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Abstract
Inspite of the global reduction of 21% in malaria incidence between 2010 and 2015, the
disease still threatens many lives of children and pregnant mothers in African countries. A
correct assessment and evaluation of the impact of malaria control strategies still remains
quintessential in order to eliminate the disease and its burden. Malaria follow-up studies
typically involve routine visits at pre-scheduled time points and/or clinical visits when-
ever individuals experience malaria-like symptoms. In the latter case, infection triggers
outcome assessment, thereby leading to outcome-dependent sampling (ODS). Ordinary
methods used to analyse such longitudinal data ignore ODS and potentially lead to bi-
ased estimates of malaria-specific transmission parameters, hence, inducing an incorrect
assessment and evaluation of malaria control strategies. In this paper, we propose novel
methodology to handle ODS using a joint model for the longitudinal binary outcome mea-
sured at routine visits and the clinical event times. The methodology is applied to malaria
parasitaemia data from a cohort of n = 988 Ugandan children aged 0.5–10 years from 3
regions (Walukuba – 300 children, Kihihi – 355 children and Nagongera – 333 children)
with varying transmission intensities (entomological inoculation rate equal to 2.8, 32 and
310 infectious bites per unit year, respectively) collected between 2011–2014. The results
indicate that malaria parasite prevalence and force of infection (FOI) increase with age
in the region of high malaria intensities with FOI highest in age group 5–10 years. For
the region of medium intensity, the prevalence slightly increases with age and the FOI for
the routine process is highest in age group 5–10 years yet for the clinically observed infec-
tions, the FOI gradually decreases with increasing age. For the region with low intensity,
both the prevalence and FOI peak at the age of one year after which the former remains
constant with age yet the latter suddenly decreases with age for the clinically observed
infections. In all study sites, both the prevalence and FOI are highest among previously
asymptomatic children and lowest among their symptomatic counterparts. Using a sim-
ulation study inspired by the malaria data at hand, the proposed methodology shows to
have the smallest bias, especially when consecutive positive malaria parasitaemia presence
results within a time period of 35 days were considered to be due to the same infection.
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1 Introduction

Malaria is potentially life-threatening and infections are caused by Plas-
modium parasites that are transmitted through bites of infected female
mosquitoes. In spite of the fact that malaria is a preventable and curable
disease for which increased efforts worldwide dramatically reduced malaria
incidence (i.e., a reduction of 21% between 2010 and 2015 as reported by
WHO [1]), African countries still carry a disproportionately high share of
the overall malaria burden. In order to reduce the malaria burden in African
countries such as Uganda, a correct assessment and evaluation of the impact
of control strategies is quintessential. Measures of malaria transmission in-
tensity such as the entomological inoculation rate (EIR), the parasite preva-
lence and the malaria force of infection (FOI) have been used frequently to
quantify the impact of various interventions [2,3]. In general, malaria trans-
mission has been reported to be highly inefficient, meaning that the ratio of
EIR to FOI is relatively high. As is the case for other infections, individual-
and household-specific heterogeneity in malaria acquisition is hardly ever
accounted for in the estimation of the aforementioned epidemiological pa-
rameters, albeit that it is well-recognised that variability in environmen-
tal and host-related factors, among other sources, has an important effect
thereon [4].

Often in clinical trials with follow-up to study (infectious) disease dynam-
ics, study participants are asked to come to the clinic and get examined
for malaria infection during scheduled (routine) visits. On top of that, un-
scheduled (clinical) visits can occur when participants develop symptoms for
the disease under consideration, or when they experience symptoms similar
to those typically observed for the infection at hand. If infection triggers
outcome assessment in between prescheduled follow-up visits, the outcome
and observation-time processes are said to be dependent, which in literature
is often referred to as outcome-dependent sampling (ODS) [5]. Conven-
tional longitudinal methods to analyse repeated measurements for subjects
over time assume independence of both processes. Hence, such unscheduled
visits, and the ODS they induce, could lead to biased estimation of the epi-
demiological quantities of interest when not appropriately accounted for in
the statistical analysis.

Different models have been proposed to address ODS in different experi-
mental settings. For example, Ryu et al. [6] considered studies where the
measurement time points are unequally spaced and having a follow-up mea-
surement at any time depends on the history of past visits and outcomes of
that individual. These authors discussed limitations of previously proposed
models and methods for longitudinal data, such as generalised linear mixed
models and generalised estimating equations (GEE), which do not address
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the association between the outcome and observation time process. Further-
more, these authors proposed a joint model using latent random variables
in which the observed follow-up times are described together with the lon-
gitudinal response data [6]. More recently, Tan [5] considered a joint model
with a semi-parametric regression model for the longitudinal outcomes and
a recurrent event model for the observation times. Rizopoulos et al. [7]
stated that an attractive paradigm for the joint modelling of longitudinal
and time-to-event processes is the shared parameter framework [11] in which
a set of random-effects is assumed to induce the interdependence of the two
processes.

Although several authors developed methods to accommodate ODS in var-
ious settings, we propose new methodology to cope with both routine and
clinical data on malaria infections from a cohort study in Uganda. More
specifically, this paper focuses on the estimation of the malaria parasite
prevalence in three regions of Uganda, accounting for observed and unob-
served heterogeneity as done previously, while dealing with ODS at the same
time. The paper is organised as follows. Our motivating example is intro-
duced and briefly discussed in Section 2. In Section 3, we present the general
methodology to estimate malaria FOI from parasitaemia data. In Section 4,
we briefly highlight the impact of ignoring ODS after which our proposed
joint model is fitted to the available routine and clinical data on parasite
presence in Ugandan children in Section 5. Finally, these results are dis-
cussed in Section 6 together with strengths and limitations of the proposed
methodology.

