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Abstract

Modern theories of decision making emphasize the reference-dependency of decision making
under risk. In particular, people tend to be risk-averse for outcomes greater than their reference
point, and risk-seeking for outcomes less than their reference point. A key question is where
reference points come from. A common assumption is that reference points correspond to
expectations about outcomes, but it is unclear whether people rely on a single global expectation,
or multiple local expectations. If the latter, how do people determine which expectation to
apply in a particular situation? We argue that people discover reference points using a form
of Bayesian structure learning, which partitions outcomes into distinct contexts, each with its
own reference point corresponding to the expected outcome in that context. Consistent with
this theory, we show experimentally that dramatic change in the distribution of outcomes can
induce the discovery of a new reference point, with systematic effects on risk preferences. By
contrast, when changes are gradual, a single reference point is continuously updated.

Introduction

When people make decisions under risk (e.g., accepting or rejecting a gamble), their proclivity for
risk depends critically on whether the outcome of the gamble is perceived as a gain or a loss [1].
If the outcome is perceived as a gain, most people will require an additional incentive (the risk
premium) relative to a risk-neutral decision maker in order to accept the gamble, indicating that
people are risk-averse for perceived gains. In contrast, most people are risk-seeking for perceived
losses. The notion of “perception” is important here, because an objective gain may be perceived
as a loss if it is less than expected (e.g., when one receives a surprisingly small raise), and likewise
an objective loss may be perceived as a gain if it is greater than expected (e.g., a surprisingly
inexpensive ticket). The expectation thus acts as a reference point for subjective valuation.

Modern theories of decision making have sought to formalize the concept of an expectation-based
reference point and how it changes based on experience. In an influential line of work, Kőszegi and
Rabin [2, 3] proposed that reference points reflect rational expectations based on recent outcomes
(see also [4, 5]). In support of this theory, contestants on the TV game show “Deal or No Deal”
were more likely to make risky choices when, upon receiving information that suggested they would
take home less money than they expected [6], recapitulating results from laboratory experiments
[7, 8]. Similarly, experiments with foraging animals have demonstrated risk-seeking behavior when
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expected reward in the environment is below average, further highlighting the role of contextual
expectations in shaping subjective value [9].

A standard assumption is that a single reference point is updated gradually over time as new
outcomes are observed. However, this cannot be the whole story, for several reasons. First, the
decision making literature is scattered with observations that people can adopt multiple reference
points [10, 11, 8, 12, 13], and recent work has shown that contextual cues can induce rapid alter-
nation between multiple reference points [13]. Kahneman [14] likened the mental co-existence of
reference points to ambiguous images (e.g., the Necker cube): the mind does not settle on one or av-
erage them together, but instead entertains them all in a state of tension. Second, evidence suggests
that some patterns of irrational choice observed in behavioral experiments can be accounted for by
biases in perception [15]. Given the pervasiveness of these choice anomalies both inside and outside
of the lab, many have called for the extension of economic theory to explicitly allow for perceptual
distortions arising from the way in which the brain encodes and retrieves information [16, 17].
Lastly, evidence from other domains suggests that humans organize their knowledge into discrete
units (chunks, clusters, contexts, etc.) based on statistical regularities [18, 19, 20, 21, 22, 23], and
thus it seems plausible that a similar form of “structure learning” might be invoked to organize the
distribution of outcomes into discrete contexts.

In this paper, we pursue this idea theoretically and empirically. Following prior work [2, 3], we
posit that reference points reflect rational expectations updated based on recent outcomes. How-
ever, we additionally assume that reference points can be discovered de novo via structure learning.
Crucially, whereas prior research manipulates reference dependent choice through use of explicit
contextual cues (e.g., [13]), here alternation between multiple reference points reflects inferences
about the generative distributions to which different observations belong. Adapting a paradigm
for studying structure learning in perceptual judgment [18], we present experimental evidence that
risk preferences for gambles with outcomes drawn from a fixed distribution are influenced by the
distribution of other gambles experienced in the same context (varied across blocks), which serve as
implicit contextual cues. Crucially, if the fixed and variable distributions are sufficiently different,
then the contextual effects are attenuated, indicating that they were assigned to distinct reference
points. This attenuation effect is eliminated when the variable distribution is changed gradually
across blocks, suggesting that a single reference point is applied to both distributions when their
differences are made less salient. These patterns are captured by a Bayesian structure learning
model of reference point formation.

Results

Experiment 1

Participants completed a binary choice task (see Materials and Methods for details) in which they
made choices between a certain lottery (e.g., 50 points) and a lottery offering a fair chance of dou-
bling or forfeiting the same amount (e.g., 50% chance of 100 points, 50% chance of 0 points). While
prior experimental and theoretical work suggests that preferences are nonlinear in probabilities [14],
we make the simplifying assumption that individuals’ preferences are linear in probabilities [2, 3].
Thus, the expected values of the two options were equivalent. Unbeknownst to participants, the
expected value was randomly sampled from one of two Gaussian distributions (denoted A and B;
Figure 1). Distribution A was held fixed across all conditions, whereas the mean of distribution B
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Figure 1: Task Design. On each trial, participants made a choice between a certain reward (dis-
played as a circle containing the reward amount in points) and a lottery with the same expected
value (displayed as a divided circle containing twice the certain reward amount on one half and 0
on the other half). Expected values were drawn from one of two Gaussian distributions (A or B).
Distribution A was fixed across all 4 conditions, whereas the mean of distribution B varied across
conditions. In Experiment 1, the order of conditions was randomized across blocks; in Experiment
2, the conditions were ordered such that the mean of B increased monotonically across blocks.

was varied. Each block featured an equal number of trials drawn from A and B, and the two trial
types were visually indistinguishable.

