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ABSTRACT7

A core question underlying neurobiological and computational models of behavior is how individuals learn environmental
statistics and use them for making predictions. Treatment of this issue largely relies on reactive paradigms, where inferences
about predictive processes are derived by modeling responses to stimuli that vary in likelihood. Here we deployed a novel
proactive oculomotor metric to determine how input statistics impact anticipatory behavior, decoupled from stimulus-response.
We implemented transition constraints between target locations, and quantified a subtle fixation bias (FB) discernible while
individuals fixated a screen center awaiting target presentation. We show that FB is informative with respect the input statistics,
reflects learning at different temporal scales, predicts saccade latencies on a trial level, and can be linked to fundamental
oculomotor metrics. We also present an extension of this approach to a more complex paradigm. Our work demonstrates how
learning impacts strictly predictive processes and presents a novel direction for studying learning and prediction.

8

Introduction9

Construction of precise predictions about future events optimizes perception (e.g., Auksztulewicz et al., 2017; Kok et al., 2012;10

Rohenkol et al., 2014) and selection of goal-directed action (Friston et al., 2006). Understanding how individuals acquire11

statistical knowledge about their environment, and whether they capitalize on it for making predictions are two questions at the12

core of current computational and neurobiological investigations (e.g., Clark, 2013; Emberson et al., 2015; Glascher & Buchel,13

2005; Harrison et al., 2011; Krogh et al., 2012; Schapiro & Turk-Browne, 2015; Vossel et al., 2014). Statistical learning can14

be inferred from the analysis of responses to stimuli varying in predictability, since individuals respond more quickly and15

accurately when stimuli match their expectation (e.g., den Ouden et al., 2010). This idea also informs current experimental16

approaches where manual (Siegelman et al., 2017) or oculomotor responses (e.g., Aslin, 2014; Kidd et al., 2012; Vossel et al.,17

2014; Marcus et al., 2006) are treated as indices of statistical learning.18

Yet, drawing conclusions about the very existence of predictive processes and their properties from stimulus-linked19

responses is accompanied by several complications. Responses are co-determined by multiple factors which certainly include20

prior knowledge and prediction, but also attentional orientation, low-level perception, evidence-accumulation, surprise, belief-21

updating, and decisions (see Bar et al., 2006; Grossberg, 1987; O’Reilly et al., 2013; Vossel et al., 2014). Each of these22

processes, and their interactions, can be impacted in different ways by prior predictions and noise. These complexities constitute23

an interesting challenge for learning and decision models that are precisely interested in how prior knowledge interacts24

with response-related elements such as stimulus surprise and updating of priors (e.g., Glascher et al, 2010), or how control25

mechanisms contribute to behavior (e.g., Jiang et al., 2014). However, this multi-factorial nature of responses complicates their26

use for understanding whether and how predictions arise and what sorts of learning processes specifically govern anticipatory27

processes in and of themselves. Advances in data modeling have certainly been made towards disambiguating between stimulus28

expectation (‘prior state‘, or ‘start point‘), processing of stimulus features (e.g., Carpenter & William, 1995; Reddi & Carpenter29

2000), and updating of prior knowledge (e.g., Brodersen et al., 2008; Glaze et al., 2015; O’Reilly et al., 2013; Vossel et al.,30

2014). Nonetheless, even precise estimation of model parameters linked to prior-knowledge cannot directly speak to how31

this knowledge is linked to online processing: whether by supporting proactive predictions prior to stimulus presentation, or32

alternatively, via reactive, backward-looking integrative processes that are initiated after stimulus presentation (e.g., Grossberg,33

1987). To determine whether predictions take place and model the learning trajectories that govern them, it is therefore essential34

to isolate and study prediction-related behavioral signatures that are identifiable prior to stimulus presentation.35

The temporal constants that mediate predictive processes are of particular interest. It is known that stimulus responses36

are strongly impacted by stimulus history in the very recent past (e.g., Barton et al., 2006; Marcos et al., 2013), which is37

compatible with both error-driven learning (e.g., Rescorla & Wagner, 1972) or sequential effect models (Yu & Cohen, 2008).38
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An exponential decay of the impact of the previous stimuli has been confirmed by neuroimaging and behavioral studies (e.g.,39

Bornstein & Daw, 2012; Harrison et al., 2011). Kim et al. (2017) manipulated the first-order transition dependency between40

target locations and reported that saccade latencies were related to the prior probability of making the specific saccade (see41

also Farrell et al., 2010); when modeled via LATER (Carpenter & Williams, 1995), this was reflected in sequential-dependent42

updates of the starting point of a rise-to-threshold saccade generation process. Given these well replicated findings it is essential43

to determine whether predictive behaviors show different sensitivity to events in the recent past than the responses themselves.44

To understand whether and how statistical learning impacts predictive behavior, we developed an overt behavioral measure45

that reflects learning and prediction, but that is dissociated from responses to stimuli. In brief, we presented participants with46

series of visual trials that licensed predictions about the location of the next item, and we quantified gaze location during those47

parts of the trial prior to target presentation, while participants fixated the screen center. We used this fixation-bias measure to48

address several questions pertaining to predictive processes: First, do individuals at all routinely engage in proactive predictive49

behavior? Second, is predictive behavior determined solely by the distribution of events in the very recent past (as suggested50

e.g., by Harrison et al., 2011) or are predictive behaviors determined by learning that jointly occurs over both short and long51

temporal scales (as suggested, e.g., by Bornstein & Daw, 2012)? Third we determined whether fixation biases provide more52

information about the statistical structure of the environment than do stimulus-linked responses (in this case, saccade latencies53

to targets), and relatedly, whether fixation bias is more sensitive to trial history. Fourth, and finally, to understand the relation54

between anticipatory processes and responses, we determined the trial-by-trial correlation between fixation biases and saccade55

latencies.56

We report two studies. Experiment 1 is foundational and presents the general paradigm for the case of a two-state Markov57

process, as well as associated methods and results. Experiment 2 is an extension that shows how anticipatory fixation biases can58

be studied in more complex contexts by using steady-state analysis methods that utilize frequency-space analysis to describe59

inter-trial patterns in anticipatory gaze location.60

Anticipating the detailed results reported below, the statistical structure of the visual series induced subtle but highly robust61

fixation biases prior to target presentation, below 1◦ eccentricity from fixation center. We find that i) fundamental properties of62

statistical learning on multiple temporal scales can be read off from this purely anticipatory gaze behavior while participants are63

at fixation, and ii) that the information this anticipatory behavior provides about the inputs’ statistical structure and learning64

dynamics differs from and exceeds that provided by saccade latencies.65

Methods66

Participants67

Twenty-one volunteers participated in the study. (Mean Age = 23.8±0.9; SEM is measure of spread throughout unless noted68

otherwise). They were recruited from the local student population, and reimbursed 20 Euro for their time. The institutional69

Ethical Review Board approved the study. The sample size was predetermined based on a pilot study with a similar design but70

that used images of real-life objects rather than abstract shapes (N = 20).71

Design72

Participants observed multiple series of 100 trials each. Each trial consisted of a fixation symbol appearing at center, followed73

by a target that appeared to the right or left of center (Figure 1). The design consisted of one factor with two levels – high or low74

probability of return to the screen side of the last target. Specifically, in one condition, the probability of returning to the same75

side (probability of return) was 70% and in the other condition it was 30% (pret70, pret30 respectively). There were 10 series76

in each condition. The transition probabilities were fixed (stationary) within each series. While the transition probabilities were77

experimentally manipulated, the proportion of presentations on the left and right screen sides were identical and set at 50% in78

both conditions. Thus, any differences in behavior could only be attributed to differences in transition structure. To compare79

learning indices for the first and second half of each series, we constructed the series so that the intended transition constraint80

and screen-side frequencies were exactly maintained across trials 1–50 and trials 51–100.81

To each 100-trial series we appended 20 trials whose screen side was randomly determined. These were included to evaluate82

the impact of the prior series’ transition structure on responses to random trials (a transfer measure) and to aid clearing memory83

of the current stochastic process before beginning the next series.84

Procedure85

Eye-tracking86

Stimuli were displayed on a CRT display (Diamond pro 2070SB, Mitsubishi Electric Corporation, Tokyo, Japan) with a spatial87

resolution of 1280×1024 pixels, set to a refresh rate of 75Hz. All the experimental software was generated using MatlabTM
88

and the Psychophysics Toolbox extensions (Brainard, 1997). Participants’ eyes were set at the same height as the screen center89

and at a distance of 58 cm. Eye position signals were recorded by a separate computer with a head-mounted, video-based90
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eye tracker (Eyelink 1000 Tower mount, SR Research Ltd, Mississauga, Canada) and were sampled monocularly at 100091

Hz. We performed a nine-point calibration procedure during which the eye-tracker calculated a mapping between sensor and92

display positions. To increase the accuracy of this mapping we performed calibration only in a display region that was slightly93

larger than the area used in the study (960×718 pixels around the center). We performed calibration after each break. Before94

beginning the experiment we identified each participant‘s dominant eye using the Dolman method.95

Trial structure96

Participants were instructed to saccade to a target presented after the fixation symbol disappeared. The timeline of each trial97

(see Figure 1) was as follows: a fixation symbol appeared for 400ms; a post-fixation blank screen for 160ms; the target for98

360ms; and a post-target blank screen for 160ms. The fixation symbol consisted of an inner gray circle with radius of 0.4◦99

(same color as background) within an outer black circle with radius of 1.2◦. We chose this fixation symbol as it has been shown100

to allow some variance in eye movement during fixation (Thaler, Schutz, Goodale, & Gegenfurtner, 2013). Targets were black101

circles with 1◦ radius that appeared to the left or right of the screen center, at 12◦ eccentricity (Figure 1B). The target-centers102

were located on a virtual (invisible) arch extending 10◦ vertically above and below the horizontal midline. On any given trial,103

the target’s specific position on the arc was set randomly. Participants could therefore anticipate the screen side of the next104

target but not its exact location. The specific instructions given were to saccade rapidly to the target and fixation symbol when105

they appeared.106

Figure 1. Trial structure and fixation locations in Experiment 1 (presented to scale). Panel A: Trial Timing. Fixation
Bias was defined at the mean gaze location during the last 10 millisecond of the blank screen that followed the fixation symbol
and that preceded the target. Panel B: Spatial features of fixation and targets. Targets were positioned on an invisible arch that
extended 10◦ above and below the fixation symbol, at 12◦ eccentricity. Specific location on the arch was always determined
randomly. The fixation symbol consisted of an inner ring (radius = 0.4◦) within an outer ring (radius = 1.2◦).

