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Abstract 

 

The characterization of brain subnetwork segregation and integration has previously 

focused on changes that are detectable at the level of entire sessions or epochs of imaging 

data. In this study, we applied time-varying functional connectivity analysis together with 

temporal network theory to calculate point-by-point estimates in subnetwork segregation 

and integration during an epoch-based (2-back, 0-back, baseline) working memory fMRI 

experiment as well as during resting-state. This approach allowed us to follow task-related 

changes in subnetwork segregation and integration at a high temporal resolution. At a 

global level, the cognitively more taxing 2-back epochs elicited an overall stronger 

response of integration between subnetworks compared to the 0-back epochs. Moreover, 

the visual and fronto-parietal subnetworks displayed characteristic and distinct temporal 

profiles of segregation and integration during the 0- and 2-back epochs. During the 

interspersed epochs of baseline, many subnetworks, including the default mode, visual, 

fronto-parietal, cingulo-opercular and dorsal attention subnetworks showed pronounced 

increases in segregation. Using a drift diffusion model we show that the response time for 

the 2-back trials are correlated with integration for the fronto-parietal subnetwork and 

correlated with segregation for the visual subnetwork. Our results elucidate the fast-

evolving events with regard to subnetwork integration and segregation that occur in an 

epoch-related task fMRI experiment. Our findings suggest that minute changes in 

subnetwork integration are of importance for task performance. 
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Introduction 

 

Research related to the brain’s large-scale functional connectome has recently been aimed 

to address questions pertaining to the brain’s dynamic functional connectivity [1-3].  One 

important aspect of the functional connectome is the balance between network segregation 

on one hand and integration on the other hand [4,5].  To this end, previous studies have 

studied fluctuations in the functional brain connectome during resting-state conditions (e.g. 

[6-9]). Recently, task-related changes for the temporal properties of the functional brain 

connectome have been targeted (for recent reviews, see [10-13]).  Notably, most previous 

studies on the relationship between cognition and the dynamics of the functional brain 

connectome have either examined differences in brain connectivity when analyzed across 

entire epochs of data [14-16] or between separate fMRI sessions [17]. Notable is also the 

fact that many previous investigations of task-related changes in the functional brain 

connectome use versions of the sliding-window method to estimate time-varying functional 

connectivity [18-21]. However, sliding-window based methods have limited temporal 

resolution due to the necessity for analyzing large portions of consecutive data time-points 

(typically 30-60 seconds). Moreover, we have in a recent study shown that window-based 

methods fail to accurately track fluctuations in signal co-variance over time [22].     

In this work we present results that reveal the temporal trajectories of brain subnetwork 

connectivity during 0/2-back working memory and resting-state fMRI experiments. To do 

this, we utilized data from the Human Connectome Project [23]. Estimates of time-varying 

functional connectivity were calculated per time-point using the jackknife correlation 

method that avoids the usage of windows and thereby provides a fine-grained temporal 

resolution [24]. The Power parcellation of the brain was used and the following ten 

subnetworks were studied (following the Cole et al., 2013 network template [25]): DMN – 

default mode, SM – sensorimotor, VIS – visual, FP – fronto-parietal attention, SA – 

saliency, CO – cingulo-opercular, AU – auditory, Sub – subcortical, DA – dorsal attention 

and VA - ventral attention subnetwork [26]. 

Our aim with the current study was two-fold. First, we tracked changes in brain network 

segregation and integration over time. This was quantified using a measure called 

Segregation Integration Difference (SID) which is defined below. Our results reveal a wide 

range of temporal patterns of segregation and integration between brain subnetworks 

during the full time-course of the working memory fMRI experiment. Moreover, we show 

that the degree of segregation and integration in the fronto-parietal and visual subnetworks 

is dependent on task complexity. 
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Second, we investigated the relationship between task performance and the degree of 

network segregation and integration. To this end, previous attempts to quantify dynamic 

functional connectivity to behavior include reaction times [27-30] and eye movement [30]. 

Regarding reaction time, dynamic measures have been correlated with the average 

reaction time [29] or by grouping reaction times into categories (e.g. median split, [27]) 

or heuristically based on task contrast [28]. In [30], a drift diffusion model was used where 

the model parameters were correlated with each bin of their dynamic functional 

connectivity estimates. This ignored the individual trial for which each dynamic network 

estimate originated from. A correlation between estimates of dynamic network activity with 

reaction time at each trial has not, to our knowledge, been shown. We found that reaction 

times and accuracy recorded for the 2-back trials are correlated to the dynamics of 

segregation and integration in the visual and fronto-parietal subnetworks.  

 

Results  

An illustrative example of temporal strength and Segregation Integration 

Difference (SID). To describe how temporal profiles of subnetwork integration and 

segregation during epoch-related fMRI experiments and resting-state are quantified, we 

start by providing a simple example that serves to show the two central concepts used in 

this paper. The metrics used to quantify time-varying network properties are based on 

temporal network theory and an example of the usage of the two key metrics, time-

evolving temporal strength and the segregation and integration difference (SID) is shown 

in Fig. 1. The example provided in Fig. 1A includes a temporal network that consists of two 

subnetworks: A and B with 3 nodes in each subnetwork and binary, undirected edges 

between nodes at each time-point. First, we calculate the within-subnetwork temporal 

strength for each subnetwork (DA, DB). This is the sum of all edge weights within each 

subnetwork at each time-point. Second, the value of temporal strength is then scaled by 

the total number of possible edges within each subnetwork (Fig. 1B). Third, we compute 

the between-subnetwork temporal strength (DA,B) as the scaled sum of edge weights that 

connect between nodes in the two subnetworks at each time-point (Fig. 1B).  The global 

temporal average strength (Dglobal) is added to Fig. 1B to assist visualization and it is simply 

the average of all edge weights for all nodes (in both subnetworks) at each time-point. To 

derive the degree of segregation and integration between A and B (SIDA-B), we subtract 

the between-subnetwork from the within-subnetwork temporal strength (Fig. 1C). Thus, 

SID is constructed in such a way that a positive value implies more segregation and a 

negative value implies more integration between subnetworks (see Fig. 1C, in particular 

time-point 3 that represents a balance between integration and segregation, i.e. SIDA-B = 

0. Time-point 7 shows a peak in subnetwork integration (i.e. the largest negative SID 
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value). See the Material and Methods section for details regarding the jackknife correlation 

method, temporal strength and how to compute SID values in a general setting. 
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Fig. 1. A schematic example describing the temporal network measures used. (A) 

A simple network example that contains two subnetworks with three nodes in each 

(subnetwork A and B). Connectivity (here binary) between and within subnetworks is 

marked with arcs as a function of time. (B) A graph that plots the value of the temporal 

strength at a global (Dglobal) level, within-subnetworks (DA, DB) and between-subnetworks 

(DA,B). (C) The Segregation Integration Difference (SIDA-B) measure for the two 

subnetworks shown in panel (A). 

 

 

Temporal strength during the working memory experiment and resting-state. The 

summed temporal strength over all nodes (DGlobal) during the working memory experiment 

and resting-state is shown for a single subject in Figs. 2A,2B and averaged across subjects 

in Figs. 2C and 2D. We note that Dglobal peaks during the majority (3 out of 4) of the 15 

seconds long baseline (rest) epochs in the working memory experiment while it stays 

constant throughout the resting-state experiment. Temporal strength at the level of 

individual nodes for the working memory experiment and resting-state are shown in Fig. 

