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Abstract— Most wheelchair interfaces, such as joystick and 
sip/puff, are not suitable for severely disabled patients. 
Furthermore, cost is a predominant limiting factor for the 
deployment of custom engineered platforms. Here we 
describe and discuss two low-cost yet efficient gaze-based 
wheelchair control interfaces in detail. Firstly, we 
superimposed gaze and depth data to achieve real-time 3D 
gaze data estimation and floor-detection. The accuracy of 
the 3D gaze data was assessed using a commercial IR-based 
tracking camera system as a control. Later, natural eye gaze 
during wheelchair navigation was recorded to produce a 
heat map based on most probable direction state. 
Information within the heat maps was subsequently utilized 
to encode eye gaze-contingent wheelchair interfaces. 
Various wheelchair navigation tasks were performed using 
these novel interfaces to compare against other currently 
available navigation techniques and modules. The results 
suggest that such intention decoding from natural eye gaze 
based methods can be a suitable alternative to the other 
widely-used techniques for wheelchair navigation.  

 
Index Terms— Amyotrophic Lateral Sclerosis, Depth 
camera, Eye tracking, Eye Gaze, Multiple sclerosis, 
Natural gaze, RGB-D camera, Wheelchair  

 

I. INTRODUCTION 
HE World Health Organization reports that 2.4 % of the 
world's population live with significant difficulties in 

functioning and require a wheelchair to carry out daily 
activities. The powered wheelchair is a vital device for many, 
providing mobility and increasing participation in daily life. 
However, most of the currently available mechanisms cannot 
adapt to people with severe disabilities such as high-level spinal 
cord injury and quadriplegia. The number of spinal cord injuries 
increases each year, resulting in the urgent need for appropriate 
technologies to improve quality of life for those suffering from 
motor disabilities. Due to an increase in wheelchair needs, there 
has been significant growth in wheelchair research and 
development.  
 

A. Human Machine Interface for Wheelchair Control  
At present, the need to develop interfaces that provide 

independent mobility is growing rapidly. Almost all of the 
readily available control interfaces present several drawbacks 
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and benefits which can be classified depending on the patient 
autonomy. One of the most common wheelchair control 
interfaces is the joystick, which is characterised by high 
information throughput. Furthermore, the joystick provides full 
patient autonomy. Most are analog systems, and allow the 
patient to adjust wheelchair speed. But, this requires 
considerable skills however, and is hence not suitable for 
severely disabled patients. Another low-cost device that has 
seen some adoption is the sip/puff interface, which provides 
directional commands by inhaling (sipping) and exhaling 
(puffing) through a straw, which in turn activates a pneumatic 
switch or pressure sensor. Unfortunately however, the response 
of the interface is slow and the tubing requires frequent cleaning 
[Jeonghee Kim 2013].  

Brain Machine Interfaces provide hands-free wheelchair 
navigation and ease-of-use for those with limited upper limb 
mobility. Brain Computer Interfaces use invasive and non-
invasive electrodes that acquire biological signals. One of these 
interfaces, EEG (electroencephalography), uses electrodes 
placed on the patient’s scalp to measure the electrical activity 
of the brain in order to control the wheelchair. The user is 
trained to voluntarily modulate the EEG by executing mental 
imagery corresponding to each of the steering commands 
[Ferran G et al., 2008]. Limitations include very low 
information throughput and transfer rate, making the system 
insufficient to quickly react to dynamic changes during 
wheelchair navigation [Brice Rebsamen et al., 2010]. In 
[Abbott and Faisal 2012], it is shown that the decoding rate of 
brain information (information throughput) ranged from 0.5 to 
7 bits per second, and that the wheelchair controller requires a 
higher rate of at least 15.3 bits per second. Furthermore, it 
presents a high sensitivity to noise, related to the acquisition of 
brain signals [Richard C Simpson 2005].  

 

B. Gaze Control for Wheelchair Driving  
The human visual system is a multifaceted optical scheme in 

which the image is converted into a sequence of electrical 
signals, and is subsequently communicated to the brain through 
complex neural schema [Land, M. F]. Eye gazing plays a 
significant role from infancy onwards, and plays a vital part in 
nonverbal communication [Farroni, T; Fullwood C; Mayer K; 
Estrada CA]. Moreover, eye movements are highly interrelated 
with motor intents, and are often retained by humans with 
severe motor deficiencies [Ruofei Xu]. Applied physics and 
modern electronics make real-time eye gaze tracking a 
possibility. On-chip charged coupled devices with digital signal 
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microprocessors have significantly increased the usability, 
accuracy, and speed of eye-tracking technology while 
decreasing the cost [Duchowski, A]. Human-computer 
interaction is the most desired use of eye tracking, particularly 
for gaze-contingent communication [Duchowski, A. T. (2002); 
Orlov, P. A., & Apraksin, N. (2015)], and has various 
applications in biomedical engineering [Ktena, S. I et al.; 
Eivazi, S et al.]. Gaze driven systems provide hands-free 
control of robotic devices. Eye gaze tracking also allows us to 
control machines such as human-machine interfaces for semi-
autonomous vehicles. One primary application is the use of this 
system of communication for steering a wheelchair [Martin Tall 
et al., 2009; Erik Wastlund et al., 2010; Gunda Gautam et al., 
2014]. For instance, semi-autonomous and autonomous control 
of a wheelchair was developed by Ruofei Xu et al. to assist 
users with severe motor neuron disorders [Ruofei Xu]. In its 
stand-alone mode, the user can select a position on a pre-built 
map and the vehicle will navigate to the desired location. Even 
though obstacle localization and avoidance algorithms are not 
refined enough to achieve acceptable accuracy with this setup 
[Ruofei Xu], the eye-tracker system, in contrary, provides the 
ability to move independently and safely within the surrounding 
environment with useful hands-free input. This helpful function 
can contribute to the user’s satisfaction and learning motivation 
[Lisbeth M Nilsson and Per J Nyberg 2003].  

The eye-tracking systems provide information about the eye 
movements and gaze location that is not enough for the direct 
control [Andrew Duchowski 2007]. Imperative difficulty being 
every gaze should not turn to goal - ‘Midas touch’ problem. 
Conventional techniques consist of on-screen buttons on a 
video scene feed, with the user gazing at the buttons to navigate 
[Wästlund, E 2010]. Other possible iteration techniques include 
dwell time for activating directions to avoid unintentional 
movement of the wheelchair [Arai, K]. This method of 
superimposition was well understood by the subjects and was 
able to control the powered wheelchair using eye movements 
within the environment. The screen-based interface requires 
shifting of attention between the physical navigation 
environment and the computer display, which can be difficult 
and might cause cybersickness. Other user interface approaches 
for gaze control of powered wheelchairs include primary 
mobile systems such as the optic mouse, on-screen buttons, 
commercial systems (SMI iViewX RED and Tobii 1750), and 
webcam based systems [Martin Tall et al., 2009]. A wheelchair 
steering controlled system based on eye movements allowing 
the user to move in any desirable direction has been 
demonstrated too [Gunda Gautam et al., 2014]. However, our 
earlier research and other studies tried to provide a gaze-driven 
control system based on natural gaze behavior [Sofia Ira Ketna 
2015]. First, natural eye-movements during keyboard control 
were recorded, followed by gaze data while using each of the 
interfaces for the virtual wheelchair keyboard control. Such 
demonstrations show the necessity of using natural gaze 
behavior as signal commands to control wheelchair navigation 
[Christian Bartolein et al., 2008]. Most of the aforementioned 
studies propose eye-based wheelchair control interfaces, which 
often require more effort by the user and lead to abnormal gaze 

