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ABSTRACT 
Sirtuins—a group of NAD+-dependent 

deacylases—have emerged as key in the connection 
between NAD+ metabolism and aging. This class of 
enzymes hydrolyze a range of ε-N-acyllysine PTMs 
and determining the repertoire of catalyzed 
deacylation reactions is of high importance to fully 
elucidate the roles of a given sirtuin. Here we have 
identified and produced two potential sirtuins from 
the probiotic bacterium Lactobacillus acidophilus 
NCFM and screening more than 80 different 
substrates, covering 26 acyl groups on five peptide 
scaffolds, showed that one of the investigated 
proteins—Sir2La—is a bona fide NAD+-dependent 
sirtuin, catalyzing hydrolysis of acetyl-, propionyl-
, and butyryllysine. Further substantiating the 
identity as a sirtuin, known sirtuin inhibitors 
nicotinamide and suramin as well as a 
thioacetyllysine compound inhibit the deacylase 
activity in a concentration-dependent manner. 
Based on steady-state kinetics Sir2La showed a 
slight preference for propionyllysine over 
acetyllysine and butyryllysine, driven both by KM 
(14 µM vs 21 µM and 15 µM) and kcat (4.4·10–3 s–1 

vs 2.5·10–3 s–1 and 1.21·10–3 s–1). Moreover, while 
NAD+ is a prerequisite for Sir2La-mediated 
deacylation, Sir2La has very high KM for NAD+ 
compared to the expected levels of the dinucleotide 
in L. acidophilus. Sir2La is the first sirtuin from 
Lactobacillales and of the Gram-positive bacterial 
subclass of sirtuins to be functionally characterized. 

The ability to hydrolyze propionyl- and 
butyryllysine emphasizes the relevance of further 
exploring the role of other short-chain acyl moieties 
as PTMs. 
 

Nicotinamide adenosine dinucleotide (NAD+) is 
well known for its role—together with the reduced 
form, NADH—as an essential redox couple in 
metabolism. While the dinucleotide is intact during 
oxidoreductase reactions, NAD+ also serves as 
substrate in reactions where the charged 
nicotinamide moiety acts as leaving group rather 
than hydride acceptor. NAD+-consuming enzymes 
include deacylases (sirtuins), cyclic adenosine 
diphosphate synthetases (cADPRS), and 
poly(adenosine diphosphate ribose) 
polymerases/adenosine diphosphate-ribosyl 
transferases (PARPs/ARTs). Dinucleotide turnover 
resulting from the activity of these enzymes leaves 
cells in constant need of NAD+-supply. In 
mammals, NAD+ is synthesized either via a de novo 
pathway from tryptophan, or via salvaging the three 
precursor vitamins nicotinic acid, nicotinamide, or 
nicotinamide riboside (NR). The recommended 
dietary allowance of vitamin B3 (niacin, a generic 
term for nicotinic acid and nicotinamide) is 15−20 
mg/day, an amount sufficient to prevent clinical 
symptoms of niacin deficiency. However, in recent 
years significant interest has been raised around the 
use of NAD+-precursors as antiaging agents 
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(1,2,3,4). Thus, NR is available as a commercial 
supplement and has been tested in clinical trials 
with intake up to 1 g/day (equivalent to 420 mg 
nicotinamide) (5,6). Oral administration of 
supplements makes these compounds available to 
the microbiota present in the gastrointestinal tract 
proximal to the area of absorption that occurs in 
both the stomach and small intestine (7). The 
endogenous gut microbiota is dominated by 
organisms from the Firmicutes, Bacteroidetes, 
Actinobacteria and Proteobacteria phyla (8), and is 
an increasingly recognized contributor to health and 
disease (9,10). A high intake of NAD+-precursors 
may impact both auto- and allochthonous 
commensal bacteria and emphasizes the relevance 
of characterization of microbial enzymes involved 
in NAD+-metabolism (11). L. acidophilus is a 
Gram-positive, lactic acid-producing firmicute 
used extensively as a probiotic in foods and dietary 
supplements (12), notably motivating further 
investigation. 

In particular the sirtuin class of enzymes have 
emerged as key in the connection between NAD+ 
metabolism and aging (13,14). Named after the 
yeast enzyme silent information regulator 2 (Sir2), 
originally shown to regulate mating type genes 
(15,16,17), sirtuins and their role in aging have 
been extensively investigated. Initially, 
Saccharomyces cerevisiae sir2-mutants were found 
to exhibit decreased lifespan, whereas an additional 
copy of the sir2 gene conferred extended lifespan 
(18). Similarly sirtuin-mediated longevity has been 
shown in fruit flies (19), nematodes (20), and mice 
(21). The canonical function of sirtuins utilizes 
NAD+ as co-substrate to catalyze hydrolysis of ε-N-
acyllysine, releasing nicotinamide and transferring 
the acyl moiety to form 2′-O-acyl adenosine 
diphosphate ribose (e.g., 2′-O-acetyl adenosine 
diphosphate ribose (OAcADPR)). Lysine 
acetylation is a prevalent, reversible PTM 
associated with a wide range of biological 
processes within all domains of life (22). Sirtuins 
are involved in regulation of gene expression due to 
their role in controlling the acetylation pattern on 
histones. Lysine acetylation can be reversed by two 
classes of enzymes, the zinc-dependent histone 
deacetylases (HDACs) and the sirtuins. Even 
though all sirtuins harbor a conserved catalytic core 
domain (23,24) phylogenetic analysis reveals 
distinct classes (24) and it has become apparent that 
the substrate specificity of sirtuins varies with these 

classes. Eukaryotic sirtuins are primarily found in 
classes I-IV, archaeal sirtuins belong to classes III 
and U, whereas bacterial sirtuins are found in 
classes II, III, and U (25), as well as in the class of 
Sir2-like enzymes (Fig. 1a). Additionally, a novel 
class M comprises bacterial and eukaryotic 
enzymes (26). While sirtuins in class U 
(abbreviation for “undifferentiated”) were 
originally grouped as a single class, it is now 
realized to comprise at least four sub-classes (25). 
Thus, in the NCBI Conserved Domain Database 
(CDD) (27), two families that fall into the class U 
are defined; one comprising both archaeal and 
bacterial enzymes based on homology with 
Archaeoglobus fulgidus Sir2Af2 [NCBI CDD 
cd01413] and one comprising sirtuins from Gram-
positive bacterial species and fusobacteria [NCBI 
CDD cd01411]. 