According to our structure learning account, which we formalize below, participants should
cluster A and B trials together when the means of the distributions (i.e., EV(A) and EV(B)) are
close, because this is a statistically parsimonious account of the data. In this case (Figure 2A),
a single reference point is applied to both A and B trials, corresponding to the expectation of
the merged distribution. Since the model allows the latent distribution to drift slowly over time,
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Figure 2: Reference point formation as structure learning. The black curve shows the probability of
gambling on A trials, with risk-aversion above the reference point (indicated by a circle), and risk-
seeking below the reference point; for risk-seeking participants, this pattern flips. The distribution
of expected values for A trials is shown in blue, and the distribution for B trials is shown in red.
(A) When the two distributions are close together, a shared reference point (purple circle) is formed
based on the merged distribution. (B) For a moderate increase in the mean of the B distribution,
the shared reference point increases. (C) For a sufficiently large increase in the mean of B, separate
reference points are formed for A and B trials.

sufficiently small changes in the mean of B impact the reference point applied to both A and B
trials. More specifically, the reference point for A trials should increase with the mean of B, as
long as the two trial types are clustered together (Figure 2B). Crucially, the model also predicts
that participants should assign A and B trials into separate clusters when EV(A) and EV(B) are
sufficiently distinct (Figure 2C). In this case, separate reference points are formed for A and B
trials, corresponding to the expectations of each respective distribution.

By design, the design of the task allows us to discern evidence for this shifting reference point
by measuring how the probability of choosing the risky option (i.e., P(Gamble|A)) changes as
a function of EV(B). Since EV(A) is fixed throughout the task, we can attribute any changes
in P(Gamble|A) across conditions to changes in the reference point due to shifts in EV(B). The
direction in which P(Gamble|A) is expected to change varies from person to person. For individuals
who gamble more often as EV(A) increases relative to the reference point, P(Gamble|A) should
mimic the U-shaped trajectory of EV(A) detailed above, but for those who prefer to gamble less as
EV(A) increases relative to the reference point, P(Gamble|A) should follow an inverted U-shape.

In economics, this idiosyncrasy arises from differences in the curvature of the utility function,
which maps objective outcomes (e.g., points or money) in terms of their subjective value (SV)
[17]. This psychophysical perspective follows Bernoulli’s observation that risk aversion could be
rationalized by diminishing marginal returns (i.e., concave utility). Thus, economists describe
individuals who gamble less frequently with increasing value as “risk-averse,” and those who gamble
more often as value increases as “risk-seeking” (see [24] for a review). A common misconception
is that these labels capture people’s predispositions towards gambling, but it is not uncommon for
a putatively “risk-averse individual to gamble more frequently than an individual characterized as
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“risk-seeking”. To minimize confusion, here we refer to the tendency to gamble more frequently with
increasing SV as positive value-dependent risk preference, and we refer to the tendency to gamble
less frequently as SV increases (or equivalently, to gamble more frequently as SV decreases) as
negative value-dependent risk preference. To determine the appropriate set of predictions for each
participant, we estimated the effect of expected value on the probability of gambling (see Methods
for further detail). For individuals who gamble more often as EV(A) increases relative to the
reference point, P(Gamble|A) should mimic the U-shaped trajectory of EV(A) detailed above, but
for those who prefer to gamble less as EV(A) increases relative to the reference point, P(Gamble|A)
should follow an inverted U-shape.

We tested these predictions in a data set of 92 participants (54 exhibited negative value-
dependent risk preferences, 38 exhibited positive value-dependent risk preferences; see Materials
and Methods for a description of how this designation was determined). The mean of B differed
in increments of 10 across experimental conditions: 35, 45, 55, and 65 points, with the lowest
value equal to the mean of distribution A. The order of these conditions was pseudo-randomized
across blocks. We reasoned that randomization would make the difference between conditions
highly salient. Note that, by chance, a small subset of participants were designated to complete
the conditions in gradual order, but these participants were considered part of Experiment 2.

As shown in Figure 3, both participants with positive value-dependent risk-preferences and
negative value-dependent risk-preferences changed their frequency of gambling for A trials (i.e.,
P(Gamble|A) non-monotonically as a function of EV(B). In accordance with our predictions, par-
ticipants with negative value-dependent risk preferences first increased their risk preference and
then decreased it, whereas participants with positive value-dependent risk preferences did the op-
posite. Note that, if the expectations-based reference point were based solely on an estimate of
overall average reward, we would expect P(Gamble|A) to increase monotonically. Alternatively, if
the reference point were based solely on the average reward for A trials, then we would expect no
change across conditions. Thus, our experimental results provide strong support for our structure
learning hypothesis.

To evaluate these patterns quantitatively, we fit a mixed-effects logistic regression model with
the form P(Gamble|A) ∼ Int. + EV(B) + EV(B)2, which allows us to capture quadratic effects of
EV(B). We compared this to a model that lacked the quadratic term, and hence can only capture
linear effects of EV(B). In both models, the identity of the participant was treated as a random
effect, and parameters were estimated separately for the subset of participants with positive value-
dependent risk preferences and for participants with negative value-dependent risk preferences.

The regression results are summarized in Table 1 (see Table S1 in the Supporting Information
for the linear model results). For participants with negative value-dependent risk preference, the
quadratic model fit yielded significant positive linear and negative quadratic coefficients. For par-
ticipants with positive value-dependent risk preferences, the quadratic model fit yielded significant
negative linear and positive quadratic coefficients. The quadratic effects constitute quantitative
support for the non-monotonic pattern shown in Figure 3. For both participants with positive
value-dependent risk preferences and participants with negative value-dependent risk preferences,
likelihood ratios tests allowed us to reject the linear model relative to the quadratic model (negative
value-dependent risk preference: Λ = 58.98, p < 4.8e−12; positive value-dependent risk preference:
Λ = 36.68, p < 2.1e− 07). Moreover, two standard model comparison metrics (Akaike information
criterion and Bayesian information criterion) favored the quadratic model (Table 2).
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Figure 3: Probability of gambling (choosing the risky option) on lotteries drawn from distribution
A, plotted as a function of the mean of distribution B. Results are shown separately for participants
with negative value-dependent risk preferences (top) and participants with positive value-dependent
risk preferences (bottom). Recall that risk preferences are not defined by the overall frequency of
choosing the risky option, but rather, according to whether risk taking increases or decreases as
a function of expected value (see Materials and Methods for details). Left: Experiment 1 results
(mean of B randomized across blocks). Right: Experiment 2 results, where the mean of B increases
monotonically across blocks. Error bars represent within-participant standard error of the mean.
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Experiment 2

The results of Experiment 1 indicate that large, abrupt changes in distributional statistics can
drive reference point formation. Based on findings from Pavlovian [25], motor [26], and perceptual
[27, 28, 19] learning experiments, we hypothesized that subtler changes would obscure the differences
between distributions and thus prevent new reference points from being formed. To test this
hypothesis, we used the same conditions as in Experiment 1, but ordered them monotonically
across blocks, such that each transition between blocks was associated with a small increase in
the mean of distribution B. This gradual ordering features three 10pt shifts as opposed to the
randomized ordering which guarantees at least one 20pt shift.