2E (working memory) and Fig. 2F (resting-state). Plots of temporal strength at the level 

of subnetworks are given in Fig. 2G (working memory) and Fig. 2H (resting-state). First, 

we note that the peaks in Dglobal shown in Fig. 2C during baseline epochs for working 

memory experiment are not uniformly expressed across all nodes and subnetworks (Fig. 

2G). Rather, while the DMN, SM, AU and VA subnetworks show peaks in temporal strength 

during baseline epochs, the VIS, DA, and the FP subnetworks, display the opposite pattern 

with a trough during baseline epochs. Second, for the resting-state experiment, small, 

non-uniform changes are observed for all subnetworks which suggests that the results 

obtained for the working memory experiment reveals time-varying connectivity that are 

time-locked to the experiment design.  
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Fig. 2. Temporal strength during the working memory experiment and resting-

state experiments. (A,B) The global temporal strength (Dglobal) in a single subject during 

the working memory (A) and the resting-state experiments (B). (C,D) Same as in (A,B) 

but results are pooled (averaged across subjects) for the working memory (C) and resting-

state experiments (D). (E,F) Temporal strength computed at a nodal level and averaged 

across subjects for the working memory (E) and resting-state experiments (F). (G,H) 

Temporal strength at a subnetwork level (averaged across subjects) during the working 

memory (G) and resting-state experiments (H). ‘0B’ – 0-back epoch, ‘2B’ – 2-back epoch, 

‘R’ – rest (baseline) epoch. Shaded areas mark the standard error of the mean. 
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Correlation of subnetwork temporal strength during the working memory 

experiment and resting-state. We wished to assess the overall degree of similarity in 

temporal strength over the entire imaging session (working memory and resting-state, 

respectively). This was done by calculating the correlation coefficient between each pair of 

subnetwork temporal strength time-courses in each subject and imaging session 

(experiment) and then taking the average across subjects. The corresponding correlation 

matrices are shown in Fig. 3A (working memory) and Fig. 3B (resting-state). The temporal 

strength time-courses for the DMN subnetwork are negatively correlated with most other 

subnetworks during both the working memory and resting-state experiment. Additionally, 

both the VIS and SM subnetworks are negatively correlated with the FP and SA 

subnetworks during both experiments. On the other hand, we observe strong positive 

correlations between subnetworks, in particular for the AU and DA subnetworks during 

both the working memory experiment and resting-state. Significant experiment-related 

differences in the time-course of temporal strength (p<0.001, Bonferroni corrected) were 

found between 13 pairs of subnetworks (Fig. 3C). Notably, the majority of significant 

differences between working memory and resting-state for fluctuations of temporal 

strength between subnetworks involved the DMN, VIS, SA and CO subnetworks. 

 

 

Fig. 3. Correlation of temporal strength between subnetworks over time during 

the working memory and resting-state experiments. (A) Correlation coefficient 

matrix that show the degree of correlation in temporal strength between subnetworks 

during the working memory experiment. (B) Temporal strength correlation matrix for the 

resting-state experiment. (C) Differences in correlation of temporal strength for the 

working memory and resting-state experiments. Statistical significant differences in 

correlation were assessed by a non-parametric permutation approach (10000 

permutations, p<0.001, Bonferroni corrected). An asterisk within parenthesis signify that 

the differences in temporal strength time-courses where only significant in one of the 

datasets (‘LR’ and ‘RL’, respectively). 
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Subnetwork segregation and integration during the working memory and resting-

state experiments. Temporal fluctuations in subnetwork integration and segregation 

were quantified using SID. We started by calculating SID across all subnetworks (SIDGlobal, 

see also Materials and Methods section). Figs. 4A and 4B show the time-course of SIDGlobal 

in a single subject and Figs. 4C and 4D show the results obtained when averaging data 

across subjects. The working memory experiment time-course for SIDGlobal shown in Fig. 

4C suggests a substantial global increase in segregation between subnetworks during 

baseline epochs. The results shown in Fig. 4C also show that the level of network 

integration is relatively larger during 2-back than 0-back task epochs. As shown in Fig. 4D, 

SIDGlobal remains rather unchanged throughout the resting-state experiment, a finding 

which again highlights that the observed time-varying connectivity of network integration 

during the working memory experiment is time-locked and tightly coupled to the epoch-

related working memory experimental design.  

Next, we examined fluctuations in integration and segregation at the level of subnetworks 

during the working memory experiment and the results are shown in Fig. 4E (single 

subject) and Fig. 4G (averaged across subjects).  Distinct peaks in subnetwork segregation 

are present during baseline epochs for the VIS, DMN, FP, SA and DA subnetworks. The SID 

values for the VIS subnetwork show troughs during 0-back and 2-back epochs, suggesting 

a relative increase in integration during the working memory epochs. This is also the case, 

but to a lesser extent, for the DMN and DA subnetworks. Contrary to our expectations, the 

FP subnetwork shows a larger degree of segregation during the 2-back epochs compared 

to the 0-back epochs.  If we consider the single subject SID results for the resting-state 

experiment (Fig. 4F), we observe that brief events of increased segregation occur in most 

subnetworks. However, those brief events of segregation are averaged out when the 

results are averaged across subjects (Fig. 4H). This finding is to be expected for the case 

when the data is not time-locked to specific stimuli or instructions.  
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Fig. 4. Segregation Integration Difference (SID) during the working memory and 

resting-state experiments. (A,B) Global SID (SIDGlobal, summed over all pairwise 

differences in within- versus between-subnetwork temporal strength) in a single subject 

during the working memory (A) and resting-state experiments (B).  (C,D) Same as in (A,B) 

but for results that are averaged across all subjects during the working memory (C) and 

resting-state experiments (D). (E,F) SID results at a subnetwork level in a single subject 

for the working memory (E) and resting-state experiments (F). (G,H) Same as in (E,F) but 

for SID results that are averaged across subjects  for the working memory (G) and resting-

state experiments (H). ). ‘0B’ – 0-back epoch, ‘2B’ – 2-back epoch, ‘R’ – rest (baseline) 

epoch. Shaded areas mark the standard error of the mean. 
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Differences in cognitive load during the working memory experiment correlates 

with differences in subnetwork integration and segregation. Given the difference in 

cognitive load and brain activity between 2-back and 0-back epochs [31-33], we were 

interested whether the task difficulty reflected differences in SID. This was done by dividing 

the working memory experiment SID time-series into 2-back, 0-back and baseline epochs.  

First, we examined whether there was a significant difference between the mean (first 5 

seconds of data were skipped due to the hemodynamic latency) SID for the 2-back and 0-

back epochs at the global level (SIDglobal). The findings presented in Fig. 5A show that the 

mean of the time-locked and epoch-averaged SIDglobal were significantly smaller during 2-

back compared to 0-back epochs (p<0.001, Bonferroni corrected). This result suggests 

that, at a global level, the degree of integration between subnetworks was larger during 

2-back than 0-back epochs. Next, we performed the same statistical comparison for each 

of the ten subnetworks (Fig. 5B). Significantly lower values for the mean of SID values for 

the 2-back epochs compared to 0-back epochs were observed for the VIS subnetwork, 

suggesting a stronger degree of integration during the 2-back epoch between the VIS 

subnetwork and the nine other subnetworks. In contrast, SID values for the FP subnetwork 

were lower for the 0-back than the 2-back epochs which indicate a relatively stronger 

degree of integration between the FP and other subnetworks during the 0-back compared 

to the 2-back epochs. Additionally, the CO, SM and DA subnetworks also showed a larger 

degree of integration with other subnetworks during the 2-back compared to the 0-back 

epochs but these differences were not significant in the replication data set (see also 

below). The temporal profiles of the SID values for the VIS and FP subnetworks during task 

performance are of particular interest (Fig. 5B). Most subnetworks (DMN, SM, SA, AU, Sub, 

VA) are characterized by SID values that are rather constant, albeit with small fluctuations 

around zero, or showing a small trend of decreasing/increasing SID values (CO and DA).  

