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ABSTRACT
Contact tracing requires reliable identification of closely related bacterial isolates. When we noticed

the reporting of artefactual variation between M. tuberculosis isolates during routine next

generation sequencing of Mycobacterium spp, we investigated its basis in 2,018 consecutive M.

tuberculosis isolates. In the routine process used, clinical samples were decontaminated and

inoculated into broth cultures; from positive broth cultures DNA was extracted, sequenced, reads

mapped, and consensus sequences determined. We investigated the process of consensus

sequence determination, which selects the most common nucleotide at each position. Having

determined the high-quality read depth and depth of minor variants across 8,006 M. tuberculosis

genomic regions, we quantified the relationship between the minor variant depth and the amount of

non-Mycobacterial bacterial DNA, which originates from commensal microbes killed during sample

decontamination. In the presence of non-Mycobacterial bacterial DNA, we found significant

increases in minor variant frequencies of more than 1.5 fold in 242 regions covering 5.1% of the M.

tuberculosis genome. Included within these were four high variation regions strongly influenced by

the amount of non-Mycobacterial bacterial DNA. Excluding these four regions from pairwise

distance comparisons reduced biologically implausible variation from 5.2% to 0% in an independent

validation set derived from 226 individuals. Thus, we have demonstrated an approach identifying

critical genomic regions contributing to clinically relevant artefactual variation in bacterial similarity

searches. The approach described monitors the outputs of the complex multi-step laboratory and

bioinformatics process, allows periodic process adjustments, and will have application to quality

control of routine bacterial genomics.
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INTRODUCTION
Identifying closely related bacterial isolates is required for clinical and epidemiological purposes [1-

3]. Most published approaches using short-read next generation sequencing (NGS) rely on mapping

to a high-quality reference sequence followed by consensus base calling [1-8]. A known problem

with this approach concerns the existence in many bacterial genomes of ‘hard-to-map’ regions

which are either repeated within the genome, or which contain regions of low sequence complexity.

High-confidence mapping of short reads to such regions is difficult or impossible, and so determining

the consensus sequence of these regions is difficult. One approach to managing this problem is to

identify these regions bioinformatically prior to mapping by analysis of sequence complexity [9], or

from repetitiveness within the genome [10]. Base calls within these pre-specified regions are then

ignored (‘masking’) when assessing relatedness of isolate sequences. A second complementary

approach filters base calls based on read mapping confidence as reported by various mappers [11-

14] in the form of MAQ scores.

Mycobacterium tuberculosis is one of the most important pathogens of humans, with about 3 million

cases of TB confirmed by culture globally each year [15]. Recently, laboratory protocols have been

described and deployed by Public Health England [4] in which the species and drug resistance of

Mycobacteria, including M. tuberculosis, are identified by sequencing microbial DNA. Laboratory

processing of clinical samples suspected of containing Mycobacteria involves decontamination using

chemicals which kill non-Mycobacterial species before the samples are inoculated into broth culture

[16]. Mycobacterial Growth Indicator Tubes (MGIT) and associated tube monitoring equipment are

a commercially available implementation of such a broth culture system.

In the process adopted by Public Health England, sequencing and bioinformatics analysis of DNA

extracted from positive MGIT tubes allows determination of Mycobacterial species and drug

resistance [17]. This laboratory and bioinformatic process also allows the genetic distance between

M. tuberculosis isolates to be estimated, using sequences derived by consensus base calling from

mapped data. The organism co-evolved with human populations as they migrated, generating

multiple lineages which differ from the ancestral sequence by hundreds or thousands of single

nucleotide polymorphisms [18], as well as small indels, gene deletions and inversions [19].

However, the evolutionary clock rate of the organism is slow at about 0.5 single nucleotide variants

(SNV)/genome/annum [3, 5, 7] and small numbers of single nucleotide variants (SNV) are of clinical

significance: studies based on retrospective collections of M. tuberculosis, grown on solid media

prior to sequencing, have proposed thresholds of 5 SNVs as compatible with recent transmission [3,

5, 7]. The bioinformatic processes used for relatedness estimation in the deployed pipeline were

also optimised using samples re-grown from frozen stocks on solid media (Lowenstein-Jensen

slopes) [16].