Data from 39 participants (18 with negative value-dependent risk preferences, 21 with positive
value-dependent risk preferences) were analyzed using the same procedure described for Experiment
1. Consistent with our hypothesis that gradual change would obscure the distributional differences
between conditions and lead to a single shared reference point, participants with negative value-
dependent risk preferences increased their gambling on A trials monotonically as a function of
EV(B), while participants with positive value-dependent risk preferences decreased their gambling
monotonically (Figure 3).

Mixed-effects logistic regression confirmed this observation statistically. In contrast to the
results of Experiment 1, we found no evidence for quadratic effects in either participant group
(Table 1). Quantitative model comparison metrics favored the linear over the quadratic model
(Table S2), and parameter estimates (summarized Table S1) showed significant linear effects of
EV(B). Taken together, these results support our claim that a shared reference point tracked the
gradually increasing EV(B) across blocks.

Computational modeling

To account for experimental results, we generalize the notion of expectation-based reference point
updating to incorporate structure learning. Following seminal work by Kőszegi and Rabin [2, 3],
we assume that subjective utility has both reference-dependent and reference-independent compo-
nents, and that reference points reflect contextual expectations based on a recency-weighted average
of prior outcomes. However, whereas the model of Kőszegi and Rabin [2, 3] focuses on “how people
react to departures from a posited reference point”, our primary endeavor is to provide a rigor-
ous characterization of what the reference point is and where it comes from. Recent theoretical
work has made foundational progress towards this goal by formalizing reference dependence as a
product of Bayesian inference over features which serve as contextual cues. However, this work
implicitly endows the learner with infinite representational capacity, despite evidence of limitations
and information compression documented in psychology and neuroscience. By contrast, our work
takes inspiration from the growing literature on rational inattention, which seeks to integrate these
constraints with extant microeconomic theory using a rational approach [29].

Our main point of departure is the idea that the reference point corresponds to an agent’s
expectation [2, 3, 4], rationally updating over time using Bayes’ rule and a nonparametric prior
that allows the agent to cluster its experience into distinct latent causes [25, 19]. The expectation
(and thus the reference point) can sometimes “jump” rather than adapt slowly. Most importantly
for present purposes, structure learning can give rise to multiple reference points within the same
context.

We develop the computational model in three stages. First, we describe the hypothetical data-
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Table 1: Parameter estimates for mixed-effects logistic regression model of P(Gamble|A), the prob-
ability of choosing the risky option when the expected value is drawn from distribution A. β =
regression coefficient; SE = standard error; Int. = intercept; p-value = probability of observing
data under the null hypothesis (based on t-statistic); EV(B) = expected value of distribution B.

β SE p-value

Experiment 1

Negative Value-Dependent Risk Preference

Int. -0.67 (0.24) 5.6e-03 ∗∗∗

EV(B) 1.1 (0.20) 1.4e-08∗∗∗

EV(B)2 -0.22 (3.6e-02) 1.1e-09∗∗∗

Positive Value-Dependent Risk Preference

Int. 0.44 (0.22) 5.6e-02 ∗

EV(B) -1.33 (0.29) 1.4e-06∗∗∗

EV(B)2 0.25 (5.5e-02) 1.1e-06∗∗∗

Experiment 2

Negative Value-Dependent Risk Preference

Int. -0.69 (0.46) 0.13

EV(B) 0.67 (0.34) 4.8e-02∗

EV(B)2 -0.08 (6.7e-02) 0.23

Positive Value-Dependent Risk Preference

Int. 0.19 (0.32) 0.54

EV(B) -0.50 (0.44) 0.26

EV(B)2 0.066 (9.4e-02) 0.48

Table 2: Model comparison metrics for regression analyses. AIC = Akaike Information Criterion;
BIC = Bayesian Information Criterion.

AIC BIC
Quadratic Linear Quadratic Linear

Experiment 1
Negative Value-Dependent Risk Preference 6703.7 6754.7 6763.0 6787.6
Positive Value-Dependent Risk Preference 4141.1 4169.7 4197.2 4200.9

Experiment 2
Negative Value-Dependent Risk Preference 2147.6 2144.2 2197.2 2171.7
Positive Value-Dependent Risk Preference 2438.7 2461.2 2489.7 2489.5
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generating process that characterizes the agent’s internal model of the world. Second, we formalize
the inference problem facing the agent: to form beliefs about structure (latent causes) and the
distribution of rewards associated with each latent cause. Equating reference points with these
beliefs is the key innovation of this model. Third, we describe how beliefs are translated into a
choice policy. We then fit the model to our data and show that it can capture the key phenomena
observed in our experiments.

Let xt ∈ R denote the reward payoff for the certain option (or equivalently the expected value
of the risky option) on trial t. This reward is drawn from a Gaussian distribution with mean µkt and
variance σ2, where k = zt indicates the latent cause responsible for trial t. We assume a Gaussian
prior over the initial condition µk0, with mean 0 and standard deviation σ20. To allow for relatively
small, gradual changes in the payoff distribution over time, we assume that the mean follows a
Gaussian random walk: µkt ∼ N (wµkt−1, q), where w ∈ [0, 1] is a decay parameter that controls the
rate of mean-reversion.