2 Motivating example

In this paper, we consider longitudinal cohort data from children aged 0.5
to 10 years in three regions in Uganda; Nagongera sub-county, Tororo dis-
trict; Kihihi sub-county, Kanungu district; and Walukuba sub-county, Jinja
district. The data were collected as part of the Program for Resistance, Im-
munology, Surveillance and Modelling of malaria (PRISM) study [3]. The
aforementioned study regions are characterized by distinct transmission in-
tensities, with the highest intensity reported in Nagongera, followed by Ki-
hihi and with Walukuba having the smallest intensity [3, 4]. The study
participants were recruited from 300 randomly selected households (100 per
region) located within the catchment areas. In total, n = 988 children were
followed over time with 300 children in Walukuba, 355 in Kihihi and 333
children in Nagongera. Individuals were routinely tested for the presence
of Plasmodium parasites using microscopy every three months from August
2011 to August 2014 (3 years). Furthermore, tests were also conducted at
unscheduled clinical visits. More detailed information regarding the study
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design can be found in Kamya et al. [3].

Throughout this paper, the outcome process refers to the occurrence of the
longitudinal binary outcome (parasite presence), and the observation-time
process relates to the timing of scheduled, i.e. routine, and unscheduled, i.e.
clinical visits over the entire follow-up period of the study.

3 Materials and methods

3.1 Malaria dynamics – A simplified transmission model

For the purpose of this paper, we consider a simplified version of a realistic
transmission model to describe malaria infection dynamics. More specifi-
cally, following Mugenyi et al. [4], a so-called Susceptible (S) - Infected (I) -
Susceptible (S), or short SIS, compartmental model dividing the population
into two mutually exclusive compartments, i.e., the susceptible (S) and in-
fected (I) class, will be used to describe malaria dynamics within the human
host. We refer to the discussion of [4] for a motivation of the choice of the
SIS model and would like to note that the methodology outlined here is more
generally applicable in case of other disease dynamics. The schematic dia-
gram depicting the flows between the different states is graphically displayed
in Figure 1.

S I
λ(a)

γ

Figure 1: A schematic diagram of the SIS compartmental model illustrating
the simplified dynamics for malaria transmission: Individuals are born into
the susceptible class S and move to the infected state I at age-specific rate
λ(a), after which they become susceptible again at rate γ.

Herein, the force of infection λ(a) represents the instantaneous rate at which
individuals flow from the susceptible compartment S to the infected state
I at age a, i.e., the age-specific rate at which individuals are infected with
malaria parasites through effective mosquito bites. Furthermore, γ repre-
sents a time- and age-invariant clearance rate at which individuals regain
susceptibility after clearing malaria parasites from their blood. Let s(a)
denote the proportion of susceptible individuals in the population and i(a)
the proportion of infected individuals of age a, i.e., the (point) parasite
prevalence, then the following set of ordinary differential equations (ODEs)
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describes transitions in the compartmental SIS model:

s
′
(a) = −λ(a)s(a) + γi(a)

i
′
(a) = λ(a)s(a)− γi(a).

(1)

Hence, one can easily derive the following expression for the age-dependent
force of infection in terms of the point prevalence i(a):

λ(a) =
i′(a) + γi(a)

1− i(a)
, (2)

using i(a) + s(a) = 1. Hence, constructing a model for the point prevalence
i(a) will imply a specific functional form for the underlying force of infection
λ(a) depending on the clearance rate γ.

3.2 Parasite prevalence and routine visits

Consider the binary random variable Yij representing an indicator for the
presence of malaria parasites for individual i at (routine) visit j. Con-
sequently, for scheduled routine visits, (Yij |aij ,xi, bi) ∼ B(1, i(aij |xi, bi)),
where aij represents the age of individual i at visit j, xi represents a (p×1)-
vector of covariate information for individual i = 1, . . . , n, and bi a (q × 1)-
vector of individual-specific random effects. In order to model the parasite
prevalence, we formulate a generalized linear mixed model with cloglog-link
as follows:

cloglog [i(aij |xi, bi)] = ηij = h(aij ;θ) + βTxi + bTi zi, (3)

where β is a column vector of unknown regression parameters and zi is an
individual-specific (q × 1) design vector for bi which is a column vector of
individual-specific normally distributed random effects, i.e., bi ∼ N(µ,D)
thereby addressing the association among repeated measurements over time
within the same individual. Here, the variance-covariance matrix D is as-
sumed to have zero elements, except for the the variances on the main di-
agonal. Moreover, h(aij ;θ) is a known function describing the age-effect
with parameter vector θ. Note that the calendar time effect can be in-
troduced in the linear predictor by means of the shifted birth year of the
ith individual, implying the prevalence, and equivalently the FOI, to de-
pend on both age and calendar time [4]. In Table 1, we present some
common parametric distributions and their implied functional forms for
h(aij ;θ) based on model (3) and the corresponding baseline infection risk
λ0(aij) = h′(aij ;θ) exp [h(aij ;θ)] (derived under the assumption of no para-
site clearance).