Baseline epochs in the working memory experiment is related to increases in 

segregation between subnetworks. The SID time-courses during baseline epochs are 

shown in Fig. 5C. Again, the VIS subnetwork stands out with a very strong increase in 

segregation that reaches a plateau after approximately 10 seconds. The DMN, FP, CO, AU 

and DA subnetworks shows similar increases in segregation during baseline epochs but 

reaches more moderate levels during the latter half of the epoch. The remaining 

subnetworks (SM, SA, Sub, VA) show only small or moderate fluctuations in segregation 

and integration during baseline epochs.  
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Fig. 5. Time-locked averaging of SID results during 2-back, 0-back and baseline 

epochs for the working memory experiment. (A) The time-locked average (across all 

epochs and subjects) of SIDGlobal for 2-back (red) and 0-back (green) epochs, respectively. 

A non-parametric t-test (permutation approach, 10000 permutations, p<0.001, Bonferroni 
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corrected) based on the mean of the data points from the last 20 seconds of each epoch 

(the first 5 seconds of data skipped due to the hemodynamic latency) was used to 

investigate statistically significant differences in SID during 2-back and 0-back epochs. (B) 

Time-locked SID results with respect to 2-back versus 0-back epochs for each of the ten 

subnetworks. An asterisk within parenthesis signify that the differences in SID time-

courses where only significant in one of the datasets (‘LR’ and ‘RL’, respectively). (C) Time-

locked averaged subnetwork SID results for the baseline epochs (results averaged across 

epochs and subjects). Shaded areas show the standard error of the mean. 

 

The degree of subnetwork integration is related to decreases in reaction time and 

concurrent increases in accuracy. To test the behavioral relevance of the SID results, 

we selected the three SID time-courses that showed consistent differences during 0- and 

2-back task epochs, i.e. the SIDGlobal, SIDVIS and SIDFP time-courses, respectively (see also 

Figs. 5A and 5B). Our aim was to investigate if the subject’s latent decision process for 

each 2-back trial correlated with the SID trajectories on a trial-by-trial basis. To estimate 

the relationship between SID results and these processes, we used a hierarchical Bayesian 

estimation of the drift diffusion model (HDDM) as implemented in a toolbox by Wiecki et 

al., 2013 (see ref. [34] and Fig. 6A for a schematic figure of the model parameters). Drift 

diffusion models conceptualize subject’s decisions as noisy evidence accumulation 

processes to fit reaction times and errors in terms of drift rate/evidence accumulation (v), 

decision boundary (a) and non-decision time (Ter). The drift rate v indicates the speed of 

the evidence accumulation process while the decision boundary a relates to the response 

caution with which a decision is being made and the non-decision time Ter refers to sensory 

and motor processes which are not part of the active decision process. Over the past two 

decades they have proved increasingly useful in psychology and neuroscience in the 

attempt to relate latent decision parameters to neurophysiological processes as measured 

for example by EEG and fMRI (see e.g. reviews found in [35,36]). 

Trajectories of SID were derived by taking, for each trial, the SID value at trial onset 

combined with the next 9 time-points and then reduced using principal component analysis 

(PCA). For each of the three SID subnetwork configurations, five principal components (PC) 

were obtained which explained at least 95% of the variance (See Fig. 6A). The PCA weights 

for each of the five PCs are shown on the left side of Fig. 6B-D. A positive weight at time t 

is indicative of “a larger value of SID at time t” which entails more segregation and vice 

versa for negative weights. The PCs represent different time-locked trajectories of the SID 

values observed over trials. The first PC (top row in Fig. 6B-D), shows a slight peak in 

segregation after trial onset followed by a slight decrease. The second component starts 

with integration but becomes segregated with time. The third component shows an 
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increase in segregation (except for SIDGlobal which shows the opposite pattern). The forth 

component has a peak in segregation followed by a peak in integration. The fifth 

component starts out by being integrated, then shows a peak in segregation which is 

followed by an increase in integration. 

Due to potential problems with multi-collinearity, the SIDGlobal trajectory was run in a 

different HDDM model compared to the SIDVIS and SIDFP trajectories (Fig. 6A). Several 

models were tested in which the model parameters drift rate (v) and decision boundary 

(a) were allowed to co-vary, independently or together, with the SID values in the model. 

A selection of the best fitting model was done using the deviance information criterion 

(DIC). The model choice of only allowing drift rate (v) to vary had the lowest DIC values 

for the case of SIDVIS and SIDFP. In the case of SIDGlobal, allowing both decision boundary 

and drift rate to vary had the lowest DIC value, but the difference from the drift rate only 

model was negligible and was hence chosen for being a simpler model. In the SIDGlobal case 

there was no PC component where the posterior distribution correlated with evidence 

accumulation for (v) (Fig. 6B) such that 97.5% of the posterior distribution was above or 

below 0. For the VIS subnetwork, PC 3, where a large peak in integration occurs after trial 

onset, showed a significant correlation with evidence accumulation (Fig. 6C). This result 

entails that reaction times become faster and accuracy increases when the VIS subnetwork 

integrates with other subnetworks following each trial. This result makes intuitive sense as 

the VIS subnetwork must pass on its information regarding the visual stimuli to other brain 

networks for further information processing.  

The FP subnetwork had two PC trajectories which had a negative correlation with the rate 

of evidence accumulation (PC 1 and 2) (Fig. 6D). These PC components entail that if the 

FP subnetwork slowly segregates throughout the trial, or if the FP subnetwork is first 

integrated and then segregate, this subnetwork behavior hampers task performance that 

leads to longer reaction times. This finding suggests that there is a sweet spot where SIDFP 

trajectories are optimal in the sense of delivering a quick and accurate reaction. If the FP 

subnetwork segregates too much it may miss important information about the trial. If the 

FP network integrates too much, other brain subnetworks may act as distractors. In sum, 

different trial-by-trial trajectories of subnetwork specific SID values for VIS and FP 

subnetworks could explain different aspects of the evidence accumulation parameter for 

the reaction time of 2-back trials in the working memory fMRI experiment. 
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Fig. 6. Drift rate from the Hierarchical Bayesian estimation of the drift diffusion 

model (HDDM) correlates with SID values related to the visual (VIS) and fronto-

parietal (FP) subnetworks. (A) Schematic overview of the HDDM outlining three of the 

fitted parameters in the model (drift rate, decision boundary and non-decision time). Blue 

and red squares show the chosen two models for global SID (SIDGlobal) and VIS/FP (SIDVIS, 

SIDFP) subnetwork SID. These colored squares are used in subsequent panels to indicate 

which model they originate from. (B) Left panel show the weights for each principal 

component, illustrating the trajectory of SID that comprises each component. Right panel, 

posterior distribution of β of the SIDglobal varying with the drift rate. (C) Same as (B) but 
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for principal components derived from SIDVIS. (D) Same as (B) but principal components 

derived from SIDFP. For panels (B-D) a * within the distribution designates that over 97.5% 

of the posterior distribution is above or below 0. 