Instructions and training107

To maintain participants‘ alertness, we included catch trials in the form of target symbols with a white line through them. These108

appeared every 16–20 trials following a uniform distribution. Participants were told that catch trials would appear infrequently109

and that they were to press the mouse button when they saw those. Following each series, participants were presented with110

performance indicators for the last series, which included the number of hit targets, hit fixation symbols, correct catch trials111

and number of eye blinks, as well as their overall mean performance to that point. This was done to motivate participants to112

perform better and further buffer between subsequent series.113

Before beginning the study proper, participants underwent training where they viewed series of 20 trials each, until they114

were comfortable with the procedure (typically within 2–7 sessions). In the training series there were no transition constraints115

(probability of return = 50%). During training we provided audio feedback in real-time: we provided positive audio feedback116

whenever participants‘ gaze hit the target or the fixation circle within 200ms from appearance and with a maximum deviation of117

1◦ from their border, and whenever participants correctly responded to catch trials with a mouse click. We provided negative118

audio feedback whenever participants failed to hit the target, failed to respond to catch trials, or blinked. A summary of the119

positive and negative scores was presented at the end of each training session.120
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Analysis121

Saccade classification122

During the study, participants performed large saccades to reach the targets from fixation circles. They also made many smaller123

saccades to adjust their gaze, typically during fixation. To detect saccades varying across this range, we applied a method124

(Nyström & Holmqvist, 2010) that detects saccades by determining speed thresholds adaptively. We defined saccade onset time125

as the time of the first minimum preceding a saccade peak. We defined saccade offset time as the last minimum after a peak,126

exceeding a threshold determined adaptively. When a saccade was followed by an assessment oscillation (glissade), the time of127

saccade offset was considered as the end of the glissade.128

Trial selection129

We defined valid trials as ones where participants made saccades to both the fixation symbol and subsequent target, within a130

tolerance of 3◦ from their edge on the horizontal axis. To exclude anticipatory saccade we considered only trials where saccade131

latencies exceeded 80ms (Fischer & Ramsperger, 1984). Catch trials and the trial immediately following them were excluded132

from the analysis: these valid trials accounted for 87±2% of the data, indicating good compliance with instructions.133

We defined Gaze Bias as the mean gaze location measured during the last 10ms of the post-fixation blank, prior to target134

presentation. We then defined Fixation Bias (FB) as Gaze Bias in X direction, coded as positive if to the side of the last target135

and negative otherwise. On any given trial we defined an FB measurement as valid if three conditions held: i) there were no136

saccades or micro-saccades within this 10ms period, ii) both the target of the prior trial and current trial were correctly saccaded137

to, and iii) gaze was within a threshold radius radFB = 3◦ from screen center. This last constraint was included solely to reduce138

the impact of eye position on saccade latency, as excessive positioning away from center could translate into faster arrival at139

target. We verified (see Additional Information) that the choice of radFB did not alter the main findings for the Fixation Bias140

analysis. Following this FB definition, we further restricted our analyses to valid trials that were preceded by a correct fixation141

to the prior target. These trials accounted for 65±2% of all trials.142

Impact of recent trials143

To determine the impact of previous trials on current oculomotor behavior (as captured by FB) we defined two kinds of trials;144

returns which were trials where the screen-side of the last-presented target was the same as the one that preceded it, and145

alternation where the screen-side of the last-presented target was the opposite of the one preceding it. In this schema, FB146

quantifies the impact of the last transition (categorized as return or alternation) on anticipatory oculomotor behavior. Saccade147

latencies were analyzed according to the same schema.148

In a separate analysis we modeled the impact of each of the last 6 transitions on current oculomotor behavior. We used a
regression model in which dummy variables coded the status of each of the last six transitions as a return or alternation. This
approach has been successfully used in prior work on statistical learning of transition probabilities (e.g., Bornstein & Daw,
2012). The complete regression model is presented in Equation 1, where S = 1 if the trial is a return, and 0 if alternation. This
information is coded for each of the last k transitions (k = 6).

FB =
6

∑
k=1

BkSk + c + ε (1)

In this model, positive coefficients for any of the regressors β1 to β6 indicate that a return at lag k was associated with149

increased FB. Negative coefficients indicate reduced FB. The intercept c is the expected FB for 6 consecutive alternations, and150

is not further considered. When analyzing FB data, we fit these regression models to each participant, predicting the current FB151

value separately for the pret70 and pret30 conditions.152

For saccade latencies (SL), we similarly fit regressions separately for the two conditions, but constructed separate models153

for return and alternation saccades. This is because return saccades are strongly impacted by inhibition of return (IOR, e.g.,154

Rafal et al., 1989), and for this reason could provide less information about the impact of recent trials.155

Estimation of learning rate from Rescorla-Wagner model applied to Fixation Bias data156

We evaluated whether the FB data could be accounted for by a Rescorla-Wagner (RW) model, and relatedly, whether a
RW-model that reflected a combination of two processes with different learning rates accounts better for the data. The basic
model we constructed fit the FB data according to transition probabilities estimated from a RW process, implemented as in
Equation 2:

Pret(t +1) = Pret(t)+α(1−Pret(t)) after a return
Pret(t +1) = Pret(t)−αPret(t) after an alternation
FB(t +1) = K(Pret(t +1)−P0)

(2)
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157

158

This is a standard RW model, with the exception that it fits anticipatory behavior captured by FB rather than a response159

to a stimulus. The third line presents the response model that maps the subject’s belief about the transition distribution to160

the observed fixation biases: it is a simple linear relationship between the internal probability and FB. In Equation. 2, α is161

the learning rate, K is a scaling factor transforming internal probability estimates to overt behavior and P0 is a probability162

equilibrium point reflecting an internal estimate of probability of return above which a participant shows a gaze bias towards163

the return side. α and P0 were bounded in the interval [0,1]. We fit the P0 parameter because it is known that in binary contexts,164

subjective points of equilibrium significantly deviate from 50%; a truly random binary series is subjectively perceived as having165

too many streaks (see Falk & Konold, 1997). The reduced model where P0 was fixed at 50% offered a significantly poorer166

fit as evaluated by a Bayes Information Criterion (BIC) criterion and is not discussed further; ∆BIC = 18±5 in pret30 and167

∆BIC = 16±5 in pret70, both above zero with p < .001, bootstrap test.168

To evaluate whether FB reflects two learning processes with different learning rates we also fit an extended model in which
probabilities were updated based on two processes with different learning rates (see Bornstein & Daw, 2012). In this model,
two estimations of the transition probability are updated independently, P(1)

ret (α1) and P(2)
ret (α2) as in Equation 2, and an overall

summary statistic is defined as their weighted average as in Equation 3:

Pret(t) = wP(1)
ret (t,α1)+(1−w)P(2)

ret (t,α2) (3)

As compared to the simpler model in Equation 2, this model contains two additional parameters; an additional learning rate169

parameter and a weighting coefficient, w. See Additional Information for validation procedure details. While the RW model is170

heuristic in nature, it performs similarly to more complex generative models when the target statistics are stationary (Mengotti171

et al., 2017).172

Information provided about transition structure by fixation biases and saccade latencies173

To evaluate whether FB and saccade latencies provided complementary or independent information about the transition structure
in the series, we used a Mutual Information (MI) analysis. MI captures the amount of knowledge one variable provides about
another, or equivalently, the uncertainty about one variable that is reduced by knowing another (Cover & Thomas, 1991). MI
does not assume any particular relationship between two variables and captures all orders of correlations, while Pearson’s R
quantifies a linear relationship (see Equation 4).

I(x;w) = H(x)−H(x|w) = ∑
x∈X

∑
w∈W

p(x,w) log
(

p(x,w)
p(x)p(w)

)
(4)

In Equation 4, H(x) is the entropy of the variable x (here, the experimental condition pret), and H(x|w) is the entropy of x given174

w (the specific known behavioral response). Because the two stochastic processes (pret70, pret30) were equally probable, the175

entropy related to which condition participants were observing (pret equal to 70 or 30) on any given trial was 1 bit. We used MI176

to quantify the degree of uncertainty removed about the variable pret by considering several oculomotor information sources177

and their joint distribution. First we calculated the entropy reduction achieved by FB, I(pret;FB). Second, we performed the178

same calculation for the saccade latency measure, I(pret;SL). Because saccade latencies on any given trial likely depend on179

whether the saccade was was an alternate or a return due to IOR, we also partialized by this factor in the MI formulation (see180

Additional Information). Third, we calculated the uncertainty removed when considering the joint (bivariate) distribution of FB181

and saccade latency, I(pret;FB&SL).182

We calculated these three MI quantities per participant, which licensed statistical tests at the group level. We determined: i)
whether FB and saccade latency were differentially informative with respect to average transition structure and ii) whether they
provide redundant information (Schneideman, Bialek, &Berry, 2003) about the transition structure, in which case MI provided
by the joint distribution is lower than the sum of the two former terms, as shown in Equation 5:

I(pret;FB&SL) < I(pret;SL) + I(pret;FB) (5)

Finally we calculated the information about pret carried by separate oculomotor contributions to FB.183

Eye-movement sources underlying FB184

This analysis quantified the types of oculomotor movements that may underlie FB. To this end we identified different types of185

eye movements in the period encompassing the presentation of the fixation symbol and the subsequent pre-target blank screen,186

and evaluated their direction, using the same coding as FB: positive/negative values for movements made towards/away from187

the direction of the last target. Here we evaluated whether FB was driven by small involuntary saccadic movements in the range188
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0.1◦−4.0◦ observed during fixation (Abadi & Gowen, 2004), as well as small drifts during fixation (Hartmann et al., 2015;189