In the absence of unscheduled clinical visits (ni = ni(r), i.e., the number of
routine visits for individual i), or under the assumption of independence be-
tween the observation time process and the outcome process, we can simply
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Table 1: Distributional assumptions regarding the underlying age-specific
malaria force of infection.

Distribution θ h(aij ;θ) λ0(aij)

Exponential θ1 > 0 log(θ1aij) θ1

Weibull θ1, θ2 > 0 log(θ1a
θ2
ij ) θ1θ2a

θ2−1
ij

Gompertz θ1 > 0,−∞ < θ2 < +∞ log
[
θ1
θ2

(
eθ2aij − 1

)]
θ1e

θ2aij

Log-logistic θ1, θ2 > 0 log
{

log
[
1 + (θ1aij)

θ2
]}

θ1θ2(θ1aij)
θ2−1

1+(θ1aij)
θ2

Fractional polynomial θ2 < 0 θ2a
−1
ij −θ2a−2

ij e
θ2a

−1
ij

estimate model parameters using maximum likelihood techniques, thereby
maximizing a marginal likelihood function with the following individual like-
lihood contributions:

L1i(β,θ|yi, aij ,xi) =

∫
bi

f(yi|aij ,xi, bi)g(bi)dbi

=

∫
bi


ni∏
j=1

f(yij |aij ,xi, bi)

 g(bi)dbi,

with

f(yij |aij ,xi, bi) = i(aij |xi, bi)yij × [1− i(aij |xi, bi)](1−yij) ,

g(bi) =
1√
|2πD|

e−
1
2

(bi−µ)TD−1(bi−µ),

where yij is the observed binary outcome for individual i at routine visit j =
1, . . . , ni, and i(aij |xi, bi) is the conditional parasite prevalence. Numerical
integration techniques are employed to perform integration over the random
effects distribution g(bi). In the following subsection, we specifically focus
on clinical visits and how to address ODS.

3.3 Outcome-dependent sampling and clinical visits

As mentioned before, clinical visits due to symptomatic malaria infections,
or malaria-like events giving rise to symptoms similar to those observed for
malaria, can not be treated in the same way as described in Section 3.2. Let
tij represents the time-at-risk for an individual i for which the jth visit is
clinical, and cij an indicator having value one for an unscheduled clinical
visit and 0 for routine data. For the purpose of illustration, we assume that
tij is known, albeit that this is not the case in practice, and statistical ways
to deal with this are outlined below. The probability density function for the
random variable Tij , suppressing dependence on covariates xi and cij = 1
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for simplicity, is given by:

f(tij |aij , yij , bi) =

[
(1− π0)λ∗(aij + tij |bi)e−

∫ aij+tij
aij

λ∗(u|bi)du
]yij
× π1−yij

0 ,

where λ∗(u|bi) ≡ λ∗(u|xi, bi) = eb
′
izi+ζ

′xiλ∗0(u) is the conditional time-
varying malaria force of infection under the proportional hazards assumption
(with ζ a vector of model parameters) and π0 denotes the probability of a
malaria-like clinical visit for which no malaria parasites are present in the
blood. For the purpose of this paper, we will not model the dependence
of the probability of having a malaria-like event π0 = P (Yij = 0|Cij = 1)
on the observed covariate information aij and xi. Different distributional
assumptions can be made regarding the time-at-risk distribution, such as,
e.g., exponential, Weibull, Gompertz, among others, which also relates to
the selected functional form for h(aij ;θ) in the outcome process model (see
Section 3.2 and Table 1). In order to align the models for both processes,
the baseline infection risk λ∗0(u) for the observation time process can be
of the same type as λ0(u), albeit that distributional parameters, say ϑ,
are allowed to be different. Note that more flexible parametric shapes for
h(aij ;θ), such as, e.g., using fractional polynomials, could result in non-
standard non-negative distributions for the malaria infection times, albeit
that unconstrained optimisation could lead to negative FOI estimates. In
the statistical analyses, we include parametric fractional polynomials as an
alternative to the standard event time distributions.

For outcomes (ti(c),yi(c)) that are derived from the clinical visits j = 1, . . .,
ni(c), where ni = ni(r) + ni(c) having ni(r) and ni(c) the number of routine
and clinical visits for individual i, respectively, the likelihood function has
contributions:

L2i(ζ,ϑ|ti(c),yi(c),ai(c),xi) =

∫
bi


ni(c)∏
j=1

f(tij(c)|aij(c), yij(c),xi, bi)

 g(bi)dbi,

where ti(c) and ai(c) are the vectors of time-at-risk and age values at which
the individual becomes at risk for the jth clinical event, respectively. Finally,
the likelihood for the joint model including both information on routine and
clinical visits is obtained by combining likelihood contributions as described
before:

L3i(β,θ, ζ,ϑ|ti,yi,ai,xi, ci) =

∫
bi

{
ni∏
j=1

f(yij |aij ,xi, bi)1−cij×

f(tij |aij , yij ,xi, bi)cij
}
g(bi)dbi,
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at least under the assumption that each malaria event contributes solely to
one of the two components (i.e., routine or clinical process) in the likelihood.
As mentioned previously, the time-at-risk for a specific clinical event (i.e.,
a symptomatic malaria infection) is not precisely known. More specifically,
malaria infection times are interval-censored which needs to be taken into
account in the statistical analyses through the modification of the likelihood
function. For more details on how the interval-censoring has been treated
in the analyses, the reader is referred to Appendix B.1.