To allow for larger, abrupt changes in the payoff distribution, we assume that the latent cause
can change over time, either by resampling an old latent cause or sampling a new latent cause.
Thus, sufficiently small changes in the payoff distribution are perceived as gradual drifts in the
mean of a single latent cause, whereas large, abrupt changes are more likely to be attributed to a
new latent cause. Following previous work on structure learning [25, 19], we model the prior over
latent causes with a Chinese restaurant process (CRP) [30, 31], which generates assignments of
trials to latent causes according to the following sequential stochastic process:

P (zt = k|z1:t−1) =

{
Mk

t−1+α if Mk > 0,
α

t−1+α if Mk = 0.

where Mk is the number of trials assigned to latent cause k up to trial t, and α ≥ 0 is a parameter
controlling the number of latent causes. When α = 0, all trials are assigned to the same latent
cause, and in the limit α→∞, all trials are assigned to different latent causes. More generally, the
expected number of latent causes after t trials is α ln t.

The computational problem facing the agent at time t is to infer the joint posterior over latent
causes and their associated expected reward, as stipulated by Bayes’ rule:

P (zt, µt|x1:t) ∝ P (xt|zt, µt, x1:t−1)P (zt)P (µt),

where the index 1 : t indicates the set of all trials from 1 to t. The likelihood P (xt|zt, µt, x1:t−1)
and priors P (zt)P (µt) are given by the generative process described above. Details about tractably
approximating the posterior can be found in the Supporting Information.

We assume that preferences follow a reference-dependent quadratic utility function:

u(x; r) = x− r + ρ(x− r)2,

where r denotes the reference point (see below) and ρ controls the curvature of the utility function.
In our experimental task, the expected utility of option c ∈ {certain, risky} is then given by:

Vt(certain) = u(xt; rt),

Vt(risky) = u(xt; rt) + ρ(xt − rt)2.

The curvature parameter ρ controls value-dependent risk preferences: ρ < 0 implies concavity
for payoffs above the reference point (risk aversion or negative value-dependent risk preferences)
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and convexity for payoffs below the reference point (risk seeking or positive value-dependent risk
preferences), as in Prospect Theory [1]. This pattern reverses for ρ > 0, and ρ = 0 implies neutrality.
The quadratic utility function can also be understood as a special case of a mean-variance choice
model [32, 33].

Under an expectations-based reference point model, r corresponds to the expected payoff E[x].
In our case, this expectation on trial t is given by:

E[xt] = w
∑
k

P (zt = k|x1:t−1)µ̂
k
t−1,

where µ̂kt = E[xt(c)|zt = k] denotes the posterior mean payoff for latent cause k . In other words,
the expectation on a given trial is the probability weighted average of the reward associated with
each of its potential latent causes (see Supporting Information).

To allow for some stochasticity and bias in choice, we model the choice policy with a logistic
sigmoid function f(v) = 1/(1 + e−v):

P (ct = risky) = f(Vt(risky)− Vt(certain) + ψ)

= f(ρ(xt − rt)2 + ψ),

where ct is the choice on trial t, and ψ models an overall bias for gambling (ψ > 0) or choosing the
certain option (ψ < 0).

In summary, the model assumes that observations arise from latent causes whose parameters
change gradually over time. Agents reason backward from observations to latent causes using
Bayes’ rule. Small changes in the distribution of observations are attributed to a single latent
cause, whereas abrupt changes are attributed to switches between latent causes. Each latent cause
is linked to choice behavior through an expectations-based reference point (the mean of the latent
cause’s distribution over payoffs), such that agents have different risk preferences for payoffs that
are greater or less than the mean.

The data from Experiments 1 and 2 were fit with two versions of the structure learning model
(see Materials and Methods for model-fitting procedures): the full model (α > 0) that can learn
multiple reference points, and a restricted model (α = 0) that learns a single reference point.
Figure 4 shows the gambling probabilities for both models. The full model is able to capture the
key findings: (1) a non-monotonic risk preference on A trials as a function of EV(B) in Experiment
1; (2) a monotonic risk preference in Experiment 2; and (3) opposite patterns of modulation for
risk-averse and risk-seeking participants.

The critical feature of the model is the ability to segregate A and B into separate latent causes
when their expected values are perceived as sufficiently different (see supplemental methods for
a trial-by-trial illustration). The importance of this feature is highlighted by the fact that the
restricted model is unable to capture the non-monotonic risk preference in Experiment 1. The
direct correspondence between these effects and the structural inferences of our clustering algorithm
suggests that our results are robust to the particular parameterization of the utility function.
Indeed, although we specify a quadratic value function for the practical purpose of analyzing the
empirical data, in the supplement, we show that the same pattern of results can be achieved by
using a Prospect Theory [1] utility function with reference points identified by structure learning.
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Figure 4: Model fits for the probability of gambling (choosing the risky option) on lotteries drawn
from distribution A, plotted as a function of the mean of distribution B. Results are shown sepa-
rately for participants with positive value-dependent risk preferences (top) and participants with
negative value-dependent risk preferences (bottom). The α > 0 curve shows the fit of the full struc-
ture learning model that adaptively infers new reference points, and the α = 0 curve shows the fit of
the restricted model in which all trials are forced to use the same reference point. Left: Experiment
1 results (mean of B randomized across blocks). Right: Experiment 2 results, where the mean of
B increases monotonically across blocks. Error bars represent within-participant standard error of
the mean.
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Discussion

Reference points play a fundamental role in theories of decision making, yet where they come from
and how they change with experience has been an enduring puzzle. The research reported here
sheds light on these questions, demonstrating that reference points arise from inferences about
latent structure. The key idea is that new reference points are created when the prize distribution
undergoes a dramatic change. In contrast, reference points are updated incrementally when the
prize distribution undergoes gradual change.

The structure learning account of reference point formation makes a non-trivial prediction,
which we confirmed experimentally: whereas small changes in the mean of the prize distribution
can shift the reference point up or down, thereby altering risk preferences, large changes will actually
have a diminished effect due to the creation of a new reference point. In other words, the magnitude
of change affects risk preference non-monotonically. This pattern holds both for participants with
positive value-dependent risk preferences as well as participants with negative value-dependent risk
preferences. Importantly, when the mean changes gradually across blocks of the experiment, risk
preference changes monotonically, in accordance with our prediction that gradual change will lead
to reference point updating rather than the creation of a new reference point.