Clerici et al., 2002). To avoid contamination of the drift measurement due to the oscillation following the saccade to fixation190

symbol, we quantified drift only when saccades did not occur. We quantified drift assuming a linear trend; that is, we estimated191

the initial and terminal eye positions of each drift period via linear regression.192

Extension to four-quadrant design193

Methods194

Forty volunteers participated in the study (mean Age = 23±5). They were recruited from the local student community, and195

reimbursed 15 Euro for their time. The Ethical Review Board approved the study.196

Participants observed multiple series, each consisting of 128 trials, with the same timing as in Experiment 1. Each trial197

consisted of a fixation symbol appearing at center, followed by a visual target that appeared at one of four screen quadrants (top198

left, top right, lower left, lower right), at an eccentricity of 9◦ from screen center. The target images were unique within each199

series and belonged to one of four categories: faces, musical instruments, fruits and tools. As in prior work (Davis & Hasson,200

2016) we used either highly-constrained or weakly-constrained Markov processes to independently control the predictability201

of the location-transition and category-transitions presented. Crossing these two factors produced four types of series, where202

either: i) both the location and image category were weakly predictable; ii) both the location and image category were highly203

predictable; iii) only location was highly predictable; and iv) only category was highly predictable.204

Examples of a highly-constraining (high predictability; HP) and weakly-constraining transition matrices (low predictability;205

LP) are respectively:206

207

MHP1 =


0 0.66 0 0.33
0 0 0.33 0.66

0.66 0.33 0 0
0.33 0 0.66 0

 ; MLP =


0 0.33 0.33 0.33

0.33 0 0.33 0.33
0.33 0.33 0 0.33
0.33 0.33 0.33 0


208

209

As shown in these matrices, the difference between the two types is that MHP1 contains transitions with 66% probability,210

and MLP consists of a uniform set of transitions with 33% probability. Markov entropy was 0.92 bits/trial for the HP process and211

1.58 bits/trial for the LP process. In constructing series within each of these 4 conditions, the transitions governing locations212

and categories were independent (i.e., they were determined by different processes), so that their statistical features needed to213

be tracked separately. From these transition matrices we produced series with 120 trials, following the same procedure as in214

Experiment 1, and with the same trial timing. To each 120-trial series, we added 8 trails with random images presented in215

clockwise or anti-clockwise manner to partially reduce the impact of recent statistical structure. In the study, these series were216

presented according to a random order determined separately per participant. The first 8 trials of each series were not analyzed217

as by definition the HP and LP series cannot be discriminated immediately.218

Given that our interest is in potential anticipatory biases related to target location, for purposes of addressing gaze data in219

this study, we ignore the category predictability factor by collapsing across its levels and just examine differences between220

series depending on whether the location series participants observed was highly predictable (HP) or had low predictability221

(LP).222

The series were constructed so that in both HP and LP, i) the marginal frequencies of the 4 locations were 25% (i.e., all four223

locations were visited equally often independent of the transition patterns), ii) returns to the prior location were not possible,224

and iii) The mean frequency of the different pairwise transitions (e.g., a transition from top left to top right location on two225

successive trials) was equal. We achieved this by creating 4 high-constraint transition matrices so that the distribution of226

transitions was matched for the high and low predictability conditions (see Additional Information for further details). There227

were 8 series in the HP condition and 8 in the LP condition.228

Analyses229

Our first analysis evaluated whether gaze location in the HP condition was strongly impacted by the location of the next most230

probable target. We coded Gaze Bias as positive/negative depending on whether average gaze location was to the right/left of231

fixation during the last 10ms of the pre-target blank interval. We analyzed Gaze Bias data using an ANOVA with 3 factors:232

i) vertical position of the next P=66% target (top, down), ii) horizontal position of the next P=66% target (left, right) and iii)233

screen-side of just-presented prior image (left, right). We included this last factor because signatures of anticipatory gaze might234

be weaker when the most probable target location is on the same screen side as the last-presented target, due to IOR effects.235

The second analysis used a steady-state approach, where we examined the frequency content of time series of the Gaze Bias236

in consecutive trials (see Additional Information for details). This approach is applicable, because the HP and LP series are237
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generated by different Markov processes and therefore have different recurrence patterns. As detailed in Additional Information,238

the HP and LP target location series have different spectra because for the LP process the modal recurrence time is two trials (the239

most probable event is to alternate screen side on each trial as two of the three potential targets are on the alternate side); for the240

HP process, the modal recurrence is 3 (Figure AI.4). If these recurrence patterns drive anticipatory gaze (that is, Gaze Bias), this241

will directly translate into different power spectra when the anticipatory gaze positions are analyzed in the frequency domain.242

The steady-state analysis is essentially model-free which means that a stimulus-driven steady-state oculomotor response could243

be identified even if anticipatory eye gaze patterns are a result of complex computations that cannot be hypothesized in advance.244

Such complex integration/prediction patterns would rule out any direct relation between anticipatory gaze and the most probable245

next location, but would still be identifiable in a steady-state analysis. Put differently, even in absence of a specific a-priori246

model of how learning and predictions occur in a complicated non-random context, it would be possible to identify signatures247

of regularity in the time series of eye data.248

Results249

Fixation Biases reflect stochastic context and structure of recent trials250

For all participants, FB was greater in pret70 than in pret30 (Figure 2A. The mean FB difference between the two conditions251

(∆FB henceforth) was around 0.3◦ and statistically significant, t(20) = 10.10, p < .001, d = 1.87. In pret70, mean FB was252

significantly positive, M = 0.27± 0.04◦, indicating a bias towards the side of the last presented target (t-test against zero;253

t(20) = 6.84, p < .001, d = 1.49). In pret30, the mean FB was negative, M =−0.04±0.03◦, but not significantly different254

from zero (p > 0.1). Note that despite the statistical significance of the FB effects and robust effect size, the absolute FB values255

were modest. The average FB was less than 0.4◦ from center. Thus, FB biases were manifested within spatial zone of the256

just-removed fixation symbol.1257

Figure 2. The impact of statistical structure on Fixation Bias. Panel A: mean FB values were significantly greater in
pret70 than pret30, and the pattern held for all participants (each participant marked via line). Panel B: partitioning FB values
by most recent transition indicates an effect of statistical structure as well as an impact of most recent transition, as FB was
greater immediately after a return than after an alternation. Crosses above each bar indicate significant differences from zero.
Asterisks above/below bar pairs indicate significant difference. Panel C: A regression model shows that FB was impacted by a
return in any of the last 5 transitions for pret70 and in any of the last 3 transitions for pret30.

To evaluate the impact of the immediately prior trial we partitioned FB by the type of prior saccade (return, alternation)258

and condition (pret70, pret30). Figure 2B presents the mean values for these four cells. A two-way ANOVA with condition259

(pret70, pret30) and last trial (alternate, repeat) as factors indicated a main effect of condition, as FB values were generally260

larger in pret70, F(1,20) = 18.1, p < .001, and a main effect of last trial as FB values were greater after returns saccades,261

F(1,20) = 75.1, p < .001. The interaction term did not approach significance (F < 1).262

We used regression models to determine the impact of each of the 6 last transitions (i.e., 7 trials) on FB, separately263

for pret70 and pret30 (see Methods). As shown in Figure 2C, in both conditions there was a rapidly decaying impact of264

1 We performed three validation and robustness analyses of ∆FB. First, we determined split-half reliability by deriving two separate ∆FB values per
participant: one from odd trials and one from even trials. Split-half reliability was very robust (0.90 after correction). Second, we evaluated to what extent
∆FB depended on the specific trial inclusion criteria. We found that ∆FB was robust across a range of trial inclusion values, including trials where FB was
restricted to 1.2◦from screen center (see Additional Information). Third, we verified whether ∆FB was driven by transition structure or the number of returns
and alternate trials in each series. We used bootstrapping to construct synthetic series from the pret70 and pret30 data, but where the number of alternation and
return trials were equated (see Additional Information). We found statistically significant ∆FB values in these cases.
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recent returns/alternates on current FB, with returns contributing positively to FB. For pret70, the regression model explained265

8.0±1.2% of the variance, and the first 5 coefficients exceeded zero (Bonferroni corrected). For pret30 the model explained266

7.5± 1.3% of the variance, and the first 3 coefficients exceeded zero (Bonferroni corrected).2 We additionally evaluated a267

similar model coding for history of right/left screen sides in recent trials. This model produced statistically significant weights268

for the two most recent locations, but these effects were an order of magnitude smaller than those found for transition history.269

A Rescorla-Wagner model predicts Fixation Biases270

We modeled FB according to a Rescorla-Wagner model, but including two additional parameters: P0 which reflects the internal271

subjective point of equilibrium, and K which is a multiplicative scaling factor related to transforming internal probabilities to272

FB magnitudes (see Methods). On average, the model accounted for 8±1% of adjusted variance in both conditions. We also273

compared this model, which contained a single learning rate parameter, to an extended model that reflected a combination274

of two processes with two learning rates (see Methods). Because these models differed in the number of free parameters,275

we compared their performance using BIC. For both pret70 and pret30, the extended model did not provide a significant276

improvement in fit (∆BIC not different from zero, p > .05). We therefore report only results for the simpler model as shown in277

Equation 2.278

To evaluate the model, for each participant we used a 10-fold leave-one-series-out validation scheme, where model279

parameters estimated from 9 series were used to predict FB data in a left-out series. The variance accounted by this procedure280

exceeded permutation-derived chance (p < .05; see Additional Information) for 19/20 participants in pret30, and 19/20281

participants in pret70 (see Figure 3A for sample prediction of left-out FB data).282

Given the validation of the model we then examined the estimated parameters themselves (Figure 3B). The learning rate α283

was higher in pret30 (M = 0.71±0.05) than in pret70 (M = 0.55±0.05), t(20) = 2.44, p < .05,d = 0.67. Because we bound284

the Pret parameter in the interval [0,1] the range of FB was determined by the scaling factor K. We found that K was significantly285

greater in pret70 (M = 0.87± 0.12) than in pret30 (M = 0.49± 0.09), t(20) = 3.32, p < .01,d = 0.81. Finally, the mean286

equilibrium point, P0, was higher in pret30 (M = 0.49±0.06) than in pret70 (M = 0.32±0.05), t(20) = 2.92, p < .01,d = 0.69,287

and differed from 0.5 only for the latter, t(20) = 4.06, p < .001,d = 0.96.288

Figure 3. Rescorla-Wagner model of Fixation Bias. Panel A: Sample FB data from one session in pret70 condition
(dashed line) and model prediction (continuous line) derived from parameters estimated from independent series. Asterisks on
abscissa mark alternate (side-switch) trials. Data are concatenated to exclude missing or invalid values. Panel B: distributions
of model parameters in the two conditions. From the left: learning rate, scaling factor, and equilibrium point. P0 significantly
departed from 0.5 only in pret70. Asterisks above/below bar pairs indicate significant differences.