4 Simulation study

In order to study the impact of ignoring ODS, we set up a simulation study
which is inspired by the PRISM data under consideration. More specifically,
we generate M = 1000 datasets including nm ≡ n = 1000 individuals per
simulated dataset (m = 1, . . . ,M). Furthermore, we consider a simulation
setting in which exponential infection times occur during a follow-up period
of 1800 days (≈ 5 years) and with an average duration until acquiring a
new infection of about 365 days (1 year: λ0 = λ∗0 = exp(−5.9) = 0.0027).
Parasite clearance times are exponentially distributed with a mean dura-
tion of infectiousness equal to 50 days (γ = 0.02). Based on the gener-
ated infection histories for the individuals, routine and clinical visits are
obtained. More specifically, routine visits are scheduled every 90 days and
parasite presence is recorded based on the current status at the time of
data collection. Varying probabilities for having a symptomatic malaria
episode are considered in the simulation whereby symptomatic observa-
tions at unscheduled time points were considered as clinical visits (i.e.,
P = 20%, 40%, 60%, 80%, 100%). Hence, asymptomatic malaria cases were
only included when detected during the routine process. No malaria-like
events were generated such that all clinical visits are due to symptomatic
malaria infections (i.e., π0 = 0). Individual-specific random intercepts
bi ∼ N(µ, σ2

b ), i = 1, . . . , n, with µ = −σ2
b/2 implying a unit mean for

the lognormal random terms ebi , are introduced to induce correlation be-
tween repeated measurements for the same subject (σ2

b = 0.25). If a sin-
gle infection is contributing to both the routine and clinical process (i.e.,
consecutive observations C+ and R+, or vica versa), hence leading to two
dependent observations, we drop the second one in Scenario 4. However,
without additional information, we cannot determine whether individuals
already recovered and got re-infected in between such visits, thereby poten-
tially underestimating the FOI. We performed a sensitivity analysis given
the simulation scenario at hand in order to deduce the time period in which
consecutive positive routine and clinical observations can be considered to
be the result of a single malaria infection. From this exercise, a period of 35
days is assumed to be optimal (see Appendix A, Figure A.1 for more details
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thereon). This observation is supported by the literature where 100% recov-
ery rate was reported on day 28 following anti-malaria treatment [14,15].

Table 2: Overview of the different scenarios, corresponding loglikelihood
functions to be maximised (see Section 3) and parasitaemia data that is
included in the analyses. ∗ Scenario does not take ODS into account.

Scenario Loglikelihood function Parasitemia data

1 ll1(β,θ|y,X) =
∑n
i=1 log [L1j(β,θ|yi,xi)] Routine

2 ll1(β,θ|y,X) =
∑n
i=1 log [L1j(β,θ|yi,xi)] Routine & clinical∗

3 ll2(ζ,ϑ|t,y,a,X) =
∑n
i=1 log [L2i(ζ,ϑ|ti,yi,ai,xi)] Clinical

4 ll3(β,θ, ζ,ϑ|t,y,a,X) =
∑n
i=1 log [L3i(β,θ, ζ,ϑ|ti,yi,ai,xi)] Routine & clinical

4.1 Simulation results

Hereunder, we present results from fitting the four scenarios based on the
three different likelihoods in Section 3 to the simulated data. All models con-
verged for all simulation runs. In Table 3, we show the simulation results
for the four different scenarios described in Table 2 with varying percent-
ages of symptomatic malaria infections. Scenario 2 including both routine
and clinical data without accounting for ODS performs worse compared to
Scenario 1 in which only routine data is used. Hence, ignoring ODS leads to
biased estimates of both the baseline hazard as well as population-averaged
hazard functions. Note that Scenario 1 is not influenced by the percentage
of symptomatic infections, simply since these clinical infections are not ac-
counted for therein. Our proposed model for the analysis of both clinical
and routine parasitaemia data (Scenario 4) outperforms Scenarios 1 and 2
in terms of bias and precision (and consequently MSE) for the baseline haz-
ard function and population-averaged hazard λp, at least when P = 60% or
higher, and leads in all cases to a reduction in bias. In Scenario 4, we add
clinical information to the readily available routine data (i.e., larger sample
size), resulting in a lower MSE, bias and empirical variance for the model
parameters compared to Scenario 1. The loss of perfomance in Scenario 4
compared to Scenario 3 as P > 60% can be explained by the nature of the
data since noise is added by combining time-to-event data (which is anal-
ysed separately in Scenario 3) with interval-censored data.
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Table 3: Simulaton results for the different models showing mean estimates
for the marginal or population-averaged FOI (λp), variance of the random
intercepts (σ2

b ), and the corresponding mean squared error (MSE), bias and
empirical variance. P represents the percentage of symptomatic infections.
†: all data except for positive routine observations following a positive clin-
ical visit, or positive clinical observations following a positive routine visit
within a 35 day period. N represents the total number of observations over
all individuals averaged over the M datasets.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