 

Replication of results for the ‘RL’ dataset. To study the replicability of our results, we 

performed an identical analysis on the ‘RL’ data-set from the Human Connectome Project 

[23]. Temporal strength at a global and subnetwork level for the working memory and 

resting-state experiments in the ‘RL’ dataset are shown in Supplementary Fig. S2 and the 

corresponding correlation coefficient matrices for temporal strength time-courses are 

shown in Supplementary Fig. S3. SID time-courses at a global and subnetwork level for 

the ‘RL’ dataset are shown in Supplementary Fig. S4 whereas the time-locked responses 

for 2-back, 0-back and baseline epochs are displayed in Supplementary Fig. S5. 

Supplementary Figs. S6 and S7 show the corresponding results when the jackknife method 

to compute dFC is replaced with the spatial distance method (LR dataset used here). 

Overall, our results for the ‘RL’ datasets are in good agreement with our primary analysis. 

Due to the fact that the performance of the HDDM model of reaction times benefits from 

more time-points, the RL dataset was used in that analysis together with data from the LR 

dataset. The effect of session was handled by including with a session covariate in the 

model. 

 

Discussion 

 

In this study we applied a point-based time-varying functional connectivity method to fMRI 

data collected from 100 subjects during a working memory and a resting-state experiment. 

Time-varying functional connectivity time-series were analyzed using metrics taken from 

temporal network theory to quantify temporal strength at each point in time. This was 

done at three different spatial levels: individual nodes, subnetworks and at a global level. 

By quantifying differences in temporal strength for between- and within-subnetworks with 

the SID measure, we were able to derive fine-grained temporal profiles of change in 

integration and segregation between brain subnetworks during the working memory 

experiment as well as during the resting-state experiment. Several interesting properties 

related to how subnetworks in the brain interact with each other during task performance, 

baseline periods and resting-state conditions were revealed by the present findings.  

The relationship between cognitive load and segregation/integration between 

subnetworks. Previous research on the functional neuroanatomy for working memory 
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have shown that large areas in the parietal, prefrontal and visual cortical areas are involved 

[37]. Based on the results from the current time-varying connectivity fMRI study, we 

suggest that increases in cognitive load are associated with a general increase in 

integration between subnetworks during performance of the 2-back compared to the 0-

back task (Fig. 5A). Our results are corroborated by recent studies that examined the 

relationship between cognitive load for the n-back task and network integration using both 

static [15, 38-39] and time-varying functional connectivity measures [21,30,32,41]. 

However, as shown here, the increase in integration is not uniform across all subnetworks, 

which is an important novel finding. The overall result of a larger degree of integration 

during the 2-back epochs seems to be driven mainly by the strong degree of integration 

for the VIS subnetwork, but also to some lesser extent by the DA, CO and SM subnetworks.  

The temporal profiles of integration and segregation for the FP and VIS subnetworks during 

task epochs are intriguing. We suggest that the initial peak of segregation for the VIS 

subnetwork reflects a rather abrupt reorganization of connectivity that is initiated at the 

onset of the task epoch. Thus, connections between the VIS subnetwork and other 

subnetworks are recalibrated and reset before new connections that needs to be 

established for the visual processing of the succeeding trials are formed. The sustained 

increase in integration for the VIS subnetwork during the 0- and 2-back epochs suggests 

that an elevated flow of information between the VIS and other subnetworks is needed for 

the completion of the 0- and 2-back epochs.  

The temporal profiles of segregation and integration for the FP subnetwork during 2-back 

epochs show almost the opposite temporal profile, including an initial trough which 

suggests a brief phase of integration which is followed by a strong increase in subnetwork 

segregation. The cognitive importance of the initial phase of integration for the FP 

subnetwork is presently unclear. It is known from the literature that the FP subnetwork 

encompasses brain areas that play key roles in cognitive processes that are central for the 

execution of working memory tasks such as updating of items in memory, memory 

maintenance of items and comparison between items kept in memory. The increased 

segregation of the FP subnetwork from the other subnetworks during the 2-back epochs 

might reflect a mechanism that tries to suppress distracting information from other 

subnetworks in order to optimize performance. If the FP subnetwork segregates too much 

from the other subnetworks however, it leads to a less efficient processing as indicated by 

slower reaction times and decreases in accuracy. Thus, during 2-back epochs the FP 

subnetwork has to find a balance where it is generally more segregated, but not too 

segregated, otherwise behavior in terms of reaction time will be slower and less accurate. 

Epochs of baseline during the working memory experiment introduces increases 

in subnetwork segregation. A striking observation in the current study is the strong 
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overall segregation between subnetworks during epochs of baseline which are interleaved 

with the 0-back and 2-back epochs in the working memory experiment (Fig. 4C). From the 

results shown in Fig. 4C and Fig. 4G, it seems likely that the overall tendency for 

subnetworks to segregate from each other during baseline epochs is partly driven by the 

very strong increase in segregation between the VIS subnetwork and other subnetworks, 

but also by the marked increases in segregation for the DMN, FP, CO, AU and DA 

subnetworks during baseline epochs. This observation stands in stark contrast, with some 

notable exceptions for the VIS and FP subnetworks as noted above, to the observation that 

SID values that are near or below 0 during task epochs. This suggests a presence of a 

balanced or slightly integrative mode of communication between subnetworks during task 

epochs (Fig. 5B). The reason why we see the largest differences in segregation and 

integration for the VIS subnetwork is perhaps not overly surprising given that the working 

memory data analyzed here is a visually implemented fMRI experiment and we would 

therefore expect to see the largest temporal fluctuations integration and segregation 

during the time-course of the working memory experiment for the VIS subnetwork. 

Spontaneous bursts of subnetwork segregation during the resting-state 

experiment. The averaged results for temporal strength and SID for the resting-state 

experiments show no clearly defined features in time-varying brain connectivity that are 

consistent over subjects. Nevertheless, it is interesting to consider the profiles of temporal 

strength and subnetwork segregation and integration detected in single subjects as 

exemplified in Figs. 2B and 4B. These results suggest that during resting-state, the 

functional brain connectome is characterized by a moderately integrative mode of 

communication between subnetworks which occasionally are interrupted by episodes of 

network segregation. The observed fluctuations between an integrated and a segregated 

mode of brain function during resting-state is in line with previous time-resolved 

investigation of the time-varying properties of the brain connectome [6,30]. The episodes 

of segregation are comparatively brief in time and their appearance show similarity to the 

previously demonstrated burstiness of the amplitude of functional connectivity time-series 

in large-scale networks during rest [7]. Further work is needed to establish the idea that 

the interspersed events of network segregation during rest follow a long-tailed “bursty” 

probability distribution. 

It is interesting to consider the fact that we have, as it is often done in studies of time-

varying connectivity, based our time-varying connectivity analysis on a model that 

stipulates a static membership of nodes to specific subnetworks that do not change over 

time. The parcellation of the 264 nodes into 10 subnetworks used here was based on 

calculating gradients of connectivity profiles of resting-state brain connectivity and it 

should thus be pertinent for assessing dynamic functional connectivity during rest [26]. 
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However, other studies have taken a different approach to problem of studying time-

resolved fluctuations of subnetwork integration and segregation. For example, by applying 

time-resolved measures of network modularity to the same data as used here, it has been 

shown that the degree of subnetwork reorganization in the brain increases as a function of 

task complexity (30]. But it is conceivable that a re-organization of subnetwork 

membership occur during tasks. Such a re-organization of subnetwork membership can be 

investigated using time-varying versions of network modularity measures. The possibility 

to track and follow task-induced changes in network modularity at the level of single time-

points represents an interesting avenue for further research. It would likely complement 

and extend our findings and provide further information regarding the temporal variability 

of brain’s large-scale networks during task performance. 