behavior. It was observed that the visual information was used 
in a feed-forward manner during the approach phase, but not 
while stepping over the obstacle.  
Task and context determine gaze allocation, and it is not guided 
according to a random or a saliency model [Yarbus, A. 1967, 
Constantin A. Rothkopf, 2007]. Marius’t et al. observed that 
gaze allocation in free viewing condition differs from that under 
laboratory condition. Thus, factors guiding human eye 
movements under natural conditions need investigation 
[Marius't Hart B, 2009]. One possible factor is compensatory 
movement, i.e., eye movements go to the left when the head 
moves to the right. During walking tasks, terrain regularity 
results in differences in head orientation and gaze behavior, 
specifically in the vertical direction, and increases in attention 
while walking on complex surfaces [Marius't Hart B, 2012]. 
During natural walking or wheelchair driving the body 
movements also compensate for gaze instability. Previous 
studies show that eye-movements play a part compensatory 
role, and about 20% of eye-movements act synergistically with 
head movements to direct gaze [Einhäuser W, 2007; Wolfgang 
Einhäuser, 2009].  

A particular environmental feature can be utilized as a visual 
pivot, for example, the opening of a door, and the safest 
navigation, defined as the locomotion, is characterized by the 
fixations toward the door opening. This voluntary fixation is 
likely related to object detection purpose [Bernard Marius ’t 
Hart, 2013]. Takahiro et al., analyzed the location of obsession 
and the duration of locomotion before the aperture crossing 
with four forms of movement, including regular walking, 
walking with a bar, blocked shoulder rotation and finally 
locomotion with a wheelchair [Takahiro Higuchi, Michael E 
Cinelli 2013]. Due to the influence of unfamiliarity with the 
system, another study focused on the enhancement in space 
estimation ability for movement with familiar and unfamiliar 
wheelchair users [Takahiro Huguchi et al., 2009]. Advanced 
navigation techniques mediated by natural free view achieved 
through sophisticated algorithms would be the ideal next step 
in this field [Ktena, S.I].  

Herein, we investigate people's gaze pattern while driving a 
wheelchair using an RGB-D (Depth) camera. This has proven 
essential for developing an eye-based control interface which 
retains the driver's natural gaze behavior while controlling the 
wheelchair with the eyes. In particular, we are interested in 
investigating whether the user's visual attention is focused on 
the floor while following a specific path and whether this 
behavior is a result of the complexity of the environment. Also, 
we search for correspondence between people's gaze patterns 
and motor intentions. To achieve this goal, we firstly built a 
wheelchair with an eye-tracker and RGB-D camera, and aligned 
RGB-D data with gaze data. Secondly, we collected gaze points 
according to driving actions and floor position. Finally, we built 
two natural gaze data-contingent driver interfaces.  

II. METHOD 
This section explains the methods deployed for the 

alignment, segmentation, estimation, visualization, and 
accuracy estimation of the gaze position using a depth camera 
and eye-tracker.  
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A. Eye tracker calibration on the wheelchair. 
A 60fps eye-tracker was used for this study. We performed 

basic 2D eye-tracker calibration included in a commercial eye-
tracking software package. The remote eye-tracker provides 
gaze data mapped to the 2D video frame - our strategy by 
contrast involves analysis of gaze data in a physical 3D space. 
To obtain the depth information of the surrounding 
environment we used an RGB-D camera. By combining the 
RGB-D camera and eye-tracker information throughput, we 
generated a 3D gaze dataset. Before expressing this gaze in 3D, 
the 2D eye-tracker video frame was aligned with a RGB-D 
frame by applying an affine transformation between the two 
coordinate systems. The alignment method consists of several 
steps. First, 10 OptiTrack reflective markers were placed on the 
floor in front of the wheelchair (Fig. 1) in such a way as to be 
detectable by both the RGB-D camera and the eye-tracker. 

 

 
 

Fig. 1.  (a): Alignment setup. OptiTrack markers in the working 
space can be seen in front of the wheelchair. (b): Alignment of 
the 2D eye-tracker video frame with a RGB-D frame through 
affine transformation between the two coordinate systems. (c): 
Qualitative analysis of accuracy of the affine transformation 
applied to the eye tracker and the RGB-D camera coordinate 
systems.  
 

The RGB-D camera image was mirrored? to facilitate the 
visualization of the surrounding environment. The top right 
corner of the image is, therefore, the origin of the infrared frame 
reference with x=0 and y=0. The user is asked to look at each 
of these markers consistently. The origin of the eye tracker 
frame reference corresponds to the top left corner of the panel 
with x=0 and y=0. In both systems, the pixels express 
coordinates. The alignment between the two coordinate systems 
was applied without any need to add a scaling transformation to 
enlarge or shrink the objects in all directions.  

Once the gaze data and the image coordinates are 
normalized, an affine transformation is applied to express the 
gaze data in the infrared sensor frame of reference. The affine 
transform matrix ‘A’ allow the application to each gaze point 
[Helmuth Spath 2004]:  

 
𝑝"# = 𝐴	.		𝑝"                                    (1) 
where Pg’ corresponds to the definition of each gaze point in 
the new reference system (infrared sensor) and Pg corresponds 
to the gaze point in the eye tracker system. The matrix ‘A’ is 
defined in the least squares fashion. The least square estimation 
of A is:  

 
 
𝐴	 = argmin

.∈0
𝑝"1,

3
456 −𝐴	. 𝑝"1

8
                 (2) 

 
 
where G is an affine group, then (1) can be expressed as: 
 
𝑝"6# 	…	𝑝"3#

:

= 𝑅	.		𝑐 =>?	…		=>@
6				…					6

A

              (3)  

 
where, for our application, K is the ‘RGB-D camera’ data, and 
G is a matrix composed of the ‘Gaze’ data. ‘n’ is the number of 
points, ‘R’ is the rotation matrix of the affine transformation 
and ‘c’ corresponds to the translation. Both ‘R’ and ‘c’ included 
in ‘A’. The ten markers coordinate expressed in the eye-tracker 
reference frame, and the RGB-D camera reference frame are 
respectively the values of the array G and the matrix K. Finally, 
the least squares estimation of A is given by: 
 
𝑅	.		𝑐 = 𝐾. 𝐺#(𝐺	. 𝐺#)F6                              (4) 

 
where G’ is the transpose of G. Once and are defined, these 
terms used in (1) in matrix ‘A’ and each gaze point, expressed 
in the infrared sensor reference frame. Fig. 1 represents the 
results obtained by applying the affine transformation, allows 
verifying the accuracy of the alignment qualitatively. The red 
points correspond to each new gaze data point expressed in real-
time in the reference frame of the infrared sensor. 
 