Fixation Biases contain signatures of long-term statistical learning289

We found evidence for learning of long-term statistical structure in the FB data. We first evaluated FB during the 20 random-290

location trials that were appended to each series (trials 101–120). Any differences in FB during these trials can only reflect a291

carry-over effect from the transition structure in the preceding 100 trials. We found a strong carry-over effect, as shown in292

Figure 4A, with greater FB values following pret70 series. A 2 (Condition: pret30, pret70) x 2 (Last trial: return, alternate)293

ANOVA confirmed this observation, showing a main effect of condition, F(1,20) = 8.99, p < .01. Importantly, this effect was294

concomitant with an independent effect of last transition in these 20 trials, F(1,20) = 41.31, p < .001, because FB was larger295

2Group level t-tests of Beta values against zero. For pret70: (β1 : t(20) = 7.40, p < .001, d = 1.61; β2 : t(20) = 6.82, p < .001, d = 1.49; β3 : t(20) =
3.39, p < .01, d = 0.74; β4 : t(20) = 3.30, p = .01, d = 0.72; β5 : t(20) = 2.72, p < .05, d = 0.59. for pret30: β1 : t(20) = 7.34 , p < .001, d = 1.60;
β2 : t(20) = 3.66 , p < .01, d = 0.80; β3 : t(20) = 4.70 , p < .001, d = 1.03;. We note that for some lags, a few participants did show negative beta values for
lags > 1; but there were only 18 such cases out of 147 beta values estimated.

8/25

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/252809doi: bioRxiv preprint 

https://doi.org/10.1101/252809
http://creativecommons.org/licenses/by-nc/4.0/


after returns. In all, during these random trials, we found a strong effect of the most recent trial, which summed linearly with a296

longer term impact of the transition structure in the series that preceded the random trials.297

Sensitivity to longer-term statistics was also seen in the development of differences between FB values in the pret70 and298

pret30 conditions (∆FB) over the 100 trials within each series (see Figure 4B). ∆FB significantly increased from 0.25±0.03◦299

in trials 1–50 to 0.39±0.04◦ in trials 51–100, t(20) = 3.29, p < .01, d = 0.69. A similar analysis using Mutual Information300

(see Methods) indicated that FB carried less information about the experimental condition in the first 50 trials (0.029±0.004301

bits) than in the last 50 trials (0.054±0.006 bits), t(20) = 7.57, p < .001, d = 2.16 (Figure 4C).302

Figure 4. Long term learning signatures in Fixation Bias. Panel A: FB values in the 20 random trials (pret=50%)
appended to each experimental series. Average FB magnitudes indicate confinement to the area of the fixation symbol (< 0.5◦

eccentricity). There was a strong impact of the statistical structure of the series presented prior to the random trials, and
independently, a strong impact of the immediately preceding trial. Crosses above each bar indicate significant differences from
zero. Asterisks above/below bar pairs indicate significant difference (also in following panels). Panel B: ∆FB was defined as
the difference between FB values in the pret70 and pret30 conditions. Its values significantly increased from the first half to the
second half of the experimental series. Panel C: Similar results when quantified via Mutual Information. In all panels,
measures of spread indicate variance within condition and are provided for completeness; they are not indicative of effect sizes
in within-participant contrasts.

Fixation Biases develop within a trial and are co-determined by gaze drifts and saccade instabilities303

Before quantifying the development of fixation biases within a trial, we first qualitatively present the trajectories of gaze304

movements (on the horizontal, x-direction), from the point that participants saccaded to center (i.e., time locked to landing in305

the vicinity of the fixation symbol, which tended to occur approximately 10ms in advance of presentation of fixation symbol).306

Figure 5 presents the time lines of mean gaze location from landing, through the presentation of the fixation symbol and the307

subsequent blank screen, in 10ms time bins (negative y values indicate left screen side, positive values indicate the right side).308

The process captured by the figure is clear: in both conditions (pret30 and pret70), the landing position (t = 0) was on the309

screen side of the prior target, and in both conditions this was followed by an adjustment towards the screen center during310

the following ∼ 200ms; as we show below these adjustments reflected both drifts and small corrective saccadic movements311

during the presentation of fixation symbol and the subsequent blank screen. From thereon, gaze trajectories further diverged312

based on the experimental condition: the gaze stayed on the side of the prior target for pret70, but continued a trajectory313

towards the alternate side for pret30. For all time points we found a significant difference between the mean Gaze in the two314

conditions (p < 0.01, Bonferroni corrected). Importantly however, as expressed by the Cohen’s effect size (Figure 5, red line)315

this difference between conditions showed a continuous increase during the fixation symbol presentation ∼ 400ms and during316

the blank screen ∼ 400−560ms. In Additional Information we present density plots of group-level gaze locations in pret70317

and pret30, in trials following a target on the left or right screen side (Figure AI.1. It demonstrates the tight clustering of gaze318

locations at screen center during the window where FB was quantified, as well as the biases induced by transition structure.319

We then conducted a quantitative evaluation to determine if the differences in FB between pret70 and pret30 developed320

between the time of initial landing (FB-landing, prior to presentation of fixation) and the main FB measurement taken during321

the blank interval after fixation presentation. Finding such a pattern would indicate that any final differences in FB, measured322

after the disappearance of the fixation symbol, developed from the time of saccade landing. To this end we analyzed the FB data323

using an ANOVA with three factors, all within-participants: 1) Trial stage: FB measure quantified either after fixation [main324
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Figure 5. Mean Gaze locked to the time of landing to fixation symbol. Panel A: Gaze locations on trials following a
target presented on the left. Plots are time-locked to the time at which the saccade to center occurred. Each time point is an
average of gaze values in 10ms bins and gaze values occurring during saccades were excluded (shaded area represent ±SEM.)
Gaze values are coded as positive to the right of screen center and negative to the left. The dashed vertical line indicates the
temporal onset of the blank screen (∼ 410ms from landing at center). Superimposed (red line; y-axis) is Cohen’s effect size in
each time bin. Panel B: same as Panel A but for trials following a target on the right.

FB measure] or at landing; 2) Condition: pret70 or pret30; and 3) Last trial: alternate, return. The ANOVA indicated a main325

effect of Trial stage, as FB values were generally greater at landing, F(1,20) = 20.8, p < .001, reflecting the aforementioned326

undershoot. There was also a main effect of last trial as bias was greater after return trials, F(1,20) = 23.6, p < .001, and327

a main effect of condition as biases were greater for pret70, F(1,20) = 33.0, p < .001. Most importantly, there was also a328

statistically significant 2-way interaction between Trial stage and Condition, F(1,20) = 10.8, p = .004, which was due to329

the fact that the differences in FB values for pret70 and pret30 were smaller when measured at landing than when measured330

immediately prior to the next target.331

We also found that, collapsing across condition, the impact of whether the last trial was a return or alternation was weaker332

when measured at landing (difference' 0.35◦) than when measured immediately before the next target (difference' 1.1◦). This333

produced a statistically-significant two-way interaction between measurement time and Last trial, F(1,20) = 6.6, p = .009.334

After the gaze arrived at fixation, we observed relatively frequent saccadic intrusions (SI), which are relatively small saccade335

instabilities in the range 0.1◦− 4.0◦ (Abadi & Gowen, 2004). In both pret30 and pret70, these SIs occurred in a direction336

opposed to the prior target location. These SI patterns reflected correction to the landing undershoot, seen in that SI magnitudes337

were strongly negatively correlated with FB landing, indicating more extensive corrections for stronger undershoots (across338

participants, mean Z-transformed Pearson‘s R = −1.1± 0.3, significantly below zero, t(20) = 17.73, p < .001, d = 3.87).339

While the magnitude of SIs was similar across conditions (∼ 1.22◦ in both conditions), these events occurred significantly340

more often in the pret30 condition (SI frequency for pret30: M = 1.50±0.08Hz; for pret70: M = 1.39±0.08Hz; t(20) =341

3.25, p < .01, d = 0.29). Note that targets were presented at rate of 0.93Hz. When examining drifts, we found that estimated342

drift magnitudes were small (< 0.1◦), but did differ between pret70 and pret30. A 2 (Condition: pret30, pret70) x 2 (Last trial:343

return, alternate) ANOVA revealed a main effect of condition, F(1,20) = 9.57, p < .01: drifts were negative for pret30 but344

positive for pret70 (for pret30: M = −0.022±0.005◦, t(20) = −4.13, p = .001,d = 0.90; for pret70: M = 0.011±0.006◦,345

t(20) = 1.96, p = .05,d = 0.43). Separately, drift values were also slightly positive after return trials and slightly negative346

after alternate trails, resulting in main effect of last trial, F(1,20) = 38.8, p < .001.347

Saccade latencies348

Averages, LATER model, and impact of recent trials349

We concisely report an analysis of saccade latencies (SL) because SL have been used to study the impact of statistical structure350

and expectation, and because identifying the expected SL patterns would license relating FB to SL data on a trial by trial basis.351

The statistical structure of the series produced the expected impact on SL (see Figure 6A). A 2 (Condition: pret30, pret70) x 2352

(Current trial: alternate, return) ANOVA revealed that, as expected, saccade latencies were slower on return trials, seen in a353

main effect of current trial, F(1,20) = 14.59, p < .001. Speaking to statistical learning, there was also a significant interaction,354

