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Abstract 
Stomata control gas exchanges between the plant and the atmosphere. How natural 

variation in stomata size and density contributes to resolve trade-offs between carbon 

uptake and water-loss in response to local climatic variation is not yet understood. We 

developed an automated confocal microscopy approach to characterize natural genetic 

variation in stomatal patterning in 330 fully-sequenced Arabidopsis thaliana accessions 

collected throughout the European range of the species. We compared this to variation 

in water-use efficiency, measured as carbon isotope discrimination (13C). We detect 

substantial genetic variation for stomata size and density segregating within Arabidopsis 

thaliana. A positive correlation between stomata size and 13C further suggests that this 

variation has consequences on water-use efficiency. Genome-wide association analyses 

indicate a complex genetic architecture underlying not only variation in stomata 

patterning but also to its co-variation with carbon uptake parameters. Yet, we report two 

novel QTL affecting 13C independently of stomata patterning. This suggests that, in A. 

thaliana, both morphological and physiological variants contribute to genetic variance 

in water-use efficiency. Patterns of regional differentiation and co-variation with 

climatic parameters indicate that natural selection has contributed to shape some of this 

variation, especially in Southern Sweden, where water availability is more limited in 

spring relative to summer. These conditions are expected to favor the evolution of 

drought avoidance mechanisms over drought escape strategies.  

Keywords 
GWAS; stomata; water-use efficiency; Arabidopsis thaliana; QST FST analysis; local 

adaptation to climate 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2018. ; https://doi.org/10.1101/253021doi: bioRxiv preprint 

https://doi.org/10.1101/253021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 
 

Introduction 1 

In plants, carbon uptake and water loss are intimately linked by a trade-off between growth 2 

and water conservation (Cowan, 1986; Cowan & Farquhar, 1977; Field, Merino, & Mooney, 3 

1983). Stomata, the microscopic pores embedded in the epidermis of plant leaves, play a key 4 

role in the resolution of this trade-off.  Their density, distribution and regulation control the 5 

rate of CO2 and water exchange (Raven, 2002). As a result, they impact the ratio of 6 

photosynthetic carbon assimilation to water loss via transpiration. This ratio defines water-use 7 

efficiency (WUE), a physiological parameter that directly determines plant productivity when 8 

the water supply is limited. Variation in density, distribution and regulation of stomata may 9 

thus have played a pivotal role in shaping the diversity of plant communities throughout the 10 

globe (Lambers, Chapin, & Pons, 1998; McDowell et al., 2008). 11 

 12 

The density of stomata on the leaf surface is expected to correlate positively with the rate of 13 

gas exchanges between the leaf and the atmosphere, also called “conductance”. Models based 14 

on gas diffusion theory predict that small stomata in high density can best maximize 15 

conductance (Franks & Beerling, 2009). A positive relationship between stomata density and 16 

conductance has been reported in a majority of studies looking at natural variation between 17 

species (Anderson & Briske, 1990; Pearce, Millard, Bray, & Rood, 2006) as well as within 18 

species (Carlson, Adams, & Holsinger, 2016; Muchow & Sinclair, 1989; Reich, 1984). Yet, 19 

higher stomata density does not always translate into higher rates of gas exchanges: in a 20 

diversity panel of rice (Ohsumi, Kanemura, Homma, Horie, & Shiraiwa, 2007) or within 21 

several vegetable crop species (Bakker, 1991), for example, the relationship was not 22 

observed.  23 
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Molecular mutants in genes promoting stomata development show that reduced stomata 24 

density translates into decreased water loss and increased ability to survive after exposure to 25 

drought (Franks, W. Doheny-Adams, Britton-Harper, & Gray, 2015; Yoo et al., 2010).  26 

Yet, decreased stomata density does not necessarily associate with increased demands on 27 

WUE imposed by water limitation. In the Mimulus guttatus species complex, accessions from 28 

drier inland populations showed decreased stomatal density and increased WUE, compared to 29 

accessions collected in humid coastal populations (Wu, Lowry, Nutter, & Willis, 2010). By 30 

contrast, in 19 Protea repens populations measured in a common garden experiment, stomata 31 

density increased with decreasing summer rainfall at the source location (Carlson et al., 32 

2016).  33 

In fact, stomata density is not the only parameter modulating the balance between water loss 34 

and carbon uptake. Variation in stomata size also impacts the efficiency of stomata regulation 35 

(Raven, 2014). Stomata open and close in response to environmental and internal signals 36 

(Chater et al., 2011; Kinoshita et al., 2011). This ensures that plants do not desiccate when 37 

water evaporation is maximal and spares water when photosynthesis is not active 38 

(Daszkowska-Golec & Szarejko, 2013). The speed of stomata closure is higher in smaller 39 

stomata (Drake, Froend, & Franks, 2013; Raven, 2014). Stomatal responses are an order of 40 

magnitude slower than photosynthetic changes, so any increase in closure time lag may result 41 

in unnecessary water loss and reduce WUE (T. Lawson, Kramer, & Raines, 2012; Raven, 42 

2014). However, it is often observed that decreases in stomata size occur at the expense of 43 

increased stomata density (reviewed in Hetherington & Woodward, 2003). This leads to a 44 

correlation that may at first be counter-intuitive: an increase in stomata density can result in 45 

improved WUE because of indirect effects on stomata size. In Eucalyptus globulus, however, 46 

plants from the drier sites had smaller stomata and higher WUE but no concomitant change in 47 
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stomata density (Franks, Drake, & Beerling, 2009). This suggested that the developmental 48 

effect correlating stomata size and density may sometimes be alleviated. Altogether, these 49 

studies highlight interconnections between stomata size, stomata density and WUE that 50 

change across species or populations. How and whether variation in these traits and their 51 

connections support or constrain adaptive processes, however, is not clearly established.  52 

Eco-evolutionary studies, e.g. the analysis of evolutionary forces shaping genetic variation in 53 

natural populations, can determine whether phenotypic variance has a significant impact on 54 

the ecology of species (Carroll, Hendry, Reznick, & Fox, 2007; Hendry, 2016). By drawing 55 

on the elaborate toolbox of population genetics and genomics, it is not only possible to 56 

determine the genetic architecture of any given trait but also to ask whether it is optimized by 57 

natural selection and to investigate the ecological determinants of selective forces at work 58 

(Hendry, 2016; Weinig, Ewers, & Welch, 2014). In this effort, the annual species Arabidopsis 59 

thaliana, which thrives as a pioneer species in disturbed habitats, has a privileged position 60 