In conclusion, by combining time-varying brain connectivity analysis with metrics from 

temporal network theory we have gained novel insights into the ongoing fluctuations in 

brain connectivity during an epoch-related functional neuroimaging experiment, which is 

an experimental design that has acted as a workhorse for functional neuroimaging research 

for almost 30 years (e.g. [42]). Since its inception, the inclusion of intermittent periods of 

rest (or other similarly low-taxing cognitive tasks) among cognitively high-taxing tasks has 

been an integral component in most epoch-related fMRI experimental designs due to the 

necessity to make comparisons of brain activity related to differences in task complexity 

within the same imaging experiment. While the current results are strictly speaking only 

valid for the working memory task investigated here, we believe that there are good 

reasons to assume that the marked increases in segregation between brain networks 

during baseline epochs observed here will generalize to most experimental designs where 

epochs with low or no demands on cognitive resources are interspersed with epochs of 

high-taxing tasks. The brain’s propensity to reduce the flow of information between 

networks by increasing the level of segregation during baseline epochs is compelling. The 

results presented suggest that during “prolonged” baseline epochs, i.e. resting-state 

experiments, the balance between segregation and integration among subnetworks is 

frequently disrupted by fast rising and falling bouts of segregation. Thus, is seems likely 

that during the baseline epochs, typically included in epoch-related functional 

neuroimaging designs, the brain’s overall subnetwork configuration returns to its default 

dynamical rhythm that is characterized by a never ending ebb and flood of information 

flow between subnetworks. 
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Materials and Methods 

 

Data used. The 100 independent subject dataset from the Human Connectome 500 

subject release was used [23,43]. For our primary analysis, we used the ‘LR’ resting state 

and working memory fMRI sessions. A replicability study of our results was performed on 

the ‘RL’ resting-state and working memory fMRI sessions. Further information regarding 

the MR acquisition parameters can be found in [44]. In total, the dataset consisted of 2 x 

1200 (resting-state) and 2 x 405 (working memory) image volumes per subject (TR = 

0.72). 

 

Experimental paradigms. The working memory experiment employed a version of the 

n-back working memory task where 2-back and 0-back epochs (each working memory 

epoch consisted of a 2.5 second instruction cue followed by ten trials, each with a duration 

of 2.5 seconds, total duration 27.5 seconds) were interleaved with epochs of baseline 

(duration: 15 seconds). Each fMRI session contained 8 task epochs (4 of each object type) 

where each epoch contained trials that consisted of visual presentations of objects of 

“faces”, “body parts”, “tools” and “places”. Further information regarding the details for 

the stimuli presentation and paradigm design is found in [45]. 

 

fMRI data preprocessing. The fMRI data had undergone image preprocessing and 

removal of artifacts from non-neuronal origins by means of the FIX ICA (FMRIB’s 

Independent Component Analysis-based X-noisifier) data artifact rejection process which 

removed ICA components from the data that were considered to constitute signal 

contributions from white matter, cerebro-spinal fluid, head movement, cardiac and 

respiratory sources [46-48]. We used the Power [26] parcellation of the cortex and 

subcortical regions to extract BOLD signal intensity time-courses from 264 spherical 

Region-of-Interests (ROI, radius = 5 mm), where each ROI is assigned to a subnetwork, 

see also [25] for a definition of the relationship between nodes and resting-state 

subnetworks. The ten subnetworks studied defined are: DMN – default mode (58 nodes), 

SM – sensorimotor (35 nodes), VIS – visual (31 nodes), FP – fronto-parietal attention (24 

nodes), SA – saliency (18 nodes), CO – cingulo-opercular (14 nodes), AU –auditory (13 

nodes), Sub – subcortical (13 nodes), DA – dorsal attention (11 nodes), VA - ventral 

attention subnetwork (9 nodes). Thirty-eight nodes were unassigned (U). To minimize the 

effect of movement [49,50], image “scrubbing” was performed. The framewise 

displacement (FD) for each image volume was computed (rejection at FD > 0.5). Rejected 

volumes were deleted and missing data-point were estimated using a cubic spline 
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interpolation  [51]. On average, 1.45% of the image volumes per subject were singled out 

and interpolated (4 imaging sessions). Subsequently, fMRI signal intensity time-series 

were band-pass filtered (0.01–0.1 Hz). fMRI resting-state data from one subject contained 

outliers and data from this subject was not used in the analysis.  

 

Calculation of time-varying functional connectivity time-series. To assess temporal 

changes of functional connectivity we used the jackknife correlation (JC) method. The JC 

method was first introduced in neuroscience for the purpose of measuring single trial 

coherence and Granger causality on ECoG data [52] and it has recently been applied to 

estimate dFC in fMRI data [22]. Since we are interested in estimating BOLD signal co-

variance at individual data time-points, the jackknife correlation between two time-series 

x and y can be expressed as 

 

𝐽𝐶𝑡 =  − (
∑ (𝑥𝑖 − �̅�𝑡)(𝑦𝑖 − �̅�𝑡)𝑇

𝑖

∑ (𝑥𝑖 − �̅�𝑡)2 ∑ (𝑦𝑖 − �̅�𝑡)2𝑇
𝑖

𝑇
𝑖

)  , 𝑖 ≠ 𝑡                   (1) 

 

which is the Pearson correlation between x and y over all time-points with the exception 

of x and y at time-point t. The minus sign in Eq. 1 corrects for the sign inversion. The 

individual values of connectivity yielded by the JC method have little meaning in 

themselves, but, importantly, they become meaningful in relation to the rest of the time-

series of dFC values. Our choice of using the JC method was based on a recent simulation 

study that compared five different methods to derive point-based dFC estimates [22]. In 

that study we showed that the JC method had superior performance in terms of tracking 

changes in fluctuations in signal co-variance over time [22]. 

Prior to computing functional connectivity time-series, we performed a linear regression 

on each BOLD signal time-series in which FD values and the global mean BOLD signal 

(taken across all ROIs at each point in time) were included as co-variates of non-interest 

(please also see Supplementary Text S1 for an explanation for why we regressed out the 

global mean BOLD signal). The FD values were included as an extra precaution against 

confounding effects from head-movement. The reasons for regressing out the global mean 

signal before computing functional connectivity time-series are discussed below. Functional 

connectivity time-series derived with the JC method were subsequently Fischer 

transformed and then converted into Z-values by subtracting the mean and dividing by the 

standard deviation. To assure that our results did not critically depend on our choice of 

method to compute functional connectivity time-series, we in parallel carried out analyses 
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using the spatial distance method which is introduced in [24]. Further details regarding the 

spatial distance method is given in the Supplementary Text S2 and the results are shown 

in Supplementary Figures S6 and S7. Thus, the result of applying the JC method on the 

fMRI signal time-series was a 264x264x405 (or in the case of resting-state experiment 

264x264x1200) 3D-matrix containing the time-varying functional connectivity time-series 

for each subject.  

To apply measures from temporal network theory onto the data, we chose to treat the 

264x264x405 3D-matrix as a multi-layer, temporal network where every 264x264 matrix 

is a connectivity matrix that represents the degree of connectivity between all nodes at 

time t. Note that the strength of connectivity between any two nodes can take any value 

between -1 and 1. Thus, the weights between all nodes in the connectivity matrices are 

undirected and weighted and take negative as well as positive values. Hence, our temporal 

network data model for the working memory experiment consists of 405 connectivity 

matrices where each individual connectivity matrix contains all available data regarding 

functional connectivity between all 264 nodes at each point in time. A schematic, 

illustrative example of a slice-plot of a temporal network representation of two simplified 

subnetworks, A (3 nodes) and B (3 nodes) is given in Figure 1A.     