Although less prevalent than lysine acetylation 
(28), a range of other acyl groups have been 
identified as PTMs on histones and proteins in 
general through proteomics studies. These 
modifications include the short-chain acyl groups 
formyl (29,30), propionyl (31,32), butyryl (31) and 
crotonyl (33), the carboxyacyl groups malonyl (34), 
succinyl (35) and glutaryl (36), as well as the long-
chain aliphatic group myristoyl (37,38). Of the 
seven identified human sirtuins, only hSIRT1–3 are 
efficient deacetylases in in vitro studies, whereas 
hSIRT6-catalyzed deacetylation can be achieved by 
addition of fatty acids to the reaction mixture (39) 
and hSIRT6 is also a functional deacetylase activity 
in vivo (40). Hydrolysis of long-chain acyl PTMs is 
catalyzed by hSIRT1–3 (39) and 6 (41), hSIRT5 
has been shown to possess lysine demalonylase, 
desuccinylase, and deglutarylase activity (36,42), 
and hSIRT4 was recently demonstrated to catalyze 
cleavage of lipoyl- and biotinyllysine (43) as well 
as glutaryl-, 3-methylglutaryl-, 3-hydroxy-3-
methylglutaryl- and 3-methylglutaconyllysine 
(44,45). Some sirtuins act on several types of 
acyllysines as substrates. Most prominent is the 
ability of class I sirtuins to hydrolyze both acetyl- 
and long-chain acyllysines, but deacylation of 
propionylated and butyrylated peptides and 
proteins have also been described by hSIRT1–3, the 
yeast sirtuin HST2, CobB from Salmonella 
enterica, and Sir2 from Thermotoga maritima 
(Sir2Tm) (46,47,48). The sirtuin from E. coli, 
CobB, has also been demonstrated to harbor lysine 
deacetylase, desuccinylase, and delipoamidase 
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activity (49,50,51). Although sirtuins are primarily 
recognized as deacylases, hSIRT4 (52), hSIRT6 
(53,54,55), and other sirtuins (56,57,58) were 
reported to be ADP-ribosyl transferases. Similarly, 
a new recently described distinct class of sirtuins 
(class M or SirTMs) was identified primarily in a 
range of pathogenic microorganisms including both 
bacteria and fungi (26). Notably, class M sirtuins 
are devoid of deacylase activity but rather catalyze 
a specific ADP-ribosylation. The modified protein 
GcvH-L (glycine cleavage system H-like) belongs 
to the same extended operon as SirTM, and GcvH-
L is only ADP-ribosylated when lipoylated—a 
PTM installed by LplA2 (lipoate protein ligase A), 
a third protein in the same extended operon (26). 
Thorough characterization of substrate specificity 
of any sirtuin is therefore of high importance to 
fully elucidate the various roles in the cell. 

While many sirtuins across a range of species 
have been investigated on both a molecular, cellular 
and organismal level, characterization of enzymatic 
activity of any sirtuin from the Lactobacillales 
order is still missing. Motivated by the potential 
impact of NAD+-precursor supplements on the gut 
microbiome, probiotic use of L. acidophilus, and 
relevance of sirtuins in gene regulation and general 
cell maintenance, we analyzed the L. acidophilus 
NCFM genome and cloned and produced the two 
identified putative sirtuins. This enabled 
characterization of substrate scope, enzymatic 
efficiency and inhibition by known and novel 
sirtuin inhibitors of what is to our knowledge the 
first NAD+-dependent deacylase from a 
Lactobacillales species. 

Results 
Identifying sirtuins in L. acidophilus NCFM—

Bioinformatics analysis revealed two putative 
sirtuins (LBA0117 [UniProt Q5FMQ6] (which we 
will refer to as Sir2La) and LBA1649 [UniProt 
Q5FIL3]) in the genome sequence of L. acidophilus 
NCFM (59). Multiple sequence alignment and 
phylogenetic analysis placed these two proteins in 
the U and M classes of sirtuins, respectively (Fig. 
1a and 1c, Tables S1–S3). BLAST searches 
identified similar proteins in many lactobacilli 
across the genus (Fig. 1b and Table S4). To verify 
their function as NAD+-dependent deacylases and 
characterize the potential substrate scope the two 
proteins were produced recombinantly in E. coli 
and profiled using a fluorogenic assay including 26 

acyl modifications on five peptide scaffolds with 
NAD+ as co-substrate. The peptide sequences were 
based on known lysine acylation sites in histone 3 
(H3, K9), histone 4 (H4, K12), tumor suppressor 
p53 (p53, K320), and dihydrolipoyllysine 
acetyltransferase (DLAT, K259). Linear acyl 
groups ranging from one to fourteen carbon atoms 
in length, branched chain, unsaturated, 
hydroxylated, and carboxyacyl groups were 
included (Fig. 2 and S1). With NAD+ as co-
substrate Sir2La was found to efficiently 
deacetylate, depropionylate, and debutyrylate 
modified lysine residues, thereby unequivocally 
establishing the enzyme as a bona fide sirtuin. In 
line with the reported function of class M sirtuins 
as ADP-ribosyl transferases, LBA1649 had no 
measurable deacylase activity under the given 
conditions of the 15 tested acyl groups. 

Determining Michaelis-Menten parameters—
Having established the overall substrate scope of 
Sir2La, the hydrolase activity was further 
characterized against acetyl, propionyl, and butyryl 
substrates and investigated with a range of sirtuin 
inhibitors, in assays that allow continuous 
monitoring of product formation. The initial screen 
indicated that neighboring residues carrying a 
positively charged side chain promoted enzyme 
activity (series 4 and 5, Fig. 2). However, the use of 
trypsin as developer in the continuous assay 
precludes unmodified lysine and arginine residues, 
since both the substrate and product can be 
hydrolyzed C-terminal to these residues by trypsin 
leading to altered affinity and kinetics (60). The use 
of histone 4 lysine 12 derived substrates (series 2, 
Fig. 2) is well-established and substrates containing 
Kac (ε-N-acetyllysine) (2b), Kpro (ε-N-
propionyllysine) (2c), and Kbut (ε-N-butyryllysine) 
(2d) were chosen for kinetic and inhibition studies. 
Under steady-state conditions, the initial rates of 
hydrolase activity at varying peptide substrate and 
constant [NAD+] (Fig. 3a) were used to obtain the 
Michaelis-Menten constant (KM) for Sir2La-
dependent deacylation (Table 1). Lower affinity 
was found for the Kac than the Kpro and Kbut 
substrates and kcat against the Kpro substrate was 
twice that of the Kac substrate, which in turn 
yielded higher kcat than the Kbut substrate. This 
substrate preference is reflected in kcat/KM 
indicating that Sir2La-dependent deacylation is 
most efficient for depropionylation (320 ± 90 M–1s–

1), compared to deacetylation (120 ± 40 M–1s–1), and 
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debutyrylation (82 ± 17 M–1s–1) (Table 1). The 
values are comparable or slightly lower than 
previously reported for deacylation reactions by 
sirtuins (41,42,45,46,60,61). 