B. Floor Detection using the RGB-D camera 
To separate gaze data on floor-oriented and no-floor oriented 
gaze points, we detected the floor’s position with a built-in 
function of the RGB-D camera. This function estimates the 
coefficients of the floor plane in standard hessian form with the 
normalized plane equation:  
 
𝑁 = 	𝐴	.		𝑥 + 𝐵	. 𝑦 + 𝐶	. 𝑧 + 𝐷                       (6) 
 
where A, B, and C are the components of a unit vector 
corresponding to the normal of the plane and D is the distance 
from the origin of the camera to the plane (fig. 2).  
This floor detection algorithm has a low computational cost but 
is not robust. Using this algorithm, only floors tilted under 55o 
can be detected. A clipping plane renders only specific portions 
of the scene and excludes some parts of a scene’s geometry. It 
is sensitive to the RGB-D camera vibrations leading to some 
computational errors such as incorrect parameters values. In 
fact, the structure of the built-in function requires that the 
camera is parallel to the ground level. If the camera is tilted, the 
parameter D, the distance plane-camera, is null and the other 
parameters are wrongly estimated. The vibrations of the system 
while the wheelchair is in motion makes the camera tilted and, 
due to the lack of the algorithm robustness, fail to evaluate the 
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Fig. 2 (a): Illustration of the floor plane equation estimation, D 
is the distance from the RGB-D camera to the floor and n is the 
normal to the floor. (b): Tilted floor detection, visualization of 
the detection of tilted floor with the first algorithm using the 
built-in function. (c) Local normal vectors computation: 1) 
Selection of the neighbours of point Pi on the depth map. 2) 
Vectors up-down and left-right in the 3D point cloud [H. W. 
Yoo et al., 2013].  
 
floor as a clipping plane. A solution to solve this vibration issue 
is to attach the RGB-D camera firmly to the wheelchair via a 
steel frame, fixed to a stable structure above the chair’s wheels. 
This fixation strategy improves the robustness of the floor 
detection algorithm substantially. Furthermore, this algorithm 
can detect a tilted floor as shown in Fig. 2. This floor detection 
strategy was used in the data analysis to verify the gaze pattern 
and compares between floor/non-floor positions. It is also 
implemented in the wheelchair controller interface to enable the 
distinction between motion and no motion following the results 
obtained after the data analysis presented in the results.   
 

C. Wheelchair setup evaluation. 
 

We conducted a use-case study to test the accuracy of the 3D 
gaze data estimation by the combination of eye tracker and 
depth camera. For the analysis of the significance between 
groups of data, we performed a one-way Analysis of Variance 
(ANOVA) followed by Tukey Honest Significant Difference 
(HSD) for posthoc comparisons test; p-value > 0.05 considered 
as not significant. Comparison data for the tests are represented 
in bar graphs with the standard deviation of no less than N = 3 
to 11 subjects. 

 
To test the 3D gaze data accuracy 7 healthy subjects (22 - 30 
years old) with normal or corrected to normal vision were asked 
to fix at the markers on the floor in different patterns. The 
accuracy based on the comparison between the 3D coordinates 
of the gaze point on a particular location on the floor and the 
3D coordinates of this location obtained using the OptiTrack 
Motion Capture cameras. The OptiTrack cameras have a 
precision in the order of millimeters and provide accurate 3D 
world space coordinates of the location of the reflective 
OptiTrack marker. Three cameras have been used and 
calibrated. They were facing the experimental setup including 
the wheelchair as shown in Fig. 3.  

The  RGB-D camera space and the OptiTrack system did not 
have the same origin of the reference frame. The source of the 
RGB-D sensor was first detected using the reflective markers 
and expressed following the origin of the OptiTrack system. For 
the translation that had to be applied to the final 3D gaze data, 
in order to compare their accuracy with the OptiTrack 
measurements. Once the RGB-D camera origin is detected, 15 
markers placed on the floor facing the wheelchair, and their 
coordinates using the OptiTrack cameras, were saved to a file. 
We then obtained the 3D gaze data at these 15 marker locations 
using the current setup, following three steps:  
1. A user profile was generated using the 2D eye-tracker 
calibration data.  
2. The 2D alignment between the RGB-D camera infrared 
sensor and the 2D gaze data was applied using ten markers. 
3. The 15 markers utilized for the OptiTrack data were placed 
on the ground. Subjects were asked to look at the 15 markers 
following different patterns indicated by a technician using a 
laser as shown in the fig. 3.  
 

 
Fig. 3.  Test of the 3D Gaze Data Accuracy. The technician is 
using a laser to indicate 10 different patterns to the user.  
 

We recorded 3D gaze data, and the translation between the 
two systems origin was applied to each of these data points to 
estimate the accuracy, the Euclidean error between the 3D gaze 
data, and the OptiTrack data for each marker calculated. The 
results obtained and show in Figure 4. highlight the mean 
Euclidean error over the 15 OptiTrack markers locations for the 
ten different patterns. By averaging across the subject, the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 24, 2018. ; https://doi.org/10.1101/252684doi: bioRxiv preprint 

https://doi.org/10.1101/252684


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

5 

estimated 3D gaze data acquired had? a Euclidean error of 16.7 
± 1.2cm. Impreciseness between the ground truth and the 3D 
estimated data was insignificant. This value was considered to 
be accurate enough for our application.  

 
We observed that the 3D gaze data obtained at the extremities 

of the original working space, being limited by both the RGB-
D camera and the eye-tracker, were wrongly estimated and 
presented significant error. The RGB-D camera/eye-tracker 
system was inefficient at these locations due to the combination 
of their field of view limitations. The workspace is then limited 
to the range of -1 to 1 meters laterally from the RGB-D camera 
space origin, and 0.5 meters to 2.5 meters in depth from the 
origin. These ranges limited the number of valid gaze data 
points usable for the investigation of natural gaze behavior. It 
therefore limits some valid gaze points accessible for the 
controller interfaces to navigate safely and rigorously in the 
surrounding environment with the eye-based wheelchair. 
 

 
Fig. 4.  Mean Euclidean error of 3D gaze estimation for each 
subject. Error bars represent the standard deviation obtained 
comparing the ground truth with the estimated. 

III. NATURAL EYE MOVEMENTS STUDY DURING NAVIGATION  

A. Experiment design 
We conducted a study to collect the 3D gaze data and then used 
it for the decoder development as training data. 8 healthy 
subjects (22 - 30 years old) with normal or corrected-to-normal 
vision were involved in the study. All of them were naive to the 
use of a wheelchair. Each experiment trial started with the 
calibration of the eye tracker, followed by the alignment 
procedure to calibrate the subject, which lasts for roughly 20 
minutes. The experiment consisted of three different tasks, 
where the participant had to navigate with the wheelchair in 
three different environments freely, using the joystick. In task 
one, the subject had to go back and forth in a hallway free from 
obstacles. In task two, the participant was asked to navigate in 
a room with three chairs and moved around these obstacles for 
about 5 minutes. In task three, the subject was placed in a more 
complex environment, cluttered with several tables and chairs, 
where he/she had to navigate for about 5 minutes again. The 3D 
gaze data were recorded during all chair movement, as well as 

during the time between tasks, when the participant moved 
from one place to the other.  

