2	Metabarcoding analysis on European coastal samples
3	reveals new molecular metazoan diversity
4	
5	David López-Escardó ¹ , Jordi Paps ² , Colomban de Vargas ^{3,4} , Ramon Massana ⁵ , Iñaki
6	Ruiz-Trillo ^{1,6,7*} , Javier del Campo ^{1,5*}
7	
8	¹ Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim
9	de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.
10	² School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4
11	3SQ, UK
12	³ CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de
13	Roscoff, Roscoff, France
14	⁴ UPMC Univ. Paris 06, UMR 7144, Station Biologique de Roscoff, Roscoff, France
15	⁵ Department of Marine Biology and Oceanography, Institut de Ciències del Mar
16	(CSIC), Barcelona, Catalonia, Spain
17	⁶ ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
18	⁷ Departament de Genètica, Microbiología i Estadística, Universitat de Barcelona,
19	Barcelona, Catalonia, Spain

- 20 **Correspondence and requests for materials should be addressed to JdC (email:*
- 21 jdelcampo@icm.csic.es) or *IR-T* (*email: inaki.ruiz@ibe.upf-csic.es*).

22 Abstract

23 Although animals are among the best studied organisms, we still lack a full 24 description of their diversity, especially for microscopic taxa. This is partly due to the 25 time-consuming and costly nature of surveying animal diversity through 26 morphological and molecular studies of individual taxa. A powerful alternative is the 27 use of high-throughput environmental sequencing, providing molecular data from all 28 organisms sampled. We here address the unknown diversity of animal phyla in marine 29 environments using an extensive dataset designed to assess eukaryotic ribosomal 30 diversity among European coastal locations. A multi-phylum assessment of marine 31 animal diversity that includes water column and sediments, oxic and anoxic 32 environments, and both DNA and RNA templates, revealed a high percentage of 33 novel 18S rRNA sequences in most phyla, suggesting that marine environments have 34 not yet been fully sampled at a molecular level. This novelty is especially high among 35 Platyhelminthes, Acoelomorpha, and Nematoda, which are well studied from a 36 morphological perspective and abundant in benthic environments. We also identified 37 based on molecular data a potentially novel group of widespread tunicates. Moreover, 38 we recovered a high number of reads for Ctenophora and Cnidaria in the smaller 39 fractions suggesting their gametes might play a greater ecological role than previously 40 suspected.

42 Introduction

43	The animal kingdom is one of the best-studied branches of the tree of life ¹ , with more
44	than 1.5 million species described in around 35 different phyla ² . Some authors have
45	suggested there may be more than 10 million species of animals, indicating that there
46	is an extensive unknown animal diversity. This hidden diversity may vary according
47	to the animal phyla considered. Not surprisingly, those animal phyla with microscopic
48	representatives (i.e., those animals with a size below 2mm ³ , also known as
49	micrometazoans ⁴) are suggested to contain most of this potential unknown diversity
50	3.
51	
52	Marine environments cover most of the earth's surface. More importantly, all
53	metazoan phyla, except onycophorans, have marine representatives, with up to 60%
54	including microscopic members ⁵ . Copepods, for instance, are the most abundant
55	multicellular group of organisms on earth ⁶ , highlighting the key role of microbial
56	animals in marine ecosystems. Given that the marine benthic meiofauna is also one of
57	the hot spots of alpha-diversity in the biosphere, marine environments thus appear to
58	be ideal sites in which to analyze animal diversity across phyla.
59	
60	Classical methods to survey animal diversity, such as isolation and morphological
61	identification, might be ineffective to comprehensively analyze
62	micro/mesozooplanktonic ⁷ and meiofaunal diversity ⁸ . The microscopic size of the
63	organisms and the wide variety of morphologies makes the identification process
64	tedious and slow, requiring taxonomists with experience in different groups to
65	properly assess the composition of the community and describe new species or
66	groups. Molecular techniques, and especially high-throughput environmental

sequencing (HTES), have recently provided a more efficient method to assess and
understand ecological patterns in the microbial world ⁹, including metazoans ^{8,10–12}.
Although, these studies have mainly focused on richness patterns in marine benthic
communities or in zooplanktonic communities, with special attention on copepods ^{7,13}.
Studies of microbial eukaryotes ^{14–16} and even some animal clades ¹⁷ suggest that
HTES could also be used to detect novel lineages. However, such an approach has yet
to be applied across the whole animal kingdom.

74 To obtain a better understanding of the genetic diversity of the different metazoan 75 phyla, and the potential of HTES to quantify diversity and novelty levels, we analyzed 76 a large dataset of ribosomal small subunit (18S rRNA) V4 region tags from European 77 coastal sampling sites in the context of the BioMarKs project, which was designed to 78 analyze the diversity of unicellular eukaryotes. The BioMarKs dataset is based on 137 79 RNA and DNA samples from six locations ^{14,18} (Fig. S1; Table S1). The use of RNA 80 in this dataset allows analysis that goes beyond the detection of cells or DNA material 81 in the environment, as it provides a window on biological activity. For each sampling 82 site, there is data from both pelagic and benthic environments, with the pelagic 83 samples being divided into different depths and size fractions (Table S2). The large 84 quantity of data, together with the use of a phylogenetically curated taxonomic 85 assignment has provided a global view of genetic diversity across all metazoan phyla. 86 Our data show that 18S rRNA HTES approaches can be used to infer diversity and 87 novelty. Furthermore, we provide evidence that many unsampled lineages remain 88 among animals, and that there are even some potential novel groups. Consequently, 89 greater efforts should be made to sample specific animal groups, especially in benthic 90 environments.

An important point to consider when analyzing diversity by metabarcoding is how the

91

94

92 **Results**

93 Metazoan18S rRNA reference database

95	taxonomic assignment is done. It is known that the use of GenBank or SILVA as
96	reference databases to perform the taxonomic assignment ^{7,8,12,13,19,20} can be
97	problematic ²¹ . The reason is that those databases contain numerous missannotations
98	that affect the final taxonomic assignment. To avoid this problem and to have the best
99	possible taxonomic assignment, we manually constructed a novel phylogenetically
100	curated metazoan 18S rRNA reference dataset.
101	Our database included 19.364 18S rRNA sequences retrieved from GenBank. The

102 database was curated in a phylogenetic-wise manner, so that each animal phylum had

103 the widest possible representation of internal groups and that each sequence had a

104 clear taxonomic assignment. The resulting database was subsequently used to assign a

taxonomic identity to the approximately 1.5 million reads analyzed, providing a

106 holistic and phylogenetically accurate view of the metazoan diversity.