routine data all data clinical data all data†

P = 20% N = 20, 000 N = 21, 832 N = 1, 832 N = 21, 781

Population-averaged hazard λp

Mean estimate
¯̂
λp 0.0034 0.0047 0.0020 0.0028

Mean estimate ¯̂σ2
b 0.3806 0.4058 0.4727 0.5228

MSE(λ)x105 0.0078 0.2460 0.1375 0.0111

Bias(λ)x105 23.8252 155.6670 116.2956 9.0705

Var(λ)x105 0.0021 0.0037 0.0023 0.0102

P = 40% N = 20, 000 N = 22, 678 N = 2, 678 N = 22, 576

Population-averaged hazard λp

Mean estimate
¯̂
λp 0.0034 0.0060 0.0026 0.0028

Mean estimate ¯̂σ2
b 0.3806 0.4046 0.3646 0.4402

MSE(λ)x105 0.0078 0.8106 0.0270 0.0093

Bias(λ)x105 23.8252 283.8542 50.4948 7.0972

Var(λ)x105 0.0021 0.0048 0.0016 0.0088

P = 60% N = 20, 000 N = 23, 520 N = 3, 520 N = 23, 370

Population-averaged hazard λp

Mean estimate
¯̂
λp 0.0034 0.0072 0.0029 0.0028

Mean estimate ¯̂σ2
b 0.3806 0.3908 0.3076 0.3861

MSE(λ)x105 0.0078 1.6500 0.0063 0.0081

Bias(λ)x105 23.8252 405.4125 22.5147 5.4008

Var(λ)x105 0.0021 0.0064 0.0012 0.0078

P = 80% N = 20, 000 N = 24, 368 N = 4, 368 N = 24, 169

Population-averaged hazard λp

Mean estimate
¯̂
λp 0.0034 0.0084 0.0030 0.0028

Mean estimate ¯̂σ2
b 0.3806 0.3780 0.2713 0.3496

MSE(λ)x105 0.0078 2.7799 0.0017 0.0072

Bias(λ)x105 23.8252 526.4963 8.4274 4.2648

Var(λ)x105 0.0021 0.0064 0.0012 0.0064

P = 100% N = 20, 000 N = 25, 218 N = 5, 218 N = 24, 971

Population-averaged hazard λp

Mean estimate
¯̂
λp 0.0034 0.0072 0.0029 0.0028

Mean estimate ¯̂σ2
b 0.3831 0.3659 0.2445 0.3265

MSE(λ)x105 0.0083 4.1944 0.0007 0.0065

Bias(λ)x105 23.8252 646.9211 1.0401 3.5431

Var(λ)x105 0.0021 0.0064 0.0012 0.0064
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5 Data application

In this section, we apply the proposed joint model in Scenario 4 to the
observed Ugandan malaria parasitaemia data presented in Section 2. The
covariates considered in the model building process included study site, age,
shifted birth year (i.e., shifted birth year = birth year - birth year of the
oldest child), previous use of Artemether-Lumefantrine (AL) treatment, and
the infectious status at the previous visit. The covariate ‘shifted birth year’
was generated to represent the calendar time (see also [4] for details concern-
ing this modelling strategy). Let Si represent the study site (1 = Walukuba,
2 = Kihihi, 3 = Nagongera), aij the child’s age in years, lij the shifted birth
year, Pij the previous infection status and use of AL (1 = Negative & no
AL, 2 = Negative + AL, 3 = Symptomatic, 4 = Asymptomatic) for individ-
ual i at visit j. Different parametric distributional assumptions regarding
the infection times are explored (i.e., leading to various functional forms
for h(aij ;θ), and equivalently, for the underlying malaria force of infection)
thereby allowing for different distributional parameters θ and ϑ for the out-
come and infection time process, respectively. Since malaria transmission
intensity differs between the three sites (see, e.g., [3,4]), site-stratified anal-
yses were performed, and model comparison was done based on AIC and
BIC in order to select the most appropriate functiontal form for h(aij ;θ).
Table B.1 in Appendix B provides the site-specific fit statistics for the dif-
ferent models.

In Table 4, we show the parameter and standard error estimates (between
brackets) for the joint model under Scenario 4, thereby having Gompertz
baseline hazard functions λ0(a) and λ∗0(a) for the three study sites (see Ta-
ble B.1 in Appendix B for more details on the AIC- and BIC-values for
the candidate models). A significant effect of shifted year of birth has been
observed for Kihihi and Nagongera in both processes, and not for the low
transmission intensity site Walukuba. The infection status at previous visit
was included only for the outcome process resulting in an overall signifi-
cant effect at all sites (p-value <0.001). In total, 35%, 43% and 62% of
the observed visits were classified as clinical visits in Walukuba, Kihihi and
Nagongera, respectively. Of those observed clinical visits, 87%, 48% and 54%
are malaria-like clinical visits implying that no evidence of malaria infection
was found in children coming to the clinic due to malaria-like symptoms.
The estimated values for π0 are equal to 89% (95% confidence interval (CI):
87% – 91%), 58% (95% CI: 56% – 60%) and 65% (95% CI: 63% – 67%) for
Walukuba, Kihihi and Nagongera, respectively, which are quite in line with
the observed empirical probabilities.

Figure 2 depicts the estimated marginal prevalence by age for children as-
sumed to be born in the baseline year (2001) which were symptomatic (top
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row) or asymptomatic (bottow row) at the previous visit, and by study site
(left to right: Nagongera, Kihihi and Walukuba). The curves are drawn
for Scenario 2 (solid blue line) and Scenario 4 (dashed red line). In gen-
eral, the parasite prevalence increases with increasing age in areas with high
(Nagongera) and medium (Kihihi) transmission intensity, though the preva-
lence is fairly constant for Scenario 4 in the latter case. In Walukuba, the
prevalence first increases to a plateau from 6 months up to 2 years after the
prevalence remains constant. From the graphs, it is clear that small differ-
ences exist between the two scenarios in terms of the estimated marginal
prevalence.

