show as much significant motor-

related activation as the β band. Indeed, we observed persistent β band motor activations 

(Figure 7B) during most of the delay period in areas SPOC, POJ and VIP. Other 
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movement-related areas exhibited motor activation closer to the movement onset, such as 

SMA and M1. Spatial lateralization of planning direction in S1/M1 might surprise 

neurophysiologists, but has also been observed in fMRI studies (Cappadocia et al. 2017).  

 

Figure 7: Summary of motor coding across time in the whole brain. Same 

conventions as in Figures 6. A. Whole-brain source power in the α band (10Hz) was 
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aligned to movement onset, averaged across the last 500ms prior to movement onset and 

average across all participants. Occipital areas did not show any motor coding. 

Significant motor codes in the α band appeared in parietal and frontal areas. B. Β band 

(20Hz) motor coding was more prominent than α band motor coding, but only in parietal 

and frontal areas, not occipital areas. 

 

Sensory-motor transformation 

As shown in Figures 5-7, many areas show both sensory and motor coding during 

the delay period of visual memory-guided reaching. However, one cannot directly 

observe a transition between sensory and motor coding within and across areas from 

these separate sensory and motor analyses. To investigate this further, we computed a 

sensory-motor index (see Methods). This index captured the specificity of the coding 

scheme employed by an area on a millisecond basis, independently of frequency.  

Results of this analysis are shown in Figure 8 and illustrate the gradual sensory-

to-motor transformation across cortical space and time. As expected, we observed a series 

of areas showing only significant sensory codes, such as V1/2, V3/3a, SPL and FEF. For 

V1/2, V3/3a and SPL, strong sensory coding arose immediately after cue onset and was 

maintained for part of the delay period, but vanished prior to movement onset. This 

analysis also revealed areas that only showed significant coding for movement direction 

during the delay period, such as SMA, PMd and PMv. Those predominantly motor codes 

mostly emerged prior to movement onset toward the end of the delay period. Importantly, 

most brain areas in the identified network underlying reach planning exhibited early 

sensory coding followed by a progressive transition into motor coding. This was 

observed in areas SPOC, AG, POJ, mIPS, VIP, IPL, STS and M1. Interestingly, we 

observed a relatively clear early visual response in M1 and a rapid transition into reliable 
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and significant motor coding (about 450ms into the delay period). Together with PMd, 

M1 showed the earliest significant motor code across all brain areas we investigated. 

These observations are further synthesized and summarized in the following section. 

 

Figure 8: Sensory-motor index. The sensory-motor index (Eq. 3) is shown for each 

brain area as a function of time. Black curves and gray area indicate across participant 

mean and 95% confidence intervals. Red lines show indices that are significantly 

different from zero. The individual plots are split into cue alignment (-500..825ms around 

cue onset) and movement alignment (-825..500ms around movement onset) to account 

for variability in movement times (see Table 1). Index = +1 indicated perfect (noise-free) 

sensory coding; index = -1 indicates perfect motor coding. Index = 0 means that one 

cannot distinguish between sensory or motor coding. 

 

Summary: sensory and motor coding across cortical space and time 

Figure 9 summarizes the data that we have described for sensory, motor, and 

sensorimotor coding in cue and premotor responses, and the relative timing of the 

sensorimotor transition between these sites, for the 16 bilateral cortical areas that we 
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investigated in detail. In Figure 9A/B, the concentric circles placed at these sites 

represent whether sensory (cyan), motor (magenta), or neither (grey) coding is observed 

in (from center-out) the α band, β band, and sensorimotor index respectively. What this 

shows is an overwhelmingly uniform early sensory response to cue direction across 

occipital-parietal-frontal cortex (Fig. 9 A), with the exception of the sensorimotor index 

in PMd, and an overwhelmingly uniform movement direction response preceding the 

action in parieto-frontal cortex (Fig. 9 B), with the exception of the sensorimotor index in 

SPL.  