 

Temporal strength. Temporal strength measures the average sum of edge weights. In 

the case of static networks, a node’s strength is the sum of all edge weights that are 

connected to it, and thus a measure of the node’s influence within the network. In the 

temporal case, this becomes a measure of the node’s influence within the network at time 

t. Throughout this section, equations are presented for temporal networks that contain 

undirected edges. We compute the temporal strength (D) for a node (i) at each time-point 

t as 

  

𝐷𝑖
𝑡 =  ∑ 𝐴𝑖,𝑗

𝑡                                   (2)

𝑁

𝑗=1

 

 

where 𝐴𝑖,𝑗
𝑡  is the connectivity matrix at time t and N is the number of nodes in the network. 

Temporal strength can be defined at many levels, for a single node, a subnetwork or at a 

global level that includes all nodes in the network. We also consider within-subnetwork and 

between-subnetwork temporal strength. Thus, we can at each time-point t, for all nodes 

that belong to a specific subnetwork compute the within-subnetwork temporal strength. 
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For example, the within-network temporal strength at time t for the subnetwork named A 

as shown in Figure 1A can be written as  

𝐷𝐴
𝑡 =  

2

𝑁1(𝑁1 − 1)
∑ 𝐴𝑖,𝑗 

𝑡              𝑖, 𝑗 ∈ 𝐴  , 𝑖 ≠ 𝑗                              (3)

𝑖,𝑗 

 

where N1 is the number of nodes in A.  

Similarly, we can estimate the temporal strength at time t between two subnetworks by 

calculating the sum of all weights associated to edges that connects between two 

subnetworks. For example, the between-subnetwork temporal strength for the A and B 

subnetworks shown in Figure 1A is  

𝐷𝐴,𝐵
𝑡 =

1

𝑁1𝑁2

∑ 𝐴𝑖,𝑗 
𝑡     , 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵              (4)

𝑖,𝑗

 

 

where N1 and N2 are the number of nodes in subnetworks A and B, respectively. Lastly, we 

can also define the global temporal strength at time t by summing the weights of edges 

over all nodes (N) as 

𝐷𝐺𝑙𝑜𝑏𝑎𝑙
𝑡 =  

2

𝑁(𝑁 − 1)
∑ ∑ 𝐴𝑖,𝑗

𝑡             𝑖 ≠ 𝑗        (5)

𝑁

𝑗=1

𝑁

𝑖=1

 

A simple and illustrative example of within-subnetwork (DA, DB), between-subnetwork 

(DA,B) and global (DGlobal) temporal strength is given in Figure 1B.  

Although all fMRI data was realigned and “scrubbed” during pre-processing, to assure that 

estimates of temporal strength was not contaminated by residual signal artifacts 

originating from head-movement, we computed the correlation between global time-series 

of temporal strength and time-series of FD in each subject for both working memory and 

resting-state experiments. The results presented in Supplementary Figure S8 show that 

the distribution of correlation values are centered around 0 for all four imaging sessions, 

suggesting that temporal strength is not biased by residual head-movement.  

 

Segregation and integration difference (SID). We introduce the temporal network 

metric Segregation Integration Difference (SID) that operates on temporal strength at the 

level of subnetworks. The SID metric quantifies the degree of integration and segregation 

between subnetworks at each point in time. For the temporal network example shown in 

Figure 1, we define SID between subnetworks A and B as  
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𝑆𝐼𝐷𝐴−𝐵
𝑡 =  (

2

𝑁1(𝑁1 − 1)
𝐷𝐴

𝑡 −
1

𝑁1𝑁2

𝐷𝐴,𝐵
𝑡 )                   (6) 

 

where DA and DB are calculated according to Eq. 3 (i.e. within-subnetwork temporal 

strength), DA,B is the between-subnetwork temporal strength as given in Eq. 4 and N1 and 

N2 are the number of nodes in the A and B subnetworks, respectively (see also Figure 1B 

for an illustrative example). Note that Eq. 6 is not symmetric, i.e. SIDt
B-A≠SIDt

A-B.  

It is possible to extend the scope of the SID measure so that we can compute an estimate 

of integration-segregation between one subnetwork and all other subnetworks. If we 

assume that the whole brain network is divided into a total of M subnetworks, the SID 

parameter for subnetwork m with respect to all other subnetworks is defined as                 

 

𝑆𝐼𝐷𝑚
𝑡 =  ∑ (

2

𝑁𝑚(𝑁𝑚 − 1)
𝐷𝑚

𝑡 −
1

𝑁𝑚𝑁𝑛

𝐷𝑚,𝑛
𝑡 )          , 𝑚 ∈ 𝑀,   𝑛 ≠ 𝑚          (7)

𝑀

𝑛=1

 

 

where the 𝐷𝑚
𝑡  terms are the within-subnetwork temporal strengths, the 𝐷𝑚,𝑛

𝑡  terms 

represent the between-subnetwork temporal strengths and Nm and Nn are the number of 

nodes in subnetworks m and n. It then becomes possible to compute SID at a global level 

by summing over all subnetworks:  

SID𝐺𝑙𝑜𝑏𝑎𝑙
𝑡 =  ∑ ∑ (

2

𝑁𝑚(𝑁𝑚 − 1)
𝐷𝑚

𝑡 −
1

𝑁𝑚𝑁𝑛

𝐷𝑚,𝑛
𝑡 )      ,     𝑚, 𝑛 ∈ 𝑀, 𝑛 ≠ 𝑚     (8)    

𝑀

𝑛=1

𝑀

𝑚=1

 

 

All forms of SID values defined above are derived as a pair-wise summation of differences 

of within-subnetwork and between-subnetwork temporal strengths (Eq. 7). Thus, an 

increase in SID suggests increased segregation between subnetworks that are driven either 

by an increased within-subnetwork temporal strength for the given subnetwork or a 

decreased between-subnetwork temporal strength with regard to all other subnetworks. 

From this follows that a decrease in SID imply an increase in integration, which is caused 

either by decreased within-subnetwork temporal strength and/or an increased between-

subnetwork temporal strength.  

The schematic example described above included only binary edges, whereas weighted 

edges are used in the analysis in the paper (i.e. both positive and negative values are 

possible for the weighted edges). It is important, for the sake of the interpretation of the 
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results, to clarify what time-varying estimates of brain connectivity with this method 

entails. By definition, a normalized jackknife correlation value of 0 between two time-series 

at time t means that the correlation at t is the mean correlation of the entire functional 

connectivity time series, which approximates to the static functional connectivity between 

the two. In other words, whenever an estimate of time-varying connectivity is positive, it 

should be interpreted as time-points where the connectivity is larger than usual, and vice 

versa for negative values. The implication of this for temporal strength is that a negative 

value of temporal strength at time t entails that the strength of dynamic connectivity for a 

node at time t is smaller than its mean value taken across time. Thus, the usage of the 

jackknife method combined with the SID measure implies that a SID value of zero at time 

t means that the degree of segregation/integration at that point in time is approximately 

equivalent to its average value for the whole imaging session. When the value of SID 

increases, it implies more segregation than the average value across the imaging session 

and when it decreases it implies more integration than the average value across the 

imaging session. 

All time-varying functional connectivity analyses (jackknife correlation, temporal strength, 

SID) were carried out using teneto, a package for Python ([24]; 

https://github.com/wiheto). 