In Figure 3, we show the estimated marginal FOI for the outcome (routine)
process based on expression (2). We consider annual parasite clearance rates
(γ) of 1.643, 0.584 and 0.986 years−1 for children aged less than 1 year, 1–4
years and 5–10 years, respectively [19]. On top of that, the marginal FOI
estimated from the time-to-event process is shown in the bottom row. The
marginal FOI for the outcome process increases with increasing age at least
for Nagongera and Kihihi, and it is highest among children in age group 5–
10 years or those that were previously asymptomatic (gray bars) and least
in their symptomatic counterparts (brown bars) in all study areas. For the
time process, the marginal FOI in Nagongera is close to zero and constant
with time at risk, at least for children aged 1 year when becoming at risk.
For children at a higher age, the FOI tends to increase more steeply with
increasing time at risk and age. However, the FOI for the time process
is highest among children aged about one year in medium (Kihihi) and
low (Walukuba) transmission intensities, after which it decreases gradually
with increasing time at risk for children of all ages. More specifically, when
children are older, the infection risk is smaller as compared to their younger
counterparts given the specific time at risk.

11

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 26, 2018. ; https://doi.org/10.1101/252411doi: bioRxiv preprint 

https://doi.org/10.1101/252411


Mugenyi et al.

Table 4: Application to PRISM data: results showing parameter and stan-
dard error (s.e.) estimates from the joint model (Scenario 4) assuming
Gompertz-distributed infection times for Walukuba, Kihihi, and Nagongera.

Effect Parameter Estimate (s.e.) t-value p-value
Walukuba (Gompertz):
Infection status at the previous Negative + AL β1 0.12 (0.26) 0.47 0.639

visit (Ref = Negative & No AL Symptomatic β2 −0.66 (0.46) −1.43 0.153
treatment in past): Asymptomatic β3 1.33 (0.26) 5.13 < 0.001

Shifted year of birth β4 −0.09 (0.05) −1.93 0.054
Age θ1 0.16 (0.23) 0.71 0.480

θ2 −1.54 (1.96) −0.78 0.434

Shifted year of birtht ζ −0.23 (0.17) −1.37 0.171
Aget ϑ1 36.68 (63.44) 0.58 0.564

ϑ2 −0.28 (0.14) −2.01 0.046

Probability of a malaria-like clinical visit π0 0.89 (0.01) 102.18 < 0.001

Variance for random intercepts for subjects d11 0.25 (0.18) 1.38 0.167
Variance for random intercepts for households d22 1.22 (0.37) 3.32 0.001

Kihihi (Gompertz):
Infection status at the previous Negative + AL β1 −0.30 (0.06) −5.29 < 0.001

visit (Ref = Negative & No AL Symptomatic β2 −1.08 (0.14) −7.94 < 0.001
treatment in past): Asymptomatic β3 0.65 (0.12) 5.37 < 0.001

Shifted year of birth β4 0.49 (0.04) 13.03 < 0.001
Age θ1 4e-6 (2e-6) 2.61 0.009

θ2 0.56 (0.04) 13.57 < 0.001

Shifted year of birtht ζ −0.25 (0.04) −6.94 < 0.001
Aget ϑ1 18.06 (6.98) 2.59 < 0.001

ϑ2 −0.26 (0.03) −7.91 < 0.001

Probability of a malaria-like clinical visit π0 0.58 (0.01) 53.58 < 0.001

Variance for random intercepts for subjects d11 0.27 (0.05) 9.83 < 0.001
Variance for random intercepts for households d22 4.28 (0.35) 12.30 < 0.001

Nagongera (Gompertz):
Infection status at the previous Negative + AL β1 −0.46 (0.12) −3.80 < 0.001

visit (Ref = Negative & No AL Symptomatic β2 −1.24 (0.13) −9.35 < 0.001
treatment in past): Asymptomatic β3 0.15 (0.13) 1.22 0.222

Shifted year of birth β4 0.19 (0.08) 2.44 0.015
Age θ1 0.02 (0.02) 1.23 0.219

θ2 0.17 (0.11) 1.58 0.115

Shifted year of birtht ζ 0.92 (0.05) 18.31 < 0.001
Aget ϑ1 6e-4 (3e-4) 1.88 0.061

ϑ2 1.03 (0.05) 19.64 < 0.001

Probability of a malaria-like clinical visit π0 0.65 (0.01) 83.81 < 0.001

Variance for random intercepts for subjects d11 0.94 (0.15) 6.42 < 0.001
Variance for random intercepts for households d22 0.37 (0.15) 2.43 0.016

t Time-to-event model effects
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Figure 2: Estimated marginal prevalence for children assumed to be born
in the baseline year (2001) by age, study site and symptomatic (top row)
or asymptomatic (bottom row) at the previous visit. Left to right column:
Nagongera, Kihihi and Walukuba.