107

108 General abundance and richness patterns of microbial animals

109 We first analyzed the relative abundance of metazoan reads within the whole

eukaryotic dataset. We found that metazoans reads were quite abundant compared to

111 other eukaryotic groups in both the DNA and RNA samples (Fig. 1; Fig. S2). This

high percentage of metazoan reads was especially notable in anoxic pelagic

113	environments and in oxic sediments (Fig.1B). Interestingly, metazoan reads were not
114	only abundant in the micro/mesoplankton fraction (68% DNA, 49% RNA of the total
115	eukaryotic reads), but also in the smaller fractions (i.e., the pico/nano fractions which
116	are less than 20um). The presence of a high percentage of metazoan reads in the
117	smaller fractions is especially relevant in the anoxic environment, with 75% of the
118	DNA reads (and 33% of the RNA) being assigned to metazoans.
119	The clustering of reads into OTUs yielded 1067 OTUs from 23 different metazoan
120	phyla (Fig.2, Table S4). 469 OTUs were found to be exclusive to benthic
121	environments, 505 to pelagic environments and 102 OTUs were present in both
122	(Fig.2A). Crustacea appeared as the richest clade (246 OTUs) within the pelagic-
123	exclusive dataset, followed by Polychaeta (45). Within the benthic (sediment)-specific
124	samples, the largest number of OTUs were from Nematoda (227), followed by
125	Crustacea (101). Polychaeta (31) and Crustacea (23) dominated the OTUs present in
125 126	Crustacea (101). Polychaeta (31) and Crustacea (23) dominated the OTUs present in both environments (Fig.2A).
126	both environments (Fig.2A).
126 127	both environments (Fig.2A). The largest proportion of animal reads in oxic water column environments were from
126 127 128	both environments (Fig.2A). The largest proportion of animal reads in oxic water column environments were from Crustacea, which represented up to the 89% of DNA and 53% of RNA in the overall
126 127 128 129	both environments (Fig.2A). The largest proportion of animal reads in oxic water column environments were from Crustacea, which represented up to the 89% of DNA and 53% of RNA in the overall metazoans reads from the micro/meso fractions (Fig. 1A). More than 80% of the
126 127 128 129 130	both environments (Fig.2A). The largest proportion of animal reads in oxic water column environments were from Crustacea, which represented up to the 89% of DNA and 53% of RNA in the overall metazoans reads from the micro/meso fractions (Fig. 1A). More than 80% of the crustacean RNA reads, however, corresponded to 8 specific OTUs that were assigned
126 127 128 129 130 131	both environments (Fig.2A). The largest proportion of animal reads in oxic water column environments were from Crustacea, which represented up to the 89% of DNA and 53% of RNA in the overall metazoans reads from the micro/meso fractions (Fig. 1A). More than 80% of the crustacean RNA reads, however, corresponded to 8 specific OTUs that were assigned to copepods (Table S5). Besides crustaceans, there was also a high abundance of
126 127 128 129 130 131 132	both environments (Fig.2A). The largest proportion of animal reads in oxic water column environments were from Crustacea, which represented up to the 89% of DNA and 53% of RNA in the overall metazoans reads from the micro/meso fractions (Fig. 1A). More than 80% of the crustacean RNA reads, however, corresponded to 8 specific OTUs that were assigned to copepods (Table S5). Besides crustaceans, there was also a high abundance of reads from tunicates (5% DNA only, but 28% RNA) within the oxic
126 127 128 129 130 131 132 133	both environments (Fig.2A). The largest proportion of animal reads in oxic water column environments were from Crustacea, which represented up to the 89% of DNA and 53% of RNA in the overall metazoans reads from the micro/meso fractions (Fig. 1A). More than 80% of the crustacean RNA reads, however, corresponded to 8 specific OTUs that were assigned to copepods (Table S5). Besides crustaceans, there was also a high abundance of reads from tunicates (5% DNA only, but 28% RNA) within the oxic micro/mesoplanktonic samples, most of them corresponding to appendicularians

138 *Community structure across environments and size fractions*

139	To determine the biogeographical patterns of the microbial animals in our dataset, we
140	analyzed the presence/absence of OTUs in all five sites (discarding the anoxic
141	samples). A large fraction of the OTUs (668 out of 1076) were present in just one
142	single location. However, the number of reads of these "endemic" OTUs (around
143	$4 \cdot 10^4$) was three times lower than the 8 OTUs present in all sampling sites (around
144	$1.2 \cdot 10^5$ reads) (Fig. 2B). The taxonomic composition of the cosmopolitan OTUs (Fig.
145	2B) differed greatly from the complete dataset except for the crustacean dominance
146	(Fig. 2B). In particular, there were no nematodes or polychaetes among the
147	cosmopolitan OTUs, whereas a cnidarian and a craniate OTU appeared to be present
148	over the 5 sampling sites. Our analysis also showed that all the cosmopolitan OTUs
149	belonged to the water column, whereas more than half (56%) of the "endemic" ones
150	belonged to the sediments. These endemic OTUs represented 80% of the total benthic
151	OTUs.

RNA reads indicate metabolically active cells ²². Interestingly, we found a relatively 152 153 high percentage of RNA reads assigned to metazoans in the smaller fractions (from 154 0.8 to 20 µm): 2.4 % in oxic and 32.4 % in anoxic samples (Fig. 1A). Therefore, we 155 decided to analyze the potential source of those RNA reads. Most of the reads were 156 crustaceans (36% RNA reads), followed by tunicates, ctenophores, cnidarians and 157 polychaetes (Fig. 1A). Ctenophores (85% RNA pico/nano fractions) and cnidarians 158 (16% RNA pico/nano fractions) dominated the reads assigned to metazoans in the 159 anoxic waters of Varna, Black Sea (Fig. 1B).