Our model of reference point formation is a significant generalization of the expectations-based
reference point model [2, 3]. The core idea remains the same—reference points reflect expectations—
but allows different expectations to form in different contexts. The notion that reference points are
context-dependent has been widely acknowledged in psychology, but without a systematic formal
treatment like the one proposed here [10, 34, 11, 8, 14].

A strong claim of our theory is that the brain tracks multiple reference points across time,
invoking different reference points in a context-dependent manner. Brain imaging could be used
to obtain independent evidence for this claim by identifying a neural correlate of the reference
point, which could then be used to predict variability in risk preferences. Functional MRI studies
have exploited this idea for a fixed structure [35, 36, 37], but have not yet investigated the role of
structure learning.

While we have focused on expectations about prizes, the same logic can be applied to other
economic variables, such as probabilities and delays. One interesting question is whether reference
points apply to the joint space of economic variables, or whether these variables are dissociable,
with reference points forming and updating independently. Either scenario could be formalized in
our modeling framework, and could be addressed experimentally by orthogonally manipulating the
magnitude of changes in different variables simultaneously.

Another important direction for future research is extending the framework to multi-attribute
decisions, where much of the experimental and theoretical research on reference points has focused
(e.g., [38, 39, 40, 41]). In principle this extension is straightforward, by modeling each latent cause
with a multivariate distribution over attributes [19]. Further modifications might utilize additional
parameters of the latent context [42] or even allow for latent contexts to relate hierarchically such
that multiple reference points might be applied to a single decision simultaneously [34].

In summary, our findings implicate an important and hitherto unappreciated role for structure
learning in decision making. These findings dovetail with results in a diverse set of domains,
including memory [19, 43], social cognition [20], categorization [44], and perception [45], all of which
involve some form of structure learning. Indeed, our experimental design closely mirrored previous
experiments on perceptual judgment [18]. A common modeling framework, based on nonparametric
Bayesian inference, can explain many aspects of behavior across these different domains, suggesting
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that there may be a set of basic computational principles that govern structure learning in the brain.

Materials and Methods

Participants

We recruited 200 individuals to complete the experiment online using the Amazon Mechanical
Turk (MTurk) service. Participants had to correctly answer questions to ensure comprehension of
the instructions before proceeding. In addition to $2 base pay, each participant was awarded a
bonus payment based on the realization of a randomly selected trial. Points were converted into
dollars such that the minimum bonus was $1 and the maximum was $2. Participants gave informed
consent, and all procedures were approved by Harvard Universitys Institutional Review Board.

Exclusion criteria

In line with recommendations for studies conducted using Amazons Mechanical Turk (AMT) ser-
vice, careful instructions and a priori exclusion criteria were applied to ensure data quality (Crump
et al., 2013). Of the 186 subjects who progressed to the end of the experiment, fourteen were
excluded for failing to provide responses for greater than 20% of trials overall or greater than 20%
of trials within a given block (i.e., more than 40 trials overall trials or more than 10 trials within
a block). Given that participants had ample time to respond to each question (up to 30 seconds),
we reasoned that these subjects were not devoting sufficient attention to the task. By contrast, we
found that the remaining subjects completed a minimum of 92.5% of trials and all but 5 achieved a
completion rate of 98% or higher. Thus, although the cut-off rate of 80% completion (20% omission)
was determined a priori, any rate ≤ 92.5% completion would have resulted in the same final set
of subjects. Another 27 subjects were excluded for choosing the left vs. right or risky vs. certain
lottery on over 90% of trials. These biases correspond with preferences that fall outside of the range
we can reasonably capture using this paradigm. Gambling on less than 10% (or more than 90%)
of trials leaves at least five of the eight (2 distributions x 4 conditions) sub-conditions with only
2/25 trials on which the subject deviated from the preferred option. Figure S1 shows that the tails
of the distribution of gambling frequencies for the final sample follows a normal distribution whose
tails correspond with these boundaries. Finally, 17 subjects were excluded because they showed
no effect of expected value on choice behavior. Due to the fixed structure of the gamble relative
to the certain gain, the only aspect of the task that varied across trials was expected value. Thus,
if subjects are engaged in the task, risk taking should vary as a function of expected value (see
Identification of value-based risk preferences for further details). Our overall exclusion rate of 29%
is well in line with the findings of research on quality control measures on MTurk [46][47][48].

Procedure

Participants completed 200 trials in which they chose between a certain option (guaranteed x points)
and a risky option (2x points with probability 0.5). The side of the screen on which the risky option
appeared was counterbalanced across trials. Participants were given a relatively unlimited amount
of time (up to 30 seconds) to make each choice (subject to the 15 minute deadline for completion
of the task). Participants did not receive feedback about the outcome of their choice. Once a
response was recorded, the task transitioned to a 1.5 second inter-trial interval during which a
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fixation cross appeared. To discourage the use of simple heuristics (e.g., always choosing the risky
lottery gamble) and promote sustained attention, catch trials were embedded randomly within each
block. On these trials (4 total across the entire experiment), the options were mismatched so that
either the certain or risky option had twice the expected value of the other.

Design

Experiment 1 consisted of 4 conditions (50 trials per condition) presented in random order across
participants. Each condition differed only in the mean of B, which took on values of 35, 45, 55, or
65 points. Distribution A had a fixed mean of 35 points across all conditions. The variance of both
distributions was equal to 5 points. Experiment 2 was almost identical to experiment 1, except
that the conditions were presented in order of increasing mean.