(Gaut, 2012). Genome-wide patterns of nucleotide variation can be contrasted to phenotypic 61 

variation and both the genetic architecture and the adaptive history of the traits can be 62 

reconstructed (Atwell et al., 2010; Fournier-Level et al., 2011; Alonso-Blanco et al., 2016). 63 

Environmental variation has a documented impact on local adaptation in this species (Debieu 64 

et al., 2013; Hamilton, Okada, Korves, & Schmitt, 2015; Hancock et al., 2011; Kronholm, 65 

Picó, Alonso-Blanco, Goudet, & Meaux, 2012; Lasky et al., 2014; Postma & Ågren, 2016). In 66 

addition, natural variation in stomatal patterning is known to segregate among A. thaliana 67 

accessions (Delgado, Alonso-Blanco, Fenoll, & Mena, 2011). This species thus provides the 68 

ideal evolutionary context in which the adaptive contribution of variation in stomata 69 

patterning can be dissected.  70 
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Here, we developed an automated confocal microscopy approach that overcomes the technical 71 

limitations which have so far complicated the phenotyping of stomatal variation on larger 72 

samples. We characterized genetic variation in stomatal patterning in 330 fully-sequenced 73 

accessions, across a North-South transect of the European range. Additionally, we measured 74 

13C, a commonly used estimate of water-use efficiency (WUE) (Juenger et al., 2005; Martin 75 

& Thorstenson, 1988; McKay et al., 2008; Mojica et al., 2016), for all genotypes. Combined 76 

with public genomic and environmental resources, this dataset allows us to ask: i) how 77 

variable are natural A. thaliana accessions in stomata patterning? ii) does variation in stomata 78 

patterning influence the carbon-water trade-off? iii) what is the genetic architecture of traits 79 

describing stomata patterning? iv) is stomata patterning optimized by natural selection?  80 

By combining a genome-wide association approach with QST/FST analyses and associations 81 

with environmental parameters, we show that, in A. thaliana, variation in stomata patterning 82 

plays a role in local adaptation. Our results further indicate that natural variation in stomata 83 

size is one of the adaptive traits contributing to the optimization of WUE.  84 

Methods 85 

Plant material, plant genotypes and growth conditions 86 

In total, 330 accessions, spanning a wide geographical range were selected from the 1001 87 

collection of fully sequenced genotypes (Suppl. Table 1). Accessions were assigned to five 88 

groups based on their geographic origin and genetic clustering (Alonso-Blanco et al., 2016): 89 

Spain, Western Europe, Central Europe, Southern Sweden and Northern Sweden (Figure S1). 90 

In 20 cases, for which genetic information contradicted geographic information, we 91 

prioritized geographic information since we are focusing on local adaptation and expect that 92 

geography, as opposed to demographic history, reflects the scale at which local adaptation 93 
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proceeds. To avoid oversampling, we randomly reduced the number of plants sampled at the 94 

same location to one for the analysis of heritability, regional differentiation (QST-FST) and 95 

climatic correlation, resulting in 287 accessions.  96 

The genome sequences of the 330 genotypes included in the analysis were downloaded from 97 

the 1001 genome database (Alonso-Blanco et al., 2016) on May 12th, 2017. Single nucleotide 98 

polymorphism (SNP) data was extracted using vcftools (Danecek et al., 2011). Genomic data 99 

was thinned to 1 SNP picked randomly in each 1000bp window to reduce computational load. 100 

In A. thaliana, linkage disequilibrium extends beyond 1kb (Nordborg et al., 2002). Thus, this 101 

data-size reduction should not impact statistics describing the geographical structure of 102 

genomic variation. Additionally, minimum minor allele frequency was set to 5% and sites 103 

exceeding 5% missing data were removed, resulting in 70,410 SNPs among all genotypes. 104 

SNP information was loaded into R using the vcfR package (Knaus, Grunwald, Anderson, 105 

Winter, & Kamvar, 2017). For genome-wide association studies the full, unthinned SNP 106 

dataset was used and missing SNPs were imputed using BEAGLE version 3.0 (Browning & 107 

Browning, 2009).  108 

Seeds were stratified on wet paper for 6 days at 4°C in darkness. Plants were grown on soil in 109 

5x5 cm paper pots in 3 replicates with one plant per pot. Genotypes were randomized within 110 

each of 3 blocks of 12 trays containing 8x4 pots. Plants were grown for 7 weeks in growth 111 

chambers (one per block) under the following conditions: 16 h light; 95 µmol s⁻ ¹ mm⁻ ² light 112 

intensity; 20 °C day- and 18 °C night-temperature. Plants were watered twice a week and 113 

trays shuffled and rotated every two to three days to account for variable conditions within the 114 

chambers. 115 

 116 

 117 
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High throughput phenotyping 118 

After 7 weeks, one fully-expanded, intact, adult leaf (one of the largest leaves developed after 119 

leaf 4) was selected from each plant for microscopic analysis. Stomata density and size as 120 

well as leaf size were measured using our high-throughput microscopy pipeline (for details, 121 

see Suppl. Document 1). Stomata density was also determined manually on a random set of 122 

14 individuals and on a set of 32 independently-grown individuals. Automatic and manual 123 

measurements were strongly correlated (Pearson correlation coefficient r²=0.88, p<<0.01and 124 

r²=0.81, p<<0.01, for the 14 and 32 individuals Figures S2-3). The algorithm was 125 

conservative and tended to slightly under-estimate stomata numbers, resulting in a low false-126 

positive rate. This ensured that stomata area was generally quantified on objects that 127 

corresponded to real stomata. Due to quality filters in our pipeline, the number of analyzed 128 

images differed between samples (Figure S4). We found a significant correlation between the 129 

number of images analyzed and stomata density (r=0.21, p<<0.01, Figure S5), but not stomata 130 

size (r=0.02, p>0.05). Thus, we included the number of images as a co-factor into all 131 

statistical models for stomata density (see below). Carbon isotope discrimination 132 

measurements (13C) of whole rosettes were performed for all plants in block 1 (for details 133 

see Suppl. Document 1). 134 

 135 

Heritability estimates 136 

Broad-sense heritability H², the proportion of the observed phenotypic variance that is 137 

genetic, was estimated as: 138 

𝐻2 = 𝑉𝑎𝑟𝐺/(𝑉𝑎𝑟𝐺 + 𝑉𝑎𝑟𝐸) 139 

where VarG is the genetic variance and VarE is the environmental variance. Because we 140 

worked with inbred lines, VarE and VarG could be estimated as the variance between 141 
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replicates of a genotype and the variance between genotypes, respectively, with a linear-142 

mixed-model using block as fixed effect and genotype as random effect. We ran a linear 143 

mixed model using the lme function from nlme package (Pinheiro, Bates, DebRoy, Sarkar, & 144 