F(1,20) = 6.83, p = .01: return saccades were faster in pret70 than pret30, t(20) = 5.44, p < .001, d = 0.48, and conversely355

alternations were faster in pret30 than pret70, t(20) = 5.03, p < .001, d = 0.72. That is, both return and alternate saccades356

were performed more quickly in the condition in which they were more frequent.357

To understand whether the saccade latencies could be associated with either a threshold shift prior to saccade generation,358
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or accumulation rate, we fit a LATER model (Carpenter & Williams, 1995) to SL data in each of these four conditions,359

solving for threshold (ϑ ) and accumulation rate (µ) (see Additional Information). A 2 (Condition: pret30, pret70) x 2360

(Current Trial: alternate, return) ANOVA on the estimated threshold parameters ϑ revealed a significant two-way interaction,361

F(1,20) = 14.37, p < .001, because the threshold parameter strongly tracked stimulus likelihood, but was not sensitive to362

whether the saccade was an alternate or return. Specifically, in pret30, thresholds were significantly lower for alternate saccades363

than returns (difference = 0.10±0.05, t(20) = 2.13, p < .05, d = 0.90). Conversely, in pret70, thresholds were significantly364

higher for alternate saccades than returns (difference = 0.06±0.03, t(20) = 1.98, p < .05, d = 0.78). A very different pattern365

was found for accumulation rate (µ), where the ANOVA identified only a main effect of current trial (return vs. alternation),366

F(1,20) = 7.79, p < .01, indicating more rapid accumulation for alternate saccades. Here, there was no significant interaction.367

We used regression models to determine the impact of recent transitions on SL (see Figure 6B). Given the strong impact368

of IOR on SL, we fit separate regression models to alternate trials and return trials in pret70 and pret30. IOR could reduce369

the sensitivity for identifying recent-trial effects when analyzing SL for return saccades. For return saccades in pret30,370

only the lag1 coefficient significantly departed from zero, because return saccades were faster when preceded by a return,371

t(20) = 4.04, p < .01, d = 0.88. The model for alternation saccades in pret30 did not reveal any impact of prior trials. Note372

that the same model applied to FB data in pret30 indicated sensitivity to the last three transitions. For alternate trials in pret70373

the coefficients from lag-1 to lag-4 were significantly positive indicating that alternation saccades were slowed down by a return374

saccade in any of the four prior transitions.3 This was roughly comparable to the findings for FB, which indicated sensitivity to375

the last 5 prior transitions in this condition. The model fit for return saccades in this condition did not reveal any impact of prior376

trials. In summary, for saccade latencies evidence for the impact of prior trials was only found for transitions that were less377

expected in a given condition (returns in pret30, alternates in pret70).378

Figure 6. The impact of statistical structure on saccade latency. Panel A: Saccade latencies indicate learning of statistical
structure in addition to an effect of whether a saccade is a return or alternation. Asterisks above bar pairs indicate significant
difference. Panel B: Regression models for saccade latencies in the pret30 and pret70 conditions, constructed separately for
alternate (Alt) and return (Ret) trials. For pret70, a return in any of the last 4 transitions impacted positively (slowed down) SL
in alternate trials. For pret30, return saccades were faster when preceded by a return saccade in the immediately prior trial, but
there was no indication for more remote effects. Crosses above each point indicate significant differences from zero.

Signatures of learning long-term statistics in saccade latency379

Examining saccade latencies to alternations and returns during the 20 random trials appended to each series, we found that380

sacccades on alternation trials were faster after the pret30 condition than after the pret70 condition, consistent with a carry-over381

effect, t(20) = 2.45, p < .05, d = 0.45. However saccades on return trials were not faster after pret70 than after pret30.382

Second, we evaluated whether indexes of learning developed from the first half of each series (trials 1-50) to the second half
(trials 51-100). We defined the following contrast term as an index of statistical learning:

∆RT = (pret30Returns− pret70Returns)+(pret70Alternates− pret30Alternates) (6)

∆RT is larger to the extent that individuals can compute what is the more probable transition in each condition. Consistent383

with statistical learning, ∆RT significantly increased from the first to the second half of the 100-trial sessions (first half =384

14±3ms; second half = 20±3ms; t(20) = 6.45, p< .001, d = 0.43). In a similar analysis we quantified the Mutual Information385

3 The four Beta values were: β1 : t(20) = 6.64, p < .001, d = 1.45; β2 : t(20) = 5.33, p < .001, d = 1.16; β3 : t(20) = 3.17, p = .01, d = 0.69;
β4 : t(20) = 4.41, p = .001, d = 0.96.
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between SL and the experimental condition, conditioned on whether each trial was as return or alternations: I(pret;SL|S),386

where returns are coded as S=1 (see Additional Information). Mutual information significantly increased from the first 50 trials,387

I(pret;SL|S) = 0.012± 0.005bits, to the last 50 trials, I(pret;SL|S) = 0.016± 0.006bits, t(20) = 2.60, p < .01, d = 0.82.388

This confirms that saccade latencies provided more information about the statistical structure of the series in the second half of389

the trials.390

Nevertheless, when considering these latter MI values in relation to the ones we found for the FB data, it is notable that for391

trials 51–100, fixation biases provided around three times the information about the statistical process, 0.054 bits for FB vs.392

0.016 bits for SL, t(20) = 6.27, p < .001, d = 1.50.393

Trial-level correlations between Fixation Bias and saccade latency394

We evaluated the correlation between trial-by-trial FB values and the latency of the immediately subsequent saccade. Recall395

we defined FB as a bias towards the side of prior target. If FB is related to anticipation of a screen side, then greater FB396

values should be linked to 1) faster latencies for return saccades and conversely, to 2) slower latencies for alternate saccades;397

this should hold for both pret70 and pret30, to the extent that trial-level fluctuations reflect local preferences for returns or398

alternations. We evaluated these correlations in the pret30 and pret70 conditions.399

The analysis produced two findings (see Figure 7). For pret70, the correlations exactly matched the predicted relation400

between FB and SL: increased FB was associated with faster latencies for return saccades (across participants, mean z-401

transformed Pearson‘s R =−0.05±0.02, t(20) = 2.10, p < .05, d = 0.46), and slower latencies for alternate saccades (across402

participants, mean z-transformed Pearson‘s R = 0.13± 0.02, t(20) = 5.20, p < .001, d = 1.13). For pret30, increased FB403

was associated with faster latencies for return saccades (across participants, mean z-transformed Pearson‘s R =−0.06±0.02,404

t(20) = 2.69, p < .01, d = 0.58). However, increased FB was not associated with slower saccade latencies to alternate trials.405

Reflecting these significant trial-by-trial correlations, FB and SL conveyed redundant information so that, I(pret;FB&SL)<406

I(pret;FB)+ I(pret;SL|S)), t(20) = 7.19, p < .001, d = 1.57. The degree of redundancy was moderate however (∼ 20% of407

I(pret;FB)), suggesting SL and FB may convey substantially different information about the target location statistic.408

Figure 7. Trial-level correlations between Fixation Bias and saccade latency. Distributions are plotted for pret70 and
pre30, partitioned according to whether the saccades were return or alternate saccades. Asterisks above bars mark significant
difference from 0 which held in all conditions apart from alternate trials in pret30.

While the trial level correlations between FB and SL held as described above, these relations did not hold when evaluated409

from an inter-individual perspective. Across participants, increased sensitivity to statistical structure, as measured by ∆FB410

did not significantly correlate with increased sensitivity to statistical structure as measured by ∆RT. Similarly we did not find411

significant correlations between the information-theoretic measures I(pret;FB) and I(pret;SL|S).412

Extension to four-quadrant study413

Gaze Bias does not directly signal screen side of most likely subsequent target414

In the high predictability condition (HP), on each trial there was a probability of 66% of transitioning to one location, 33%415

probability of transitioning to another, and 0% transition to a third (in addition, repeats were never allowed). To understand if416

anticipatory fixation biases were aligned with the location of the most probably future target, we partitioned all the trials into 4417

bins, depending on the most probable target location in the next trial (P = 66%). If participants’ gaze tracked the most likely418

future position then, at first approximation, gaze location should show greater bias towards the right side when the P = 66%419

transition is expected to be on the right than when the P = 66% transition is expected to be the left, and similarly, show greater420

bias towards the top/bottom of the screen depending of the expected vertical position of of next most probable target.421
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We coded Gaze Bias X during the blank screen prior to target presentation as positive if to the right of fixation and negative422

if to the left of fixation. An Analysis of Variance with three factors (horizontal position of next most probable target, vertical423

position of next most probable target, and screen side of just presented image) did not produce any result suggesting that424

anticipatory gaze was biased towards the horizontal position of the next most likely target. Nor did this effect interact with the425

other factors. The only significant effect was the location of previous screen, F(1,39) = 80.4 p < 10−6, which indicated a shift426

towards the side opposite to that of the last presented target, and could reflect a general prediction of screen side alternation.4427

Figure AI.2 presents Gaze Bias probability densities according to the location of the most likely next target, and does not reveal428

any observable deviation from the screen center.429

Steady-state analysis identifies tracking of statistical structure430

The above analysis did not identify what might be the most straightforward signature of anticipation: gaze did not signal the431

location of the next most probable target. However, as demonstrated in Experiment 1, gaze biases are sensitive to prior trial432

history (consistent with Bornstein & Daw 2012; Yu & Cohen, 2008). They may also reflect weighted averaging over the set433

of potential transitions. All this precludes a simple model where gaze location directly tracks the location of the next most434

predictable target. To determine whether anticipatory gaze biases tracked the transition structure of the experimental series we435

examined whether these gaze biases tracked the different recurrence features of the Markov processes producing the HP and LP436

series. We employed an analysis technique that quantifies steady-state responses in a system of interest. This analysis identifies437

signatures of frequency characteristics in a time series, which are linked to the recurrence rate of an external stimulus. Here,438

recurrence rate is related to the mean number of trials between repeated presentation of a stimulus at the same location (see439

Methods).440

We calculated the power spectral densities of Gaze blank X (Gaze blank Y ) in HP and LP and we defined ∆PSDx as the441

difference between PSDx in HP and LP (and similarly defined ∆PSDy, see Additional Information). Figure 8 shows the relevant442

PSD plots for the X and Y gaze dimensions. As shown in the Figure, we found statistically significant differences between443

the spectral features of the gaze locations in HP and LP. For both PSDx and PSDy we found a significantly stronger peak at444

a frequency of 1/3 trials for HP than for LP. This is precisely the frequency that characterizes the target-location series in445

HP (for X : t(39) = 2.99, p < .01, d = 0.38; for Y : t(39) = 2.48, p < .05, d = 0.31) (see also Figure AI.4). This indicates a446

differentiation between HP and LP in the frequency representation of gaze positions across trials.447

Figure 8. Power Spectral Density of gaze-location series in the High Predictability (HP) and Low Predictability (LP)
location series. The analysis was applied separately to the X and Y values of gaze locations measured during the blank screen
prior to each target. A single {x,y} tuple was recorded per trial. Crosses above each point indicate significant differences
between conditions.