The entire experiment (including calibration, alignment, and 
recording) lasted 1 hour on average. Therefore, to monitor 
potential calibration lost during such a lengthy period, a 
qualitative check of the calibration procedure was conducted 
before and after each task, where the subject was asked to fixate 
on five markers on the floor, and the calibration error 
qualitatively monitored in real time through the video 
recording. During all the recording, the participant was asked 
to sit in a comfortable position and to not rotate the upper part 
of their body. The upper body constraint was necessary due to 
the system Field Of View (FOV) limitations. However, small 
head movements were allowed inside the eye tracking box. A 
belt was used to keep the subject in the same position while he 
was calibrated to impose the body limitation. 
 

B.  Preprocessing and data analysis 
 
Before proceeding with the analysis, we conducted pre-
processing on the raw data. The joystick values did not 
synchronize with the 3D gaze point data and plane equation 
coefficients because the values came from two different 
systems. Moreover, the gaze data were acquired with a non-
uniform frame rate, because no values were saved when the 
eyes of the driver were not detected, either because the user was 
blinking, or because the user moved outside of the eye tracking 
box. Therefore, to synchronize the data, the signals were 
interpolated through the shape-preserving piecewise cubic, 
named PCHIP (Piecewise Cubic Hermite Interpolating 
Polynomial) and were re-sampled at a frequency of 50Hz.  

With the data synchronised, the plane equation was used to 
extract the floor / non-floor information, to classify the gaze 
point of the user. Given a b c and d, parameters of the plane 
equation (ax+by +cz = d) provided by the floor detection 
algorithm, the distance between the gaze point and the floor 
plane was computed, using the equation: 
 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 	 V	.		W>XY	.		Z>X[	.		\>X]
V^XY^X[^

     (13) 

 
where Xg, Yg, Zg are the 3D estimates of the gaze point. Given 
the gaze-floor distance, a threshold of 10 cm was used to 
classify a point as belonging to the floor, or not. The limit has 
been selected taking into account the mean Euclidean error of 
the 3D gaze data estimation, which could not allow a more 
precise estimate with a lower threshold. 

In the first part of our analysis, people's percentage of gaze 
points on the floor were investigated, to determine whether or 
not people look at the floor while driving a wheelchair, and how 
this behavior changes with the complexity of the environment.  

For each subject, the percentage of gaze point on the floor, in 
the FOV, was computed during the execution of three different 
tasks. In Fig. 5(A), a common pattern was observed between a 
group of participants (subject 1, subject 6, subject 7, subject 8). 
The percentage of gaze fixations on the floor is smallest during 
task one (free hallway), but increases during task two (room 
with three chairs), and  reaches a maximum during task three 
(the highly complex environment). A similar pattern can be 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 24, 2018. ; https://doi.org/10.1101/252684doi: bioRxiv preprint 

https://doi.org/10.1101/252684


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 

observed in subjects 3 and 4, who directed the eyes toward the 
floor more during task two and task three, than during task one. 
Different gaze behaviours have been identified in subject 5 and 
subject 2. Overall, a general pattern results from averaging over 
the subjects (fig. 5(B)). This pattern shows that, overall, the 
participants directed the fixations toward the floor, more during 
task two (59,7% ± 7,2% SD) and task three (60,7% ± 14,9% 
SD) than in task one (45,7% ± 18,2% SD). 
 

                

                
Fig. 5.  Percentage of gaze points on the floor during Tasks 
solving (a) Comparisons between different subjects. (b) Mean 
across 8 subjects. 
 

The result showed a significant main effect (F(3,21) = 3.25, 
p = 0.04). The mean percentage of gaze points on the floor is 
lower for task one than for task two (p-value= 0.1) and task 
three (p-value=0.075). However, the power of the performed 
statistics is not sufficient to reach significance. 

To efficiently design the wheelchair control interface it is 
essential to distinguish between driving and idle state. Total 
Recording (no tasks separation), for each participant the 
conditional probabilities of motion/idle, given the 3D gaze 
point on the floor and outside of the floor, have been computed 
with Bayes' Theorem and are shown in fig. 6(B) For all the 
subjects, P(Motion | Gaze on the floor) is significantly higher 
(0:85 ± 0:08 SD) than the P(No Motion | Gaze on the floor). 
We then measured the P(Motion | Non-Floor) and assumed, for 
this analysis, that the gaze points outside of the FOV do not fall 
on the floor. This was necessary given the reduced size of our 
FOV. Given people's natural behavior, the probabilities of 
moving are high, both when the gaze point falls on the floor and 
when it falls outside of the floor. However, the probability that 
the driver intends to move is higher in the first case than in the 
second, as can be seen in Fig. 6(A) The results of related 
samples t-test show that there is a difference between P(Motion 
| Floor) and P(Motion | Non-floor)(t(7) = -4.006, p = .005). This 

confirms the probability that the driver intends to move is 
higher when the gaze point falls on the floor than when the gaze 
point falls not on the floor or outside the FOV. 
 

 

 
Fig. 6.  (a) Comparison between the conditional probability of 
motion given gaze point on the floor and not on the floor. Bar 1 
is P(Motion | Floor); bar 2 is P(Motion | Non Floor). Mean 
across 8 subjects (error bars represent standard deviation). (b) 
Conditional probability of motion or no motion, given gaze 
point on the floor. Bar 1 is P(Motion | Gaze on floor); bar 2 is 
P(No Motion | Gaze on floor). Mean across 8 subjects (error 
bars represent standard deviation). 
 
 In the second part of the analysis, probability space maps 
were computed based on Bayes Theorem, to identify regions 
where the fixations of the driver are likely to fall during a 
particular motion state (e.g., forward, backward, right, left 
motion).  In each location in the space, these probability maps 
contain the probability that the driver, given a fixation in that 
particular location, was in a specific motion state. Different 
probability maps are computed for gaze distribution on the floor 
and not on the floor. For a specific state of motion Si, the 
probability space map is computed through a fully-expanded 
expression of Bayes' Theorem: 
 
𝑃 𝑆4	\𝑔𝑎𝑧𝑒, 𝐹𝑙𝑜𝑜𝑟 = 	 g "Vhi\j1,klmmn 	.		g(j1\klmmn)

g("Vhi\j1@
1o? ,klmmn)	.		g(j1\klmmn)

  (13) 

 
Where 
𝑃 𝑆4	\𝐹𝑙𝑜𝑜𝑟 = 	 g klmmn\j1 	.		g(j1)

g(j1@
1o? )	.		g(klmmn\j1)

 (14) 
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The variable Floor, in (13) and (14) represents a categorical 
variable, which can be either floor or non-floor. 

To apply these equations to the data, the 3D gaze values are 
divided into two different sample spaces: floor or non-floor 
data. Each of these two groups is then partitioned in a collection 
of n subsets, based on the joystick values. Each subset 
represents, therefore, a particular motion state Si (i = 1, … n ). 
The range of x and y joystick coordinates, used to identify 
different motion states, was manually selected by measuring the 
joystick values when the wheelchair was stationary and when 
the joystick was moved to the 4 extreme positions. Using the 
partitions resulted from dividing the data in the different range 
of movements, P(gaze|Si,  Floor) is computed using the relative 
occurrence of gazes in each location of the space, divided into 
cubes of about 5 x 5 x 5 cm3. 