R Core Team, 2015) (Suppl. Document 2). For 13C, no replicates were available but a 145 

pseudo-heritability estimate was extracted from the GWAS mixed model including the 146 

kinship matrix (Atwell et al., 2010).  147 

 148 

 149 

Genome-Wide Association Study (GWAS) 150 

For GWAS, SNPs with minor allele count <5 were removed, leaving a dataset of 2.8-3M 151 

SNPs, depending on missing data for the phenotypes. Minor allele frequency spectra for all 152 

three datasets show that the subset of 261 genotypes, for which all three phenotypes were 153 

determined, has a lower proportion of rare SNPs (Figure S6). GWAS was performed with a 154 

mixed model correcting for population structure using a kinship matrix calculated under the 155 

assumption of the infinitesimal model. SNPs were first analyzed with a fast approximation 156 

(Kang et al., 2010) and the 1000 top-most associated SNPs were reanalyzed with the complete 157 

model that estimates the respective variance components for each SNP separately (Kang et al., 158 

2008). 159 

For trait pairs measured on the same plant, a Multi-Trait Mixed Model (MTMM) was applied 160 

to distinguish common and trait-specific SNP-phenotype association (Korte et al., 2012).  161 

The MTMM performs three different statistical tests on a bivariate phenotype including each 162 

trait pair. The first model tests whether a given SNP has the same effect on both traits. This 163 

model has increased power to detect significant associations, which may fall under the 164 

significance threshold when traits are analyzed in isolation. The second model identifies SNPs 165 
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having distinct effects on the two traits. It is well suited to detect SNPs with antagonistic 166 

effects on both traits. The last model combines both trait-specific and common effects. This 167 

last model is particularly powerful for detecting markers affecting both traits with different 168 

intensity. The MTMM analysis also provides estimates of the genetic and environmental 169 

correlation for each pair of traits. The statistical details of the models are described in (Korte 170 

et al., 2012). 171 

For all analyses (GWAS and MTMM), the significance threshold for QTL identification was 172 

determined as a 5 % Bonferroni threshold, i.e. 0.05 divided by the number of SNPs in the 173 

dataset. 174 

 175 

 176 

Climatic data 177 

Climatic data included average precipitation, temperature, water vapor pressure (humidity), 178 

wind speed and solar radiation estimates with 2.5 min grid resolution (WorldClim2 database 179 

(Fick & Hijmans, 2017) on May 30th, 2017) and soil water content (Trabucco & Zomer, 180 

2010). For each variable and accession, we extracted a mean over the putative growing 181 

season, i.e. the months in the year with average temperature greater than 5 °C and average soil 182 

water content over 25% (Suppl. Table 1). We further computed historical drought frequencies 183 

at A. thaliana collection sites using 30+ years of the remotely-sensed Vegetative Health Index 184 

(VHI). The VHI is a drought detection method that combines the satellite measured 185 

Vegetative Health and Thermal Condition Indices to identify drought induced vegetative 186 

stress globally at weekly 4km2 resolution (Kogan, 1995). This is a validated method for 187 

detecting drought conditions in agriculture. Specifically, we used VHI records to calculate the 188 

historic frequency of observing drought conditions (VHI<40) during the spring (quarter 189 
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surrounding spring equinox) and summer (quarter surrounding summer solstice). These are 190 

the typical reproductive seasons of Arabidopsis populations (reviewed in Burghardt, Metcalf, 191 

Wilczek, Schmitt, & Donohue, 2015). The drought regime in each location was quantified as 192 

the log-transformed ratio of spring over summer drought frequency. Positive values of this 193 

drought regime measure reflect environments where the frequency of drought decreases over 194 

the typical reproductive growing season, and vice versa for negative values. This ratio 195 

quantifies the seasonality of water availability. It correlates with the ratio of soil water content 196 

of the first and third month of the reproductive season (r=0.54, p<0.01), which we defined as 197 

the first and third growing month in the year, giving similar estimates as Burghardt, Metcalf, 198 

Wilczek, Schmitt, & Donohue (2015). 199 

Because the seven climate variables are correlated, we combined them in seven principal 200 

components (PCs) for 316 A. thaliana collection sites (Figures S7-9, loadings described in 201 

Suppl. Document 2). Fourteen genotypes with missing climate data were excluded. Climatic 202 

distance between each region pair was estimated as the F-statistic of a multivariate analysis of 203 

variance (MANOVA) with climatic PCs as response variables and region of origin as 204 

predictor. 205 

 206 

 207 

Population genomic analysis 208 

Principal component analysis (PCA) of genomic data (thinned to 1kb) was done using the 209 

adegenet package (Jombart et al., 2016) with missing data converted to the mean (Figures 210 

S10-11).  211 

Comparing phenotypic differentiation (QST) to the distribution of FST is a useful method to 212 

reveal signatures of local adaptation (Leinonen, McCairns, O’hara, & Merilä, 2013; Whitlock 213 
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& Guillaume, 2009). Genome-wide, pairwise FST estimates between regions were calculated 214 

using the hierfstat package (function basic.stats, Nei’s Fst) (Goudet, 2005). Negative FST 215 

values were set to zero before the 95th percentile was calculated. 216 

For stomata density, stomata size and WUE, the respective phenotypic differentiation 217 

between regions, QST, was estimated as: 218 

𝑄𝑠𝑡 = 𝑉𝑎𝑟𝐵/(𝑉𝑎𝑟𝑊 + 𝑉𝑎𝑟𝐵) 219 

 where VarW is the genetic variance within regions and VarB the genetic variance between 220 

regions as described in Kronholm et al. (2012) (for details, see Suppl. Document 1).  221 

To test whether QST estimates significantly exceed the 95th percentile of the FST distribution, 222 

we permuted the phenotypic data by randomizing genotype labels to keep heritability 223 

constant. For each permutation and phenotype, we calculated the difference between each QST 224 

value and the 95th percentile of the FST distribution. We used the 95th percentile of the 225 

maximum QST-FST distance distribution as a threshold for determining if phenotypic 226 

differentiation significantly exceeds neutral expectations. Since this test takes the maximum 227 