Identification of value-dependent risk preferences

In order to distinguish participants with positive value-dependent risk preferences from those with
negative value-dependent risk preferences, we estimated the effect of expected value on the prob-
ability of gambling separately for each participant. For this analysis, we focused exclusively on
the condition in which EV(A) = EV(B) = 35. Here A and B trials should be clustered together
with a reference point corresponding to their estimated mean. In this case, subjective value is
a roughly a linear function of objective, expected value. By contrast, when multiple reference
points are applied, SV is a non-monotonic function of EV. For example, consider a condition with
reference points z and 2z where z > 1. If value is purely reference dependent, then an outcome
with an expected value of z + 1 will have a positive subjective value, whereas an outcome with
an expected value of 2z-1 would have no subjective value. As A trials and B trials were indis-
tinguishable in this condition, we used all 50 trials from this condition More specifically, we fit a
logistic regression model to participants choice data as a function of expected value xt on trial t,
P (ct = risky) = f(xt), where f() is the logistic sigmoid function with intercept β0 and slope β1.
Participants with negative regression coefficients were assumed to have negative value-dependent
risk preferences, and participants whose regression coefficient was significantly positive were con-
sidered to have positive value-dependent risk preferences. As mentioned in the exclusion criteria,
participants whose regression coefficient was insignificant were not included in further analyses.

Model fitting

Each participant’s choice data were fit separately using maximum likelihood estimation of param-
eters. For the full structure learning model, the free parameters were α, ψ, ρ, Q, and σ2. For the
restricted model, the free parameters were ψ, ρ, Q, and σ2 (with α fixed to 0). The remaining
parameters were fixed as follows for both models: σ20 = 10 and w = 1.0. Numerical optimization
was used to find maximum likelihood estimates of the free parameters, with 5 random initializations
to avoid local optima.
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Model comparison

We used two standard metrics for model comparison: the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC).

BIC = −2L+K lnN

AIC = −2L+ 2K,

where L is the maximum likelihood value, K is the number of parameters, and N is the number
of data points. Both metrics balance model fit (L) against model complexity (K), but the BIC
penalizes complexity more strongly.
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Supporting Information (SI)

Posterior approximation

As described in the main text, the agent observes the expected payoff xt ∈ R on trial t and uses
this observation to update her belief about the latent cause zt responsible for the observation, as
well as her belief about the mean of the payoff distribution µzt associated with the latent cause.
Here we provide the details of how the update is computed.

The posterior over zt is given by:

P (zt|x1:t) ∝ P (xt|x1:t−1, zt)P (zt|x1:t−1)

=
∑
z1:t−1

P (xt|x1:t−1, z1:t)P (zt|z1:t−1)P (z1:t−1|x1:t−1). (1)

Because the sum over z1:t−1 is computationally intractable, we use a “local” maximum a posteriori
(MAP) approximation [44, 49, 19], which replaces the marginalization with a maximization:

P (zt|x1:t−1) ≈ P (zt|ẑ1:t−1) (2)

P (xt|x1:t−1, zt) ≈ P (xt|zt, ẑ1:t−1) (3)

where P (zt|ẑ1:t−1) is the Chinese restaurant process (CRP) and ẑ1:t−1 is defined recursively accord-
ing to:

ẑt = argmax
k

P (zt = k|x1:t, ẑ1:t−1). (4)

The local MAP approximation does not in general yield the history of latent causes with the highest
posterior probability, because it does not update past assignments after observing new information.
However, it is often sufficiently accurate, as attested by its use in machine learning applications
[50].

Using the local MAP approximation, the likelihood is given by:

P (xt|zt = k, ẑ1:t−1) = N (xt; µ̂
k
t−1, w

2λkt−1 + q + σ2), (5)

where w ∈ [0, 1] is a decay parameter, q is the diffusion noise variance, σ2 is the observation
noise variance, µ̂kt−1 is the posterior mean for cause k after observing trials 1 to t − 1, and λkt is
the posterior variance. The mean and variance are updating according to the Kalman filtering
equations:

µ̂kt = wµ̂kt−1 + ηkt P (zt = k|x1:t−1)(xt − wµ̂kt−1), (6)

λkt = w2λkt−1 + q + ηkt P (zt = k|x1:t−1)λ
k
t−1, (7)

where ηkt is the Kalman gain (learning rate), given by:

ηkt =
w2λkt−1 + q

w2λkt−1 + q + σ2
. (8)
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Table S1: P(Gamble|A) as a linear function of EV(B). β = regression coefficient; SE = standard
error; Int. = intercept; EV(B) = expected value of distribution B.

X β SE Pr(> |t|)

Experiment 1

Negative value-dependent risk preference

Int. 0.42 (0.15) 6.6e-03 ∗∗∗

EV(B) 2.6e-03 (5.3e-02) 0.96

Positive value-dependent risk preference

Int. - 0.67 (0.19) 4.0e-04∗∗∗

EV(B) -0.10 (6.4e-02) 0.11

Experiment 2

Negative value-dependent risk preference

Int. -0.30 (0.30) 0.31

EV(B) 0.27 (8.2e-02) 9.9e-04 ∗∗∗

Positive value-dependent risk preference

Int. -0.11 (0.27) 0.70

EV(B) -0.17 (8.7e-02) 0.05

Prospect Theory as an alternative value function

The reference points identified by the structure learning model can serve as input to a variety of
utility functions beyond the standard quadratic value function presented in the main text. Given
the expected value of an outcome x and the reference point r, Prospect Theory defines subjective
value or utility of perceived gains (x ≥ r) and perceived losses (x < r) according to a piece-wise
power function. Our simplified variant :

u(x) =

{
xρ

+
if x ≥ r,

−λxρ− if x < r.
(9)

where loss aversion coefficient λ represents the multiplicative weighting of perceived losses rela-
tive to perceived gains, and the exponents ρ+ and ρ− control the degree of curvature of the utility
function for perceived gains and losses respectively. When ρ < 1 the utility function exhibits dimin-
ishing sensitivity to changes in value as the absolute value increases and thus is concave for relative
gains and convex for relative losses; when ρ < 1, the utility function exhibits increasing sensitivity
to changes in value as the absolute value increases, and thus is concave in the gain domain and
convex for relative losses. For simplification, we assume the degree of curvature is symmetric for
perceived gains and losses such that ρ+ = ρ− = ρ. This constraint has been shown to provide a
superior fit in prior empirical applications [51, 52].