We also applied this steady-state analysis separately for the first and second halves of each series. We found no differences448

between the HP and LP processes in the first half. However, in the second half of trials ∆PSDx at f req = 1/3 was significantly449

greater than zero, t(39) = 2.98, p < .01, d = 0.50. ∆PSDy at this frequency was also significantly greater than zero, t(39) =450

2.07, p < .05, d = 0.36.451

As Figure 8 shows, the power spectra of the gaze-location series reflect the different cross-trial trajectories of anticipatory452

oculomotor responses in HP and LP. To directly link these gaze positions to the series of target locations in the the two453

conditions, we performed a coherence analysis to quantify the impact of target locations on Gaze Bias, assuming a linear454

4We conducted a parallel analysis for Gaze Bias Y (positive if in the upper screen side), considering as a third factor whether the previous target was on the
upper or lower part of the screen; we did not find any significance in factors or interactions
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relationship. We first derived the coherence between the target x-position and Gaze Bias X (coh Gaze X) as well as the coherence455

between the target y-position and Gaze Bias Y (coh Gaze Y). As a summary statistic we defined total coherence (tot coh) as456

coh GazeX + coh GazeY (see Additional Information). When calculated for the entire series, we did not identify significant457

difference in the coherence between target and gaze location for HP vs. LP. However, splitting the trials into 1st and 2nd halves,458

we found a difference in tot coh between HP and LP in the 2nd half, at the f req = 1/3 trials, t(39) = 3.13, p < .01, d = 0.49.459

This shows that the target sequence presented on the screen were driving Gaze Bias in HP process, and this was identifiable460

during the second half of each series.461

Discussion462

There exists extensive literature on how learning impacts response components (Kim et al., 2017; O’Reilly et al., 2013; Vossel463

et al., 2014) and the brain regions that mediate these responses (e..g Mengotti et al, 2017). Despite these advances, and464

demonstrations that strong predictability can produce anticipatory motor behaviors (e.g., Dale et al., 2012; Vakil et al., 2017)465

the impact of learning on predictive processes per se remains an open question. This may be due to difficulty in isolating overt466

behaviors that are informative of predictions, but de-coupled from stimulus responses. Consequently, current theorizing is467

largely informed by analyses of behavioral or neurobiological responses to stimuli that vary in predictability (e.g., den Ouden468

et al., 2010; Kim et al., 2017; Vossel et al., 2014). Our findings, based on a new oculomotor metric (FB), directly address469

three core issues on the interface of learning and prediction: i) the prevalence of predictions: transition probabilities strongly470

impacted FB, and the difference across conditions (∆FB) had high split-half reliability; ii) the temporal integration-constants of471

learning: FB contained information about learning on two temporal scales: a micro-scale encompassing events in the recent 4–6472

trials, and a macro-scale reflecting features of the stationary distribution from which trials are drawn; and iii) the information473

carried by predictive vs. stimulus-linked behavior: FB carried significantly more information about the environment’s transition474

structure than SL, though the latter was also sensitive to transition structure, and there was a trial-by-trial correlation between475

FB and SL in three of the four examined cases (see Figure 7).476

All these findings were obtained via analyses of very subtle fixation biases that were recorded while anticipating targets,477

with magnitudes of around 1 degree, in a design where predictions could only be based on transition structure.478

Relation to prior work on saccade latencies479

There is considerable interest in the perceptual inferences underlying saccades and the temporal time scales governing them.480

Noorani & Carpenter (2016) review a set of factors that impact SL, which include expectation, urgency and stimulus features.481

Consistent with several studies (Vossel et al., 2014; Kim et al., 2017; Farrell et al., 2010), we found that saccade latencies482

indicated learning of statistical structures: return saccades were faster in pret70 than in pret30, and conversely, alternate483

saccades were faster in pret30 than in pret70. These findings are consistent with several studies. Kim et al. (2017) showed that484

prior probability for a particular left or right saccade was directly reflected in the rise-to-threshold parameter of a LATER model.485

Farrell et al. (2010) manipulated the probability of return to the same location in a saccade sequencing paradigm, and modeled486

SL with a competitive race-to-threshold model (Brown & Heathcote, 2008). They found that the threshold changed with a487

target’s probability of return and that accumulation rates decreased for return saccades. These findings are very similar to those488

we obtained when applying a LATER model, which identified the same dissociation: thresholds were reduced by expectation489

whereas accumulation rate was impacted by whether the saccade was a return or not. In all, the analysis of saccade latencies490

dovetails with recent conclusions about factors that impact threshold and accumulation rates in non-random environments.491

In addition, we found that the structure of recent trials impacted SL. This was most strongly exhibited for alternate492

saccades in the pret70 condition, which were impacted by return saccades in each of the last 4 transitions. Interestingly, similar493

trial-history effects were not found for (the more frequent) return saccades in the same condition; documenting these effects494

for alternate but not return saccades indicates that, in general, the pret70 condition was definitely associated with cumulative495

integration of recent past trials, but that the behavioral expression of this integration varied as a function of the behavioral496

response. Saccade latencies also signaled learning on a longer temporal scale: regularities produced stronger signatures of497

statistical learning (∆RT) in the second half of each series than in the first, and there was a carryover effect from the statistical498

structure of the pret70 and pret30 series to the 20 random trials (washout period) that followed those series.499

Taken together, our findings indicate that, with respect to established saccade latency measures, our paradigm produced500

data consistent with learning of transition probabilities between screen sides. We emphasize that in this paradigm, the exact501

target location could never be predicted because targets were positioned randomly on a 20◦ arc. Thus, the findings derive from502

general learning of screen-side transitions rather than the learning of saccade sequences to specific screen locations.503

The neural sources that mediate the impact of learning and expectation on saccade execution have been examined in several504

studies using cue-target or smooth pursuit paradigms, in both humans and non-human primates. Primate studies show that505

anticipatory signals can be observed in multiple brain systems involved in target selection. The discharge of neurons in superior506

colliculus (SC) tracks the intended gaze movement (Hafed et al., 2008) and can predict the direction of a cued target (Horwitz507
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& Newsome, 2001). This activity increases with the probability of target presentation in the neuron’s receptive field (Basso &508

Wurtz, 1998) and is also found during anticipatory periods prior to target appearance (Dorris & Munoz, 1998). Furthermore,509

during smooth pursuit, some SC neurons increase their firing rate if their receptive field is in the expected location of the510

next saccade (Dash et al., 2016). Other brain areas have been shown to code for expected locations prior to target appearance511

(caudate nucleus in Lauwereyns et al., 2002; LIP in Shadlen & Newsome, 2001), likely increasing the pre-target baseline512

activity of eye effectors (Dorris et al., 1999; Noorani & Capenter, 2016).513

That said, stimulus probability can impact post-stimulus responses without being accompanied by signatures of anticipatory514

activity. In one study (Stadler et al., 2016), the ERP P300 evoked potential linearly tracked stimulus probability, but pre-stimulus515

activity indexed by the Contingent Negative Variation component did not, but only signaled whether probability differs from516

zero. Cashdollar et al. (2016) identified robust MEG signatures that differentiated responses to stimuli presented in random vs.517

regular series, but the pre-stimulus patterns in those series were less differentiated, and mediated by working memory capacity.518

Identifying anticipatory behaviors linked to stimulus probability would be useful for separating contributions linked to519

anticipation from those linked to stimulus response, as well as for identifying neural systems that optimize oculomotor function520

in predictable contexts. We thus shift to our research focus on Fixation Bias.521

Fixation Biases: inter-trial effects and learning522

In terms of absolute magnitude, Fixation Biases were subtle, with 90% of all gazes falling in an area of ±1.6 degrees from523

center. FB significantly differed between pret70 and pret30, with pret70 linked to a stronger bias towards the screen side of524

last presented target. FB was also strongly impacted by the most recent trial: returns induced a significant FB towards the last525

screen side, but more strongly for pret70. Regression models indicated longer-term effects, pointing to independent effects of526

each of the last five transitions for pret70 and each of the last three transitions for pret30. These are consistent with analyses of527

behavioral and neurobiological response patterns documented in studies of model-free reinforcement learning (Bornstein &528

Daw, 2012; Harrison et al., 2011) which showed a rapidly decreasing effect of recent trials.529

We also found signatures of learning over longer scales. Differences between FB for pret70 and pret30 (∆FB) were larger530

when computed from trials 51–100 than from trials 1–50, a pattern consistent with a conceptually similar analysis we conducted531

for SL. Furthermore, during the 20 random trials appended to each series, FB was impacted by the preceding statistical structure.532

Specifically, when the random trials were appended to the pret70 series there was still greater bias towards the last screen533

location, and when they were appended to the pret30 series, there was still a greater bias towards the alternate side. During the534

random trials, this continuing long-term impact of the prior statistical structure coexisted with a second, independent effect of535

whether the last trial was an alternate or return. This indicates that the impact of prior statistical structure, which at that point536

was not reinforced but memory enabled, maintained above and beyond an independent strong modulation of each prior trial.537

While this study constitutes an initial examination of anticipatory FB and its implications for models of learning and538

prediction, the data produced findings that bear on the relation between formal uncertainty, subjective uncertainty and prediction.539

Formally, the two Markov processes used here, pret70 and pret30, have equal uncertainty. That is, they have the same540

marginal frequencies (which could be quantified via Shannon’s Entropy, here maximal at 1 bit) and the same first-order Markov541