The NAD+-dependency on deacylation rate also 
prompted testing of NADP+ as a possible co-
substrate for Sir2La-dependent deacylation, but 
incubation with NADP+ had only minor effect on 
deacylation activity (Fig. 3b). 
Since the propionyllysine substrate was the most 
efficiently converted, bisubstrate kinetics of 
Sir2La-catalyzed depropionylation was determined 
by varying both peptide substrate and co-substrate 
concentrations (Fig. 3c). In agreement with the 
general mechanism of sirtuins, the data supports a 
sequential mechanism and not a ping-pong 
mechanism, i.e., both peptide- and co-substrate are 
required to bind for catalysis to occur. The data 
however, do not support an ordered, rapid-
equilibrium mechanism (Fig. S2), but rather either 
an ordered steady-state mechanism (i.e., turnover of 
the ternary complex is not the rate-limiting step) or 
a mechanism with random binding of peptide- and 
co-substrate (kinetic values are shown in Table 2). 
These two mechanisms cannot be distinguished 
based on the present experiments. 

Inhibition of Sir2La hydrolase activity—The 
efficiency of a range of inhibitors originally 
developed for human sirtuins was tested on the 
Sir2La-dependent deacylation activity (Fig. 4). 
Notably, only a few of these compounds exhibited 
significant inhibitory activity (Fig. 4b, Table 3 and 
Fig. S3). The pan-sirtuin inhibitors suramin and 
nicotinamide reduced the deacylation reaction rates 
at high micromolar concentrations (Table 3), 
whereas sirtinol (hSIRT2, IC50 = 38 µM) (62), 
AGK2 (hSIRT2, IC50 = 3.5 µM) (63), and SirReal2 
(hSIRT2, IC50 = 0.4 µM) (64) at concentrations up 
to 100 µM failed to inhibit the activity (Fig. S3). 
Thioacyllysine-based inhibitors are validated 
sirtuin inhibitors and gratifyingly, the recently 
reported thioacetamide 6 (65) is here found to 
inhibit Sir2La, whereas a propionyllysine-inspired 
thiourea (7) was a poor inhibitor (77% residual 
Sir2La-activity at 50 µM using 2c as substrate). 
Adenosine diphosphate ribose (ADPR), NADH, 
and NADPH were tested as potential inhibitors but 
in agreement with previous results for human and 
yeast sirtuins (60,66) no significant inhibition was 
found below 10 mM (Fig. 4b and Fig. S3). 

To determine the kinetics of inhibition by 
nicotinamide and thioacetamide 6, initial velocities 
of Sir2La-mediated deacylation of substrates 2b 
and 2c were measured at varying inhibitor 
concentrations. Maintenance of a steady-state rate 
over 60 min demonstrated that both compounds 
inhibit deacylation via a fast-on–fast-off 
mechanism. (Fig. 4c and Table 4). 

Discussion 
The first sirtuin (Sir2La) from a species 

belonging to the Lactobacillales order has been 
identified, produced recombinantly and 
functionally characterized. This and a second 
candidate sirtuin (LBA1649) were tracked by 
genome mining of L. acidophilus NCFM. Sir2La 
efficiently catalyzes deacylation of propionyl-, 
acetyl-, and butyryllysine substrates in an NAD+-
dependent manner. Additionally, the enzyme 
activity was inhibited by known sirtuin inhibitors 
and enzyme kinetics revealed a sequential binding 
of the two substrates following either a random or 
steady-state ordered mechanism.  

Phylogenetic analysis categorizes Sir2La and 
LBA1649 as class U and M sirtuins, respectively 
(Fig. 1a), and similar proteins are encoded by other 
lactobacilli (Fig. 1b), including closely related L. 
amylovorus, L. gasseri, and L. johnsonii—all four 
species belonging to the socalled L. delbrueckii-
group—and more distantly related L. plantarum 
and L. parafarraginis (67,68) (Fig. 1c). Based on 
phylogeny, LBA1649 belongs to class M sirtuins 
and as such failed to deacylate any of the 
investigated substrates. Notably, while Ahel and 
coworkers found that L. parafarraginis express a 
class M sirtuin in the operon also encoding GcvH-
L and LplA2, they did not expand the investigation 
of the genus (26). Sequence alignment of LBA1649 
with SirTM from L. parafarragins and prototype 
class M sirtuins spySirTM [UniProt P0DN71] and 
sauSirTM [UniProt A0A0H3JQ59] highlighted 
mutations of three functionally critical residues. A 
glutamine resulting from the mutation of a histidine 
normally involved in deacylation (e.g., hSirt2-
H187 or Sir2La-H124), an arginine involved in 
correct positioning of NAD+ in the active site, and 
a nearby asparagine (Q137, R192, and N118 of 
spySirTM, respectively), were identified as critical 
for the catalytic ADP-ribosyltransferase activity of 
SirTM enzymes. While these residues are indeed 
conserved in L. parafarragins, corresponding 
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residues for LBA1649 and closely related 
homologs from L. johnsonii, L. amylovorus and L. 
gasseri are phenylalanine (F127), proline (P175), 
and threonine (T108) or alanine, respectively (Fig. 
1c). Based on the proposed model of SirTM-
mediated ADP-ribosylation these residues are not 
expected to partake in catalysis of neither 
deacylation nor ADP-ribosylation. Interestingly, a 
BLAST search of lactobacilli proteins in the NCBI 
database, revealed that LBA1649-like proteins 
(containing the XFP motif, X = A/S/T/Y) were 
found exclusively in the L. delbrueckii group, 
whereas proteins containing the catalytically 
competent NQR motif were represented in the full 
lactobacilli phylogenetic tree including the L. 
delbrueckii group (Fig. 1b and Table S4). We do 
not at present have a hypothesis of the function of 
LBA1649 (and homologous proteins) and while 
resolving the function of LBA1649 would be 
relevant, we decided not to pursue this further, 
hence proceeding only with Sir2La. 