The data from Experiments 1 and 2 were fit with two versions of the structure learning model
which differed only in the particular function used to map observations and reference points to
utility: one used the quadratic utility function described in the full text while the other used
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Figure S1: Model fits for the generic quadratic value function (QVF) and Prospect Theory (PT) the
probability of gambling (choosing the risky option) on lotteries drawn from distribution A, plotted
as a function of the mean of distribution B. Results are shown separately for participants with
negative value-dependent risk preferences (top) and participants with positive value-dependent
risk preferences (bottom). The green curve shows the fit of the structure learning model with
a Prospect Theory Value function, and the blue curves show the fit using a simple Quadratic
Value Function (QVF). Left: Experiment 1 results (mean of B randomized across blocks). Right:
Experiment 2 results, where the mean of B increases monotonically across blocks. Error bars
represent within-participant standard error of the mean.
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Figure S2: Idealized patterns of gambling frequency as a function of EV(B) for hypothetical groups
of participants with different perceptions about where the perceived split between A and B occurs.
Each column provides separate predictions for participants with positive value dependent risk
preferences (A-C; upper panel) and participants with positive value dependent risk preferences
(D-F; lower panel). Grey dashed lines demarcate the set of trials belonging to each condition and
thereby indicate where shifts in the generative distribution of EV(B) occur. Solid grey lines, by
contrast, indicate where the perceived split between A and B trials is assumed to occur.

the simplified version of Prospect Theory discussed above. Each participant’s choice data were
fit separately using maximum likelihood estimation of parameters. For the structure learning
component of both models, we assumed σ20 = 10 and w = 1.0, leaving three free parameters: α, σ2,
and q. For the quadratic utility function, the two free parameters were the value-dependent risk
preference ρ and the gambling bias ψ. As described above (Equation 9), the free parameters of the
Prospect Theory utility function were risk-preference ρ and loss aversion λ. Numerical optimization
was used to find maximum likelihood estimates of the free parameters, with 5 random initializations
to avoid local optima. Figure S1 shows the gambling probabilities for both models. Both are able
to capture the key findings: (1) a non-monotonic risk preference on A trials as a function of EV(B)
in Experiment 1; (2) a monotonic risk preference in Experiment 2; and (3) opposite patterns of
modulation for participants with negative value-dependent risk preferences and participants with
positive value-dependent risk preferences.
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Model-free signatures of structure learning

The key prediction of our model is that participants in Experiment 1 will be more likely to form
separate reference points for A and B trials than participants in Experiment 2. As described in
the main text, the reference point for A trials increases with EV(B) when A and B trials are
clustered together and then decreases when A and B trials are clustered separately. Therefore, in
general, we expect P(Gamble|A) to change roughly as a linear function of EV(B) for a participant
in Experiment 2 (Figure S2, panels A and D) and we expect P(Gamble|A) to change as a fairly
(inverted) U-shaped function of EV(B) for a participant in Experiment 1 (Figure S2, panels B, C,
E, and F). While these predictions are relatively straightforward at the participant level, formal
assessment of these hypotheses at the group level is complicated by the fact that individuals differ
not only by whether they perceive a split between A and B, but also by where they perceive a split
between A and B.

In particular, idiosyncrasy in structure learning has two major consequences for our group-level
results. First, although we would expect the group-level effects to be nonmonotonic in the extreme
case in which all participants inferred a split during the same condition, here we simply expect the
change in P(Gamble|A) as a function of EV(B) to be more (inverse) U-shaped, for participants
in Experiment 1 than for participants in Experiment 2. Critically, by comparing Experiment 1
to Experiment 2, we control for other potential sources of quadraticity (e.g., due to diminishing
marginal effects of shifts in EV(B). Secondly, heterogeneity in where the perceived split between A
and B occurs is not only a random effect, but one that is expressly non-linear with respect to the
fixed effect of EV(B). For this reason, we cannot simplify our predictions using a linear model or
even a joint test of multiple linear models.

To better understand these points, consider cases where there is consensus regarding the con-
dition in which A and B split. Logic dictates that the perceived split must occur within one of
the three conditions where EV(B) is greater than EV(A), but we can disregard the particular trial
on which the perceived split occurs without loss of generality. In each case, the hypothesized (in-
verse) U-shaped effect can be re-framed as a joint hypothesis about two simple linear effects. If
the perceived split takes place when EV(B) = 45 (Figure S2, panels B and E), the hypothesized
(inverse) U-shaped effect can be re-framed as a joint hypothesis about two simple linear effects:
The first effect would be a significant change in P(Gamble|A) as EV(B) increased from 35 to 45,
and the second effect would be a linear effect of EV(B) on P(Gamble|A) in the opposite direction
across the three conditions where EV(B) = 45, 55, and 65 respectively. However, if the perceived
split takes place when EV(B) = 55 or 65 (Figure S2, panels C and F), we expect an overall linear
effect of EV(B) on P(Gamble—A) across the three conditions where EV(B) = 35, 45, and 55 and
a significant difference in the opposite direction from 55 to 65. Since these expectations contradict
one another, this approach has no efficacy in cases like ours in which the parsing of A and B trials
is subjective.

By contrast, the quadratic, logistic mixed-effects regression model explicitly accounts for het-
erogeneity of this sort by treating individual differences in the quadratic coefficient (i.e., magnitude
and direction) as a random effect. This offers a parsimonious approach to assessing our model-free
hypotheses - a quadratic effect is not a sufficient condition of nonmonotonicity, but it is a necessary
one. Accordingly, by demonstrating that the fixed-effects quadratic term is significant at the group
level for Experiment 1 but not for Experiment 2, we corroborate the predictions of the model.
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Risk preferences vs. gambling biases

In the main text we emphasize the theoretical distinction between value-dependent risk preferences
and gambling biases. In our structure learning model these variables are formalized by the pa-
rameters ρ and ψ respectively. Although each has a computationally unique influence on choice
behavior, it is conceivable that these phenomena might be shaped, in part, by common cognitive
mechanisms. However, there is as of yet relatively little research on whether (and if so, how) these
variables relate to one another. Although our study was not designed to address this question ex-
plicitly, the interplay between these two aspects of risky choice in relation to the dynamic structure
of our task and the divergent patterns of reference dependence in the two experiments highlights
valuable issues for future research to address.