QST-FST distance for all population combinations in each permutation, it does not require 228 

multiple testing correction. 229 

 230 

 231 

Statistical analysis 232 

Statistical analysis was conducted using R (R Development Core Team, 2008) (R Markdown 233 

documentation in Suppl. Document 2). Plots were created using the following libraries: 234 

ggplot2 (Wickham, 2009), ggthemes (Arnold et al., 2017), ggmap (Kahle & Wickham, 2013), 235 

ggbiplot (Vu, 2011) and effects (Fox et al., 2016). 236 
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We used Generalized Linear Models (GLM) to test the effect of block, origin, pot position in 237 

tray (edge or center) and leaf size on each phenotype (stomata density, stomata size and 13C). 238 

For stomata density we also included the number of analyzed images as a co-factor. The error 239 

distribution was a quasi-Poisson distribution for stomata density and size and Gaussian for 240 

13C. Stomata density was log-transformed to avoid over-dispersion. Significance of each 241 

predictor was determined via a type-II likelihood-ratio test (Anova function of the car 242 

package). Significant differences between regions were based on GLMs including only 243 

significant predictor variables and determined with Tukey’s contrasts using the glht function 244 

of the multcomp package (Hothorn et al., 2017). GLMs were also used to test the impact of all 245 

climatic PCs on phenotypic traits, while accounting for population structure with the first 20 246 

PCs for genetic variation, which explain 28% of genetic variation (see above). Additionally, 247 

for 13C we also tested a simpler model including climatic parameters but not population 248 

structure. From the resulting models, we created effect plots for significant environmental 249 

PCs using the effects package (Fox et al., 2016). Further, we used GLMs with binomial 250 

distribution to test whether any of the climatic PCs significantly predicts the allelic states of 251 

loci associated with WUE in GWAS.  252 

 253 

 254 

Results 255 

Substantial genetic variation in stomata density and size 256 

We analyzed over 31,000 images collected in leaves of 330 A. thaliana genotypes and 257 

observed high levels of genetic variation in stomata patterning. Genotypic means ranged from 258 

87 to 204 stomata/mm² for stomata density and from 95.0 µm² to 135.1 µm² for stomata size 259 
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(see Suppl. Table 2 for raw phenotypic data). Leaf size was not significantly correlated with 260 

stomata density (r=-0.02, p=0.7, Figure S12) and stomata size (r=-0.08, p=0.15, Figure S13), 261 

as expected in fully developed leaves. Broad-sense heritability reached 0.41 and 0.30 for 262 

stomata size and density, respectively. Mean stomata density and stomata size were 263 

negatively correlated (r=-0.51, p<<0.001; Figure 1). Due to the strong correlation between 264 

stomata size and density, we focus primarily on stomata size in the following report, but 265 

results for stomata density are in the supplemental material. 266 

 267 

 268 

Stomata size correlates with water-use efficiency 269 

We expected variation in stomatal traits to influence the trade-off between carbon uptake and 270 

transpiration. Thus, we measured isotopic carbon discrimination, 13C, an estimator that 271 

increases with water-use efficiency (WUE) (Farquhar, Hubick, Condon, & Richards, 1989; 272 

McKay et al., 2008). 13C ranged from -38.7‰ to -30.8‰ (Suppl. Table 2) and was 273 

significantly correlated with stomata size (r=-0.18, p=0.004; Figure 2), indicating that 274 

accessions with smaller stomata have higher WUE. About ~4% of the total phenotypic 275 

variation (i.e. the sum of phenotypic and genetic variance) in 13C is explained by genetic 276 

variance in stomata size. We found no significant correlation between stomatal density and 277 

13C (r=-0.007, p=0.9, Figure S14). 278 

 279 

 280 

Common genetic basis of stomata size and 13C 281 

To identify the genetic basis of the phenotypic variance we observe, we conducted a genome-282 

wide association study (GWAS) for each phenotype. We calculated for each phenotype a 283 
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pseudo-heritability, which is the fraction of phenotypic variance explained by the empirically 284 

estimated relatedness matrix (e.g. kinship matrix computed on genome-wide SNP typing).  285 

Pseudo-heritability estimates were 0.59 for stomata density, 0.56 for stomata size and 0.69 for 286 

13C, indicating that differences in stomata patterning and carbon physiology decreased with 287 

increasing relatedness. Despite considerable levels of heritability, we did not detect any 288 

variant associating with stomata density at a significance above the Bonferroni-corrected p-289 

value of 0.05 (log10(p)=7.78). For stomata size, we detected one QTL with two SNPs 290 

significantly associating at positions 8567936 and 8568437 (Figure S15). These SNPs have an 291 

allele frequency of 1.5% (5 counts) and 2.1% (7 counts), respectively and map to gene 292 

AT4G14990.1, which encodes for a protein annotated with a function in cell differentiation. 293 

The former SNP is a synonymous coding mutation while the latter is in an intron.  294 

 295 

For 13C, one genomic region on chromosome 2 position 15094310 exceeded the Bonferroni 296 

significance threshold (log10(p)=7.97, Figure S16). Allele frequency at this SNP was 9.7% (30 297 

counts) and all accessions carrying this allele, except four, were from Southern Sweden (3 298 

Northern Sweden, 1 Central Europe). Southern Swedish lines carrying the allele showed 299 

significantly increased 13C compared to the remaining Southern Swedish lines (W=1868, p-300 

value=6.569e-05, Figure S17). A candidate causal mutation is a non-synonymous SNP at 301 

position 15109013 in gene AT2G35970.1, which codes for a protein belonging to the Late 302 

Embryogenesis Abundant (LEA) Hydroxyproline-Rich Glycoprotein family. This SNP also 303 

shows elevated association with the phenotype. However, its significance was below the 304 

Bonferroni-threshold (log(p)=7). Since this SNP is not in linkage disequilibrium with the 305 

highest associating SNP in the region (Figure S18), it is possible that another, independent 306 

SNP in this region is causing the association. 307 
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 308 

We used Multi-Trait Mixed-Model (MTMM) analysis to disentangle genetic and 309 

environmental determinants of the phenotypic correlations. We found that the significant 310 

correlation between stomata density and stomata size (r=-0.5) had no genetic basis, but had a 311 

significant (r=-0.9, p<0.05) residual correlation. This suggests that the correlation was not 312 

determined by common loci controlling the two traits, but by other, perhaps physical, 313 

constraints or by epistatic alleles at distinct loci. By contrast, the correlation between stomata 314 

size and 13C (r= -0.18) had a significant genetic basis (kinship-based correlation, r=-0.58, 315 

p<0.05). Thus, in contrast to the phenotypic variation, genetic variation in stomata size 316 

roughly explains over 33% of the genetic variation in 13C. 317 

 318 

To further investigate the genetic basis for the correlation between stomata size and 13C, we 319 

performed MTMM GWAS, which tests three models: the first model tests whether a SNP has 320 

the same effect on both traits; the second model tests whether a SNP has differing effects on 321 

both traits and the third model is a combination of the first two to identify SNPs which have 322 

effects of different magnitude on the traits (Korte et al., 2012). We did not observe variants 323 

with same or differing effects on 13C and stomata size. However, with the combined model, 324 

we observed a marginally significant association on chromosome 4, which had an effect on 325 