Of the subclass of sirtuins from Gram-positive 
bacterial species and fusobacteria (Class U-Sir2La, 
Fig. 1a), Sir2La appears to be the first functionally 
characterized enzyme. Previously characterized 
class U sirtuins include Sir2Af2 from A. fulgidus, 
Sir2Tm from T. maritima, and SrtN from B. subtilis 
(51,69), all belonging to the class U subclass with 
Sir2Af2-homology (Class U-Sir2Af2, Fig. 1a). In 
the present study, only deacetylation, 
depropionylation and debutyrylation were 
efficiently catalyzed by Sir2La (Fig. 2). Similar to 
previous findings for human sirtuins (60,70,71), 
deacylation efficiency depended to some extent on 
the peptide scaffold. However, Sir2La failed to 
hydrolyze substrates containing acyl groups with 
chains longer than four carbon atoms including the 
dithiolane-containing lipoyl group. Such strict 
short-chain acyl substrate requirement for Sir2La 
has also been reported for Sir2Tm (50), but 
contrasts the substrate specificity for other 
investigated sirtuins, including cleavage of short- 
and long-chain acyl groups by human sirtuins 1–3 
(39,60), cleavage of acetyl and lipoyl by SrtN from 
B. subtilis (51,69), as well as the very broad 
substrate scope of CobB from E. coli (49,50,51). 
Archaeal Sir2Af2 can bind and hydrolyze 
acetylated, propionylated, and butyrylated as well 
as myristoylated peptides with increasing 
efficiency (50). This highlights a differential 
substrate preference for the class U subclasses. 

Sir2Tm has been crystallized with acetylated [PDB 
ID 2h2d] and propionylated [PDB ID 3pdh] 
peptides but not with long-chain acylated (e.g., 
myristoylated) peptides. On the other hand, 
reflecting substrate preference Sir2Af2 has been 
crystallized with a myristoylated peptide [PDB ID 
4ywj] bound in the active site, which revealed a 
hydrophobic pocket similar to the one found in 
class I sirtuins. The experimental evidence suggests 
that the structure of Sir2La would resemble that of 
Sir2Tm, and sequence alignment indicated an 
important overlap between the two proteins (32% 
identity and 49% similarity, Table S2), including 
similar residues flanking the binding pocket of the 
acyl groups in Sir2Tm (Fig. 1c). 

Sir2Tm deacetylates and depropionylates with 
similar efficiency whereas debutyrylation is less 
efficient (46,50). Similar to Sir2La, a slightly lower 
KM for propionylated vs acetylated substrates (14 
mM vs 21 mM) was reported for both Sir2Tm (87 
mM vs 104 mM) (46) and yHST2 (8.6 mM vs 21 
mM) (47,72), however, kcat/KM for Sir2Tm-
mediated deacylation of the two substrates was 
1.2·103 M–1s–1 and 1.4·103 M–1s–1, respectively. 
Similar efficiency of deacylation has been proposed 
to stem from the slower release of 2′-O-propionyl 
adenosine diphosphate ribose (OPrADPR) than of 
OAcADPR, likely as a result of the greater 
hydrophobicity of the former (46). For Sir2La, the 
same reasoning would favor deacetylation and the 
origin of this reversed substrate preference has yet 
to be established. 

The present study also shows that NAD+ is 
necessary for Sir2La-dependent deacylation 
reactions to take place, which further strengthens 
the conclusion that Sir2La is a deacylase of the 
sirtuin-type. Previous investigations found KM 
values for NAD+ to vary significantly among class 
I sirtuins. yHST2 appears to have remarkably high 
affinity for NAD+ (KM of 2 µM was measured 
applying an acetylated peptide (73)) whereas KM 
ranging from 18 to 360 µM was reported for other 
enzymes (47,57,66,73,74). An even higher KM of 
>800 µM was found for Sir2La, highlighting a 
potential difference between sirtuin classes. In 
eukaryotes, the total intracellular dinucleotide 
concentrations are reported to 1–3 mM (75), free 
NAD+ concentrations being estimated to 100 µM in 
the cytosol and nucleus and 230 µM in 
mitochondria (76), placing the reported KM values 
in a physiologically relevant range (77). 
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Investigation of total NAD+ concentrations in 
prokaryotes dates back to the 1960’s and 1970’s. L. 
acidophilus NCFM is a microaerophile—exposed 
to low levels of oxygen, and a correlation between 
aerobic requirement and NAD+ content has been 
suggested (78) with obligate anaerobes having a 
concentration similar to yeast (>1 mM) and lower 
concentrations for facultative anaerobes (1–0.2 
mM) and obligate aerobes (<0.2 mM) (79). 
However, in a more recent study using 13C and 31P 
NMR, total concentrations in the facultative 
anaerobic bacterium Lactococcus lactis were 
investigated (80) and under both anaerobic and 
aerobic conditions, [NAD+] was ~5 mM, while 
NADH was undetectable (<0.5 mM). Thus, the 
total [NAD+] ranges from 0.2–5 mM, however, we 
have not been able to find estimates of free 
concentrations of the relevant dinucleotides in 
bacteria. The relation between NAD+ concentration 
and KM value will impact sirtuin activity, but the 
potential relevance of the observed higher KM value 
for Sir2La is uncertain. 

In agreement with the established mechanism 
for sirtuin deacylation our data support a sequential 
mechanism – i.e., both peptide substrate and NAD+ 
bind before the reaction proceeds. Additionally, the 
hyperbolic secondary plots (Fig. 3b) indicate a 
steady-state ordered mechanism or a random 
binding order for the two substrates. Sirtuins from 
classes I, III, and U (Sir2Af2) have been shown to 
follow an ordered mechanism, where the proper 
NAD+-binding pocket is formed only after binding 
of the peptide substrate (73,74,81,82). Sirtuin 6 
(class IV) is the only investigated enzyme that 
appears to follow a random binding order (74,82). 
Further experiments are needed to determine 
whether the reaction of Sir2La follows a random 
substrate binding or steady-state ordered 
mechanism and further compare to previously 
investigated sirtuins. 