Figure 3: Estimated marginal FOI by time at risk and age when becoming
at risk for the next malaria infection based on Scenario 4 and for children as-
sumed to be born in the baseline year (2001). Top row: marginal FOI based
on outcome process. Bottom row: marginal FOI based on time process. Left
to right column: Nagongera, Kihihi and Walukuba.
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6 Discussion

In this paper, we have proposed novel methodology to account for outcome-
dependent sampling (ODS) when estimating malaria transmission parame-
ters such as, for example, the parasite prevalence and the force of infection
(FOI) in case of longitudinal cohort data with routine (scheduled) and clin-
ical (unscheduled) visits. A simulation study, inspired by parasitaemia data
from a cohort of Ugandan children who were tested for malaria parasites
(parasitaemia) during such visits, was conducted in which different paramet-
ric functions were considered to model the age-specific malaria prevalence
and FOI while accounting for both observed and unobserved heterogeneity.
The results clearly indicate that ignoring ODS leads to biased estimates for
the marginal force of infection, hence, leads to an incorrect assessment and
evaluation of malaria control strategies. We demonstrate that the bias can
be reduced by using a joint model in which both outcome (routine) and
observation-time (clinical) components are present. In order to reduce the
bias, we propose to treat malaria events within a period of 35 days after a
first malaria infection as being part of the same infection. This is supported
by the results presented by Maiga et al. [14] and Ndiaye et al. [15].

The results show that both the malaria parasite prevalence and the FOI
increase with increasing age in an area of high (Nagongera) transmision
intensity. The FOI is highest in children aged 5–10 years and it becomes
higher as children grow older or are at risk for a longer time. For an area
with medium (Kihihi) transmision intensity, whereas the parasite prevalence
and the FOI for the outcome process increase with increasing age, the FOI
for the clinically observed infections (time process) is highest among chil-
dren aged 1 year and it gradually decreases with increasing age and time
at risk. In Walukuba which is an area of low transmission intensity, how-
ever, the prevalence and FOI at least for the time process peak at the age
of about one year, after which the former remains constant while the latter
decreases with increasing age and exposure time at least when based on the
time process. Further, both the prevalence and FOI are highest among the
children with asymptomatic infections, and lower among the symptomatic
ones or the previously treated children. These results are in line with those
reported previously by Mugenyi et al. [4]. The high prevalence and FOI
estimated among the older children particularly in area with high transmis-
sion is in agreement with the work by Doolan et al. [17]. These authors
show that children older than 5 years act as reservoirs for malaria para-
sites or asymptomatic infections and are rarely treated, hence leading to an
increased infection risk. On the other hand, the decrease in the clinically
observed infections (time process), that is FOI, as age increases in both the
medium and low transmission intensities can be attributed to acquired im-
munity due to past infections or increase in age as discussed by Doolan et
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al. [17]. In our statistical analyses, we also estimated the probability of a
malaria-like event π0 which were quite in line with the empirical proportions
in the three regions. However, π0 also encompasses potential differences in
reporting among the regions as individuals with symptoms will not always
visit the clinic.

One way to avoid bias in estimating the epidemiological parameters of in-
terest is the use of routine data only. This approach has been demonstrated
in the past [4]. However, our methodology allows for a proper integration of
all clinical data, including malaria-like events, in the data analysis, thereby
enabling the study of potential varying effects for symptomatic (detected
at clinical visits) and asymptomatic (derived from routine data) infections.
From our statistical analyses of the PRISM data, the hypothesis of differen-
tial age-effects for symptomatic and asymptomatic infections is highly sup-
ported as models forcing the effects to be the same are clearly outperformed
by their unrestricted and more flexible counterparts. Though the estimated
parasite prevalence is in line with the observed data, more flexible paramet-
ric or semi-parametric baseline hazard functions could be considered in both
processes which is an interesting avenue for further research. Furthermore,
Mugenyi et al. [4] used a generalized linear mixed model to model the ob-
served parasite prevalence after which the force of infection is derived using
equation (2). One of the shortcomings in this paper is the simplification
of no parasite clearance when deriving the baseline hazard function for the
time process. This could lead to an underestimation of the respective FOI.
We consider this as an interesting avenue for future research.

The proposed joint model can be extended to have a shared parameter ψ
to model the dependence between the outcome and observation time pro-
cesses through individual- and process-specific random effects bi1 and bi2,
respectively (see, e.g, [11]). In that way, one can allow the process-specific
random effects to act at different levels. However, applying this approach to
the PRISM data forced us to exclude the household-specific random effect
for convergence reasons. The models presented in this paper (ψ = 1) out-
performed the ones with different process-specific individual-level random
effects in all regions, except for Nagongera, and the significance of covari-
ates was not altered (not shown here).
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Appendix

Appendix A: Simulation study

Table A.1: Average number of malaria episodes, by varying percentage of
assumed symptomatic infections (P). The labels C+R+ and R+C+ represent
positive results at two near-by visits (C = clinical and R = routine) with
the second observation deleted.

All data Data for Scenario 4

Clinical C+R+ R+C+ Clinical

P N % % % N %

20% 21832 8.4 0.2 0.03 21781 8.3
40% 22678 11.8 0.4 0.05 22576 11.8
60% 23520 15.0 0.6 0.07 23370 15.1
80% 24368 17.9 0.7 0.09 24169 18.2
100% 25218 20.7 0.9 0.10 24971 21.2

Figure A.1: Sensitivity analysis for bias, MSE and variance obtained using
Scenario 4 by considering different number of days (1 week interval) between
two consecutive visits with positive results. Bias and MSE are minimal if
positive results observed within 35 days are considered to be of the same
infection. C+ and R+ represent positive result/infection at clinical and
routine visits, respectively.
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Appendix B: Data application