160	To understand whether the reads from the smaller fractions were directly derived from
161	the larger ones, we filtered the data based on their co-occurrence between the
162	pico/nano fraction and the micro/meso fractions. We observed that OTUs present in
163	both smaller and larger fractions had a clearly different proportion of reads (Fig. 3).
164	Most of the reads in the smaller fractions belonged to the ctenophores (58%), whereas
165	crustaceans dominated (52%) the micro/mesoplanktonic fractions. In this regard,
166	OTUs corresponding to Pleurobrachia pileus (a ctenophore) and Aurelia aurita (a
167	cnidarian) were especially enriched in the smaller fraction (Fig. 3), representing 57%
168	of all metazoan RNA reads, and up to 33% of all eukaryotic RNA reads in the anoxic
169	samples (Table S7) (Fig.1A).
170	
171	Sequence novelty
172	We performed BLAST searches against the NCBI nt nr database to interrogate the
173	level of novelty in our molecular dataset across all animal phyla. The results revealed
174	a high degree of sequence novelty (Fig. 4A). In particular, 35.5% of our OTUs
175	(representing 10.5% of the reads) had a BLAST identity lower than 97% compared to
176	NCBI sequences (Fig. 4B). Moreover, up to 10% of the OTUs, which accounts for 5%
177	of the metazoan reads, had BLAST identities lower than 90%. The putative novelty
178	was especially high among platyhelminthes, acoelomorphs, and nematodes, in which
179	most of their OTUs (75%) had a BLAST identity lower than 97%. Gastrotrichs and
180	crustaceans also had significant novelty (40-50% of their OTUs had a BLAST identity
181	below 97%).
182	Interestingly, the OTUs that appear to be most abundant within the water column

183 (Table S5) and sediments (Table S6) correspond either to already known sequences or

184 with high similarity to known sequences. The level of novelty is also different 185 between benthic and pelagic environments. Thus, 70% of the OTUs found in benthic 186 environments had a BLAST identity of less than 97% (Fig. 2A), while this percentage 187 decreased to 21% of OTUs in the water column or to 11% of OTUs present in both 188 water column and benthos. This suggests that benthic marine environments are a potential hot-spot to find new metazoan taxa or lineages. 189 190 Among the potential novelty, we detected a group of three OTUs that had a relatively 191 large number of RNA reads in the water column (1.8%). (Fig. 1, labelled as "MAME 192 1"; MArine MEtazoan group 1), and with BLAST identities around 95% against two 193 unclassified environmental sequences from GenBank (KC582969 and HQ869055). 194 Analysis of this group of OTUs in other HTES studies based on the 18S rDNA gene 195 revealed 66 more OTUs retrieved from SRA (14 OTUs) and Tara Oceans ⁹ (52 OTUs) 196 that are potentially from the same MAME 1 clade. Those 69 OTUs from BioMarks, 197 SRA and Tara Oceans represent 389,703 reads in total, an indication that OTUs 198 assigned to this group are relatively common in marine environments. Indeed, we 199 found that MAME 1 was present in coastal and open waters with a widespread 200 distribution across the world's oceans (except for the Arctic) in both the surface and 201 the deep chlorophyll maximum (Fig. S5B). 202 To have a better understanding of its phylogenetic position, we performed 203 phylogenetic trees. Our trees placed the MAME 1 GenBank sequence within tunicates 204 by both maximum likelihood and Bayesian inference (Table S3), and with good nodal 205 support (79% bootstrap support and 0.99 Bayesian posterior probability), although

- with relatively longer branches than the rest of the metazoans. To determine its
- 207 specific phylogenetic position within the tunicates, we inferred an additional tree with

208	most of the available 18S rRNA sequences of tunicates, representing most of the
209	known diversity of this phylum. In this tunicate-focused tree, the MAME 1 sequence
210	clustered with thaliaceans as sister-group to the genus Doliolium, although with low
211	nodal support (Fig. 5). Finally, we ran a RAxML-EPA analysis to place the 69 OTUs
212	plus the other NCBI sequence within the reference tree of metazoans and the tree of
213	tunicates. In both cases, the 69 OTUs clustered together, with the reference MAME 1
214	sequences forming a monophyletic clade. Thus, our phylogenetic analysis suggests
215	that MAME 1 represents a novel, previously undescribed group of tunicates. Given
216	their extremely long-branches, however, additional molecular data will be needed to
217	further confirm this relationship.
218	
219	Discussion
220	High-throughput sequencing, a powerful methodology to assess diversity
221	HTES is a useful method, but it also has some caveats. For example, it is well known
222	that it may be misleading to directly translate reads and OTU numbers into biomass
223	and number of species, respectively. In particular, the use of amplicon data as a proxy
224	for metazoan biomass abundance has been disputed, also with RNA data ²³ . Different
225	number of rRNA copies in the genomes of different taxa, PCR primer mismatches and
226	amplicon lengths can all affect the correlation between morphological and molecular
227	data ^{7,24} . However, some studies have indeed shown positive correlations between
228	read abundances and biomass patterns in bivalve and decapod larvae ¹⁹ and within
229	copepod groups ⁷ . Thus, we believe our approach to biomass abundance, although not
230	perfect, is useful enough to report the most abundant groups. A good indication of our
231	approach is that we recovered the general patterns previously described in

232	micro/mesoplanktonic communities based on morphological observations ^{25,26} , in
233	which copepods were found to be predominant within micro/mesoplanktonic
234	communities ⁶ followed by appendicularians ²⁶ . Moreover, we found a more
235	heterogenic distribution in benthic habitats, which is to be expected considering that
236	sediments are known to harbor most of the metazoan diversity ⁵ .
237	Overall, our data confirms that, although with some caveats, HTES is a powerful tool
238	to assess diversity. In this regard, the construction of a phylogenetically curated
239	database to assign the OTU taxonomy has proven to be crucial for our analysis aimed
240	at describing novelty in different metazoan phyla. Our clustering of OTUs at 97% is
241	likely a conservative approach for metazoans ²⁷ , and some of our OTUs may indeed
242	represent more than one species. This largely depends on each metazoan lineage and
243	its specific 18S rRNA evolution rate. Moreover, primer bias can affect the detection
244	of some groups, meaning that some taxa can be present in the environment but
245	missing in our dataset ²⁸ . However, by clustering at 97% we can directly compare the
246	results with the rest of the eukaryotes and get a more stringent output avoiding
247	polymorphisms effects and an overrepresentation of the retrieved diversity.