To further substantiate that the Sir2La-
deacylation mechanism is analogous to that of other 
sirtuins, the effect of known sirtuin inhibitors was 
analysed. This included suramin, sirtinol, AGK2, 
and SirReal2, the NAD+-derivatives nicotinamide, 
ADPR, NADH, and NADPH as well as substrate-
derived compounds 6 and 7. In agreement with 
literature (60,66), where NADH has been reported 
to inhibit some human sirtuins at high 
concentrations, millimolar concentrations of 
NADH and ADPR were needed to inhibit Sir2La-

catalyzed depropionylation and deacetylation. On 
the other hand, nicotinamide, suramin, and 
thioacetamide 6 inhibited deacylation at 
micromolar concentrations (Fig. 4 and Tables 3 and 
4). Noticeably, the potency of nicotinamide was 
higher for Sir2La-dependent debutyrylation than 
for deacetylation and depropionylation (IC50 of 50 
µM, 460 µM and 350 µM, respectively). The two 
substrate-derived compounds, thioacetamide 6 (65) 
and thiourea 7 (Fig. 4a), contain chemotypes that 
form stalled intermediates in the active site of 
sirtuins (65,83,84,85,86). In accordance with 
previous strong inhibition of sirtuins by thioamide-
based inhibitors, thioacetamide 6 was the most 
potent of the present investigated inhibitors. The 
peptide scaffold of compounds 6 and 7 was 
developed for efficient inhibition of human sirtuin 
5 through an iterative process including 
optimization of residues adjacent to the modified 
lysine (65) and improved inhibition of Sir2La-
activity may be expected through a similar Sir2La-
targeted process. Surprisingly, even though Sir2La 
shows a slight preference for propionylated 
substrates, thiourea 7 did not significantly decrease 
deacylase activity on any of the three substrates at 
the tested concentrations. We hypothesize that the 
planar geometry imparted by the thiourea moiety 
led to a relatively rigid acyl-surrogate that may 
prevent the inhibitor to adopt a suitable orientation 
within the active site and to react with NAD+. 

The cellular relevance of lysine propionylation 
and also butyrylation is increasingly being 
investigated. Propionyl- and butyryllysine residues 
were initially identified on histones in human 
(31,87) followed by yeast cell lines (88). 
Subsequently, these PTMs have been described 
either as competing with other PTMs (e.g., Kbut vs 
Kac) or combined with other modifications (89,90). 
Similar to other acyl PTMs, identification of 
propionylation and butyrylation sites has been 
expanded to include proteins other than histones. 
Several acylation sites were identified on tumor 
suppressor p53 and histone acetyl transferases p300 
and CBP in human non-small cell lung carcinoma 
cells (32), and elevated levels of the corresponding 
CoAs either as a result of impaired propionyl-CoA 
carboxylase or short-chain acyl-CoA 
dehydrogenase activity (91) or by chronic ethanol 
ingestion (92) causing increased acylation levels of 
both nuclear and mitochondrial proteins. 
Demonstrating a regulatory function of a site-
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specific modification, propionylation of propionyl-
CoA synthetase at lysine-592 in S. enterica has 
been shown to inhibit its enzymatic activity, and 
interestingly the activity can be rescued by sirtuin-
mediated depropionylation (48). Lysine acylation 
of other proteins that are either directly involved in 
or metabolically close up- or downstream to the 
generation of a reactive compound, e.g., an acyl-
CoA or acyl phosphate, has also been reported 
(44,93). Furthermore, low-level acylation on 
thousands of sites has been reported throughout the 
proteome in E. coli, possibly formed through non-
enzymatic acylation reactions (94). A critical 
component was shown to be acetyl phosphate, 
formed as an intermediate between acetyl-CoA and 
acetate. Deletion of CobB—the only E. coli 
sirtuin—lead to increased acetylation of a subset of 
these sites, primarily in unstructured regions and 
protein termini. Similarly, bacteria can convert 
between propionyl-CoA and propionyl phosphate 
and either may participate in the formation of 
propionyllysine throughout the proteome. Efforts to 
map bacterial lysine propionylomes have been 
reported (95,96,97) and suggest, as for lysine 
deacetylation, a link between lysine propionylation 
and metabolism. While the observed difference of 
kcat/KM is only ~2.7-fold between depropionylation 
and deacetylation, the favored depropionylation is 
intriguing, and a similar propionylome of L. 
acidophilus would be of high interest to further 
pursue the biological relevance of this observed 
preference. 

With the importance of commensal bacteria in 
health and disease, a thorough characterization of 
microbial enzymes involved in NAD+-metabolism 
is important to understand both their primary role 
in the metabolism of the microorganism as well as 
predicting the potential impact of NAD+-precursor 
supplements on host-microbe interactions. In the 
present study we have identified, produced and 
characterized the first sirtuin from a species of the 
Lactobacillales order. The observed NAD+-
dependent deacylation of acyllysine substrates 
unequivocally identifies Sir2La as a functional 
sirtuin enzyme, which is corroborated by its 
inhibition by nicotinamide, suramin and 
thioacetamide 6. The observed ability to deacylate 
acetyl-, propionyl-, and butyryllysine residues 
emphasizes the relevance of further exploring the 
role of other short-chain acyl moieties than acetyl 
as PTMs, to further investigate the propionylome of 

microorganisms, and highlights a potential 
difference between the different subsclasses for 
class U sirtuins. 

Experimental procedures 
Identification of Sir2La—Using the 

Microbesonline (microbesonline.org) and UniProt 
(uniprot.org) databases and the COG0846 motif 
(98) as probe, two proteins (Sir2La/LBA0117 
[UniProt Q5FMQ6] and LBA1649 [UniProt 
Q5FIL3]) were identified as putative lysine 
deacylases in the genome of Lactobacillus 
acidophilus NCFM (59). 