Entropy. Notwithstanding these formal equivalences, pret30 and pret70 were associated with substantially different learning542

characteristics. Decades of research have repeatedly shown that humans show a specific bias in their judgments of randomness543

for binary series such as the ones used here: they judge random series as overly regular in that they misperceive them as544

containing more streaks (repetitions) than one expects from chance (e.g., Falk & Konold, 1997; Williams & Griffiths, 2013).545

Conversely, humans judge binary series as random only once they contain 60−70% alternations. If such biases are not limited546

to judgments or reasoning, but also impact online learning, then the pret70 and pret30 should be associated with different547

learning trajectories, with the latter reflecting signatures of a (subjectively) random process.548

This was exactly what we found. Fixation biases in pret30 and pret70 were associated with different learning characteristics,549

in a manner consistent with the aforementioned studies on judgments of randomness. We applied a Rescorla-Wagner model to550

FB data, which was successfully validated on out-of-sample data for almost all participants. The parameter fits indicated a551

significantly higher learning rate α for pret30 than pret70, reflecting a narrower temporal integration window in pret30. This552

result was consistent with the regression model results for FB and SL, which showed a weaker impact of recent trials in pret30.553

Additionally, the parameter K, which reflects the transformation from subjective probability to FB, was significantly larger554

for pret70 than pret30. This means that, all else being equal, the transformation from the subjective probability estimate to555

anticipatory behavior was associated with larger scaling effect in pret70. It remains to be determined whether these findings556

for K reflect different levels of confidence in the internal distributional estimations (as captured, e.g., by hyperparameters in557

Dirichlet distributions), or a difference in how distributional information translates into oculomotor commands. Finally, the558

findings for the equilibrium point P0 only partially confirmed expectation. Because prior work suggests that series are perceived559

as random when the proportion of returns is around 30%, we expected P0 to be in that range for both conditions. While P0560

differed between the conditions, the distribution in pret30 was qualitatively larger (encompassing almost the entire [0,1] interval,561
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and more work is needed in order to determine this issue.562

With respect to potential for future discovery, we showed that analyses of gaze biases can determine whether environmental563

regularities impact anticipatory behavior, even in absence of an a-priori learning model, or a model of how learning impacts564

anticipatory behavior. In an extension to the main study, we presented targets in one of four quadrants based on a first-order565

Markov process. Even though the series of target locations was stochastic rather than deterministic, gaze locations tracked the566

recurrence characteristics of the Markov process, as reflected in the cyclical nature of target locations. We identified this using a567

steady-state analysis, which indicated that the gaze-location time series had higher power in the recurrence frequency of the568

high probability process. Furthermore, we directly linked between the sequence of target locations and the sequence of gaze569

locations by confirming their coherence in the frequency domain. In contrast, a more conventional analysis, which assumed that570

gaze bias would be strongly determined by the screen side of the next most probable transition (implemented via an ANOVA),571

failed to account for significant variance. This suggests that gaze biases in such contexts are not random, but reflect relatively572

complex integration dynamics.573

Fixation Biases: intra-trial dynamics and relation to oculomotor bases574

Fixation Biases were the end-state of oculomotor processes that took place between the offset of one target and the onset of the575

other. The saccades to center occurred on average slightly (∼ 10ms) prior to the appearance of the fixation symbol, indicative576

of saccade planning that began around 60–70ms prior to fixation onset. The landing saccades undershot fixation by about 1◦,577

with a larger undershoot after return than alternate saccades. Our analyses indicated that the difference in gaze patterns and578

fixation biases in the pret70 and pret30 developed over the subsequent 560ms (i.e., the combined period of the fixation screen579

and 160ms of blank screen) culminating in the significant difference documented in the main analysis. Interestingly, the impact580

of the last saccade on FB (return vs. alternation) also developed over the course of the trial. It was weaker when measured at581

landing prior to presentation of the fixation cross than when measured during the last 10msec of the pre-target blank screen.582

These findings suggest that, as compared to the final gaze position (where FB was measured), the initial gazes made to center583

were more weakly impacted by both the general stochastic context and the type of last trial. These effects developed over the584

duration of the fixation symbol and subsequent blank screen.585

We identified two sorts of oculomotor movements, both of which were impacted by statistical regularities. First, in pret30,586

there was a greater frequency of small corrective saccades away from the location of the prior target. Second, in pret30 the587

direction of eye drifts was in the direction opposite to that of the last target, whereas in pret70 drifts were in the same direction.588

Drifts and small saccadic instabilities are prevalent during fixation (Cherici et al., 2012), are thought to provide optimal589

retinal input for downstream visual processing (Rucci & Victor, 2012) and maintain a balance between fixation and anticipation590

(Watamaniuk et al., 2017). Covert attentional shifts and the execution of eye movements are thought to share several functional591

networks (Corbetta et al., 1998; Nobre et al., 2000). Micro-saccades are known to associate with anticipated target location in592

attentional cue-target paradigms (e.g., Meyberg et al., 2017), consistent with our findings. A potential locus of brain activity593

that underlies FB may be the deep Superius Colliculus, since local pharmacological interventions in primates can produce594

departures from fixation target (Goffart et al., 2012). However, to our knowledge neural activity in this area has not been595

correlated yet with oculomotor fixation adjustments.596

Fixation biases and saccade latencies: two sides of the same coin?597

The stochastic context impacted both fixation biases and saccade latencies but with notable differences. First, when examining598

trials in the second halves of the series, for which the impact of experimental condition were more robust, we found that FB599

conveyed three times more information about the experimental condition (pret30, pret70) than did saccade latencies (the latter600

conditionalized on whether the saccades were returns or alternates). This difference was consistent with several data patterns601

suggesting that FB was more sensitive to recent events. The regression models showed that compared to SL, FB was impacted602

by a more extended trial history in both conditions, consistent with a longer integration window.603

The trial-by-trial correlations between FB and SL were consistent with the idea that FB signals an anticipatory prediction,604

with higher FB values preceding both faster return saccades and slower alternation saccades. That said, the correlation605

magnitudes were modest, though significant on the group level in most cases. Overall SL and FB had relatively little redundancy606

with respect to the information they contained about the experimental conditions (∼ 20% of the information carried by FB),607

suggesting moderate complementarity. Assuming that FB is a signature of information accumulation and prediction, this also608

suggests that the relationship between FB and SL is complex, possibly reflecting nonlinearities.609

Summary610

Our studies show that a proactive oculomotor metric, quantified via subtle anticipatory fixation biases, is strongly impacted by611

input statistics. These biases were on average less than 1◦ in magnitude, were measured while participants were fixating the612

screen center, and presented strong split-half reliability. While fixation biases were moderately predictive of subsequent saccade613

latencies on a trial-by-trial level, they captured more information about input statistics than did saccade latencies. Finally,614
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trial-level fixation biases contained information about recurrence features of a more complex generating processes, which could615

be quantified in absence of an explicit a-priori learning model. These results show that strictly anticipatory behavior is impacted616

by learning on multiple scales, and that fixation biases offer a unique and sensitive avenue for understanding learning and617

prediction in a way that is decoupled from stimulus-response.618
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Additional Information619

Group-level gaze-location density maps620

Figure AI.1 presents gaze location patterns during the pre-target blank interval in which we measured FB in Experiment 1. To621

sample Gaze Bias in an adequate spatial resolution (0.1×0.1 degrees2), we collapsed data across participants (32752 points).622

For each condition, we partitioned the fixation data based on screen-side of prior target. The figure communicates that: i) the623

area with maximal density was always at center (0,0), demonstrating participants’ success in maintaining fixation near the624

center of the fixation symbol, ii) Gaze Bias density steeply decreased in surrounding areas to 1/5 of maximum density, and625

iii) mean Gaze Bias (red crosses) was qualitatively shifted in the direction of the most likely next target location. Figure AI.2626

was derived with same procedure from data collected in the 4-quadrant study (44128 points), partitioning Gaze Bias values627

according to the most likely next target location in the HP condition. There was a relatively smooth decrease in density from628

screen center to surrounding areas (1/2 of maximum) but no visible shift of mean Gaze Bias (red crosses) in the direction of the629

most predictable target location.630

Figure AI.1. Fixation location during last 10ms of pre-target blank screen in Experiment 1. To present the effect of
stochastic context, fixation locations are presented as function of prior target location. Densities were calculated in 0.1×0.1
degrees2, merging data points from all participants and normalizing to the maximum value for condition. The single dark point
marks maximal density and is always at the screen center; red crosses indicate mean values for condition; inner/outer circles
mark areas encompassing 50% and 90% of all fixations. In pret70, gaze locations are slightly, but notably shifted toward the
side of the last presented target.

Impact of eccentricity criteria on ∆FB631

In the main analysis, we considered trials as valid for FB analysis if the gaze was within 3◦ from center. To evaluate whether the632

findings generalized beyond this criterion, we also examined only i) the set of trials where the gaze was less than 1.2◦ (i.e., the633

eye location was within the area of the just-presented fixation symbol; analyzed trials: 59±3%) and ii) the set of trials where634

gaze was within 5◦ of fixation (analyzed trials: 66±3%). In all cases we found that the resulting ∆FB was significantly above635

zero, indicating an impact of statistical structure on FB (see Figure AI.3). In all cases ∆FB significantly increased (ps < 0.01)636

from the first half of the series (trials 1–50) to the second half of the series (trials 51–100), indicating learning over time, as637

documented in the main analysis.638
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Figure AI.2. Fixation location during last 10ms of pre-target blank screen in 4-quadrant extension. To present the
effect of stochastic context, fixation locations are presented as function of the most likely target location in HP condition.
Densities were calculated in 0.1×0.1 degrees2, merging data points from all participants and normalizing to the maximum
value per condition. The single dark point marks maximal density and is always at the screen center; red crosses indicate mean
values for condition; inner/outer circles mark areas encompassing 50% and 90% of all fixations.