249 Benthic-Pelagic relationship

Analysis of benthic and pelagic metazoan communities in our dataset revealed that most OTUs are exclusively pelagic or benthic, showing few overlaps between the two communities, in agreement with our beta-diversity analyses (Fig. S3, Fig. S4A) and the literature available ^{29,30}. Only 10% of OTUs from our dataset were present in both benthic and pelagic communities, and these mainly corresponded to polychaetes, crustaceans, molluscs and cnidarians (Fig. 2A). Among the shared OTUs Polychaeta

256	and Mollusca water column reads probably represent juvenile pelagic stages ^{31,32}
257	while the benthic reads from crustaceans and cnidarians, that are predominantly
258	pelagic, come likely from death organisms or debris.
259	In addition, our data clearly shows that the pelagic OTUs tend to be present in more
260	sites, while most of the benthic OTUs are restricted to one location. The restricted
261	presence of meiofaunal OTUs has been described previously ²⁰ . Thus, the distribution
262	in the water column fits more with the consideration that "everything is everywhere"
263	³³ , probably because pelagic animals have fewer dispersal barriers than do benthic
264	ones ³⁴ .
265	
266	An ecological role for gametes?
267	Somewhat surprisingly, we observed a high percentage of metazoan reads in the
268	smaller size fractions of most water column samples (Figure 1). This includes, as
269	well, the samples derived from RNA templates, probably indicating a significant
270	biological activity of metazoans in those smaller fractions. We believe it is unlikely
271	that those metazoan RNA reads could come from an extracellular origin because RNA
272	is fragile and quickly degraded by ribonucleases, and its structure is easily affected by

both oxygen and water ³⁵. Furthermore, the RNA reads from pico/nanoplanktonic

274 fractions contain a different taxonomic distribution compared to the extracellular

275 DNA samples and the micro/mesoplanktonic RNA samples (Fig. 1A and Fig. 3A).

276 Thus, and taking into account the small size reported for certain animal gametes, we

277 hypothesize that a large part of those metazoan reads from the smaller fractions most

likely come from metazoan gametes.

279 This is the case, for example, of the reads from smaller fractions assigned to tunicates, 280 ctenophores, cnidarians and polychaetes, since they all use external fertilization. 281 Ctenophora and Cnidaria, which are not only abundant in DNA reads but also have a 282 relatively high number of RNA reads in the smaller fractions (Fig. 3B), might be a 283 particularly notable example of the importance of gametes in the environment. The 284 co-occurrence of reads in both smaller and larger fractions, the overrepresentation in 285 the smaller ones and the fact that their sperm size is smaller than 5 μ m ^{36,37} are good 286 indicators that at least the RNA signal of cnidarians and ctenophores might 287 corresponds to gametes. That will not be the case for the reads assigned to copepods 288 in the smaller fractions. They cannot come from gametes, since copepods use internal 289 fertilization and release eggs larger than 50 µm³⁸. Therefore, the crustacean RNA 290 reads observed in smaller fractions (from 0.8 to $20 \,\mu$ m) are probably the result of cell 291 breakage from larger fractions (Fig. 3A). Finally, we note that some of the OTUs that 292 are exclusively retrieved from smaller fractions could also correspond to sperm from 293 organisms that are larger than 2mm or from benthic fauna with external fertilization 294 and gamete sizes less than 10 µm, such as certain ctenophores and polychaetes (Table 295 S7).

296 It is worth mentioning that metazoan RNA reads corresponding to germline cells 297 could account, in our data, for as much as 3.2% of the total eukaryotic RNA reads in 298 the smaller fractions (Table S7), and up to 33% of eukaryotic reads in anoxic samples. 299 Thus, their numbers are comparable to those from the unicellular heterotrophic 300 flagellates, which usually reach abundances of up to the 40% of eukaryotic RNA 301 reads in pico and nano plankton³⁹. Thus, and considering those abundances, sperm 302 may play an important ecological role in those environments, particularly in the Black 303 Sea anoxic waters. Further research is needed to assess the effect of sperm in

microbial nutrient fluxes, especially during spawning events, when it may represent a
 passive member of the community eaten by other metazoans or protists from micro scale fractions.

307

308 Novelty in different metazoan phyla

309 We performed an analysis on novelty by plotting the pairwise identities of the first 310 BLAST hit against NCBI non-redundant database. This provided a distribution of the 311 "novel" OTUs (those with sequence identities lower than 97% to any NCBI sequence) along different environments (Fig. 2) and for different metazoan phyla (Fig. 4). 312 313 Interestingly, we found that 45% of our metazoan OTUs had less than 97% identity 314 against the NCBI nt nr database. Why a threshold of 97% for novelty? We believe it 315 is the safest one to detect novelty, although we probably miss a lot of intra-genera or 316 intra-class variation, depending in the animal group. It is worth mentioning, however, 317 that by having a threshold of pair-wise identities below 97%, we avoid any potential 318 intra-individual polymorphic variants ⁴⁰. Therefore, we follow the rationale that OTUs 319 that do not have 100% identities but close (98% or higher) against the first BLAST hit 320 from NCBI non-redundant database, are probably the same taxa (maybe representing 321 intraindividual variations) or very closely related species. In contrast, the OTUs that 322 have a BLAST identity under 97% represent much deeper changes, and so, they 323 clearly represent, at least, different taxa than the ones represented in Genbank. Some 324 OTUs, especially those 10% of our OTUs with pairwise identities against GenBank 325 under 90%, may even represent new clades.

Although one could argue that this degree of novelty might reflect sequencingartifacts, we are confident it is not the case because 1) we have followed a stringent

chimera and singletons removal process, 2) the reads are distributed across different
samples, and 3) they are not homogeneously distributed among taxonomic groups. In
addition, around 80% of our OTUs have RNA reads and their taxonomic distribution
is almost identical to the DNA OTUs. So, these novel variants present in the RNA
subset are transcribed by active organisms and are less prone to be artifacts or rare
variants ⁴¹.

334 We are aware that detection of novelty in metazoans just with molecular data is 335 challenging, given that the number of described animal species is larger than the 336 number of 18S rRNA sequences available in public databases (Fig. S7B). Therefore, a 337 novel sequence might belong to a species that has already been described but not yet 338 sequenced. A complete database linking morphological and molecular data is needed 339 to fully solve this issue. However, the 18S rRNA data so far available certainly is a 340 good representation of known animal diversity (Fig. S7B), and we believe our study 341 does indicates which metazoan lineages contain the higher levels of hidden molecular 342 diversity, and so, which are the animal groups needed for a more extensive sampling. 343 Those animal groups with the higher levels of novelty are not others than crustaceans, 344 nematodes, platyhelminthes, gastrotrichs and acoelomorphs. With the exception of 345 crustaceans, these groups occupy early branching phylogenetic positions within the Ecdysozoa or the Lophotrochoa/Spiralia, or even within the Bilateria⁴². Moreover, 346 347 the high genetic diversity in often neglected groups such as Acoelomorpha¹⁷ and Gastrotricha¹⁰ reveals that these groups need a deeper exploration. We cannot rule 348

out the possibility that the relatively fast evolutionary rates of the 18S sequences from

nematodes, acoelomorphs and chaetognaths may have an effect on these low

351 similarity values. In addition, intragenomic variability of the 18S rRNA gene, already

352	described in some metazoan groups such as Platyhelminthes ⁴³ or Chaetognaths ⁴⁴ ,
353	can also contribute to these novelty values. Nevertheless, those are specific, isolated
354	cases. There is certainly extensive genetic novelty in our dataset, suggesting that most
355	acoelomorph, platyhelminth, chaetognath, and nematode species have not yet been
356	sequenced. Some of these hidden animal OTUs occupy key phylogenetic positions,
357	which can help to better reconstruct the metazoan tree of life and unravel the
358	evolution of extant species from the Urmetazoan ¹⁷ .