Multiple sequence alignment, phylogenetic 
tree—Based on Frye (24), Greiss and Gartner (25), 
Rack et al. (26), Okanishi et al. (96), and the SIR2 
superfamily from the NCBI conserved domain 
database [NCBI CDD # cd00296] a list of 159 
species was generated (Table S3). Subsequently, 
proteins assigned with sirtuin sequence motifs 
[eggNOG: COG0846, Pfam: pf02146, or 
PROSITE: ps50305] within these species were 
identified in the UniProt database, and the 
sequences truncated to comprise sirtuin domains 
identified in either UniProt or NCBI CDD. The 
resulting list of 1587 non-redundant domain 
sequences was curated by removal of closely 
related intraspecies sequences resulting in a list of 
535 representative proteins (Table S3). One 
hundred alignments of these proteins were 
calculated using MAFFT v 7.310 (99,100) and the 
e-ins-i algorithm [options: --genafpair --maxiterate 
1000 --seed] with the central part of the alignment 
available from NCBI CDD of the 100 most diverse 
sequences as seed. A consensus alignment was 
calculated using t-coffee v 11.00.8cbe486 (101) and 
used to construct a phylogenetic tree in FastTree v 
2.1.10 (102) [options: -wag -gamma -slow -seed -
notop -log] using the WAG-CAT model (103). 

Multiple sequence alignment, small sets—Three 
smaller sets were also aligned using MAFFT v 
7.310 (99,100) and the l-ins-i algorithm [options: -
-localpair --maxiterate 1000]: Sir2 [Sir2Tm, 
Sir2La, F0THZ6 (L. amylovorus), A0A133PBX8 
(L. gasseri), Q74LU0 (L. johnsonii), G9ZKM4 (L. 
parafarraginis), and CobB (L. plantarum)], SirTM 
[spySirTM, sauSirTM, LBA1649, F0TGP4 (L. 
amylovorus), D1YLJ9 (L. gasseri), A0A137PK42 
(L. johnsonii)], and a set including the human 
sirtuins (hSIRT1-7, Sir2La, Sir2Tm, LBA1649, 
spySirTM, and sauSirTM). The latter set was used 
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to calculate identities and similarities at 
imed.med.ucm.es/Tools/sias.html (similarity 
groups: FYW, RKH, DE, ST, NQ, and VILMA) 
(Table S2). 

BLAST search, Sir2La-like proteins—A 
BLASTP search of lactobacillus proteins in the 
NCBI database (blast.ncbi.nlm.nih.gov) using the 
Sir2 set discussed above as probes (E-value cut-off 
= 10–6) and removing closely related intraspecies 
sequences identified 269 sequences, spanning 156 
different bacteria (Table S4). 

BLAST search and multiple sequence alignment, 
sirTM/LBA1649-like proteins—A BLASTP search 
of lactobacillus proteins in the NCBI database 
(blast.ncbi.nlm.nih.gov) using the sirTM set 
discussed above as probes identified 239 
sequences, spanning 53 different bacteria. 100 
alignments of these proteins were calculated using 
MAFFT v 7.310 (99,100) and the l-ins-i algorithm 
[options: --localpair --maxiterate 1000] and a 
consensus alignment was calculated using t-coffee 
v 11.00.8cbe486 (101). Based on the three residues 
discussed in the text to be critical for SirTM 
function, three groups could be identified: SirTM-
like [NQR, 75 sequences, 29 species], LBA1649-
like [XFP (X=A/S/T/Y), 104 sequences, 27 
species], a smaller group [NEX (X=A/P/T), 20 
sequences, 11 species], and additionally sequences 
with one or more of the residues missing (45 
proteins) could be identified but were discarded in 
the following analysis (Table S4). 

Protein expression and purification—The gene 
encoding Sir2La was amplified by PCR from 
genomic DNA of L. acidophilus NCFM (generous 
gift of Dr. Morten Ejby) and subcloned into the 
pET-28a(+) vector using NdeI and BamHI 
restriction enzymes. The construct was transformed 
into DH5alpha cells and verified by sequencing 
(Eurofins Genomics and GATC Biotech), followed 
by transformation into BL21(DE3) competent E. 
coli cells. Cells were cultured in LB medium at 37 
°C until OD600 0.6–0.9, induced with 0.1 mM IPTG 
for gene expression, incubated at 20 °C for 16 h and 
harvested (14,000 g, 4 °C, 20 min). The cells were 
lysed by homogenization (Stanstead Pressure Cell 
Homogenizer, SPCH-10) in equilibration buffer A 
(25 mM HEPES, pH 7.4, 500 mM NaCl). The 
resulting lysate was clarified by centrifugation 
(14,000 g, 4 °C, 20 min) and loaded onto a 1 mL 
HisTrap HP (Äkta purifier, GE Healthcare), washed 
with equilibration buffer A (20 mL) and eluted by 

equilibration buffer A supplemented with 500 mM 
imidazole. Following analysis by SDS-PAGE, the 
appropriate fractions were combined and 
concentrated (10 kDa cut-off, Amicon Spinfilter). 
The buffer was exchanged (10 kDa cut-off, Amicon 
Spinfilter) to equilibration buffer B (50 mM sodium 
acetate, pH 5, 25 mM NaCl) and the resulting 
solution was loaded on a 1 mL HiTrap Capto Q/S 
column (Äkta purifier, GE Healthcare), washed 
with equilibration buffer B (approx. 20 column 
volumes), and eluted using a linear gradient of 
equilibration buffer B (approx. 40 column volumes) 
supplemented with sodium chloride to a final 
concentration of 1 M. After analysis by SDS-
PAGE, the appropriate fractions were concentrated 
(as above). Protein concentration of the resulting 
solution was determined spectrophotometrically at 
280 nm using theoretical molar extinction 
coefficients of 19.4∙10–3 M–1cm–1 and 46.0∙10–3 M–

1cm–1 for Sir2La and LBA1469, respectively 
(http://web.expasy.org/protparam) to 2.7−5.1 
mg/mL (See the Supporting Information for full-
length amino acid sequences of the produced 
proteins). 

Chemical synthesis—Fluorogenic substrates 
from the series 1 and substrates 2c and 2d were 
synthesized using protocols similar to previous 
reports (see the Supporting Information for full 
experimental details). The remaining substrates 
from series 2 and substrates from series 3–5 were 
reported earlier (44,60,61,70,104,105,106) and 
synthesized using a combination of solution-phase 
and solid-phase peptide synthesis (see the 
Supporting Information for references). Compound 
6 has previously been reported (65) and compound 
7 was synthesized from bis(1-
benzotriazolyl)methanethione, methyl amine, and 
Cbz-Lys-Trp-NHiPr∙TFA using a protocol reported 
in the same paper (see the Supporting Information 
for full experimental details). 