B.1 Interval-censored infection times

Interval censoring occurs if the time at risk TAR is only known to lie between
two time points. In the PRISM study, the time to the second, third or the n-
th infection is only known to lie between the point the child is tested positive
and the point he/she first tested negative after recovering from the previous
infection. Generally, if the real time at risk tAR for the n-th infection of an
individual of age a when becoming susceptible again at calendar time t(n−1),
lies between tL and tU , then the probability density function for the time at
risk is given by

fIC(tAR|a) = P (tL ≤ TAR ≤ tU |a) = F (tU |a)− F (tL|a)

= S(tL|a)− S(tU |a), (B.1)

where fIC(tAR|a) is the modified density function for interval-censored data
(tAR, a); S(tL|a) and S(tU |a) are the conditional survival functions evaluated
in tL and tU , respectively, i.e., for tL,

S(tL|a) = e−
∫ a+tL
a λ∗(u)du,

where λ∗(u) is the infection hazard (for symptomatic infections). In case
of exponential infection times, we have λ∗(u) ≡ λ∗(u|x) = ϑ1e

ζ′x and

S(t|a) = e−ϑ1e
ζ′xt, which implies

fIC(t|a) = e−ϑ1e
ζ′xtL − e−ϑ1eζ

′xtU .

Alternatively, for the Weibull and Gompertz distributions, it is straight-
forward to obtain similar expressions based on the expressions for the haz-
ard functions in Table 1 in the main text. Finally, in case of the fractional
polynomial model, we have λ∗(u) ≡ λ∗(u|x) = −ϑ2u

−2eϑ2u
−1
eζ
′x and

S(t|a) = e
−eζ′x

[
eϑ2(a+t)

−1−eϑ2a−1
]
.

Note that in case the first event recorded for an individual of age a is a
clinical malaria infection, the time at risk lies in the interval [tL, tU ] =
[toAR, (a − ν) + toAR] where toAR is the observed time at risk, a is the age
of the individual at the entry of the study, and 0 ≤ ν ≤ a is the age of the
individual when becoming susceptible after the last infection prior to the
inclusion into the study, thereby giving rise to a contribution S(toAR|a, ν =
0) − S((a − ν) + tAR|a, ν) to the likelihood function. Since ν is unknown,
we need to marginalize over the probability density function of the random
variable ν. However, this leads to complicated expressions for the likelihood
function, hence, in this manuscript, we take S(toAR|a)−S(a+ toAR|0) as like-
lihood contribution, implying that [tL, tU ] = [toAR, a+ toAR], and we consider

19

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 26, 2018. ; https://doi.org/10.1101/252411doi: bioRxiv preprint 

https://doi.org/10.1101/252411


REFERENCES Mugenyi et al.

the aforementioned marginalization strategy as further research which is be-
yond the scope of this paper. Hereunder, we describe 4 possible situations
for the treatment of interval censoring in the PRISM study. First, let t(n) be
the calendar time at which one tests positive for the n-th infection (n > 1),
t(n−1) the point at which one first tests negative from the (n − 1)-th infec-
tion, and t∗(n−1) be the calendar time one was last observed positive for the

(n− 1)-th infection.

Situation 1: If t(n−1) and t(n) are exactly the points when one becomes
susceptible and infected, respectively, then time at risk, tAR = t(n) − t(n−1).
In this case there is no interval censoring and the contribution to the like-
lihood is simply f(tAR|a), where a is the age of the individual at time t(n−1).

Situation 2: If t(n−1) is exactly the point when one becomes susceptible,
then the time at risk, tAR ∈ [0, t(n) − t(n−1)], meaning that tL = 0 and
tU = t(n) − t(n−1). Consequently, a represents the age of the individual at
time t(n−1) in likelihood contribution (B.1).

Situation 3: If t(n) is exactly the point when one becomes infected, then the
time at risk, tAR ∈ [t(n)−t(n−1), t(n)−t∗(n−1)], meaning that tL = t(n)−t(n−1),
tU = t(n)− t∗(n−1) and a represents the age of the individual at calendar time
t∗(n−1).

Situation 4: If t∗(n−1) is exactly the point when one becomes suscepti-

ble, then the time at risk, tAR ∈ [0, t(n) − t∗(n−1)], meaning that tL = 0,
tU = t(n)− t∗(n−1) and a represents the age of the individual at calendar time
t∗(n−1).

The statistical analysis presented in this paper is based on Situation 2,
though the other situations are also plausible and worth considering, al-
beit that these scenarios are all approximations of the thruth. The impact
of assumming Scenarios 3–4 on inference was found to be minor and the
conclusions did not change.
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B.2 Fit statistics

Table B.1: Fit statistics for models fitted to PRISM data based on Scenario
2 and 4 by study site. Better fits for each site and scenario based on AIC
are indicated in bold.

Site Fit statistic Exponential Weibull Gompertz Fractional polynomial

Scenario 2:
Walukuba: AIC 1902.6 1867.7 1867.0 1867.8

BIC 1921.9 1889.8 1889.1 1889.8

Kihihi: AIC 6446.5 6440.1 6411.1 6492.6
BIC 6465.2 6461.5 6432.5 6513.9

Nagongera: AIC 9864.8 9863.0 9866.0 9889.1
BIC 9883.6 9884.4 9887.4 9910.5

Scenario 4:
Walukuba: AIC 2012.0 2008.3 1992.4 2092.3

BIC 2039.6 2049.0 2025.6 2122.7

Kihihi: AIC 6683.8 6028.1 5975.8 7345.5
BIC 6710.5 6060.2 6007.9 7384.1

Nagongera: AIC 9554.4 9327.2 9304.6 10373
BIC 9581.1 9359.3 9336.6 10403
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