360 A potential novel group of tunicates revealed by HTES

361 We also recovered and genetically described a potential novel group of tunicates, here 362 named as "MAME 1". It could be argued that this group represents an already 363 described Thaliacean related to the genus *Doliolum* that happens to have never been 364 sequenced or rare variants of the 18S gene belonging to known species. However, we 365 consider these two options unlikely for several reasons. First, the group seems to be 366 well populated (69 OTUs between our data and public repositories) and present in 367 many environments worldwide, not only in coastal waters (Fig. S5). Moreover, the 368 pairwise identity of the two MAME 1 sequences retrieved from NCBI is about 89%, 369 suggesting is not a single species, but rather an entire group of sequences with high 370 genetic variability, forming an independent clade related to Thaliaceans (Fig. 5). In 371 fact, the nucleotide identity among MAME 1 OTUs is similar as the observed among 372 distant Aplousobranchia species (for example, there is an 88% of identity between the 373 18S rRNA of Distaplia dubia and Diplosoma virens). Finally, different classes of the 374 18S rRNA gene have not been reported yet in Tunicates (there are 628 tunicate 18S 375 ribosomal sequences available at Genbank) and the percentage of identity of MAME

376	1 sequences against described Tunicate species seems too low (78% of identity with
377	the best BLAST hit Thalia democratica) for a different 18S rRNA type. In animal
378	groups in which different classes of 18S rRNA gene have been described, such as in
379	chaetognaths, the intra-individual variation among 18S classes lies around 90-93% of
380	identity ⁴⁴ . Therefore, we suggest that MAME 1 might corresponds to a new group of
381	tunicates that contains a large number of RNA reads within micro/mesoplankton
382	environments and is present in different habitats. However, without morphological
383	data, we cannot truly discard the possibility that those sequences belong to a
384	molecular divergent group of Thaliacean species, already morphologically described,
385	but without genetic data available. Although this emphasizes the powerful of HTES to
386	assess biodiversity and detect novelty, it also highlights its limitations. Thus, it is
387	crucial to continue and improve the classical screenings of marine diversity, with the
388	aim to link altogether morphological and genetic information in order to better
389	understand the metazoan biodiversity of our oceans.

390 Conclusions

391 We have reported an analysis of micrometazoan diversity in the European coast based 392 on HTES that includes, for the first time, both water column and sediments, oxic and 393 anoxic environments, and both DNA and RNA templates. To assess taxonomy, we 394 constructed a novel reference dataset comprising all animal phyla, which was 395 manually and phylogenetically curated. Our data show general read abundance and richness patterns that partially corroborate previous morphological 5,6,25,26 and 396 397 molecular studies ^{8,10,13,19,20,45}. Our data showed a high relative abundance of 398 metazoan RNA reads within pico-nano size fractions (0.8-20 µm), suggesting that the 399 sperm of Ctenophores and Cnidarians plays a relevant ecological role as part of the

400 microbial food network. These results show the potential of HTES techniques as a fast
401 and exhaustive method to approach the study of micrometazoan biomass and diversity
402 patterns.

403 This kind of data has allowed us to describe novelty values found in different animal 404 phyla. We observed that some animal phyla have much genetic novelty that is yet to 405 be unraveled, including novelty in several well sampled groups such as Crustacea, 406 Platyhelminthes or Nematoda. Our finding of a potential new group of widespread 407 tunicates (MAME 1) highlights the value of phylogenetic approaches to identify novel 408 groups within phyla. The finding of MAME 1 in several HTES datasets could be considered the first step in a reverse taxonomic process ⁴⁶ potentially leading to 409 410 isolation and detailed description. Overall, our data show that, if we truly want to 411 understand the biodiversity of marine environments, it is important to further sample 412 animal taxa within those environments. To achieve that, we need to have better tools 413 for the genetic screening, and especially for the isolation and morphological

- 414 characterization of these organisms.
- 415 Materials and Methods

416 Sampling, 454 sequencing, curation of the sequences and diversity analysis

417 During the BioMarKs project (biomarks.eu), samples were collected in six European

418 coastal sites (Fig. S1; Table S1). For sampling collection details, DNA/RNA

- 419 extraction methods, PCR amplifications, 454 sequencing details and read filtering
- 420 process see the electronic supplementary material. Processed reads allowed to build a
- 421 OTU (Operational Taxonomic Unit) table (reads per sample) with usearch v8.1.861⁴⁷,
- 422 using the UPARSE OTU clustering algorithm ⁴⁸, at a threshold of 97% similarity.
- 423 Afterwards, we used our own metazoan reference dataset (available at figshare

424	https://dx.doi.org/10.6084/m9.figshare.3475007.v1) to assign a taxonomical
425	affiliation to our OTUs. Finally, we removed the putative chimeric metazoan
426	sequences using Mothur's Chimera Slayer ⁴⁹ and discarded all the singletons. We
427	determined the degree of novelty of our dataset, by blasting the OTU sequences
428	against NCBI nt nr (September 23 2014). The metazoan OTU table obtained was
429	processed for alpha and beta-diversity analyses using QIIME ⁵⁰ . See the electronic
430	supplementary material for details on this section.
431	Analysis of the RNA reads from the small fractions
432	Using QIIME scripts, we binned the OTUs that contain RNA reads within the water
433	column of each sampling site into three different groups: 1) OTUs containing the
434	small fractions (pico/nano), 2) OTUs containing the larger fraction (micro/meso), and
435	3) OTUs present in both small and large size classes. OTUs representing less than 10
436	RNA reads per site were discarded.
437	Phylogenetic analysis of MAME1 sequence tags
438	In order to phylogenetically place the short reads assigned to the novel metazoan
439	group (MAME 1) within an animal and tunicate backbone, we performed a RAxML-
440	EPA analysis ⁵¹ using a metazoan and a tunicate reference tree using the longest
441	putative MAME 1 sequence found by BLAST at NCBI nt nr database (KC582969), as
442	a unique MAME 1 representative. Using the MAME1 tree and alignment as a
443	reference we recruited environmental 18S rDNA short reads from SRA and Tara
444	Oceans and used them to perform abundance and distribution analyses (see the
445	electronic supplementary material).