Fluorescence-based deacylase assays—All 
reactions were performed at 25 °C in black low 
binding 96-well microtiter plates (Corning half-
area wells), with duplicate series in each assay, and 
each assay was performed at least twice. Control 
wells without enzyme were included in each plate. 
All reactions were performed in assay buffer (50 
mM HEPES, 100 mM KCl, 200 µM TCEP, 0.001% 
Tween-20 (v/v), pH 7.4, 0.5 mg/ml BSA) with 
appropriate concentrations of substrates and 
inhibitors obtained by dilution from 10–250 mM 
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stock solutions in either water or DMSO and an 
appropriate concentration of enzyme obtained by 
dilution of the stock obtained as described above. 
All plates were analyzed using a PerkinElmer Life 
Sciences Enspire plate reader with excitation at 360 
nm and detecting emission at 460 nm. Fluorescence 
measurements (relative fluorescence units) were 
converted to [AMC] concentrations based on an 
[AMC]-fluorescence standard curve. All data 
analysis was performed using GraphPad Prism v 
7.0c. 

End-point fluorophore-release assays. 
Fluorogenic sirtuin substrate screening—The 
initial screening for substrate deacylation activity 
was performed with end-point fluorophore release 
by trypsin.(104,105,107) For a final volume of 25 
μL/well, protein (final concentration, 250 nM), acyl 
substrate (50 μM), and either NAD+ or NADP+ (500 
µM) was incubated (60 min), then a solution of 
trypsin and nicotinamide (25 μL, 5.0 mg/mL and 4 
mM; final concentration of 2.5 mg/mL and 2 mM) 
was added, and the assay development was allowed 
to proceed for 90 min at 25 °C before fluorescence 
analysis. Co-substrate selectivity was determined 
using the same protocol. End-point concentration-
response (inhibitor) assays—End-point inhibition 
assays (concentration–response) were performed in 
a final volume of 25 µL/well, where Sir2La (250 
nM) and inhibitor (nicotinamide, ADPR, suramin, 
AGK2, SirReal2, sirtinol, 6 or 7, 5-fold dilution 
series) was incubated with substrate (2b-d at KM [2b 
21 µM, 2c 14 µM, and 2d 15 µM]) and NAD+ (500 
µM) at 25 °C for 60 min, then a solution of trypsin 
and nicotinamide (25 μL, 0.4 mg/mL and 4 mM; 
final concentration of 0.2 mg/mL and 2 mM) was 
added, and the assay development was allowed to 
proceed for 15 min at 25 °C before fluorescence 
analysis. For inhibitors, where residual activities 
below 50% were obtained at the highest tested 
concentrations, the data were fitted to the 
concentration-response equation to obtain IC50-
values (µM). 

Continuous fluorophore-release assays. 
Michaelis-Menten plots and progress assays—Rate 
experiments for determination of kinetic 
parameters were performed in a final volume of 50 
µL/well, where Sir2La (250 nM) and substrate (2b-
d, 2-fold dilution series, 200-0.39 µM) were 
incubated with NAD+ (500 µM) and trypsin (10 
ng/µL). In situ fluorophore release was monitored 
immediately by fluorescence readings recorded 

every 30 s for 60 min at 25 °C, to obtain initial rates 
ν0 (nM s−1) for each concentration. The data were 
fitted to the Michaelis−Menten equation to afford 
KM (μM) and kcat (s−1) values. Bisubstrate kinetics—
Rate experiments for determination of bisubstrate 
kinetic parameters were performed using the same 
protocol but employing substrate (2c, 2-fold 
dilution series, 200-1.56 µM) and NAD+ (2-fold 
dilution series, 1000-63 µM). The data were fitted 
to the global equation for a two-substrate rapid 
equilibrium random mechanism (Eq. 1), the global 
equation for a two-substrate steady-state ordered 
mechanism (Eq. 2, which has the same form as Eq. 
1), or the global equation for a two-substrate rapid 
equilibrium ordered mechanism (Eq. 3) to afford 
dissociation and rate constants (Fig. 3a and Table 
3). Evaluation of the model-fits was performed by 
replotting values obtained by individual fits to Eq. 
3 and 4 for random and steady-state ordered 
mechanisms (Fig. 3b), or to Eq. 6–9 for the rapid 
equilibrium ordered mechanism assuming (for the 
resulting fits, see Supporting Figure S2). 

 
Eq. 1 

 

Eq. 2 

 

Eq. 3 

 

Eq. 4 
 

Eq. 5 
 

Eq. 6 
 

Eq. 7 
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Eq. 9 
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Continuous concentration-response (inhibitor) 
assays—Rate experiments for determination of 
inhibition constants were performed using the same 
protocol, and using inhibitor (2-fold dilution series, 
nicotinamide 5000-9.8 µM; 6, 300-0.59 µM), 
substrate (at substrate KM [2b 21 µM and 2c 14 
µM]), NAD+ (500 µM) and trypsin (10 ng/µL). The 
data were then fitted to the concentration-response 
equation to obtain IC50-values (µM). 

HPLC-MS-based assays—For HPLC-MS-
based assays, the same assay buffer was used, but 
with omission of BSA. Inhibition assays 
(concentration–response) were performed in a final 
volume of 25 µL/well, where Sir2La (250 nM) and 
NADH or NADPH (seven-point dilution series, 10–
0.01 mM) was incubated with substrate (2b or 2c, 
100 µM) and NAD+ (500 µM) at 25 °C for 60 min, 
followed by addition of MeOH/HCOOH (96:4 
(v/v), 25 µL). The samples were analyzed by 