13C but not stomata size. GWAS of 13C restricted to the 261 individuals used for the 326 

MTMM analysis confirmed the QTL on chromosome 4. GWAS applied to different but 327 

overlapping sets of accessions yield similar results but can sometimes differ in the set of 328 

significant associations, since marginal changes in SNP frequency can affect significance 329 

levels (Figure S6). Indeed, the p-values of associations with 13C for the two datasets (310 330 

and 261 accessions) are highly correlated (r=0.87, p<<0.0001, Figure S19). In this set of 331 
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genotypes, two SNPS, at position 7083610 and 7083612, exceeded the Bonferroni-corrected 332 

significance threshold (α=0.05) (both p=4.8e-09, Figure S20) although they were under the 333 

significance threshold in the larger dataset. Allele frequency is 14% (37 counts) at these two 334 

loci and explains 11% of the phenotypic variation. The association is probably due to 335 

complex haplotype differences since it coincides with a polymorphic deletion and contains 336 

several imputed SNPs. Thirty-five of the 37 accessions carrying the minor allele originated 337 

from Southern Sweden and showed significantly higher 13C compared to other Southern 338 

Swedish accessions (mean difference=1.34; W=1707, p=1.15e-06; Figure S21). In summary, 339 

we detected two genetic variants significantly associating with 13C, independent of stomata 340 

size, despite the common genetic basis of the two traits.  341 

 342 

 343 

Stomata size and stomata density correlate with geographical patterns of climatic 344 

variation 345 

We used PCA to describe multivariate variation in climatic conditions reported for the 346 

locations of origins of the genotypes. We tested the correlation of each measured phenotype 347 

with climatic principal components (PCs) using a GLM which accounted for genetic 348 

population structure (see methods). We found a significant, negative relationship between 349 

genetic variation in stomata size and climatic PC2 (Likelihood ratio test Chi-Square (LRT Χ²) 350 

=9.2784, degrees of freedom (df)=1, p=0.005) and PC5 (LRT Χ²=5.7335, df=1, p=0.02, 351 

Figure 3). Climatic PC 2 explained 23.8% of climatic variation and had the strongest loadings 352 

(both negative) from temperature and water vapor pressure (humidity). Climatic PC 5 353 

explained 9% of the climatic variation and mostly increased with increasing spring-summer 354 

drought probability ratio and increasing solar radiation. We also found significant climatic 355 
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predictors for the distribution of genetic variation in stomata density (PC 2: LRT Χ²=8.6612, 356 

df=1 p=0.003; PC 5: LRT Χ²=7.3773, df=1, p=0.007; PC 7: LRT Χ²=6.6033, df=1, p=0.01; 357 

Figure S22). 13C did not correlate with any of the climatic PCs. However, removing 358 

population structure covariates from the model revealed significant correlations of 13C with 359 

climatic PC2 (+, LRT Χ²=7.3564, df=1, p=0.006), PC3 (-, LRT Χ²=3.8889, df=1, p=0.048) 360 

and PC4 (+, LRT Χ²=6.6885, df=1, p= 0.009) (Figure S23). PC3 explained 13.7% of climatic 361 

variation and principally increased with rainfall and decreased with spring-summer drought 362 

probability ratio. PC4 explained 11.4% of the total variation and mostly increased with wind 363 

speed. Therefore, the covariation of 13C with climatic parameters describing variation in 364 

water availability and evaporation in A. thaliana is strong but confounded with the 365 

demographic history of the species. To test whether alleles associating with increased 13C in 366 

GWAS are involved in adaptation to local climate, we checked whether any climatic PC is a 367 

significant predictor of the allelic state of Southern Swedish accessions. However, none of the 368 

climatic PCs was a significant predictor for one of the two loci. 369 

 370 

 371 

Patterns of regional differentiation depart from neutral expectations 372 

Genotypes were divided into five regions based on genetic clustering (Alonso-Blanco et al., 373 

2016) and their geographic origin (Figure S1, see Methods). We detected significant 374 

phenotypic differentiation among these regions for stomata size (LRT Χ²=52.852, df=4, 375 

p=9.151e-11, Figure 4). Stomata size was significantly lower in Southern Sweden (mean=108 376 

µm²) compared to Central Europe (mean=114µm², Generalized Linear Hypothesis Test 377 

(GLHT) z=-6.24, p<0.001), Western Europe (mean=111 µm², GLHT z=2.769, p=0.04) and 378 

Spain (mean=113 µm², GLHT z=6.709, p<0.001), which did not significantly differ from 379 
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each other. Northern Sweden showed an intermediate phenotype and did not differ 380 

significantly from any region (mean=110 µm²). Variation for stomata density, showed a 381 

similar but inverted pattern (Figure S24). 382 

 383 

Furthermore, we found significant regional differentiation in 13C measurements (LR Χ² 384 

=58.029, df=4 p=7.525e-12, Figure 4). Highest 13C levels (highest WUE) were found in 385 

accessions from Northern Sweden (mean=-34.8) and Southern Sweden (mean=-35.2), which 386 

were significantly higher than in accessions from Spain (mean=-35.7; GLHT Southern 387 

Sweden z=-3.472, p=0.008; GLHT North Sweden z=-3.49, p=0.001) and Western Europe 388 

(mean=-36.06; GLHT Southern Sweden z= -2.8, p=0.03; GLHT Northern Sweden z=-3.28, 389 

p=0.008). Lowest 13C levels were found in lines from Central Europe (mean=-36.6), which 390 

were significantly lower than in lines from Northern Sweden (GLHT z=5.676, p<0.001), 391 

Southern Sweden (GLHT z=6.992, p<0.001) and Spain (GLHT z=3.714, p=0.002). 392 

 393 

 394 

The observed regional differences result either from the demographic history of the regions or 395 

from the action of local selective forces. To tease these possibilities apart, the phenotypic 396 

differentiation (QST) can be compared to nucleotide differentiation (FST) (Kronholm et al., 397 