Furthermore, P(Floor|Si) is the probability that the user 
was/was not looking at the floor while being in the state Si and 
P(Si) is the probability of that particular state. The posterior 
probability P(Si|gaze, Floor) is; therefore, a four-dimensional 
histogram resulted from dividing the x, y and z dimension of 
FOV in bins of about 5 cm. The value of the histogram in the 
bins represents the probability of the state, given a gaze point in 
that particular location. However, the range of y values is 
minimal, due to the FOV limitation along the vertical axis (fig. 
7). Therefore, the probabilities in the floor and non-floor cases 
are averaged over the vertical dimension and are visualized 
through heat maps. Mean filtering using a 3 x 3 square kernel 
6
p
.
1 1 1
1 1 1
1 1 1

	is used to smooth the data. Fig. 8. shows heat 

maps that allowed us to analyze where people look during 
different motion states qualitatively. 

 

 
Fig. 7.  System Field of View 

 
The conditional probabilities heat maps are shown in Fig. 8. 

In the heat maps, the number of bins is chosen so that each bin 
corresponds to about 5 cm in the FOV. Note that the z 
dimension represents the depth (distance from the wheelchair), 
increasing with higher bin number. The x dimension 
represents the width of the FOV. Bin 0 corresponds to the left 
corner, and bin 40 corresponds to the right corner. First, 
differences in the gaze pattern during forward and backward 
motion are analyzed, in the cases of gaze distributions on the 
floor and outside of the floor. A forward movement is 
considered when the wheelchair moves forward (including 
forward right and forward left).  
 

In the heat maps for the forward and backward case (fig. 8), 
given a gaze point in the FOV, the probability that the user 
was moving forward (a and c) is higher than the probability 
that the user was moving backward (b and d). This is because 
the participants spent naturally more time moving forwards 
than backwards. 
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Fig.8.  Heat maps for the Forward and Backward motion. Color 
bars represent the probability of moving in a specific direction, 
given gaze points on specific region in the field of view.   
 
However, when we analyzed the heat maps for gaze distribution 
on the floor, we observed that when the gaze point falls further 
from the wheelchair (large z bins), there are higher probabilities 
of intending to move forward than when the gaze point falls 
closer to the wheelchair (a). In contrast, for the backward case, 
we observe that when the gaze points fall close to the 
wheelchair, there is a higher probability of moving backward 
than when the gaze point falls further from the wheelchair(b). 
Such a pattern is not visible when the people's gaze distributions 
not on the floor are considered (c and d). Therefore, we can 
conclude that, when the users look at the floor, they prefer to 
gaze at the space closer to the wheelchair while driving 
backward, further from the wheelchair while driving forward. 
Similarly, the second group of the heat map is computed to 
analyze where the participant looked while moving to the right 
and to the left (without taking into account whether the 
movement was in forward or backward direction). In this case, 
the participants were likely to look at the floor on the right or 
left side of the FOV, respectively, while moving rightward or 
leftward, respectively (fig. 9(a,b)). This pattern was confirmed, 
when the gaze data considered did not fall on the floor (fig. 
9(c,d)).  
 

 

 

 
Fig. 9.  Heat maps for the Rightward and Leftward motion. 
Color bars represent the probability of moving in a specific 
direction, given gaze points on specific region in the field of 
view.  
 

Gaze patterns for four different directions of motion have 
been compared (see Fig. 10): Forward Left, Forward Right, 
Backward Left and Backward Right. If we observe the heat 
maps for the movement in the forward direction (including 
Forward Right and Forward Left) (fig. 10(a,b,c,d)), we can see 
that the previously discussed pattern are still visible. For 
example, there is a preference for the users to look at the right 
side of the FOV, further from the wheelchair, while moving 
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forward right. However, when we consider the heat maps for 
the motion in the backward direction (including Backward 
Left and Backward Right) (fig. 10(e,f,g,h)), a pattern is not 
visible anymore and no real conclusion can be drawn. These 
results showed that the apparent trend shown in fig.9 is mainly 
due to the forward motion. This leads to the conclusion that 
people tend to look in the direction they are moving, during 
the forward state, yet no clear difference exists between 
looking right and left during the backward state. 

Based on these results, two different interfaces have been 
proposed to translate the gaze data into bit values in the range 
of the National Instruments (NI) controller, to generate the 
desired wheelchair motion. Both the interfaces use the x and the 
z coordinates of the 3D gaze data to generate appropriate 
joystick values. 
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Fig. 10.  Heat maps for Forward Right – Forward Left – 
Backward Right – Backward Left motion. Color bars represent 
the probability of moving in a specific direction, given gaze 
points on specific region in the field of view.  
 

The floor/non-floor information is used to distinguish 
between driving and non-driving state. They coordinate of the 
gaze, which represents the height of the gaze point from the 
floor, is not used during the mapping, according to the fact that 
only fixations on the floor are translated into driving 
commands. This strategy is used to address the Midas Touch 
problem and is based on the results of the analysis of the 
participant natural gaze data.  
 

IV. DECODER DEVELOPMENT  

A. Continuous Control Field 
 
The first interface uses a continuous control field, similar to 
those proposed by Ktena et al. [Sofia Ira Ktena 2015]. 
Differently from the “Look Where You Want to Go" interface, 
the new proposed approach uses the actual distance of the user's 
gaze point from the wheelchair (z coordinate), together with the 
x coordinate of the gaze, to generate the appropriate wheelchair 
command. Essentially, the two-dimensional control field is now 
projected on the ground and is represented by a rectangular 
portion of the floor, limited on the system FOV. Based on the 
results of the analysis of people's gaze pattern, the floor area is 
divided into two different regions, for forward and backward 
motion. In the forward region, the equations, as functions of x 
and z, were used to predict the linear and angular velocities of 
the wheelchair, and were computed based on the analysis of the 
gaze data collected during the recordings. The objective was to 
find two fitting functions which predict, given the x and z 
coordinates of the gaze point on the floor, x and y joystick 
values as close as possible to the observed ones. Given the 
independent variables (x and z coordinate of the gaze point), the 
mean for every joystick values (dependent variable) associated 
with a specific gaze coordinate, has been used to find the two 
fitting functions. Polynomial functions of seven different 
degrees have been fitted to the data, and K-fold cross-validation 
(k=5) has been used to choose those providing the lowest Mean 
Square Error (MSE), on average (fig. 11). To do so, the data set 
is randomly divided into 5 different partitions. For each cycle 

of the 5-Fold cross-validation, the fitting functions are 
computed on 4 partitions. The MSEs are computed on the test 
dataset. In the 5 cycles, the one-fifth of samples, used as the test 
set, changes. 

The average MSEs over the cycles is then reported for each 
polynomial to choose the function with the lowest error and fit 
it to the whole set of available data samples.  