HPLC-MS on a Waters Acquity ultra-HPLC-MS 
system equipped with a diode array detector. A 
gradient with eluent I (0.1% HCOOH in water 
(v/v)) and eluent II (0.1% HCOOH in acetonitrile 
(v/v)) rising linearly 0–10% during t = 0.00–2.10 
min followed by 10–60% of eluent II during t = 
2.10–4.30 min was applied at a flow rate of 0.6 
ml/min. The obtained chromatograms at 326 nm 
(where the coumarin moiety has its absorption 
maximum) were used to determine reaction 
progression, by determining area under the curve of 
the relevant peaks and the obtained mass spectra 
used to determine formation of the desired 
deacylated product using Waters MassLynx. For 
inhibitors, where residual activities below 50% 
were obtained at the highest tested concentrations, 
the data were fitted to the concentration-response 
equation to obtain IC50-values (µM). 
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DLAT, dihydrolipoyllysine acetyltransferase; GcvH-L, Glycine cleavage system H-like; H3, histone 3; H4, 
histone 4; HDAC, histone deacetylase; IPTG, isopropyl β-D-1-thiogalactopyranoside; Kac, ε-N-
acetyllysine; Kbut, ε-N-butyryllysine; Kpro, ε-N-propionyllysine; lam, L. amylovorus; lga, L. gasseri; ljo, 
L. johnsonii, lpl, L. plantarum; lpa, L. parafarringis; LplA2, lipoate protein ligase A; NR, nicotinamide 
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The following database entries are used in the text: From the NCBI conserved domain database: The Sir2 
superfamily NCBI accession number cd00296, Class U from Gram-positive bacterial species and 
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number cd01413; Sirtuin sequence motifs used for identifying sirtuin domains can be accessed at eggNOG: 
COG0846, Pfam: pf02146, and PROSITE: ps50305; The amino acid sequences of proteins disscussed can 
be accessed through the UniProt database: Sir2La/LBA0117 under UniProt Q5FMQ6, LBA1649 under 
UniProt Q5FIL3, spySirTM under UniProt P0DN71, and sauSirTM under UniProt A0A0H3JQ59. See the 
Supporting Information for further protein/UniProt references. The atomic coordinates for crystal structures 
discussed are available from the PDB database: Sir2Tm in complex with an acetyllysine peptide under PDB 
ID 2h2d, Sir2Tm in complex with a propionyllysine peptide under PDB ID 3pdh, and Sir2Af2 in complex 
with a myristoyllysine peptide under PDB ID 4ywj. 
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Figure 1. Bioinformatic analysis. a) Phylogenetic tree of 535 sirtuins with indication of sirtuin classes. The 
positions of the two putative sirtuins from L. acidophilus NCFM (in bold), the human sirtuins 1–7, as well as 
selected sirtuins from class U and M are indicated. b) Sirtuins in lactobacilli. BLAST searches of classes U and 
M sirtuins in lactobacilli. Three different motifs of three functionally critical residues are identified in the class 
M hits. c) Alignment of selected sirtuins. Secondary structure assignment of known crystal structures and key 
residues discussed in the text are shown. 
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Figure 2. Substrate screening of Sir2La and LBA1649. a) Heatmap of Sir2La and LBA1649-dependent 
deacylase activity based on endpoint assays. All reactions were incubated for 1 h at 37 °C before development 
and fluorescence analysis. b) Substrate structures; amino acid sequences and acyl groups. n.d., not determined. 
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Figure 3. Characterization of deacylation reactions by Sir2La. a) Michaelis-Menten plots for Sir2La-dependent 
deacylation of three short-chain substrates measured at 500 µM NAD+. b) Co-substrate selectivity for Sir2La. 
Bar-graphs of substrate deacylation using either NAD+ (blue) or NADP+ (red). c) Bisubstrate kinetic 
measurements for Sir2La-dependent deacylation of ε-N-propionyllysine substrate 2c, showing the global fit of 
steady-state rates to the sequential random order equation and the corresponding secondary plots of (kobs/kcat) 
and (kobs/Kobs·αKM/kcat) as functions of substrate concentrations. Best fit is shown as lines. All reactions were 
monitored for at least 1 h at 25 °C. 
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Figure 4—Inhibition of Sir2La-catalyzed deacylation of Kpro substrate 2c. a) Structures of inhibitors 6 and 7. 
b) Residual activities for depropionylation, dose-response curves from end-point assays. c) Progression curves 
and data fitting for inhibition of deacylation by nicotinamide and compound 6. 
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 KM  

(µM) 
kcat  

(·10–3 s–1) 
kcat·KM–1 
(M–1s–1) 

Ac-LGKac-AMC (2b) 21 ± 6 2.5   ± 0.2   120 ± 40 

Ac-LGKpro-AMC (2c) 14 ± 3 4.4   ± 0.3   320 ± 90 

Ac-LGKbut-AMC (2d) 15 ± 2 1.21 ± 0.06   82 ± 17 

Table 1—Kinetic values for Sir2La-catalyzed deacylation of ε-N-acyllysine substrates 2b (Kac substrate), 2c 
(Kpro substrate), and 2d (Kbut substrate) measured at 500 µM NAD+.  

 
 

 k1 
(µM–1s–1) 

k–1 
(s–1) 

KM,2c 
(µM) 

KM,NAD / 
KM,NAD,app 

(µM) 

α kcat / k3 
(·10–3 s–1) 

Random 
binding, rapid 
equilibrium 

– – 13 ± 2 860 ± 250 2.1 ± 0.8 48 ± 4 

Ordered 
binding,  

steady state 
1.7 ± 0.7 22 ± 9 13 ± 2 1850 ± 880 – 48 ± 4 

Table 2—Kinetic values derived from bisubstrate kinetic measurement of Sir2La-catalyzed deacylation of Kpro 
substrate 2c. 

 
 

Substrates Inhibitors (IC50 (µM)) 
                       nicotinamide suramin 6 

Ac-LGKac-AMC (2b) 460 ± 20 110 ±   20 16.1 ± 0.2 

Ac-LGKpro-AMC (2c) 350 ± 70 100 ±   30 15    ± 2 

Ac-LGKbut-AMC (2d) 51 ± 31 640 ± 370 20    ± 5 

Table 3—IC50-values for inhibition of Sir2La-catalyzed deacylation, measured in end-point assays. 

 
 

Substrates Inhibitors (IC50 (µM)) 
 nicotinamide 6 

Ac-LGKac-AMC (2b) 460 ± 240 5.8 ± 0.1 

Ac-LGKpro-AMC (2c) 400 ±   20 12    ± 4 

Table 4—IC50-values for inhibition of Sir2La-catalyzed deacylation, measured in continuous assays. 
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