2012; Leinonen et al., 2013). We examined each pair of regions separately, since they are not 398 

equidistant from each other and calculated FST distributions for over 70,000 SNP markers 399 

(spaced at least 1kb apart, see methods). For each trait, QST exceeded the 95th percentile of the 400 

FST distribution in at least two pairs of regions (Table 1 A-C). We used permutations to 401 

calculate a significance threshold for the QST/FST difference (see methods). Significant 402 

regional differentiation was pervasive in our sample, with Central Europe and Southern 403 
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Sweden being significantly differentiated for all three phenotypes. This analysis suggests that 404 

natural selection has contributed to shape the phenotypic differentiation between regions.  405 

 406 

 407 

Regional differences in climate may have imposed divergence in stomatal patterning. Thus, 408 

we estimated climatic distances between regions using estimates of regional effects extracted 409 

from a MANOVA. We did not observe significant correlations between adaptive phenotypic 410 

divergence (QST-FST) and the climatic distance of the respective regions (Mantel test p>0.05 411 

for each of the three traits). Regional divergence in C13, stomata density and stomata size 412 

was therefore not proportional to climatic divergence.  413 

 414 

 415 

Discussion 416 

Genetic variation for stomata density and size segregates in A. thaliana 417 

We used high-throughput confocal imaging to characterize stomata patterning in over 31,000 418 

images from 870 samples collected from 330 genotypes. Our high-throughput pipeline could 419 

characterize stomata density and stomata size with a reliable accuracy, confirmed by high 420 

correlation with manual measurements. Broad-sense heritability and pseudo-heritability 421 

estimates for stomata density, which are 30% and 58%, respectively, are slightly lower than in 422 

a previous report of manually counted stomata diversity across a smaller sample chosen to 423 

maximize genetic diversity (Delgado et al., 2011). Despite the clear impact of environmental 424 

(random) variance on both observed phenotypes, stomata size and stomata density showed a 425 

strong negative correlation. This is consistent with earlier reports of studies manipulating 426 
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regulators of stomata development (Doheny-Adams, Hunt, Franks, Beerling, & Gray, 2012; 427 

Franks et al., 2015), but also with studies analyzing stomatal trait variation in a wide range of 428 

species (Franks & Beerling, 2009; Hetherington & Woodward, 2003).  429 

 430 

The extensive genomic resources available in A. thaliana enabled us to investigate the genetic 431 

basis of trait variation and co-variation, with the help of GWAS (Atwell et al., 2010). Much is 432 

known about the molecular pathways that control the differentiation of stomata in Arabidopsis 433 

thaliana, providing a set of candidate genes expected to control genetic variation in stomata 434 

patterning (Bergmann & Sack, 2007; Pillitteri & Torii, 2012). However, we did not detect any 435 

genomic region that associated with stomata density at a p-value beyond the Bonferroni-436 

significance threshold. For stomata size, there was only one significant association on 437 

chromosome 4, albeit with very low minor allele frequency in a gene that has not been 438 

reported previously in stomata development. GWAS studies can detect small-effect loci only 439 

if they segregate at high frequency, whereas rare alleles only give detectable signals when 440 

they are of large effect (Korte & Farlow, 2013; Wood et al., 2014). Given that variance for 441 

both stomata size and stomata density is clearly heritable, the genetic variants controlling 442 

these traits are not causing strong association signals in GWAS. Theoretically, the presence of 443 

a large effect QTL impacting local adaptation can be masked by correction for population 444 

structure. However, not correcting for population structure is known to lead to a high number 445 

of false-positives and is thus not a reliable alternative (Vilhjálmsson & Nordborg, 2012). 446 

Nevertheless, we can conclude that variation in stomata patterning is controlled by a 447 

combination of i) alleles of moderate effect size segregating at frequencies too low to be 448 

detected by GWAS, and/or ii) alleles segregating at high frequency but with effect size too 449 

small to be detected and/or iii) rare alleles of small effect. In addition, it is possible that the 450 
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effect of associated loci is weakened by epistatic interactions among loci. In A. thaliana, the 451 

genetic architecture of natural variation in stomata traits is therefore not caused by a handful 452 

of large effect variants but complex and polygenic.  453 

 454 

Using MTMM analysis (Korte et al., 2012), we further investigated the impact of genetic 455 

variation on the negative co-variation between stomata size and density. This analysis 456 

revealed that genetic similarity does not influence the pattern of covariation. It implies that 457 

either multiple alleles act epistatically on the covariation, or that physical or environmental 458 

factors explain the correlation.  459 

 460 

 461 

Natural variation in stomata patterning can contribute to optimize physiological 462 

performance 463 

Both stomata development and reactions to drought stress are being intensively investigated 464 

in A. thaliana (Bergmann & Sack, 2007; Krasensky & Jonak, 2012; Pillitteri & Torii, 2012; 465 

Verslues, Govinal Badiger, Ravi, & M. Nagaraj, 2013). Mutants in stomata density or size 466 

have recently been shown to have a clear impact carbon physiology (Franks et al., 2015; 467 

Hepworth, Doheny-Adams, Hunt, Cameron, & Gray, 2015; Hughes et al., 2017; S. S. 468 

Lawson, Pijut, & Michler, 2014; Masle, Gilmore, & Farquhar, 2005; Yoo et al., 2010; Yu et 469 

al., 2008).Yet, the relevance of natural variation in stomatal patterning for facing local 470 

limitations in water availability, had not been documented in this species so far. We provide 471 

here concomitant measures of morphological and physiological variation to examine the 472 

impact of variation in stomatal patterning on natural variation in WUE. By including genome-473 

wide patterns of nucleotide diversity, our analysis presents two major findings: i) the decrease 474 
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in stomata size associates with an increase in WUE in A. thaliana and ii) this pattern of co-475 

variation has a genetic basis. This shows that, in A. thaliana, variation in stomata size has the 476 

potential to be involved in the optimization of physiological processes controlling the trade-477 

off between growth and water loss. Interestingly, in the close relative A. lyrata ssp. lyrata, 478 

stomata were observed to grow smaller in experimental drought compared to well-watered 479 

conditions, which coincided with increased WUE (Paccard, Fruleux, & Willi, 2014). This 480 

suggest that the consequences of decreased stomata size are conserved in the genus.  481 

  482 

While variation for stomata size and density is likely shaped by a complex genetic 483 

architecture that hindered QTL detection, we detected two regions in the genome that 484 

associated significantly with carbon isotope discrimination. Three previous QTL mapping 485 

analyses, including one between locally adapted lines from Sweden and Italy, identified 16 486 

distinct QTLs controlling 13C (Juenger et al., 2005; McKay et al., 2008; Mojica et al., 2016). 487 