Quality of complex processes deployed in medical laboratories is assured by adherence to quality

standards, such as those laid out in ISO15189 [20]. These standards require that the processes

followed, and the environments in which they operate, comply with to patterns of work known to

enhance the consistency and interpretability of the laboratory outputs. For example, in a drug

testing laboratory a set of samples of known composition may be run through the analysers to

confirm that particular commonly found substances which might potentially interfere with the assay

(such as caffeine, paracetamol, and so on) have no impact on detection of the drug of interest. M.

tuberculosis infection is commonly diagnosed from sputum samples, which contains a wide variety

of organisms other than Mycobacteria [21]. DNA from such organisms may contain sequences

homologous with those present in Mycobacteria, for example in highly conserved core bacterial
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genes. As such, this non-Mycobacterial DNA has the potential to interfere with assays based on

mapping of Mycobacterial reference genome mapping.

Here, we investigate the concept of interfering substances in the context of the detection of closely

related M. tuberculosis isolates. To do so, we describe a process which we call adaptive masking.

This defines ‘hard-to-map’ regions by adapting the selection of such regions to the complex

laboratory, sequencing and consensus base calling process, which operates independently of both

ab initio sequence examination and filtering based on reported mapping quality. Our work was

motivated in part by observations from analysis of prospective sequencing of M. tuberculosis

sequences in England using a previously described bioinformatics pipeline [17]. It appeared that

high SNV distances were being reported between isolates with a strong epidemiological likelihood of

having recently transmitted to each (e.g. isolates with unusual resistance profiles from individuals

who were co-habiting): that is, false positive variation between isolates was being reported. We

assess the impact of adaptive masking on addressing this problem, and discuss quality control of

relatedness monitoring in the context of continuous process monitoring in accredited clinical

laboratories.
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METHODS

Isolation of DNA from Mycobacteria and Sequencing
Clinical specimens were decontaminated and inoculated into Mycobacterial Growth Indicator Tubes

(MGIT) tubes [16]. Positive samples were extracted [4]. After DNA extraction, Illumina sequencing

libraries were prepared using either 11 (early in the study) or 15 (later in the study) Mycobacterial

DNA extracts, as previously described [4]. All samples sent from patients for processing for

Mycobacteria between 1/05/2016 and 30/05/2017 to a single reference laboratory were studied;

the catchment of this laboratory is approximately 15 million people, or about one third of England.

Bioinformatic processing
Reads obtained from the MiSeq instrument were first examined for the presence of Mycobacterium

tuberculosis using the Mykrobe tool which detects species-specific k-mers [22]. Additional read

classification was performed with Kraken [23], which assigns reads to the phylogenic tree of life. The

database used was that described [24], with k-mer reduction to 25 gigabases. The total number of

reads from bacterial genera other than Mycobacterium were determined [23], and human reads

counted and then discarded.

Reads were mapped to the H37Rv v2 genome (Genbank NC_000962.2) using Stampy [14], as

described [4]. Samtools [25] was used to assess sequencing and mapping quality: high quality bases

were considered to be those passing the –q30 and–Q30 30 filters (read quality and mapping quality

all >30). Consensus sequence was called, requiring a minimum-read depth of 5, including at least

one read on each strand. Where an alternative base represented more than 10% of read depth, the

base was recorded as uncertain, as described [26].

The variant call format (VCF) file was parsed with custom python scripts, and the number of high

quality bases (defined using the filters above) at each position determined. These frequencies were

extracted, stored and indexed using SQLite using a python API constructed to allow extraction of

mixture frequencies in arbitrary positions (https://github.com/davidhwyllie/BUGMIX). For selected

regions, the proportion of mapped reads assigned to the M. tuberculosis taxon (NCBI taxid: 77643)

by Kraken [23] was determined.

Modelling minor variant frequencies
We determined the most common (major) variant at each position. All other variants are considered

minor variants. We define

n - the total sequencing depth at one base;
m - the depth of most common variant at one base;
m’ - the depth of all variants other than most common, n-m (Suppl. Fig. S1).