447 **Data accessibility**

448

- Electronic supplementary material that accompanies the online version of this article
- 450 includes materials and methods and supplementary figures and tables. The complete
- 451 BioMarks sequencing dataset is available at European Nucleotide Archive (EMBL-
- 452 EBI) http://www.ebi.ac.uk/ena, under project accession number PRJEB9133. OTU
- 453 tables, 18S metazoan database, MAME 1 group OTU table and phylogenetic trees

454 data (alignments, sequences and trees) are available at Figshare:

- 455 https://dx.doi.org/10.6084/m9.figshare.3475007.v1.
- 456

457 Acknowledgment

458 This work was supported by an Institució Catalana de Recerca i Estudis Avançats 459 contract, two grants (BFU-2011-23434 and BFU2014-57779-P) from the Ministerio de 460 Economia y Competitividad (MINECO), one of which (BFU2014-57779-P) was co-461 funded by the European Regional Development Fund (FEDER), and a European 462 Research Council Consolidator Grant (ERC-2012-Co -616960) to IR-T. We also 463 acknowledge financial support from the Secretaria d'Universitats i Recerca del 464 Departament d'Economia i Coneixement de la Generalitat de Catalunya (Project 2014 465 SGR 619). JdC is supported by a Marie Curie International Outgoing Fellowship grant 466 (FP7-PEOPLE-2012-IOF - 331450 CAARL). JP acknowledges support from the 467 European Research Council under the European Union's Seventh Framework Program 468 (FP7/2007-2013) / ERC grant [268513]. The work is part of the EU ERA-Net program 469 BiodivERsA, under the project BioMarKs (Biodiversity of Marine euKaryotes).

470

471 Author Contributions

472	JdC and IR-T designed and coordinated the study. RM and CdV provided the data. DL-
473	E, JdC and JP prepared the 18S metazoan database. DL-E and JdC analyzed the data
474	and prepared the figures. DL-E, JdC, JP and IR-T interpreted the data. DL-E, JdC and
475	IR-T wrote the manuscript, while all authors commented the manuscript.
476	
477	Additional Information
478	Competing financial interests: The authors declare no competing financial interests
479	

480 **References**

- 481 1. del Campo, J. *et al.* The others: our biased perspective of eukaryotic genomes.
 482 *Trends Ecol. Evol.* 29, 252–259 (2014).
- 2. Zhang, Z.-Q. Q. Animal biodiversity: An update of classification and diversity in 2013. *Zootaxa* 3703, 5 (2013).
- Blaxter, M. L. *et al.* Defining operational taxonomic units using DNA barcode data. *Philos. Trans. R. Soc. B Biol. Sci.* 360, 1935–1943 (2005).
- 487 4. Guil, N. Molecular approach to micrometazoans. Are they here, there and
 488 everywhere? in *Biogeography of Microscopic Organisms* (ed. Fontaneto, D.)
 489 284–306 (Cambridge University Press, 2011).
 490 doi:10.1017/CBO9781107415324.004
- 491 5. Snelgrove, P. V. R. Getting to the bottom of marine biodiversity: sedimentary
 492 habitats. *Bioscience* 49, 129 (1999).
- 493 6. Humes, A. How many copepods? *Hydrobiologia* **292/293**, 1–7 (1994).
- 494 7. Hirai, J., Kuriyama, M., Ichikawa, T., Hidaka, K. & Tsuda, A. A metagenetic
 495 approach for revealing community structure of marine planktonic copepods.
 496 Mol. Ecol. Resour. 15, 68–80 (2015).
- 497 8. Fonseca, V. G. *et al.* Second-generation environmental sequencing unmasks
 498 marine metazoan biodiversity. *Nat. Commun.* 1, 98 (2010).
- 499 9. de Vargas, C. *et al.* Eukaryotic plankton diversity in the sunlit ocean. *Science*500 348, 1261605–1261605 (2015).
- 501 10. Chariton, A. A., Court, L. N., Hartley, D. M., Colloff, M. J. & Hardy, C. M.
 502 Ecological assessment of estuarine sediments by pyrosequencing eukaryotic
 503 ribosomal DNA. *Front. Ecol. Environ.* 8, 233–238 (2010).
- Lallias, D. *et al.* Environmental metabarcoding reveals heterogeneous drivers
 of microbial eukaryote diversity in contrasting estuarine ecosystems. *ISME J.*9, 1208–1221 (2015).
- 507 12. Bik, H. M. *et al.* Metagenetic community analysis of microbial eukaryotes
 508 illuminates biogeographic patterns in deep-sea and shallow water sediments.
 509 *Mol. Ecol.* 21, 1048–1059 (2012).
- 510
 13. Pearman, J. K., El-Sherbiny, M. M., Lanzén, A., Al-Aidaroos, A. M. &
 511
 512
 513
 514
 514
 515
 515
 516
 517
 517
 518
 519
 519
 510
 510
 510
 511
 511
 512
 512
 512
 513
 514
 514
 514
 515
 515
 515
 516
 517
 517
 517
 518
 519
 519
 519
 510
 510
 510
 511
 511
 512
 512
 512
 512
 512
 514
 514
 514
 514
 515
 515
 516
 517
 517
 518
 518
 518
 519
 519
 519
 510
 510
 510
 511
 512
 512
 512
 512
 512
 512
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514
 514</
- 513 14. del Campo, J. *et al.* Diversity and distribution of unicellular opisthokonts along
 514 the European coast analysed using high-throughput sequencing. *Environ.*515 *Microbiol.* 17, 3195–3207 (2015).