 

 

 
Fig. 11.  MSEs computed performing a 5-Fold cross validation 
for the fit of seven different polynomial orders. Error bar 
represent standard deviation over the 5 cycles. (a): MSEs for 
the fitting functions to map the x position of the gaze to angular 
velocity; (b): MSEs for the fitting functions to map the z 
position of the gaze to linear velocity.  
 

For the linear velocity in the forward direction, we can 
observe that the magnitude is minimum at smaller depth from 
the wheelchair (z small) and smoothly increases, reaching its 
maximum at the top of the forward zone (Fig. 12 (a)). The 
further you look, the faster you move. This is consistent with 
the fact that when the target location that the user wants to reach 
is further away, the wheelchair has a longer distance to cover 
and therefore can achieve a higher speed. 
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Fig. 12.  Fitting functions to calculate linear and angular 
velocity components for the wheelchair given the z and x 
coordinate of the gaze point on the floor during Forward 
Motion. The scatter plot represents the real data and the red line 
represent the best fit.  
 
The fitting function for the angular velocity in the forward 
direction is shown in Fig. 12 (b). On the y-axis, the 0 value 
corresponds to the maximum angular velocity in the left 
direction, and 1 corresponds to the maximum in the right 
direction. We can observe that the angular velocity increases 
smoothly in the left direction when the user is looking further 
on the left. The same behavior can be seen in the right 
direction. Nevertheless, we can observe that at both 
extremities, the trend is different. This might be due to the 
instability of the joystick. In fact, the participants reported that 
they were unable to reach the extreme right directly and left 
joysticks directions. For this reason, the fitting function for the 
angular velocity is not reliable on the extremities. This will be 
taken into account during the controller implementation. The 
two fitting functions that derived from the user's natural gaze 
behavior are scaled and shifted to produce values in the 
required range of the NI. The two equations are, therefore, 
used in the controller to generate a continuous control field 
similar to those shown in fig. 13. In the backward region, 
constant linear velocity is sent to the wheelchair, mainly for 
safety reasons. 

B. Natural Decoder 
The second interface consists of a Natural Decoder, based on 
the analyzed people's gaze distributions while driving. This 

decoder has the purpose of decoding real-time gaze data into 
wheelchair commands. To build such a decoder, eight different 
driving states Si (i = 1, … 8) have been identified: Straight 
Forward, Straight Backward, Forward Left, Forward Right, 
Backward Left, Backward right, Straight Left and Straight 
Right. Given the x and z coordinate of the gaze on the floor (Xf 
= (Xg, Zg)), the Maximum A Posteriori (MAP) decision rule is 
to apply to select the most likely driving state, according to the 
equation: 
 
𝑆 = arg max

4∈(6,3)
𝑃(𝑆4/𝑋u)   (14) 

 

 
Fig. 13.  Continuous field control 

 
 
In (14), P(Si/Xf ) is the posterior probability that the user was in 
the state Si, given a gaze point of coordinate Xf. The posterior 
probabilities are derived through Bayes' rule: 
 
𝑃(𝑆4/𝑋u) 	= 	

g(Wv/j1)	.g(j1)

g(Wv)
	∝ 𝑃(𝑋u/𝑆4). 𝑃(𝑆4)  (15) 

 
In (15), P(Xf/Si) is the joint probability distribution of the user's 
gaze point on the floor, during the state Si and P(Si) is the 
probability of each state. For each state, the joint probability 
distribution is estimated based on the large data set collected 
during the subject recording. It is approximated as a 2D 
Gaussian, parameterized by a mean vector, n = (n1, n2), and a 
2 x 2 covariance matrix C and with probability density: 
 
𝑃 𝑋 , 𝜇, 𝐶 = 6

8y z
𝑒𝑥𝑝 − 6

8
𝑋 − 𝜇 {(𝐶F6)(𝑋 − 𝜇)  (16) 

 
The parameters of the eight Gaussian distributions are 
computed by Maximum Likelihood Estimation (MLE). The 
probabilities P(Si) are computed based on the data collected 
during the experiments. They correspond to the probability that 
the user was in one of the eight driving conditions while 
navigating with the wheelchair. Finally, this set of parameters 
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are implemented in the controller, based on the MAP decision 
rule of (14), to decode the real-time data of the driver into motor 
intention and generate the motion of the wheelchair 
accordingly. The posterior probability distributions involved in 
this rule, calculated using (15), are approximated as 2D 
Gaussian distributions, which are shown in fig. 14. 

To implement the natural decoder, for each gaze point on the 
floor, eight probabilities are computed using these distributions. 
Note that the range of the probabilities varies from one state to 
another. This is a question of visualization. In fact, the two last 
states present extremely low probabilities compare to the 
others. More precisely, for the case of the forward state 
(P(S1|gaze)) the center of the Gaussian distribution, is  

 
 

 
Fig. 14.  Posterior probability distributions of 8 different motion 
states approximately as Gaussian distributions. S1: Straight 
Forward; S2: Straight Backward; S3: Forward Left; S4: 
Forward Right; S5: Backward Left; S6: Backward Right.  
 
located inside the system workspace at high z values, and small 
x values. Therefore, when the user is looking in the forward 
zone, there is a high probability that the forward state will be 
selected. Similarly, this characteristic can be observed for the 

backward states, where the Gaussian is centered at smaller z 
values. Moreover, the center of the Gaussian for the motion 
states including right and left directions are slightly shifted to 
the right and the left, respectively. This was expected based on 
the results obtained in the analysis of the natural gaze pattern. 
To finally decode the user's intention in real-time, the decoder 
selects the maximum probability over the eight distributions of 
fig. 14, given the user's gaze point in the workspace. However, 
due to the very limited FOV of our system, the distributions are 
overlapping significantly. This means that only the states 
presenting a high range of posterior probabilities (Forward, 
Forward Right and Forward Left) can be selected when MAP 
decision rule is applied. Therefore, a small shift is introduced in 
the Gaussian distributions to reduce the overlap and allow the 
user to choose between a higher range of motion states. By 
associating each point in the workspace to the state which 
corresponds to the maximum probability over the 8 
distributions, a colored map has been generated to visualize the 
effect of the natural decoder (fig. 15). Each shaded region 
corresponds to a specific motion state. We can observe that the 
straight right and straight left states are not present in the map. 
This is explained by the fact that the users rarely sent the 
extreme right and left commands, mainly due to inadequate 
joystick response for these directions. Hence, everywhere in the 
FOV, the posterior probability of these states is significantly 
lower than those of the other states and, therefore, are never 
selected. When focusing on one of these regions the user can 
steer the wheelchair in the corresponding direction. 

 
Fig. 15.  Colored map Natural Decoder. At each point in the 
workspace is associated the most probable state. Each color 
represents a particular driving state. S1: Straight Forward; S2: 
Straight Backward; S3: Forward Left; S4: Forward Right; S5: 
Backward Left; S6: Backward Right. 
 