We divided up the H37Rv genome based on the annotation in NC_000962.3, identifying 8007

regions R, comprising open reading frames and regions between open reading frames

(Supplementary Data S1).

For each of these regions j=1..8007, if the region has length lj, the total number of minor variant

bases Vj across the i=1..lj bases in the region is given by equation (1) and the total read depth Dj

across the gene by equation (2).

� � = 			 � � �
��

� � �
(1)

� � = ∑ � �
�
� � � (2)
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In order to describe the relationship between non-Mycobacterial DNA quantifications and minor
allele frequency, we stratified the number of reads from each sample identified as being from
bacterial genera other than Mycobacterium (b) into four approximately equally sized strata:
b < 1%,
1% ≤ b < 5%,
5% ≤ b < 20%,
b ≥ 20%.   

We constructed separate Poisson regression models relating minor base counts (V) for each of the
8,007 regions (with log link and offset log(D)) to the non-Mycobacterial bacterial read categories b
(reference category < 1%), excluding any samples with zero high-quality depth in that region. We

applied Bonferroni correction to model outputs to control for multiple testing (= 0.01/8007 =
1.2x10-6).

Comparing impact of masking on pairwise comparisons
Based on analysis of model output (see Results), regions with higher minor variant counts than

expected were identified. These regions were excluded from pairwise comparisons performed using

the findNeighbour2 tool [27].

Ethical framework
Public health action taken as a result of notification and surveillance is one of the Public Health

England's key roles as stated in the Health and Social Care Act 2012 and subsequent Government

directives which provide the mandate and legislative basis to undertake necessary follow-up. Part of

this follow-up is identification of epidemiological and molecular links between cases. This work is

part of service development carried out under this framework, and as such explicit ethical approval

is unnecessary.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 23, 2018. ; https://doi.org/10.1101/252460doi: bioRxiv preprint 

https://doi.org/10.1101/252460
http://creativecommons.org/licenses/by/4.0/


RESULTS

Samples studied
The PHE National Mycobacteriology Reference Laboratory Midlands implemented a laboratory

process in which specimens received are decontaminated, and inoculated in MGIT bottles, DNA

extracts from positive MGIT bottles made, and their contents determined using Illumina short read

sequencing [17]. Using this process, in the 13 months from 1 May 2016 to 30 May 2017, M.

tuberculosis was identified in 2,751 samples, sent from 2,252 patients (Fig. 1). Using these samples

we derived and validated using an independent validation set (Fig.1) a strategy for investigating and

controlling false positive variation between samples, which we here term adaptive masking (Fig. 2).

The initial stages of adaptive masking involve estimating minor variant frequencies across the

genome from mapped data, and determining whether these are related to the amount of non-

Mycobacterial DNA present.

We identified 718 samples from 234 individuals from whom more than one positive sample had

been obtained with 7 days of another. Of these, in six individuals samples were either reported as

being of different lineages, as defined [28], differed in multiple drug resistances, or differed by >400

high quality SNVs. These observations we considered likely due to laboratory or sampling mix-ups,

and samples from these patients were excluded. The other 700 samples were used as an

independent validation set. From remaining samples, we identified the first sample from each of

2,018 individuals which were used to develop the adaptive masking strategy (Fig. 1).

Quantifying extraneous DNA and minor variant frequencies post mapping
We determined the proportion of non-Mycobacterial bacterial DNA in each sample using Kraken

[23], mapped all reads to the H37Rv reference genome irrespective of Kraken results, and filtered

the mapped data using stringent quality filters such that the expected error rate is expected to be

less than 10-3 (see Methods). We defined 8,007 genomic regions in the reference genome; these

regions comprise all canonical open reading frames and the genomic regions between them

(Supplementary Data S1). We were unable to assess one 15nt region between two PPE family

members (positions: 3380439..3380453) as no high quality data mapped there in any sample.

In the other 8,006 regions, we observed that both minor variant frequencies and the relationship

between minor variant frequency and the number of reads of non-Mycobacterial origin differed

markedly by gene. For example, the B55 and esxW genes had respectively very low and very high

minor variant frequencies, independent of non-Mycobacterial DNA quantity. A small group of

genes, of which the ribosomal component rrs is an example, showed low minor variant frequencies,

except when non-Mycobacterial DNA was present (Figure 3A, B).