 

Figure 9: Sensory-motor transitions summary. A. Whole-brain view of coding 

schemes found in response to the cue within the first 500ms after the cue. Concentric 

disks indicate significant coding schemes for the α (inner disk) and β (middle disk) bands, 

as well as for the sensory-motor index (outer disk). Almost all cue responses show a 

sensory coding scheme across the brain. B. This coding scheme changes into a 

predominantly motor code during the pre-movement period (last 500ms prior to 

movement onset). C. Temporal evolution of coding schemes and timing of transitions 
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across all brain areas according to the sensory-motor index. Earliest predominant motor 

codes appeared in PMd, SMA and M1 and the gradually appeared in more posterior 

areas, i.e. VIP, STS, IPL, POJ, mIPS, SPOC and AG (in order). 

 

Importantly, Figure 9 C summarizes the temporal evolution of the sensorimotor 

transformation by showing the progression of the Sensorimotor Index through time. 

Again, cyan shows sensory coding, magenta shows motor coding, and the vertical ‘tick’ 

marks represent the cross-over point between significant sensory and motor coding (mid-

way between last significant sensory and first significant motor index). These have been 

ordered, top-to-bottom, from earliest motor coding, to most persistent sensory coding. 

The striking result of this analysis is that, in response to a pro-anti instruction, a 

sensorimotor transition occurs over the course of approximately 1 second, and begins in 

frontal cortex, and then proceeds through parietal cortex toward occipital cortex, with 

clear transition points occurring mainly (but not exclusively) in posterior parietal cortex 

(AG, SPOC, mIPS, POJ, IPL, VIP) 

DISCUSSION 

 We set out to investigate where and when in the human brain visual sensory 

signals about a reach goal are transformed into appropriate motor commands. To do so, 

we took advantage of the natural dissociation of cue and movement directions in pro-

/anti-tasks, and the high spatial-temporal resolution of MEG recordings across different 

frequency bandwidths. Contrasting our various conditions (Pro/Anti vs. Left-Right 

Targets) to each other in different ways elucidated sensory and motor coding-related 

activations. The results provide several important insights; first, if one takes snapshots in 

time, one observes predominantly sensory spatial coding throughout occipital-parietal-
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frontal cortex in response to a visual target stimulus; but prior to movement onset this 

switched to a predominantly motor spatial code in parietal-frontal areas. Interestingly, 

looking at the data in more detail, a progressive tendency from visual coding in more 

posterior areas toward movement coding in more frontal areas was evident. Further, a 

temporal sensorimotor progression could also be observed within most areas, especially 

in parietal cortex. Finally, in contrast to the very rapid (presumably forward) propagation 

of the sensory code, the sensorimotor response to the pro-anti cue was propagated 

backward from fontal cortex toward more posterior areas as time progressed. This is the 

first evidence showing the sensory-to-motor transformation in real time and at the whole-

brain level in humans. 

 Comparison to fMRI and Neurophysiology literature 

The anti-saccade/reach paradigm has been used in conjunction with fMRI to study 

various aspects of motor suppression and preparation (e.g. (Connolly et al. 2000, 2002; 

DeSouza et al. 2003; Curtis and Connolly 2007; Furlan et al. 2016)). The current results 

are most relevant to those studies which focused on the coding of visual vs. motor 

direction. In general, we were able to confirm that the directionality of sensorimotor 

activation (here in the form of cortical de-/re-synchronization) was primarily lateralized 

to the hemisphere contralateral to the visual stimulus and/or movement (Sereno et al. 

2001; Medendorp et al. 2003, 2005, Beurze et al. 2007, 2009, 2010; Fernandez-Ruiz et al. 

2007; Bernier et al. 2012; Vesia and Crawford 2012; Chen et al. 2014). We also 

confirmed the general progression of spatial tuning for target responses in early 

occipital/parietal areas versus motor tuning in more parietal-frontal areas (Fernandez-

Ruiz et al. 2007; Chen et al. 2014; Gertz and Fiehler 2015; Cappadocia et al. 2017; Gertz 
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et al. 2017). Most relevantly, we confirm the general observation that motor directionality 

can be remapped within specific areas (Medendorp et al. 2003; Medendorp 2005), and 

more specifically the observation that anti-pointing can induce a sensory-to-motor 

transformation within and across many areas of parietal-frontal cortex (including SPOC, 

mIPS, and AG).  