C. Efficiency of the Wheelchair Controller Interfaces 
 
Once the two above interfaces implemented, we tested their 
efficiency. Three subjects took part in this experiment and were 
naive to wheelchair use. Just one of them was wearing glasses. 
They were asked to complete three tasks by controlling the eye-
based powered wheelchair with four different controller 
interfaces. We used four strategies for eye-based wheelchair 
navigation to compare the efficiency of our advanced user 
interfaces with strategies that have been previously 
implemented. The two controller interfaces for vision-based 
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wheelchair navigation were taken to compare with our Natural 
Decoder Interface and Continuous Control Field Interface. 
They are the following: 
1. The Natural Decoder Interface. 
2. The Continuous Control Field Interface.  
3. The 'Look Where You Want To Go' Interface. (This interface 
was implemented using an NI Data Acquisition (DAQ) and 
developed by Sofia Ktena in [Sofia Ira Ktena 2015]. This 
interface is similar to the Continuous Control Field described 
above. Nevertheless, the gaze data are not expressed in metres, 
and the field of view is not on the floor. The x and y coordinates 
of the gaze point in pixels are translated into equivalent joystick 
inputs and send to the NI DAQ following an equivalent range 
of values.)  
4. The Button Screen-Based User Interface. This interface has 
been implemented for the experiments. It is based on the screen-
based interface presented in [Erik Wastlund 2010]. This 
interface corresponds to the vector field generated based on the 
button screen strategy and introduced in [Sofia Ira Ktena 2015]. 
The four limited regions corresponding to each button represent 
the motion states where the direction of the arrows indicates the 
wheelchair direction and the arrows length, the velocity of the 
wheelchair during motion. Outside these zones, there is no 
motion generated and is called the Idle state. For each zone the 
velocity is constant, and the values sent for respectively 
Left/Right and Forward/Backward commands are the 
following:(a) Forward: (128,190)(b) Forward Right: (190,190) 
(c) Forward Left: (80,190)(d) Backward: (128,80) 
The three tasks (see Fig. 16) established during the experiments 
were: 
1. Navigation along a free hallway 
2. Room with obstacles: Slalom between 3 chairs and reach a 
table. Go back and slalom again between the 3 chairs. 
3. Navigation along a free hallway to go back to the starting 
point 

The tasks were completed without any breaks to evaluate the 
efficiency of the controller for an entire exercise. Fig. 16(a,b) 
represents the sketch of the tasks and a picture taken during an 
experiment. For each task, different indicators were evaluated 
to allow the comparison of performance between the four 
interfaces. 
1. The time of execution 
2. The number of times that the user stops the wheelchair. This 
indicates the difficulty of finding the driving zones due to 
system limitation. 
3. The number of times that the user uses the joystick instead of 
the gaze driven controller. This illustrates the difficulty of the 
certain task and the desire of using a more common interface 
instead of the gaze driven strategy. 
4. The number of times the user pushes on the emergency 
button. This implies that the user encounters a situation 
requiring immediate stoppage of the wheelchair. 
 

 

 
Fig. 16.  Experimental conditions a) Sketch of the circuit 
established for the experiments to test the efficiency of the 
controller interfaces. The blue arrows correspond to the circuit 
for the first task, the red and orange arrows for the second and 
the purple for the third task. b) Photo of a subject performing 
the tasks during an experiment.  
 

The efficiency of the above controller interfaces has been 
evaluated using specific indicators for each task completed 
during the experiments. Table 1 summarizes means of the 
results acquired for each controller interfaces and each task.  
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Fig. 17.  Efficiency Controller Interface. Button = Button 
Screen-Based [7]; Look = ‘Look Where You Want To Go’ 
[28]; Field = Continuous Control Field; Decoder = Natural 
Decoder. Average and standard deviation over all the subjects 
for each interface a) of the time of execution over the entire 
experiment b) of the number of times the wheelchair stops 
over the entire experiment.  
 

The fig. 17(a) represent the time of execution of the 
complete experiment averaged over all the subjects and fig. 
17(b) is for the number of times the users stopped the 
wheelchair. 
 
TABLE 1. Results (mean) of the efficiency evaluation 

Controller 
Interface 

Task 
number 

Execution 
time 
[seconds] 

Number of 
stops 

Number of 
emergency 
stop	
button 
pressed 

Number of	
joystick 
use 

Natural  Task 1 103.02 3.33 0 0.33 
Decoder Task 2 229.02 8.67 0 0.67 
 Task 3 67.98 2.67 0 0 
      
Continuous 	 Task 1	 75	 3.67	 0	 0	
Vector Task 2 297.18 9 1.33 0.67 
Field Task 3 69.6 2.33 0 0 
      
‘Look 	 Task 1	 121.8	 5.67	 0	 0.33	
Where Task 2 255.18 8.33 0.67 0.67 
You Want Task 3 79.98 4.33 0 0.33 
To Go’	 	 	 	 	 	
	 	 	 	 	 	
Button  Task 1 158.58 6 0 0 
Screen Task 2 315.78 11.67 0.33 1 
Based Task 3 90.42 4 0 0 

 
We observe that the execution time for the entire completed 
experiment is on average shortest whilst navigating the eye-
based wheelchair with the natural decoder controller interface. 
This demonstrates that this strategy generates the most intuitive 
interface to control the powered wheelchair with an innovative 
mechanism. The continuous vector field developed for this 
project also shows better performance in term of execution time 
compared to the ‘Look Where You Want To Go’ and the Button 
Screen Based interface. More precisely, subjects seemed to 
show more facility during the second task with the natural 
decoder. This task had a higher level of difficulty due to the 
presence of several obstacles. This proves that the controller 
interface shows more potential when the gaze driven controller 
is targeted towards the floor level, and when this interface is 
decoding natural gaze behavior. 

It can be observed in Fig. 17 (b) that the number of times that 
subjects stopped the wheelchair was on average lower for the 
two developed interfaces, compared to the ’Look Where You 
Want To Go’ and the screen-based button interface. This means 
that even with a limited working space due to the entire system 
restricted field of view, the subjects still managed to find the 
driving zone easily. This driving zone is characterized by a 
working space on the floor level which indicates that this 
property is significantly present in natural gaze behavior during 
vision-based wheelchair navigation. Furthermore, during the 

experiments, the user was able to look around and talk to people 
surrounding him without generating wheelchair motion. This is 
due to this natural behavior directed towards the defined driving 
zone, which mainly illustrates drastic reduction of the Midas 
Touch problem. 

Furthermore, it can be observed in Table 1 that while 
performing the tasks with the natural decoder, none of the 
subjects needed to use the emergency button to produce 
immediate stoppage of the wheelchair. They had a significant 
amount of control over the eye-based wheelchair while using 
the natural decoder interface. As concluded in [Al Haddad et 
al., 2011], providing the user with more control over the driving 
wheelchair leads to an efficient system and increases user 
satisfaction. 

Finally, due to the low number of stops and the short 
execution time, the natural decoder shows excellent 
performance even when the user wanted to go backward. They 
were able to distinguish the forward from the backward in a 
natural way. The natural decoder has improved the controller 
efficiency for this particular case and increased the user 
interface intuitiveness. 