516 517 518	15.	Richards, T. A. <i>et al.</i> Molecular diversity and distribution of marine fungi across 130 European environmental samples. <i>Proc. R. Soc. B Biol. Sci.</i> 282 , 20152243–20152243 (2015).
519 520 521	16.	Pan, J., del Campo, J. & Keeling, P. J. Reference Tree and Environmental Sequence Diversity of Labyrinthulomycetes. <i>J. Eukaryot. Microbiol.</i> 64 , 88–96 (2017).
522 523 524	17.	Arroyo, A. S., López-Escardó, D., de Vargas, C. & Ruiz-Trillo, I. Hidden diversity of Acoelomorpha revealed through metabarcoding. <i>Biol. Lett.</i> 12 , 20160674 (2016).
525 526 527	18.	Massana, R. <i>et al.</i> Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. <i>Environ. Microbiol.</i> 17 , 4035–4049 (2015).
528 529 530	19.	Lindeque, P. K., Parry, H. E., Harmer, R. a, Somerfield, P. J. & Atkinson, A. Next generation sequencing reveals the hidden diversity of zooplankton assemblages. <i>PLoS One</i> 8 , e81327 (2013).
531 532 533	20.	Fonseca, V. G. <i>et al.</i> Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. <i>Glob. Ecol. Biogeogr.</i> 23 , 1293–1302 (2014).
534 535	21.	Bik, H. M. <i>et al.</i> Sequencing our way towards understanding global eukaryotic biodiversity. <i>Trends Ecol. Evol.</i> 27 , 233–43 (2012).
536 537	22.	Felske, A. <i>et al.</i> Phylogeny of the Main Bacterial 16S rRNA Sequences in Drentse A Grassland Soils. <i>Appl. Environ. Microbiol.</i> 64 , 871–879 (1998).
538 539 540	23.	Lejzerowicz, F. <i>et al.</i> High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems. <i>Sci. Rep.</i> 5 , 13932 (2015).
541 542 543 544	24.	Porazinska, D. L., Sung, W., Giblin-Davis, R. M. & Thomas, W. K. Reproducibility of read numbers in high-throughput sequencing analysis of nematode community composition and structure. <i>Mol. Ecol. Resour.</i> 10 , 666–676 (2010).
545 546 547	25.	Beaugrand, G., Brander, K. M., Alistair Lindley, J., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. <i>Nature</i> 426 , 661–664 (2003).
548 549	26.	Bouquet, JM. <i>et al.</i> Culture optimization for the emergent zooplanktonic model organism Oikopleura dioica. <i>J. Plankton Res.</i> 31 , 359–370 (2009).
550 551 552	27.	Tang, C. Q. <i>et al.</i> The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. <i>Proceedings of the National Academy of Sciences</i> 109 , 16208–16212 (2012).

553 554	28.	Creer, S. <i>et al.</i> Ultrasequencing of the meiofaunal biosphere: Practice, pitfalls and promises. <i>Mol. Ecol.</i> 19 , 4–20 (2010).
555 556 557	29.	Johnson, C. L. <i>et al.</i> Biodiversity and ecosystem function in the Gulf of Maine: pattern and role of zooplankton and pelagic nekton. <i>PLoS One</i> 6 , e16491 (2011).
558 559	30.	Giere, O. Meiobenthology: the microscopic motile fauna of aquatic sediments. Meiobenthology (Springer-Verlag Berlin Heidelberg, 2008).
560 561 562 563 564	31.	Ellien, C., Thiébaut, E., Dumas, F., Salomon, JC. & Nival, P. A modelling study of the respective role of hydrodynamic processes and larval mortality on larval dispersal and recruitment of benthic invertebrates: example of Pectinaria koreni (Annelida: Polychaeta) in the Bay of Seine (English Channel). <i>J. Plankton Res.</i> 26 , 117–132 (2004).
565 566 567	32.	Andresen, H., Strasser, M. & van der Meer, J. Estimation of Density- Dependent Mortality of Juvenile Bivalves in the Wadden Sea. <i>PLoS One</i> 9 , e102491 (2014).
568 569 570	33.	Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. <i>Science</i> 296 , 1692–1694 (2002).
571 572 573 574	34.	Thornhill, D. J., Mahon, A. R., Norenburg, J. L. & Halanych, K. M. Open- ocean barriers to dispersal: A test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). <i>Mol. Ecol.</i> 17 , 5104–5117 (2008).
575 576	35.	Lindahl, T. Instability and decay of the primary structure of DNA. <i>Nature</i> 362 , 709–715 (1993).
577 578 579	36.	Gaino, E. & Scoccia, F. Sperm ultrastructure of a member of the black coral family Aphanipathidae: Rhipidipathes reticulata (Anthozoa, Antipatharia). <i>Tissue Cell</i> 42 , 391–394 (2010).
580 581 582 583	37.	Fischer, A. H., Pang, K., Henry, J. Q. & Martindale, M. Q. A cleavage clock regulates features of lineage-specific differentiation in the development of a basal branching metazoan, the ctenophore Mnemiopsis leidyi. <i>Evodevo</i> 5, 4 (2014).
584 585 586	38.	Castellani, C. & Lucas, I. A. N. Seasonal variation in egg morphology and hatching success in the calanoid copepods Temora longicornis, Acartia clausi and Centropages hamatus. <i>J. Plankton Res.</i> 25 , 527–537 (2003).
587 588 589	39.	Logares, R. <i>et al.</i> Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. <i>ISME J.</i> 6 , 1823–1833 (2012).
590	40.	Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing

591 592		reveals a highly complex eukaryotic community in marine anoxic water. <i>Mol. Ecol.</i> 19, 21–31 (2010).
593 594 595 596	41.	Pawlowski, J., Esling, P., Lejzerowicz, F., Cedhagen, T. & Wilding, T. A. Environmental monitoring through protist next-generation sequencing metabarcoding: Assessing the impact of fish farming on benthic foraminifera communities. <i>Mol. Ecol. Resour.</i> 14 , 1129–1140 (2014).
597 598	42.	Telford, M. J., Budd, G. E. & Philippe, H. Phylogenomic insights into animal evolution. <i>Current Biology</i> : <i>CB</i> 25 , (2015).
599 600 601 602	43.	Carranza, S., Giribet, G., Ribera, C., Baguñà, J. & Riutort, M. Evidence that two types of 18S rDNA coexist in the genome of Dugesia (Schmidtea) mediterranea (Platyhelminthes, Turbellaria, Tricladida). <i>Mol. Biol. Evol.</i> 13 , 824–832 (1996).
603 604 605	44.	Gasmi, S. <i>et al.</i> Evolutionary history of Chaetognatha inferred from molecular and morphological data: a case study for body plan simplification. <i>Front. Zool.</i> 11, 84 (2014).
606 607 608	45.	Pearman, J. K. & Irigoien, X. Assessment of Zooplankton Community Composition along a Depth Profile in the Central Red Sea. <i>PLoS One</i> 10 , e0133487 (2015).
609 610 611	46.	Markmann, M. & Tautz, D. Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. <i>Philos. Trans. R. Soc. B Biol. Sci.</i> 360 , 1917–1924 (2005).
612 613	47.	Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. <i>Bioinformatics</i> 26 , 2460–2461 (2010).
614 615	48.	Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. <i>Nat. Methods</i> 10 , (2013).
616 617 618	49.	Schloss, P. D. <i>et al.</i> Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. <i>Appl. Environ. Microbiol.</i> 75 , 7537–7541 (2009).
619 620	50.	Caporaso, J. G. <i>et al.</i> QIIME allows analysis of high-throughput community sequencing data. <i>Nat. Methods</i> 7 , 335–336 (2010).
621 622 623	51.	Berger, S. A., Krompass, D. & Stamatakis, A. Performance, accuracy, and Web server for evolutionary placement of short sequence reads under maximum likelihood. <i>Syst. Biol.</i> 60 , 291–302 (2011).
624		