However, some of our detailed observations are harder to reconcile with the fMRI 

literature. For example, in the pro/anti reach task our MEG data seemed to be weighted 

more toward retrospective visual coding, whereas fMRI data were weighted more toward 

prospective movement planning signals (Gertz and Fiehler 2015; Cappadocia et al. 2017; 

Gertz et al. 2017). This apparent discrepancy was in fact due to the left-right target / pro-

anti condition / left-right hemisphere contrast; indeed, average motor activity was 

generally very strong, especially in M1 (data not shown), but here we only focused on the 

spatial/condition contrasts. Furthermore, fMRI experiments consistently show more 

activation in the hemisphere contralateral to the effector (Medendorp et al. 2005; Gertz 

and Fiehler 2015; Cappadocia et al. 2017), whereas we did not observe this in our 

contrasted MEG data. Also, the sensory-motor remapping that we observed here was 

even more widespread in our recent fMRI experiment (Cappadocia et al. 2017), for 

example extending to occipital cortex and premotor cortex. This might have something to 

do with fMRI’s relatively greater sensitivity to input to areas (Logothetis 2008), MEG’s 

insensitivity to gyri, or our focus here on the α and β bands. In general, we do not take 

these as contradictions, but rather as complementary findings that likely reveal technical 

limitations in these different approaches.  
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At the microscopic level, many neurophysiological studies have demonstrated 

task-induced remapping of visual information (e.g., (Duhamel et al. 1992; Dash et al. 

2015)). Specifically, anti-saccade/reaches induce directional remapping within areas and 

even in specific parietal cells (Matthews et al. 2002; Zhang and Barash 2004; Gail et al. 

2009). Such responses likely underlie the cue-dependent transformations derived from 

MEG (Van Der Werf et al. 2008), and here we extend this to a much broader network for 

reach planning. Finally, it has also been demonstrated in the gaze control system that 

target coding transitions to motor coding across specific cell types in the superior 

colliculus, parietal cortex, and frontal eye field during memory-guided pro-movements 

(Sadeh et al. 2015; Sajad et al. 2015, 2016), suggesting that many of the observations 

gained from the pro/anti task may generalize to everyday movements. 

Frequency-Dependence  

A major advantage of current MEG methodologies over any one of fMRI, unit 

recording, or EEG is the ability to dissect the power of oscillations across various 

frequency bandwidths from the entire cortex, and localize these oscillations to specific 

brain sites (Alikhanian et al. 2013; Cheyne 2013).  As noted in the methods, we focused 

on the α and β bands because the literature suggests these are most closely linked to 

sensorimotor events, but similar observations were made in the γ band during anti-

remapping of saccade targets (Van Der Werf et al. 2008). The prominence of both 

sensory and motor signals in the α-band in our study, and its role in sensorimotor 

transformations are consistent with the ability of  α-band TMS over parietal cortex to 

disrupt both target memory (SPOC) and reach vector planning (mIPS, AG) (Vesia et al. 

2010; Vesia and Crawford 2012).  
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While the α band more strongly reflected sensory processing, motor planning 

seemed to invoke β band oscillation changes. While this was not surprising, we did not 

expect sensory processes to modulate β power and motor processes modulate α power to 

the extent they did. However, different frequencies of oscillation are believed to arise 

from recurrent processing with different loop delays (α band through cortical-thalamic 

interactions (Suffczynski et al. 2001); β band through cortico-cortical coupling (Cabral et 

al. 2014)). We believe that the lack of frequency specificity of sensory-motor processes 

might reflect the involvement of complex networks relying on more or less sub-cortical 

processing rather than being of any direct functional significance with respect to the 

sensory-motor task at hand.  

Timing  

The other fundamental advantage of MEG over fMRI in investigating source-

localized activation is real-time measurements. Given that fMRI typically has a temporal 

resolution of around 2 seconds (theoretically as low as 100ms in fast-event designs), it 

cannot possibly match the resolution of MEG, and certainly has not done so in this 

specific area of research. Our results suggest that the response to the visual stimulus 

propagates rapidly through the occipital-parietal-frontal axis, in agreement with 

numerous neurophysiological studies (see above). Presumably this reflects a normal 

process that would also initiate movement coding in pro-movement reaction-time tasks. 