Estimating the impact of extraneous bacterial DNA
We modelled the relationship between minor variant counts and the number of non-Mycobacterial

reads, divided into four approximately equal sized strata (Figure 3B), using Poisson models (Suppl.

Data S2). Separate models were constructed for each region. Estimated minor variant frequencies

in samples with <1% non-Mycobacterial bacterial reads had a median of 5x10-4 (Fig. 4A) across the

8006 genomic regions, which is compatible with the expected mapping error rate of <10-3, given the

filters applied.

The distribution of minor variant frequencies when less than 1% non-Mycobacterial bacterial DNA
was present approximated a log-normal distribution with mean log(5x10-4) and standard deviation
equal to the median absolute deviation (Fig. 4A, observed: black line; fitted, red line), but with a tail
to the right. 208 regions (2.6% of the total 8006 regions), including esxW as well as other esx and
PPE family members, had estimated minor variant frequencies > 2.1 x 10-3 when <1% non-

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 23, 2018. ; https://doi.org/10.1101/252460doi: bioRxiv preprint 

https://doi.org/10.1101/252460
http://creativecommons.org/licenses/by/4.0/


Mycobacterial bacterial reads were present (Fig. 4A, Suppl. Data S2). This cutoff represents four
median absolute deviations above the median; if the data were log-normally distributed, 24 samples
would be expected with minor variant frequencies greater than this, vs. the 208 observed.

Overall, estimated minor variant counts rose as non-Mycobacterial DNA concentration rose, but for

most regions the increase was small (Fig 4B): the median fold change in minor variant counts in the

presence of >20% non-Mycobacterial DNA vs. <1% non-Mycobacterial DNA was 1.097 (i.e. a 9.7%

increase, interquartile range 5.4% to 14.0%). 242 regions (3.0%) had statistically significant increases

(Fig. 4B, 4C) of more than 50%. Most of these regions had the highest minor variant counts when

>20% non-Mycobacterial DNA was present, although a small number had similar minor variant

counts in the 5-20% range and the >20% range (Suppl. Fig. S2B).

Mutually exclusive regions with increased minor variant frequency
Comparing regions with increased minor variant rates with low (<1%) non-Mycobacterial bacterial

DNA with those with increased minor variant rates with high (>20%) non-Mycobacterial bacterial

DNA shows these regions to be mutually exclusive (Fig. 5). The former include PPE and esx family

members, while the latter include ribosomal components (rrl, rrs, rplB, and rps genes) as well as

other highly conserved bacterial genes (tRNA genes, fusA1, infA, dnaK, and others) (Fig. 5, Suppl.

Data S2). Examining Kraken read assignments in these highly conserved genes indicated that many

reads mapping to these highly conserved regions cannot be unambiguously assigned to the M.

tuberculosis taxon (Supp. Fig. 3), compatible with their high conservation across the tree of life.

Adaptive masking reduces the reporting of biologically implausible inter-individual variation
A published strategy for excluding regions of high mapping variation within the M. tuberculosis

genome strategy masks (i.e. excludes from relatedness computations) 277,709 nt (6.3%) of the

genome [4]. Excluding regions with high estimated minor variant counts with <1% non-

Mycobacterial DNA (region A in Fig. 5B) adds an additional 1.1%. Excluding regions with increased

estimated minor variant counts only in the presence of >20% non-Mycobacterial bacterial DNA

(regions B-D) masks between 0.2% and 5.1% extra (Fig 5B,C). The masking of regions identified by

‘adapting’ to variation generated during the process forms the final part of the adaptive masking

process.