Nevertheless, Table 1 also shows that subjects seemed to 
perform faster the task in the free hallway with the continuous 
vector field. This can be explained by observing the fig. 15 In 
the set of state conditional probabilities in the natural decoder, 
the motion state probabilities corresponding to the 
straightforward command are delimited by a small region 
reducing the chance of going straight forward and increasing 
the probability of deviating to the right and left side. In 
conclusion, in a free hallway, where the main motion state is 
straightforward, controlling the eye-based wheelchair with the 
continuous vector field is easier than with the natural decoder. 
In summary, the natural decoder developed for this project 
provides a user-friendly and intuitive interface for the eye-
based powered wheelchair navigation using natural eye 
movements. This interface increases the user’s confidence by 
giving substantial control over the system. Finally, it allows the 
user to drive in a dynamical environment. The natural behavior 
has been shown high efficiency during the experiments. The 
floor/non-floor attributes to the motion/no motion states reduce 
the Midas Touch problem drastically and allow the user to look 
around without leading the wheelchair into motion. 

 

V. DISCUSSION 
A 3D gaze-tracking system has been designed, with the primary 
goal of analyzing people natural eye movements in the context 
of wheelchair navigation. The system uses two low-cost 
devices: a remote eye-tracker, and an RGB-D camera, to 
estimate the gaze point of the user in a 3D environment. 

The depth sensing technology of the RGB-D camera is used 
to translate the two-dimensional information provided by the 
eye-tracker into three-dimensional gaze data, and to provide 
information to distinguish between gaze points on the floor or 
not on the floor. Experiments have been conducted to test the 
accuracy of the 3D gaze estimation. The system performs with 
a mean Euclidean error of 16.7 ± 3.3 cm (mean  ± standard 
deviation). This corresponds with the level of performance in 
comparison with other low-cost devices (less than $100 each) 
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[Abbott and Faisal 2011], Moreover, in the context of analysis 
of gaze patterns during wheelchair navigation, this level of 
accuracy can and should be considered completely acceptable. 

The main finding resulting from analysis of people's gaze 
patterns was that the wheelchair’s drivers tended to direct their 
fixations toward the floor more often when they navigated in 
regions cluttered with obstacles, than when they steered in a 
free environment. Intuitively, when the complexity of the 
situation increases, the individuals need to look at the floor 
more often. This might be explained by the fact that, in a clear 
of obstacles environment, people can detect the absence of 
obstructions with peripheral vision and, therefore, do not 
require to consistently locate the gaze downward [Mark A 
Hollands 2002]. On the other hand, while navigating in the 
rooms with obstacles, people need to look at the floor more 
often, to identify the path to follow and reach the targeted 
location, avoiding collisions with the objects. 

We found that the drivers had a preference to direct their 
fixations on the floor while moving with the wheelchair. This 
finding is consistent with previous results by Einhäuser W, 
2007. Authors showed that subjects made more likely down-
vertical oriented eye-movements when they were walking in an 
obstacle-filled or less predictable environments, e.g. at the 
furnished apartment or in a forest road full of puddles 
[Einhäuser W, 2007]. In our study, subjects tended to focus 
their visual attention on the path they wanted to follow, in 
accordance with what has been found in previous work [Paul L 
Kaufman et al. 2011]. This finding had an essential impact on 
the strategy for the eye-based controller interfaces proposed in 
this project. It helped us to make a distinction between driving 
and the idle state, drastically reducing the effect of the Midas 
Touch problem, naturally and intuitively. 

The second main finding of this analysis was that the users 
tended to look further away on the floor from the wheelchair 
while moving forward and closer to the wheelchair while 
moving backward. Furthermore, in the forward motion, there 
was a clear preference for the participants to look right or left, 
respectively, while moving in the right and left direction, 
respectively. Therefore, it is possible to state that the 
participants, while driving a wheelchair, tended to look in the 
direction where they are moving. This is consistent with 
previous studies, which showed the existence of such a gaze 
pattern in other various forms of locomotion, from walking 
[Takahiro Higuchi 2013] to driving a car [Takahiro Higuchi 
2014]. However, a general pattern could not be identified for 
the backward right and backward, left motion. This was because 
the participants showed different behaviors: some users tend to 
look on the right while moving in the backward right direction, 
others showed the opposite gaze pattern. 

Based on the analysis of people's gaze patterns, two different 
interfaces were developed. The “Continuous control field 
interface," is based on natural eye movements, in that the 
equations used to predict the linear and angular velocity of the 
wheelchair have been estimated from the data collected during 
the recordings. The “Natural Decoder," on the other hand, is 
directly built on the drivers' gaze distributions while moving in 
specific directions. These distributions are used to decode real-
time gaze data into the motor intention of the driver. 

While testing on different subjects, both the interfaces proved 
to be intuitive and user-friendly. The “Natural Decoder" 

showed better performance, especially while navigating in 
more complex environments. Using this interface, it was easy 
to move around obstacles, with a good control of the chair. 
Control of backwards motion, which represented one of the 
main drawbacks of "Look Where You Want To Go" interface 
proposed by Ktena et al. [Sofia Ira Ketna 2015], was intuitive 
and easy to select using the "Natural Decoder." On the other 
hand, the "Continuous Control Field Interface" was preferred 
when the users had to follow a straight trajectory. Using the 
"Natural Decoder," the drivers were often not able to select the 
straight ahead motion and often deviated to the right and left 
directions. This is explained by the fact that the floor region, 
where the user has to look to select the forward command, is 
quite limited in size?, as can be seen in fig.15. During free 
navigation, the participants tended to move right forward and 
left forward and rarely drive in a straight direction. Both the 
interfaces generate the motion of the wheelchair only when the 
gaze point of the user is on the floor. This strategy, which is 
based on the natural tendency of people to look at the floor 
while moving, was used to make a distinction between motion 
relevant and motion irrelevant eye movements. Through this, 
we proposed a solution, for a gaze-driven wheelchair, which 
can limit the effect of the Midas Touch problem, avoiding other 
gestures, such as blinking and winking, from the users. 

As previously mentioned, the designed 3D eye-tracking 
system reaches a satisfying level of performance, especially 
when considering the low cost of the whole hardware setup. 
However, it does show several limitations, with disadvantages 
for both the analysis of natural gaze behavior and the 
implementation of the controller interface. First of all, one of 
the primary constraints of our study has been the size of the 
FOV of the system. This is due to the limited FOVs of both eye 
tracker and depth camera. As a consequence of this, the gaze of 
the participants could be tracked only in a limited space area. 
Furthermore, the reliability of the data, used to investigate 
people's gaze patterns, is further limited by other two factors. 
Firstly, the 3D gaze estimation error is considerably dependent 
on the depth. This makes gaze data, also estimated from the 
wheelchair, less reliable. Secondly, with the proposed system, 
the eye tracker calibration cannot be verified quantitatively. 
Therefore, during the recordings, a potential loss of the 
calibration could only be checked qualitatively, reducing the 
reliability of the data and increasing the experiment duration. 
Ideally, the system should be able to automatically verify the 
accuracy of the calibration, to make sure that the gaze 
estimation error is always under an acceptable limit. This is 
particularly relevant in our application, where the system is 
mounted on a wheelchair and used for long lasting experiments, 
which results in a frequent loss of calibration. 
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