One of these is caused by a rare allele in the root-expressed gene MITOGEN ACTIVATED 488 

PROTEIN KINASE 12 (MPK-12), (Campitelli, Des Marais, & Juenger, 2016; Juenger et al., 489 

2005). While QTL-mapping approaches can only reveal the variance shown by the parental 490 

lines, GWAS approaches fail to detect rare alleles unless they have a very strong impact. It is 491 

therefore not surprising that the loci that stand out in GWAS do not overlap with the QTL 492 

previously mapped. In fact, one of the mapping populations used the parental genotype Cvi-0, 493 

a genotypic and phenotypic outlier.  494 

The two QTL we report here on chromosomes 2 and 4 add two novel loci, raising the number 495 

of genomic regions known to impact 13C in A. thaliana to 18. The novel loci we report are 496 

locally frequent. Individuals carrying the minor alleles of both loci are almost exclusively 497 

from Southern Sweden and display significantly higher 13C than other Southern Swedish 498 
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accessions. However, we did not find any climatic factor significantly correlated with the 499 

allelic states of our QTLs. This suggests that other factors, like soil composition, play a role in 500 

drought adaptation. Alternatively, locally adapted alleles may not yet be fixed within the 501 

region. 502 

 503 

Interestingly, the accessions with the minor allele associating with high 13C in both QTL did 504 

not show decreased stomata size compared to other accessions. Multi-trait GWAS confirmed 505 

that these QTL are associated with 13C variants that are independent of genetic variation for 506 

stomata patterning. We therefore can conclude that, stomata patterning is only one of the traits 507 

contributing to the optimization of WUE. A large array of molecular and physiological 508 

reactions is indeed known to contribute to tolerance to drought stress (Krasensky & Jonak, 509 

2012; Verslues et al., 2013). The close vicinity of the chromosome 2 QTL to a non-510 

synonymous mutation in a gene encoding an LEA protein, known to act as a chaperone when 511 

cells dehydrate, suggests one possible mechanism by which WUE might be optimized 512 

independently of stomata size and density (Candat et al., 2014; Eriksson, Kutzer, Procek, 513 

Gröbner, & Harryson, 2011; Reyes et al., 2005). Variation in rates of proline accumulation in 514 

the presence of drought stress or in nutrient acquisition in the root are also among the 515 

physiological mechanism that appear to have contributed to improve drought stress tolerance 516 

in this species (Campitelli et al., 2016; Kesari et al., 2012).  517 

 518 

 519 
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Adaptive evolution of stomata patterning is suggested by the geographic distribution 520 

of genetic variation 521 

Phenotypic variation for stomata patterning and carbon uptake is not uniformly distributed 522 

throughout the species range. All three phenotypes we report in this study were significantly 523 

differentiated between the five broad regions defined in our sample of 330 genotypes. We 524 

performed a comparison of phenotypic and nucleotide levels of divergence to evaluate the 525 

putative role of past selective events in shaping the distribution of diversity we report 526 

(Leinonen et al., 2013; Whitlock & Guillaume, 2009). Because these regions are not equally 527 

distant, FST/QST comparisons averaged over all populations may mask local patterns of 528 

adaptation (Leinonen et al., 2013). We therefore measured QST between pairs of regions and 529 

compared them to the distribution of pairwise FST, using permutations to establish the 530 

significance of outlier QST. This analysis showed that, for all three traits, differentiation 531 

between some regions was stronger than expected from genome-wide patterns of diversity, 532 

suggesting local adaptation. This is further supported by our finding that stomata density and 533 

stomata size correlated with climatic PCs, which are most strongly driven by temperature, 534 

humidity, solar radiation, and historic drought regimen. 535 

  536 

The strongest QST-FST differences are found across regional pairs including Central Europe. 537 

Particularly, WUE is significantly differentiated between Central Europe and Spain as well as 538 

both Swedish regions, due to low WUE in Central Europe. It is tempting to speculate that the 539 

significantly lower WUE observed in Central Europe results from selection for life cycling at 540 

latitudes where two life cycles can be completed each year, as high WUE is usually associated 541 

with a reduction in photosynthetic rate (Blum, 2009; Field et al., 1983; Kimball et al., 2014). 542 

Interestingly, Central Europe and Southern Sweden are significantly differentiated for all 543 
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three traits and Southern Sweden and Spain are significantly differentiated for both stomata 544 

traits. Combined with the fact that Swedish genotypes show the highest values for WUE, this 545 

suggests that stomata size is involved in drought adaptation of Swedish accessions. This result 546 

is somewhat counterintuitive because Sweden is not known to be a region experiencing 547 

intense drought. However, our result is supported by an independent study showing that 548 

Northern and Southern Swedish genotypes maintain photosynthetic activity under terminal 549 

drought stress longer than other, especially Central and Western European, accessions 550 

(Exposito-Alonso et al., 2017). Additionally, locally adapted genotypes from Northern 551 

Sweden (which showed high WUE in our study, as well) have been shown to display higher 552 

WUE than Italian genotypes (Mojica et al., 2016). 553 

This regional difference in A. thaliana further coincides with the satellite measurements of 554 

historic drought regimen, which show that Sweden is a region where drought frequency is 555 

changing throughout the season: it is relatively more frequent in the early growing season 556 

(spring) than in the late growing season (summer). Drought episodes occurring earlier in the 557 

growth season may favor the evolution of drought avoidance traits (e.g. morphological or 558 

physiological stress adaptations) over that of escape strategies mediated by e.g. seed 559 

dormancy (Kooyers, 2015; Passioura, 1996). Indeed, in Northern Europe, increased negative 560 

co-variation between flowering time and seed dormancy suggested that the narrow growth 561 

season imposes a strong selection on life-history traits (Debieu et al., 2013). In Southern 562 

European regions, A. thaliana appeared to rely on escape strategies provided by increased 563 

seed dormancy (Kronholm et al., 2012). Taken together, this suggests that decreased stomata 564 

size and, consequently, increased 13C have contributed to adaptation to water limitations in 565 

spring in a region where the narrow growth season leaves no room for escape strategies. 566 