 

Testing for differences in SID during 2-back and 0-back epochs in the working 

memory experiment. To test for significant differences in subnetwork segregation during 

2-back and 0-back epochs, we averaged together SID values for different time-points 

within each epoch. Due to the hemodynamic latency of fMRI BOLD signals and the fact that 

the temporal order of task epochs was not counterbalanced with respect to baseline 

epochs, we did not include data from the first 5 seconds of each epoch. Statistical testing 

for significant differences in the time-locked and averaged (within epochs) SID values 

between 2-back and 0-back epochs was performed using a permutation approach (10000 

permutations, p<0.001, Bonferroni corrected for multiple comparisons). 

 

Modeling the relationship between reaction time and SID. We sought to explore 

whether subnetwork SID metrics that significantly differed for the 2-back versus the 0-

back epochs could explain variability in reaction times. Based on the results shown in 

Figures 5A and 5B, we chose the SIDVIS, SIDFP, SIDGlobal trajectories for further analysis. 

We chose here to only include the 2-back trials in our analysis (80 trials per subject), since 

the influence from differences in brain network segregation and integration on reaction 

time is expected to be larger for the more taxing 2-back trials. 
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As the exact time-point when SID values are relevant for behavior is uncertain, we had the 

choice of either reducing the number of temporal dimensions of the data, or alternatively, 

to run the analysis per time-point. We opted to choose the dimensional reduction route. 

Ten time-points were used for each 2-back trial (onset data-point plus 9 additional time-

points). Principal Component Analysis (PCA) was performed for each subnetwork SID 

trajectory. For all three reduced datasets (SIDVIS, SIDFP, SIDGlobal), five principle 

components explained 95% of the variance. Thus, five principle components could be said 

to accurately represent trajectories of SID time-courses after each 2-back trial. Due to the 

sluggishness of fMRI BOLD response, SID data at each trial onset would reflect activity 

prior to trial onset (and reveal possible anticipatory effects). 

We employed two different models: the first contained SID trajectories from the VIS and 

FP subnetworks and the second model used only the SIDGlobal trajectory data. In the former 

case, we combined the information from both SIDVIS and SIDFP, as they displayed a low 

correlation with each other (mean absolute r of corresponding SIDVIS and SIDFP: 0.025), 

whereas the SIDGlobal data had to be treated separately in another model because it partly 

was correlated with both SIDVIS and SIDFP (mean absolute r of corresponding SIDGlobal with 

SIDVIS: 0.308 and with SIDFP: 0.309), which might cause difficulties with colinearity in the 

model. To this end, we created two different models where reaction time and accuracy 

were modelled with a hierarchical Bayesian estimation of the drift diffusion model (HDDM, 

[34]). The first model used ten PC components (five components from each of SIDVIS and 

SIDFP, respectively) and the second model used five PC components extracted from 

SIDGlobal. 

The temporal trajectories of SID measures were used as regressors in the HDDM model 

where both the drift rate (v) and the decision threshold (a) could vary with the respective 

SID co-variates. The three combinations of parameters (for each covariate set) were 

allowed to vary in the model, (i) the decision threshold (a), (ii) drift rate (v) and (iii) both 

decision threshold and drift rate (a+v) varying with respect to the covariates. 2-back trial 

data from both datasets (RL and LR) were used in the same model. A binary regressor was 

specified to differentiate between the two fMRI sessions in both models. The reasoning for 

including both datasets in the same model was twofold: (1) more data makes the HDDM 

model more robust, (2) there are possible learning effects between the RL and LR datasets 

which affect both the median reaction time and accuracy, making a true replication difficult.  

In the main text the results pertaining to allowing the drift rate (v) to co-vary with the 

regressors was chosen. For the VIS/FP subnetwork model, this model had the lowest 

Deviance Information Criterion (DIC) value (see Supplementary Table 1). In the global 

model (SIDGlobal), the drift rate (v) model had a slightly larger DIC value than the combined 

decision threshold and drift rate (v+a) model. Since the difference between the two models 
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was small and the drift rate (v) only is the simpler model, the drift rate model was chosen 

for the main text. MCMC (Markov Chain Monte Carlo) was run where 11000 samples were 

drawn and the first 1000 samples were burned. We used the standard priors implemented 

in HDDM and based on previous studies collected by [53]. Verification of chain convergence 

was done for all models through visual inspection and, for the chosen best fitting model 

for each covariate configuration, the Gelman-Rubin statistic was close to 1 for all fitted 

models parameters after running the model five times. 
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Supporting information. 

 

S1 Text.  

The global fMRI BOLD signal and time-varying functional connectivity. We would 

like to draw the reader’s attention to a methodological aspect of our analysis that is of 

importance. In case of resting-state fMRI, the practice of regressing out the global mean 

brain signal (global signal regression, GSR) before calculating functional connectivity is 

well documented in the literature and the advantages and disadvantages of its usage has 

been thoroughly discussed in the recent functional neuroimaging literature (Fox et al., 

2009; Saad et al., 2012; Murphy & Fox, 2017). Regarding the usage of GSR on resting-

state data, previous results suggests that the global signal most likely contains 

contributions from both non-neuronal and neuronal signal sources, although a recent study 

has argued that the large majority of the global signal stems from non-neuronal 

physiological processes (Power et al., 2017a,b).  

At first sight, there might not be any compelling reason to perform GSR on task-based 

fMRI data in the case of time-varying connectivity analysis since we are extracting BOLD 

fMRI signal time-courses from ROIs located exclusively in gray matter. However, given the 

previous debate regarding its usage in resting-state functional connectivity studies and 

that its impact in the context of time-varying connectivity has not been previously 

investigated, we decided to calculate temporal strength on both GSR and non-GSR 

regressed fMRI time-series. The relationship between the global mean BOLD signal 

(averaged across all 264 ROIs and all subjects) and global temporal strength (DGlobal, 

calculated without GSR performed on the BOLD signal intensity time-courses) during the 

working memory task is shown in Supplementary Figure S1A. The time-courses displayed 

in Supplementary Figure S1A suggests that the onsets of 0-back as well as 2-back epochs 

are accompanied by a strong and brief peak in global temporal strength (marked in blue 

in Supplementary Figure S1A). In contrast, DGlobal exhibits its lowest values during baseline 

epochs. The behavior of the global temporal strength is mirrored both at a nodal 

(Supplementary Figure S1B) and subnetwork level (Supplementary Figure S1C), showing 

synchronous increases and decreases in most nodes and subnetworks. If we compare DGlobal 

with the time-course for the global mean BOLD signal (marked in red in Supplementary 

Figure S1A), two observations can be made. First, the majority of the peaks for DGlobal are 

accompanied by similar peaks in the global mean BOLD signal. Second, for the peaks of 

temporal strength that are not accompanied by peaks in the global mean signal (i.e. during 

the baseline epochs) we find troughs of the global mean BOLD signal. The second 

observation can be explained by the fact that marked changes in the global mean brain 
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signal, may it be positive or negative, implies that a large majority of the nodes are affected 

by the same driving signal source. The fact that a large majority of the nodes experiences 

the same signal increase/decrease will in turn increase their functional connectivity. Hence, 

a decrease in the mean global BOLD signal will be reflected by an increase in global 

temporal strength.  