However, the pro-anti task introduces an additional top-down transformation. Here, we 

were able to show that in the case of our task, this transformation was initiated in frontal 

cortex, and then spread progressively backwards, presumably through recurrent 

connections, through more posterior regions over the course of a second. This is 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/253328doi: bioRxiv preprint 

https://doi.org/10.1101/253328
http://creativecommons.org/licenses/by-nc-nd/4.0/


consistent with neurophysiological studies which found earlier activation of frontal over 

parietal cortex in certain tasks (Schmolesky et al. 1998; Omrani et al. 2016). Finally, this 

finding could explain the classic observation that frontal cortex damage specifically 

impedes function in anti vs. pro-movement tasks (Guitton et al. 1985). 

Interestingly, this view of parietal cortex representing the current state of affairs 

instead of performing actual computations is consistent with recent proposals both from 

the motor control and the decision-making communities. Indeed, there is strong evidence 

for posterior parietal cortex acting as a state estimator for motor control (Ogawa et al. 

2007; Mulliken et al. 2008; Shadmehr and Krakauer 2008; Andersen and Cui 2009; 

Grafton 2010; Shi and Buneo 2011; Marigold and Drew 2017). Similarly, it has recently 

been suggested that decision states might only be conveyed to parietal cortex after the 

decision outcome has been computed elsewhere (Latimer et al. 2015; Katz et al. 2016; 

Huk et al. 2017). In our data, the motor intention in parietal cortex was updated after 

frontal areas integrated pro-/anti-instructions or task demands (DeSouza et al. 2003; 

Everling and DeSouza 2005), thus reflecting (but perhaps not actively computing) the 

current intention. We believe that this is an intriguing hypothesis that should be examined 

in future studies.  

Implications for Models of sensory-motor transformations 

Two types of conceptual models have been proposed regarding the way the brain 

could compute the sensory-to-motor transformation. The most popular class of models 

uses artificial feed-forward neural networks and suggests that visuomotor transformations 

occur serially through successive stages of processing across different brain areas (Zipser 

and Andersen 1988; Pouget, Deneve, et al. 2002; Pouget, Ducom, et al. 2002; Blohm et 
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al. 2009; Blohm 2012). This model class predicts that the inherent reference frame of 

coding within a brain area is fixed across time. Alternative models take advantage of the 

dynamic nature of brain signals and suggest that sensorimotor transformations can be 

carried out over time within a single area receiving all relevant inputs (Denève et al. 

2007; Keith et al. 2010; Schneegans and Schöner 2012). If this was true, we would expect 

the spatial coding scheme within a given brain area to change over time. 

Our MEG results suggest that both models are incomplete and require revision. 

Indeed, our data suggest that sensory-motor transformations occur simultaneously both 

across space and across time. In addition, the exact temporal transition does not seem to 

align with the spatial gradient, i.e. premotor and motor cortex are at the motor coding end 

of the spatial gradient, but the motor code emerges earliest in those areas over time (see 

Discussion below). It is unclear what the reason for this apparent contradiction is. It is 

also unclear why so many areas are involved in the sensory-to-motor transformation. It 

can only be speculated that the reason for the latter might lie in other factors of the 

sensory-to-motor transformation that were not considered in this study, i.e. effector 

choice, posture integration, reference frame transformations or target selection / decision 

making processes. Overall, our findings call for a new dynamic model of sensory-to-

motor transformations for reaching. 

M1 and PMd showed the earliest motor codes. The fact that motor coding in other 

sensory-motor areas occurred later, could have two distinct reasons: (1) since the 

sensory-motor index captures predominant coding schemes, earlier motor codes could be 

masked by stronger sensory coding, but both could co-exist; (2) the sensory-to-motor 

transformation first occurs in a feed-forward fashion from occipital to frontal areas and 
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then feedback connections gradually update earlier areas to reflect the upcoming motor 

plan as represented in frontal cortex. These hypotheses would be best dissociated in 

future non-human primate electrophysiology studies. If the latter turned out to be true, 

then a dynamic bi-directional hierarchical model – such as Tsotsos’ selective tuning 

model for attention (Tsotsos et al. 1995; Tsotsos and Kruijne 2014) would be best suited 

to describe sensory-motor planning processes in the brain. 