In a validation set comprising isolates taken with 7 days of each other from 234 individuals, using the

published strategy, 18/346 (5.2%) of pairs studied had ≥ 5 SNV variation, of which 10/346 were ≥ 

20SNV. On exclusion of region D, which comprises the four genes most influenced by non-

Mycobacterial DNA, all encoding ribosome associated products (the genes rrl and rrs, together with

the tRNA metU, and the highly conserved bacterial gene tuf), 0/346 pairs differed by >= 5 SNP (p <

10-4 compared with the published method, Wilcoxon test on pairs). Additional exclusion of genes in

regions B and C, mapping to which is less influenced by non-Mycobacterial DNA, had a limited

impact (Figure 6).
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DISCUSSION
Here, we describe an approach which we term adaptive masking. This involves monitoring the

minor variant frequency across a bacterial genome to which sequencing reads have been mapped;

as such, it measures an end product of next generation sequencing processes, taking into account

the natural sequence variation in the samples studied, as well as the impact of DNA extraction and

library construction technologies, and the performance of the mapping and filtering software used.

Using this approach, we demonstrated a significant positive association between amounts of non-

Mycobacterial bacterial DNA and minor variant frequencies in a subset of the mapped genome:

significant increases of more than 1.5 fold were observed in 242/8006 regions examined, which

together cover about 5% of the M. tuberculosis genome. Among these 242 regions we identified

four ‘high variation’ regions in which minor variant frequencies are very strongly influenced by non-

Mycobacterial bacterial DNA quantities, with fold-increases in minor variant frequencies of >5 in the

presence of >20% non-Mycobacterial bacterial DNA. Importantly, if non-Mycobacterial bacterial

DNA concentrations are low (<1% of bacterial DNA present), as occurred in retrospective studies

when Mycobacteria were subcultured on Lowenstein-Jensen slopes prior to sequencing, increased

variation is not observed in these regions.

The exclusion of the four ‘high variation’ regions from base calling by a clinically deployed M.

tuberculosis pipeline markedly reduced reported variation between samples derived from the same

patient in a short time period. In particular, prior to exclusion of the four high variation regions, in a

test set derived from 234 individuals, 5.2% of intra-patient pairs examined differed by 5 SNV or

more, with the majority of SNV differences observed in these pairs being >20. Multiple studies

indicate this is biologically implausible [3, 5, 7], and after exclusion of the four ‘high variation’

regions comprising only 0.2% of the genome, no pairs had variation of 5 SNV or more. This suggests

that using standard ‘masking’ and DNA extraction from liquid media false positive variation is

reported in a small number of sites in a non-Mycobacterial bacterial DNA dependent manner. Put

alternatively, non-Mycobacterial bacterial DNA acts as an interfering substance [20] for relatedness

measurements.

A potential limitation of this work is that this approach studies pre-specified regions of the genome,

specifically coding regions and intergenic regions. This approach was chosen to avoid the challenges

of analysing the 4.4 x 106 bases of the M. tuberculosis genome individually, with concomitant loss of

statistical power. Therefore, as described the method may neither detect, nor allow selective

masking of, small regions with high minor variant frequencies within genes. A second limitation is

that we did not explore the use of metagenomics classifiers, such as Kraken, to identify non-

Mycobacterial ‘interfering’ DNA and eliminate it prior to mapping to the M. tuberculosis genome.

We chose not to do this because we observed that for the highly conserved rrs genes, metagenomic

classifiers cannot confidently assign reads to a genus level, likely because there is insufficient

sequence variation within rrs to allow this. Despite these limitations, the strategy chosen appears to

be of use clinically, based on the reduction in likely false positive variation between serial samples

from individuals.

The clinical of use of next generation sequencing is rapidly increasing [1, 4, 22]. Clinically deployed

bioinformatic pathways reporting microbial identity, resistotyping and relatedness information are

complex, multistep processes whose outputs are dependent on specimen decolonisation, selective

culture, DNA extraction, library construction, DNA sequencing, and bioinformatic analysis [4].