The results shown in Supplementary Figure S1 suggests that estimates of time-varying 

functional connectivity such as temporal strength are strongly influenced by the global 

BOLD signal and that the large majority of nodes show very similar connectivity profiles 

throughout the working memory task. Hence, it is very likely that smaller, individual 

changes in connectivity that occur at a nodal and subnetwork level, which might be of 

pivotal interest for an assessment of subnetwork integration and segregation, are disguised 

by the global mean BOLD signal. In the context of time-varying brain connectivity during 

task performance, we chose to regard the mean global signal as a nuisance variable. We 

agree with the recent interpretation proposed by Nalci et al., 2017 that GSR can be seen 

as a temporal down-weighting of the segments of the BOLD signal that have large global 

amplitudes. Given that temporal strength during the working memory fMRI experiment is 

strongly correlated with changes in the global BOLD fMRI signal as shown in Supplementary 

Figure S1, and that the study of the temporal properties of subnetwork integration and 

segregation is the focus in the current work, we present results for which the GSR step has 

been included in the data pre-processing pipeline. 

 

S2 Text.  

The Spatial Distance method to compute time-varying functional connectivity 

time-series. To assure that our findings were not biased by a particular choice of method 

to compute point-based estimates of functional connectivity, we performed all connectivity 

estimates and network integration and segregation analyses using a different method (the 

spatial distance method, SD). The SD approach estimates time-varying connectivity by 

calculating a weight vector for each time-point based on the distance between spatial 

components (i.e. nodes). It computes the weights (w) for each time-point (t) by taking the 

inverse of each ROI’s Euclidean distance (D) to all other time-points (u) as 

𝑤𝑢
𝑡 =  

1

𝐷𝑡,𝑢

  , 𝑡 ≠ 𝑢                            

Thus, each data time-point is associated with a unique weight-vector that has a length that 

equals the total length of the data time-series. The weight-vectors at each time-point are 

subsequently scaled between 0 and 1 and the “self-weights” 𝑤𝑡
𝑡 are set to 1.  The 

connectivity estimate at time-point (t) is the weighted Pearson correlation where each 
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time-point is weighted by 𝑤𝑡 . The complimentary results obtained by the SD method are 

shown in Supplementary Figures S6 and S7. Further examples and details of the use of 

the SD method to estimate time-varying functional connectivity is found in Thompson et 

al., 2017a. 
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Supplementary Figures 

 

 

 

 

 

S1 Fig. The relationship between the mean global BOLD signal and temporal 

strength. (A) The mean BOLD signal (averaged across all 264 ROIs and all subjects) and 

the global temporal strength (averaged across all subjects) for the 2-back/0-back/baseline 

working memory experiment. (B) Fluctuations in temporal strength at a nodal level during 

the working memory fMRI experiment. (C) Fluctuations at a subnetwork level during the 

working memory fMRI experiment. Note that the mean global BOLD signal was not 

regressed out prior to the computation of dynamic functional connectivity time-series and 

temporal centrality shown in panels (B) and (C).  
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S2 Fig. Replicability of the temporal strength results during the working memory 

and resting-state experiments. The results shown here compliments the results shown 

in Figure 2 and were computed on separate fMRI data with respect to the data used in 

main paper (the Right-Left (RL) dataset). (A,B) Global temporal strength (Dglobal) averaged 

across all subjects during the working memory (A) and resting-state (B) experiments. 

(C,D) Temporal strength computed at a subnetwork level for the working memory (C) and 

resting-state experiments (D). ‘0B’ – 0-back epoch, ‘2B’ – 2-back epoch, ‘R’ – rest 

(baseline) epoch. 
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S3 Fig. (A,B) Replicability of the correlation of temporal centrality time-courses between 

subnetworks during the working memory experiment (A) and resting-state (B) for the ‘RL’ 

data sets. (C) Difference in correlation of temporal strength for the working memory and 

resting-state experiments. Statistical significant differences in correlation were assessed 

by a non-parametric permutation approach (10000 permutations, p<0.001, Bonferroni 

corrected). This figure compliments the results shown in Figure 3. An asterisk within 

parenthesis signify that the differences in temporal strength time-courses where only 

significant in one of the datasets (‘LR’ and ‘RL’, respectively). 
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S4 Fig. Replicability study of the Segregation Integration Difference (SID) results 

for the ‘RL’ fMRI datasets. (A,B) SID values at a global level (averaged across all 

subnetworks and subjects) during the working memory (A) and resting-state experiments 

(B). (C,D) SID at a subnetwork level (averaged across subjects) during the working 

memory (C) and resting-state experiments (D). ‘0B’ – 0-back epoch, ‘2B’ – 2-back epoch, 

‘R’ – rest (baseline) epoch. Shaded areas depict the standard error of the mean. This figure 

compliments the results shown in Figure 4. 
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S5 Fig. Replicability study of the time-locked average of SID results during 2-

back, 0-back and baseline epochs for the ‘RL’ fMRI data sets. (A) Average of the 

global Segregation Integration Difference (SIDGlobal) values taken across all 2-back and 0-

back epochs in all subjects for the working memory experiment. (B) Similar comparison as 
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in (A) but here SID values were computed at the level of individual subnetworks. (C) SID 

plotted for the 15 seconds long baseline epochs averaged across baseline epochs and 

subjects. An asterisk within parenthesis signify that the differences in SID time-courses 

where only significant in one of the datasets (‘LR’ and ‘RL’, respectively). Shaded areas 

depict the standard error of the mean. The results shown in this Figure compliments the 

findings displayed in Figure 5. 
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S6 Fig.  Temporal strength and SID during the working memory and resting-state 

experiments in the case when the jackknife correlation (JC) method to estimate 

time-varying functional connectivity was replaced with the spatial distance 

method (SD, described in detail in ref. 24). Apart from the change of method to 

compute time-varying functional connectivity time-series, calculations to derive estimates 

of temporal strength and SID were kept identical. ). ‘0B’ – 0-back epoch, ‘2B’ – 2-back 

epoch, ‘R’ – rest (baseline) epoch. Shaded areas depict the standard error of the mean. 

The results shown in this Figure supplements the findings shown in Figures 2 and 4 and 

Supplementary Figures S2 and S4. 
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S7 Fig. Results obtained when the jackknife correlation method was replaced 

with the spatial distance method (SD). (A) Time-locked averaging of 2-back, 0-back 

and baseline epochs taken across all ten subnetworks or for individual subnetworks (B-C). 

(A) Average of the SIDGlobal measure taken across all 2-back and 0-back epochs for all 
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subjects in the working memory experiment. The results in this figure compliments the 

results shown in Figure 5 and Supplementary Figure S5. 

 

 

 

S8 Fig. Distribution of correlation values for correlation between estimates of global 

temporal strength (Dglobal, average over all nodes) and framewise displacement for all four 

fMRI sessions, (A) WM ‘LR’ data set, (B) WM ‘RL’ data set, (C) resting-state ‘LR’ data set 

and (D) resting-state ‘RL’ data set. 
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S1 Table. DIC (Deviance Information Criterion) and ΔDIC values for three different drift 

diffusion models of the 2-back trials in the working memory experiment were fitted with 

respect to the SID values (i.e. whether the drift rate, decision boundary, or both relate to 

SID). Two different model configurations were used. The first included SIDGlobal estimates 

as a covariate that could change with different drift diffusion parameters. The second model 

configuration had SIDVIS and SIDFP estimates that could co-vary.  

 

 

Global SID model Specification DIC delta DIC 

 v,a 9698,0 - 

 v 9707,6 9,6 

 a 9837,1 140,1 

    

VIS+FP SID model Specification DIC delta DIC  

 v 9698,7 - 

 v,a 9702,0 3,3 

 a 9843,3 144,6 
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