Limitations of MEG and the current study 

Our findings are likely incomplete due to measurement limitations of MEG. 

Indeed, in theory MEG recordings are most sensitive for brain areas in the wall of sulci, 

i.e. when cortical columns are parallel to the scalp surface. Ideally, to overcome this 

limitation complementary EEG signals should also be recorded and analyzed in 

conjunction with MEG signals. Practically however, these limitations are less severe for 2 

reasons. (1) The scalp is not flat and thus adjacent sensors can detect signals from the top 

of the gyrus. (2) Few brain areas are strictly orthogonal to the scalp as the extent of brain 

areas usually involves some non-orthogonal regions. Thus, while MEG is less sensitive to 

gyral regions, this is less of a concern in practice (Hillebrand and Barnes 2002; Hansen et 

al. 2010; Cheyne 2013; Baillet 2017).  

To obtain population significance values, we averaged our data across participants 

and across trials. This averaging process could have smeared out single-trial and/or 

single-participant transformation dynamics / timing. However, we still found distinctive 

time courses between areas. For example, motor codes emerged within about 450ms in 

PMd and M1, whereas it took over 1s in other areas such as PMv for example. Therefore, 

we think that even if temporal smearing did occur, our task was still able to reveal timing 
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differences between areas. This is interesting because it means that different parts of the 

network seem to carry out the sensory-motor transformation at different points in time, or 

at least they reflect sensory vs motor codes at different points in time during the delay 

period.  

 Sensory-motor transformations are composed of many conceptual steps, including 

target selection, reference frame transformations, effector selection and accounting for 

arm posture. As a starting point of whole-brain MEG analyses of the reaching network, 

we only address how sensory signals of target location are converted into appropriate 

motor commands. Other studies are required to inspect other aspects of sensory-to-motor 

transformations, such as the influence of effector choice and posture (Kakei et al. 1999, 

2001; Beurze et al. 2009; Leone et al. 2014; Heed et al. 2016). 

Conclusions 

 Planning a movement requires the conversion of visual information into a goal. 

Our whole-brain MEG analysis has uncovered several novel findings: (1) the initial 

occipital-parietal-frontal sweep of sensory information was followed immediately by the 

appearance of a motor code resulting from processing of the pro-/anti-cue information. 

(2) This motor code appeared first in traditional motor areas (M1, PMd) within 500ms of 

cue presentation. (3) Motor coding then spread gradually to more posterior areas over 

time, as if parietal cortex received an update of the motor intention from motor areas.
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Supplementary Figures 

 

 

 

 

Supplementary Figure 1: Motor coding predictions and example. Same conventions and 

layout as in Figure 3 for the left ventral premotor area (PMv). During movement 

preparation, PMv shows a lateralized contra-lateral re-synchronization with respect to 

future movement direction. 
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Supplementary Figure 2: Time-frequency response (TFR) analysis of sensory coding 

area V3/3a. Top row shows sensory coding with cue alignment, bottom row shows 

motor coding with movement alignment. TFRs for left and right V3/3a are shown 

separately in the first 2 columns. Taking advantage of the brain’s contra-lateral visual 

organization, we subtracted right from left TFRs in the third column to provide a single 

picture of activation. Time course of α band power (10Hz) and β band poser (20Hz) is 

shown in the last column. Black curve and gray area indicate across participant mean and 

95% confidence intervals. Red lines show activations that are significantly different from 

zero, i.e. different from baseline. V3/3a showed strong sensory coding in α and β bands 

but no significant motor coding. 
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Supplementary Figure 3: TFR analysis of motor coding areas PMv. Same 

conventions as for Supplementary Figure 2. PMv showed no significant sensory coding 

but significant motor coding prior to movement onset in the α band. 
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