Bootstrap ∆FB639

As reported in the main text, we considered the quantity ∆FB = mean (FBpret70)−mean (FBpret30) as a measure of sensitivity640

to global statistics. However this grand-average quantity could also reflect the different proportion of alternate and return641

trials in the two conditions: given that return trials induced positive FB (in both conditions), a greater proportion of returns642

could bias the overall statistic even if returns had the same impact on FB in both conditions. This concern only applies to the643

grand-average measure; other analyses that quantified trial-by-trial effects or partialed out the impact of last transition do not644

share it. To evaluate this issue we used boostraping to create surrogate bootstrapped series, for each condition, so that each645

contained an equal number of alternate and return trials, and evaluated ∆FB in those.646

These were constructed as follows. For each participant, we counted the number of alternate trials in the pret70 condition647

(nalt70). We then generated 100 surrogate distributions of 2×nalt70 elements with all the elements sampled from the pret70648

condition: nalt70 elements were sampled with replacement from the return trials and nalt70 elements were sampled with649

replacement from the alternate trials. This produced 100 bootFBpret70 distributions. Similarly we calculated the number of650

returns in the pret30 condition (nret30) and we derived 100 bootFBpret30 distributions with an equal number of alternate and651

returns. We could then derive ∆FB for these bootstrapped series as in the main analysis, boot∆FB = mean bootFBpret70 –652

mean bootFBpret30. Averaging across participants we obtained mean boot∆FB = 0.27±0.03◦ in the first 50 trials and mean653

boot∆FB = 0.39±0.04◦ in the second half of trials. These values were significantly different with t(20) = 4.48, p < .001,654

d = 0.92. This analysis shows that it is the distribution of values of alternate and return trials that drives ∆FB rather than the655

proportions of the two types of trials.656
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Figure AI.3. ∆FB calculated in first half of trials (dark gray bars) and in the second half of trials (gray bars) with three
different limits to the admitted FB. Crosses above each bar indicate significant differences from zero. Asterisks above bar pairs
indicate significant differences.

RW-model validation657

To evaluate the validity of the RW models, we used a leave-one-series-out validation scheme on the single-participant level. For658

each condition, we fit the model parameters from nine of the ten series, and the resulting parameter set was then evaluated659

against the left-out series. Specifically, model-derived series were generated by applying the updating scheme of Equation660

2 to the true sequence of screen side transitions in the left-out series. Since every session was left out once, and the left-out661

time series could have a different number of valid trials in each fold, we evaluated the goodness of fit (percentage of explained662

variance) for each series using the adjusted coefficient of determination, R2
ad j = 1− ((n−1) SSE)/((n− k) SST ), where n is663

the number of points of the validating session and k is the number of free parameters; SSE is the sum of squared fit errors and664

SST is the sum of squared deviation from the mean of the series to predict. The reported variance reduction per participant was665

the mean of the adjusted coefficients of determination calculated for each of the ten validations. To determine whether the666

individuals’ variance reductions were significantly greater than would be expected by chance, we constructed synthetic series667

of alternations and returns that predict, through the estimated RW model parameters, the left-out FB data. This was done by668

permuting the sequence of screen side transitions in the left out series (1000 times). The participant’s mean variance reduction669

was than ranked in relation to the mean distribution of the permuted variance reduction.670

Mutual Information671

We used MI to quantify the amount of information that is conveyed by FB and SL about the overall statistic of the target
locations. Since SL on any given trial depend on whether it is an alternate or a return (due to IOR) we considered this factor in
the MI calculation and computed the quantity I(pret;SL|y), where y just defines if the trial is an alternate or return (Equation 7)

I(pret;SL|y) = ∑
y∈[0,1]

p(y) ∑
pret∈[30,70]

∑
sl∈SL

p(pret,sl|y) log
(

p(pret,sl|y)
p(pret|y)p(sl|y)

)
(7)

672

673

We calculated all MI quantities and their bias correction through the ‘Gaussian method’, (i.e. considering the probability674

distributions as Gaussians) (Misra, Singh, & Demchuk, 2005). Calculation using the ‘direct method’ gave similar results675

(Magri, Whittingstall, Singh, Logothetis, & Panzeri, 2009). In both cases we performed a bootstrap correction to reduce upward676

bias (Panzeri et al., 2007).677

LATER model applied to saccade latencies678

The LATER model of saccade latency (Carpenter & Williams, 1995) treats SL as the time needed for a linear evidence accumu-679

lator to reach threshold. The accumulation rate (r) is considered to be normally distributed (mean rate µ and standard deviation680

σ ) and these are the only independent parameters of the model. Nevertheless as implemented in prior studies, it is useful to681

explicitly derive a threshold parameter (θ ), since it may reflect the a-priori state before the appearance of the target (Noorani682

& Carpenter, 2016). We applied this model to our SL data, first dividing trials according to last transition, where r j =N (µ,σ). :683

684

SLalt/pret30 =
θ1
r1

, SLalt/pret70 =
θ2
r2

, SLret/pret30 =
θ3
r3

, SLret/pret70 =
θ4
r4

,685

686
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For each condition and for each participant, we then estimated the parameters θ and µ by minimizing the likelihood687

function, L = ∑i log[φ( θ

SLi
− µ)], where φ is the standard normal probability density function (following Kim et al., 2017).688

Each parameter was then normalized by its mean across different conditions. In five participants we excluded a small subset689

(about 5%) of trials whose values on the recinormal plot lay on a line with a smaller slope respect the other points suggestive of690

express saccade dynamics (see Carpenter, 1994).691

Extension to 4 quadrants692

Stimuli generation693

To equally represent all the possible eye trajectories, in the highly predictive condition we generated series of target locations
using four different transition matrices. When considered across these four matrices, the proportion of pair-wise transitions was
equal for the HP and LP processes. This meant that statistical structure was not confounded with the pair-wise movements
across trials. Specifically, in addition to the matrix MHP1 presented in the main text, we used also MHP2 below, and two
transpositions of those matrices, MHP3 = MT

HP1; MHP4 = MT
HP2:

MHP2 =


0 0.33 0.66 0

0.33 0 0 0.66
0 0.66 0 0.33

0.66 0 0.33 0


Given these four instantiations of the HP process, the LP matrix (in the main text) is the average of the HP matrices. Each694

matrix (HP or LP) was used to generate two sessions, one with high predictable image category, one with low predictable image695

category. In all sessions we checked there was no mutual information between image category and image location.696

We used four categories of RGB images with 125 different elements each. ‘Neutral faces’ taken from the Center for Vital697

Longevity Face Database (Minear & Park, 2004) and from a face database for machine learning studies (Vieira et al., 2014).698

All the other images were taken from public online repositories: ’fruits’, ‘musical instruments’ and ‘tools’. Within a category,699

the elements were randomly chosen with constraint that an image would not be shown on two consecutive sessions and never700

displayed in the same location.701

Temporal characterization of target location series702

A property of Markov processes is that processes with different levels of transition probabilities have different periods of703

repetitions, which translates into different autocorrelation functions (and analogously, power spectra). Given the transition704

matrix P, its element pi j is the probability of a target appearing in location l j given that on the current trial it is in location li.705

Similarly the element pi j of the matrix Pn = PxPn−1 indicates the probability of having the target presented at location l j in706

exactly n transitions from its current location li.707

Consequently, for the HP matrices, the probability to complete the most likely transition after n transitions, by definition708

peaks at n=1 (p=0.66), but also after three trials (n=4, p=0.39) (Fig AI.4, panel A black circles). Conversely, for the LP matrix,709

the probability to complete an allowed transition after n transitions peaks at n=1 (p=0.33) and after two trials (n=3, p=0.26) (Fig710

AI.4, panel A gray diamonds). This recurrence characteristic of Markov processes underlie the temporal features of any possible711

allowed series of transitions. For instance we considered all the 2048 series of ten transitions a HP matrix allows and we712

calculated the expected autocorrelation in the x and y directions; we observed peaks at lag=3. Conversely, the autocorrelation713

of the series generated by the LP matrix, had a peak at lag=2. Finally we calculated the PSD of the series of target locations in714

the x-direction (see below), showing a peak for cycles of 3 trials in HP and of 2 trials in LP (the same held for the y-direction)715

(Fig AI.4, panel B).716

Spectral analysis of Gaze Bias717

As input to the power spectra analysis we considered, separately, the horizontal (X) and vertical (Y) gaze coordinates of the718

single Gaze Bias measurement obtained in each trial, that is, the mean gaze position 10ms prior to target appearance. We did719

so because using the angle value provides less information about the strength of the anticipatory pattern (a single angle is720

consistent with multiple {X ,Y} tuples), and because minor changes in X or Y would translate into large angular differences due721

to the relatively small deviations from center. The time series for this analysis were constructed by concatenating the 120 single722

trial Gaze Bias measures.723

To overcome missing values, we first calculated the single-participant auto-correlation function of the gaze location over724

the prior 11 locations: Rxx (τ) = ∑k,(k−τ)∈[valid trials] x(k) x(k− τ)725

where τ = 0, . . .11 and x is the vector of Gaze Bias measurements in the x-axis. We constructed this vector by merging the726

values of all the sessions within a given condition (HP or LP), separated by a series of 12 nan values (as these were not valid727

trials). The power spectral density Sx is then defined as the single sided Fourier transform of Rxx. Similarly we obtained the728

cross-correlation function Rxh (τ) and the cross spectrum Sxh ( f ), where h is the series of the horizontal coordinates of the target729
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Figure AI.4. Recurrence properties of the experimental High Predictability and Low Predictability series. Panel A:
Probability to complete the most likely transition after n steps in the highly predictive condition (HP; black circles) and to
complete an allowed transition in the low predictability condition (LP; gray diamond). Data plotted on two separate axes.
Panel B: Average PSD of target location series (x-direction) in HP (black circles) and LP (gray diamonds) conditions; only
valid trials are included.

locations. Coherence in x-axis between the trial series and gaze position was defined as: Cxh = Sxh/
√

SxSh where h is the screen730

side on which the target was located and x the Gaze Bias value (Mitra & Bokil, 2008). With the same procedure we obtained731

the spectrum Sy ( f ) and cross spectrum Syv ( f ), where y is the Gaze Bias in the y−axis and v is the vertical target location.732

Finally we obtained a measure of the total coherence as CTot =Cxh +Cyv.733
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