Reagent batches, software versions, and equipment involved in the process are all subject to change

over time. Generalizable to other organisms and mapping pipelines, the adaptive masking approach
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we described here will have application in monitoring the performance of such processes

quantitatively and preventing the calling of false positive variation in the context of clinically

deployed genomics. Additionally, it offers a route to monitoring the performance of critical steps in

the laboratory and bioinformatics processes determining microbial relatedness in the context of a

closed loop, auditable process as required by standard laboratory accreditation systems, such as

ISO15189.
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FIGURES AND FIGURE LEGENDS

Figure 1 Samples used, derivation and validation sets

Legend: A flow chart describing the samples used, and the selection of derivation and validation sets.
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Figure 2 Bioinformatic Processes

Legend: A flow diagram illustrating the standard bioinformatics pipeline used, as well as the adaptive

masking process used.
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Figure 3 Minor variant frequency and non-Mycobacterial bacterial DNA quantities

Legend: The observed minor variant frequency for three regions of the M. tuberculosis genome

(genes B55, eswX, and rrs) vs. the proportion of reads of non-Mycobacterial bacterial origin (as

determined by Kraken) is shown for samples in the derivation set (n=2018). Panel (A) shows a dot

plot, whereas in panel (B) the proportion of reads of non-Mycobacterial bacterial origin is stratified

into strata with 1%, 5% and 20% boundaries. Numbers above each stratum refer to the number of

samples with non-zero read depth in that region.
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Figure 4 Modelling minor variant frequencies
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Figure 4 Legend Modelling minor variant frequencies
Legend: For 8,006 genomic regions of the H37Rv reference genome, Poisson models were used to

estimate the mean minor variant frequency. The estimated minor variant frequency when less than

1% non-Mycobacterial bacterial DNA is present (n=208, 2.6% regions) is shown in (A). The red line is

a log normal distribution with = log(minor variant frequency with <1% non-Mycobacterial DNA)

and  = median absolute deviation(log(minor variant frequency with <1% non-Mycobacterial DNA)).

In (B) the rate ratio estimates (i.e. the fold change associated with increases in non-Mycobacterial

bacterial DNA quantifications) for each gene are shown. (C) shows the significance of a test

comparing the log(rate ratio estimates) with zero, in the form of a Volcano plot. The dotted lines in

(B) and (C) correspond to a 50% increase in rate ratio.
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Figure 5 A distinct subset of genes are impacted by quantity of non-Mycobacterial DNA

Legend: (A) Fold change in minor variant frequency with > 20% non-Mycobacterial bacterial DNA

present vs. <1% non-Mycobacterial bacterial DNA. Quadrant boundary markers correspond to

(horizontal line) a 50% increase over <1% non-Mycobacterial bacterial DNA and (vertical line) a

minor variant frequency of 2.1x10-3. (B) Genes with elevated minor variant frequencies when non-

Mycobacterial bacterial DNA is low (<1%) or high (>20%) fall into mutually exclusive sets. (C) the

number of bases represented by the deployed masking, vs. the deployed masking plus the genes in

regions A, A+D, A+D+C, and A+D+C+B.
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Figure 6 Impact of masking strategies on reported distances between closely related samples

Legend: SNV distances between pairs of M. tuberculosis genomes isolates from samples taken from

the same individual within 7 days of each other were compared using different masking strategies.

The top panel describes the published, deployed method of masking. In the panels below, genes in

the regions shown in Figure 5B are additionally masked (i.e. ignored from pairwise comparisons).
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Figure S1 Illustration of minor variant frequencies

Legend: (A) Short read sequencing data, either from M. tuberculosis or from other bacteria (red) is

mapped to a reference gene. Minor variants (B) can result either from sequencing error

(underlined), or due to alignment of non-Mycobacterium tuberculosis DNA to the reference.

Variation of both types contribute to the minor variant frequency (C).
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Figure S2 Minor variant frequencies with increasing non-Mycobacterial bacterial DNA

Legend: Estimated rate ratios derived from Poisson modelling of minor variant frequencies relative

to frequencies when <1% non-Mycobacterial bacterial DNA was present. (A) compares rate ratios

with 1-5% vs. >20% non-Mycobacterial bacterial DNA; (B) compares 5-20% vs. >20% non-

Mycobacterial bacterial DNA. In (B), regions with similar rate ratios when 5-20% and >20% non-

Mycobacterial bacterial DNA are annotated.
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Figure S3 Identification of reads in selected regions by Kraken

Legend: The proportion of reads mapped to (A) the B55 gene (B) the rrs genes which are identified

as belonging to the M. tuberculosis complex by Kraken are shown, as is their relationship with the

estimate of the amount of non-Mycobacterial bacterial DNA in the all reads.
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