Consistent with a recent study by Rigoli et al., 2018 ([13]), we found no correlation between
value dependent risk preferences and gambling propensity as measured by ρ and ψ (p>.1) overall.
However, when each dataset is considered separately, this result only holds for Experiment 2 (p¿.1).
In Experiment 1, there is a significant negative relationship between these parameters (r = -.32,
p<.01). As an alternative to comparing the model parameters, we can also examine overall gam-
bling frequency as a function of putative risk preference (see Identification of value-dependent risk
preferences in Materials and Methods). For the pooled dataset, this analysis corroborates the afore-
mentioned lack of correspondence between risk preference and gambling frequency approximated
via ρ and ψ . Specifically, an unpaired two-sample t-test of the hypothesis that the two independent
samples (i.e., participants with positive- vs. negative- value-dependent risk-preferences), came from
distributions of gambling frequencies with equal means gambling frequency, indicated that the null
hypothesis (”means are equal”) cannot be rejected at the 5 % significance level (t129 = 0.96, p = .33).
Intriguingly, the fidelity of these results to those of the parametric approach did not hold at the
experiment level. Instead, the results for both individual experiments mirrored the null finding for
the pooled results (Experiment 1: t90 = −0.57, p = .57; Experiment 2: t37 = 1.55, p = .13).

At a glance, this appears at odds with the patterns of behavior shown in Figure 3 where
P(Gamble|A) appears largely above .5 for participants with negative value-dependent risk prefer-
ences and largely below .5 for participants with positive value-dependent risk preferences. It is
important to note here that these figures only depict A trials. Intuitively, it makes sense that
participants with positive value-dependent risk preferences gamble less frequently on A trials in
conditions where EV(A), is less than EV(B).

By the same logic, gambling frequency should be statistically indistinguishable on A and B trials
when EV(A) = EV(B). Therefore, if gambling propensity is independent from value-dependent
risk preference, we would expect P(Gamble—A, EV(B) = 35) not to differ as a function of risk
preference. This is true for Experiment 2 where P(Gamble|A,EV(B)= 35) ≈ .47 for both types of
value-dependent risk preferences (Figure 3, right panel). However, for Experiment 1, P(Gamble—A)
remains lower for participants with positive value-dependent risk preferences than for participants
with negative value-dependent risk preferences even in the condition where EV(B) = EV(A). The
key to making sense of this difference lies in the fact that participants in Experiment 2 always
start the task with the condition in which EV(B) = 35, whereas the majority of participants in
Experiment 1 first encounter a condition in which EV(B) is greater than 35. As a result of this
difference, participants in Experiment 1 are more likely to have higher reference points leading
into the condition where EV(B) = 35 than participants in Experiment 2. This explains why
P(Gamble|A, EV(B)=35) is higher for participants with negative (vs. positive) value-dependent
risk preferences but it also raises a new question. Since EV(A) = EV(B) in this condition, higher
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Figure S3: Histogram plotting the distribution of gambling frequencies (% of trials on which the
risky option was chosen) for the final subject sample (N = 131).

reference points also predict overall differences in risk taking (i.e., on both A and B trials)- how
can this be given that gambling propensity is independent from value-dependent risk preference?

The missing piece of the puzzle is illustrated in Figure S3. Although neither risk prefer-
ence nor the Expected Value of B (EV(B)) predicts overall gambling frequency in Experiment
1 (βEV (B) = −4.5× 10−4, p = .93), participants with negative value-dependent risk preferences are
significantly more likely to gamble than participants with positive value-dependent risk preferences
in the condition where EV(B) = 35 (t90 = 2.62, p = .01). In the left panel of Figure S3 we can see
that in Experiment 1, there is a significant interaction between risk preference and EV(B) (Gener-
alized linear mixed-effects model: ’P (Gamble) ∼ 1+EV (B)*ρ̂+(1+EV (B)*ρ̂|participant)’ where
ρ̂ indicates putative value-dependent risk preference ; βEV (B):ρ̂ = .03, p < .001).
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Figure S4: Average gambling frequency (both A and B trials) as a function of the Expected Value
of B and value-dependent risk preference (Positive- in green; Negative- in blue) for Experiment 1
(left) and Experiment 2 (right). Error bars reflect the standard error of the mean. Between the two
experiments , there is no significant difference in overall gambling frequency (t129 = −1.28, p = .20),
and within each experiment, there is no significant difference in overall gambling frequency as a
function of risk preference (Experiment 1: t90 = −0.57, p = .57; Experiment 2: t37 = −1.55, p =
.13). Furthermore, overall gambling frequency does not change as a function of EV(B) (Generalized
linear mixed-effects model: P (Gamble) ∼ 1 + EV (B) + (1 + EV (B)|participant); Experiment 1:
βEV (B) = −4.5 × 10−4, p = .93; Experiment 2: βEV (B) = 1.1 × 10−3, p = .42). However, within
Experiment 1, there is evidence of a significant interaction between risk preference and EV(B)
that is not present in Experiment 2 (Generalized linear mixed-effects model: P (Gamble) ∼ 1 +
EV (B)*ρ̂+ (1 +EV (B)*ρ̂|participant) where ρ̂ indicates putative value-dependent risk preference
; Experiment 1: βEV (B):ρ̂ = .03, p < .001∗∗∗; Experiment 2: βEV (B):ρ̂ = 7.6× 10−4, p = .13).
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Figure S5: Schematic of trial-by-trial model predictions simulated for Experiment 1 (upper panel)
and Experiment 2 (lower panel). Observed values on each trial are shown in black while the model
estimates (i.e., reference points) are shown in blue.

27

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2018. ; https://doi.org/10.1101/252692doi: bioRxiv preprint 

https://doi.org/10.1101/252692
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S6: Distributions of individual fit values for the free parameters of the structure learning
model for Experiment 1 (above) and Experiment 2 (below) (N1 = 92, N2 = 39, Ntotal = 131).
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