Indeed, both stomata size and 13C associate with historic drought regimen. For 13C, 567 
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however, this association disappears when genetic population structure is included as a 568 

covariate. This indicates that local adaptation for WUE might have contributed to shape 569 

current population structure. 570 

 571 

Finally, the coarse regional contrasts used in the present study cannot resolve patterns of local 572 

adaptation occurring at a fine-grained scale within regions (as e.g. local adaptation to specific 573 

soil patches). In fact, we observe most variation for all three phenotypes within regions. It is 574 

therefore possible that we underestimate the magnitude of adaptive differentiation across the 575 

species’ European range, which could further explain why QST / FST differences did not co-576 

vary with environmental divergence in our dataset.  577 

 578 

  579 

Conclusion 580 

This work provides a comprehensive description of the variation in stomata size and density 581 

that segregates throughout the European range of A. thaliana. It shows that stomata size 582 

covaries with water-use efficiency and may contribute to local adaptation. Several reports 583 

indicate that plants can also change stomatal development in water-limiting conditions 584 

(Fraser, Greenall, Carlyle, Turkington, & Friedman, 2009; Paccard et al., 2014; Xu & Zhou, 585 

2008). Future work will have to investigate whether this variation in stomata size and number 586 

also contributes to adaptive plasticity to drought stress. 587 

 588 
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Data accessibility 917 

Raw image data and image analysis scripts are available upon request and will be stored in a 918 

Dryad repository upon acceptance. Phenotypic data is provided in the supplemental material 919 

and will be uploaded to the AraPheno database (https://arapheno.1001genomes.org, (Seren et 920 

al., 2017) and stored in a Dryad repository upon acceptance. Additionally, we provide an R 921 

Markdown file, which contains all figures (except GWAS and MTMM) and the 922 

corresponding R code used to create the figures and statistics in the supplemental material. 923 

GWAS scripts are available at https://github.com/arthurkorte/GWAS. MTMM scripts are 924 

available at https://github.com/Gregor-Mendel-Institute/mtmm. 925 

Genomic data used is publicly available in the 1001 genomes database (Alonso-Blanco et al., 926 

2016) 927 
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 935 

Figures & Tables936 

 937 
Figure 1: Natural variation in stomata patterning  938 

Stomata density and size were measured for 330 natural genotypes of A. thaliana. The plot shows 939 
genotypic means of stomata density and stomata size. Dots are colored based on the geographical 940 
origin of each accession. The red line shows a linear fit and gray shadows indicate the error of the fit. 941 
Pearson's product-moment correlation r=-0.5, p<0.001. 942 
 943 
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 944 

Figure 2: Stomata size correlates with water-use efficiency  945 

13C was measured for all plants in block 1. Plots show correlation of stomata size (block 1 only) with 946 
13C. 13C is expressed as ‰ against the Vienna Pee Dee Belemnite (VPDB) standard. The red line 947 
shows a linear fit and gray shadows indicate the error of the fit. Pearson's product-moment correlation:  948 
r=-0.18, p=0.004. Correlation of 13C and stomata size is not only driven by the Spanish outlier 949 
(correlation without outlier: r=-0.16, p=0.009). Genetic correlation was calculated using the MTMM 950 
approach: r=-0.58, p<0.05. 951 
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 952 

Figure 3: Stomata patterns correlate with geographical patterns of climatic variation 953 

Correlation between stomata patterns and seven climatic principal components (PCs) was tested for 954 
each phenotype using a Generalized Linear Model (GLM) including genetic population structure as 955 
described by the 20 first genetic PCs. Plots are effect plots based on the GLM (see methods), showing 956 
the correlation between stomata size two climatic PCs. Black arrows indicate correlation with the 957 
climatic variables showing the strongest loadings for the respective PC. Plots show the linear fit (red 958 
solid line) and the smoothed fit of partial residuals (gray) of the specific predictor. Gray dots are 959 
partial residuals. The red shade shows the error of the linear fit. Both PCs shown here are significant 960 
predictors of the respective response variable (p<0.05). 961 
  962 
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 963 

 964 

Figure 4: Significant regional differentiation of stomata size and 13C 965 

A. thaliana accessions were grouped based on their geographical origin. Boxplots show regional 966 
differentiation of stomata size (top) and 13C (bottom). Significance of differentiation was tested using 967 
Generalized Linear Models followed by a post-hoc test. Statistical significance is indicated by letters 968 
on top: Groups that do not share a common letter are significantly different. Significance levels: top) 969 
a-c, a-bc: p<0.001; ab-c: p<0.05; bottom) a-c, a-b: p<0.001, b-c: p<0.01, ab-c: p<0.05.    970 
 971 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2018. ; https://doi.org/10.1101/253021doi: bioRxiv preprint 

https://doi.org/10.1101/253021
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

40 
 

A) Stomata size  972 

QST \ QST-FST Central Europe North. Sweden South. Sweden Spain West. Europe 

Central Europe  -0.32 0.29 -0.17 -0.13 

Northern Sweden 0.15  -0.31 -0.38 -0.51 

Southern Sweden 0.41 0.09  0.12 -0.03 

Spain 0.01 0.06 0.32  -0.18 

West. Europe 0.02 <0.01 0.21 <0.01  

 973 

B) Stomata density 974 

QST \ QST-FST Central Europe North. Sweden South. Sweden Spain West. Europe 

Central Europe  -0.37 0.31 -0.16 0.17 

Northern Sweden 0.09  -0.24 -0.44 -0.49 

Southern Sweden 0.44 0.16  0.17 -0.19 

Spain 0.01 0.01 0.36  0.07 

West. Europe 0.32 0.02 <0.01 0.26  

 975 

C) 13C 976 

QST \ QST-FST Central Europe North. Sweden South. Sweden Spain West. Europe 

Central Europe  0.21 0.28 0.13 -0.07 

Northern Sweden 0.7  -0.40 -0.16 -0.01 

Southern Sweden 0.4 0.01  -0.08 -0.01 

Spain 0.30 0.28 0.11  -0.12 

West. Europe 0.07 0.40 0.17 0.05  

 977 

Table 1 A-C: Patterns of regional differentiation depart from neutral expectations 978 

Pairwise QST estimates were derived from linear mixed models for all regions. Genome-wide, pairwise 979 
FST distribution was calculated based on 70,000 SNPs for all regions. In the top half of each table, the 980 
difference QST-FST for each pair of regions is shown. In the bottom half of each table the QST estimate 981 
for each pair of regions is shown. Each table represents one phenotype as indicated by table headlines. 982 
Significant QST-FST differences are written in bold. The significance threshold is based on the 95th 983 
percentile of a distribution of maximum QST-FST values from 1000 random permutations of phenotypic 984 
data. 985 

 986 
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