625 Figure Legends

626 Fig. 1: Relative abundances of different metazoan groups and metazoan relative

abundance compared to the eukaryotes. Relative abundances of different metazoan
 groups (colored columns) and metazoan relative abundance compared to total

eukaryotes (black columns) in (a) oxic fractions and anoxic fractions, and (b)
different depths, separated by DNA and RNA templates. The number above each

631 column represents the number of metazoan reads in the fraction/environment for the632 given template (RNA or DNA).

633 Fig. 2: Metazoan richness. (a) The OTU distribution for each metazoan group 634 divided into pelagic specific, sediment specific and those present in both 635 environments. BLAST identities are also plotted against NCBI nr nt in dark/light blue. On the right, there is a representation of the number of OTUs (blue line) and number 636 of reads (red line) based on their environment. (b) Environmental distribution of 637 638 OTUs is shown based on prevalence: In blue, pelagic-specific OTUs (i.e., OTU with 639 more than 90% of the reads within the water column); in green, OTUs present both in 640 the water column and the sediments; in brown, OTUs present only in sediments (i.e., 641 OTUs with more than 90% of the reads within the sediments). In addition, BLAST 642 identities are shown against NCBI nr nt in dark/light blue. The number of OTUs (blue 643 line) and number of reads (red line) based on their occurrence in 1 or more (up to 5) 644 geographical site is shown to the right.

Fig. 3: Analysis of the small (pico and nano) and large (micro/meso) fractions,
and extracellular DNA. (a) Taxonomic distribution of the OTU reads in the smaller
and larger fractions and within the extracellular DNA. (b) Ratio of the numbers of
reads from the smaller fractions and large fraction for these OTUs.

Fig. 4: Sequence novelty plus summary of OTUs/read numbers of the main

Metazoan phyla in our dataset. (a) Distribution of OTU BLAST identities against
NCBI nt nr for the main phyla of our dataset. (b) Summary of the number of OTUs
(blue) and the number of reads (red) of the given phyla.

Fig. 5: Tunicate 18S rRNA phylogenetic tree placing the novel metazoan group

654 **MAME 1.** The tree was inferred using RaxML-EPA from the 18S rRNA gene

nucleotide sequence and including representatives from all sequenced tunicate groups.

The nodal support values marked with a dot correspond to maximum likelihood 100-

replicate bootstrap support and Bayesian posterior probabilities.

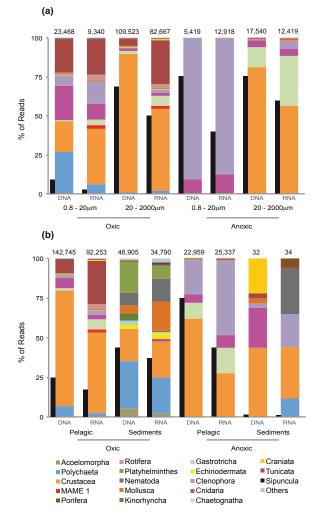
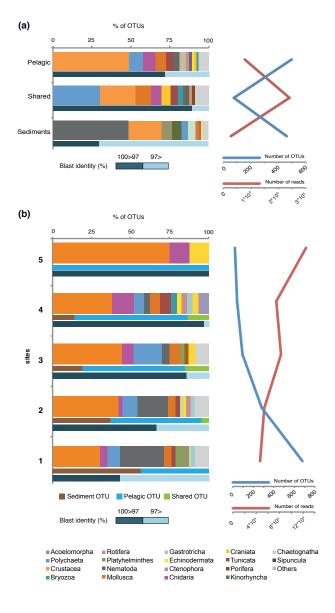



Fig 1

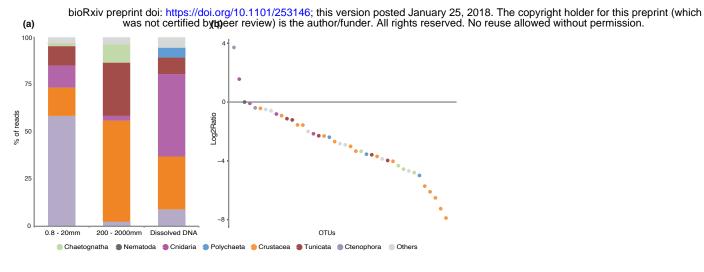
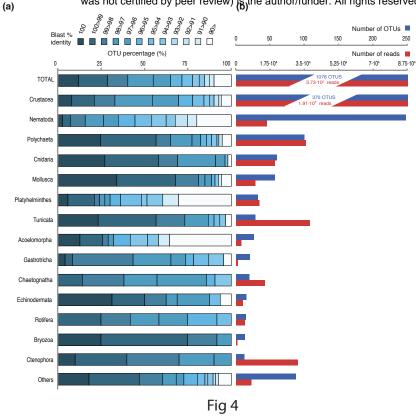
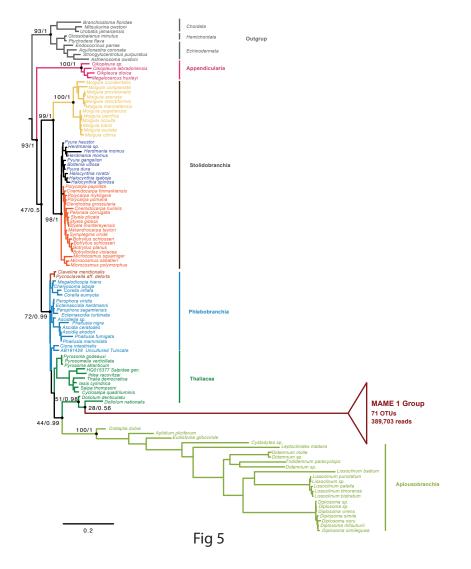




Fig 3

