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Abstract 33 

Background 34 
Natural methylome reprogramming within chromatin involves changes in local energy landscapes that are 35 

subject to thermodynamic principles. Signal detection permits the discrimination of methylation signal 36 

from dynamic background noise that is induced by thermal fluctuation. Current genome-wide methylation 37 

analysis methods do not incorporate biophysical properties of DNA, and focus largely on DNA 38 

methylation density changes, which limits resolution of natural, more subtle methylome behavior in 39 

relation to gene activity. 40 

 41 
Results 42 
We present here a novel methylome analysis procedure, Methyl-IT, based on information 43 

thermodynamics and signal detection. Methylation analysis involves a signal detection step, and the 44 

method was designed to discriminate methylation regulatory signal from background variation. 45 

Comparisons with commonly used programs and two publicly available methylome datasets, involving 46 

stages of seed development and drought stress effects, were implemented. Information divergence 47 

between methylation levels from different groups, measured in terms of Hellinger divergence, provides 48 

discrimination power between control and treatment samples. Differentially informative methylation 49 

positions (DIMPs) achieved higher sensitivity and accuracy than standard differentially methylated 50 

positions (DMPs) identified by other methods. Differentially methylated genes (DMG) that are based on 51 

DIMPs were significantly enriched in biologically meaningful networks. 52 

 53 
Conclusions 54 
Methyl-IT analysis enhanced resolution of natural methylome reprogramming behavior to reveal 55 

network-associated responses, offering resolution of gene pathway influences not attainable with previous 56 

methods. 57 

 58 
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Background 62 

Most chromatin changes that are associated with epigenetic behavior are reprogrammed each generation, 63 

with the apparent exception of cytosine methylation, where parental patterns can be inherited through 64 

meiosis [1]. Genome-wide methylome analysis, therefore, provides one avenue for investigation of 65 

transgenerational and developmental epigenetic behavior. Complicating such investigations in plants is 66 

the dynamic nature of DNA methylation [2, 3] and a presently incomplete understanding of its association 67 

with gene expression. In plants, cytosine methylation is generally found in three contexts, CG, CHG and 68 

CHH (H=C, A or T), with CG most prominent within gene body regions [4]. Association of CG gene 69 

body methylation with changes in gene expression remains in question. There exist ample data 70 

associating chromatin behavior with plant response to environmental changes [5], yet, affiliation of 71 

genome-wide DNA methylation with these effects, or their inheritance, remains inconclusive [6, 7]. 72 

 73 

The epigenetic landscape is modulated by thermodynamic fluctuations that influence DNA stability [8, 9] 74 

[10]. Most genome-wide methylome studies have relied predominantly on statistical approaches that 75 

ignore fundamental biophysical properties of cytosine DNA methylation, offering limited resolution of 76 

those genomic regions with highest probability of having undergone epigenetic change. Jenkinson and 77 

colleagues [11] have implemented statistical physics and information theory to the analysis of whole 78 

genome methylome data to define sample-specific energy landscapes. Our group [12, 13] proposed an 79 

information thermodynamics approach to investigate genome-wide methylation patterning based on the 80 

statistical mechanical effect of methylation on DNA molecules. The information thermodynamics-based 81 

approach is postulated to provide greater sensitivity for resolving true signal from background variation 82 

within the methylome [12]. Because gene-associated biological signal created within the dynamic 83 

methylome environment characteristic of plants may be subtle and is not free from background noise, the 84 

approach, designated Methyl-IT, includes application of signal detection theory [14-18]. 85 

 86 

A basic requirement for the application of signal detection is a probability distribution for background 87 

noise. Probability distribution, as a Weibull distribution model, can be deduced on a statistical mechanical 88 

basis for DNA methylation induced by thermal fluctuations [12]. Assuming that this background 89 

methylation variation is consistent with a Poisson process, it can be distinguished from variation 90 

associated with methylation regulatory machinery, which is non-independent for all genomic regions [12]. 91 

An information-theoretic divergence to express the background variation will follow a Weibull 92 

distribution model, provided that it is proportional to minimum energy dissipated per bit of information 93 

from methylation change.  94 

 95 
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The information thermodynamics model was previously verified with more than 150 Arabidopsis and 96 

more than 90 human methylome datasets [12]. To test application of Methyl-IT to methylome analysis, 97 

and compare resolution to approaches used in programs DSS [19], and methylpy [20], we investigated 98 

two Arabidopsis methylome datasets. For resolution of methylation signal during plant development, we 99 

used previously reported datasets from globular stage (4 days after pollination [DAP]), linear cotyledon 100 

stage (8 DAP), mature green stage (13 DAP), post-mature green stage (18 DAP),  dry seed (Ws-0), and 101 

leaf [21, 22] . To assess methylation signal during stress in plants, and association of methylation with 102 

altered gene expression during stress, we investigated data from Ganguly et al.  (2017), which involves 103 

mild drought stress by withholding irrigation for 9 days [23, 24]. Direct comparison of outputs by 104 

Methyl-IT with previous analyses by methylpy and DSS are presented.  105 

 106 

Results 107 

The information thermodynamics model and Methyl-IT workflow 108 

Methylation level is generally the ratio of methylated cytosine read counts divided by the sum of 109 

methylated and unmethylated cytosine read counts for a given cytosine site.  This is a descriptive variable 110 

that reflects uncertainty of methylation level at a given cytosine site. Most methylation analyses test 111 

whether or not the difference between control (CT) and treatment (TT) methylation levels (the uncertainty 112 

variation) is statistically significant. The approach measures the absolute value of the difference between 113 

methylation levels 𝑝"##−	𝑝"
&#  from control (𝑝"

&#)  and treatment ( 𝑝"##)  at each cytosine site. The 114 

magnitude of 𝑝"##−	𝑝"
&#  is known as total variation distance (TVD).  115 

 116 

To improve resolution of methylation signal, we applied Hellinger divergence (HD), ([25], detailed 117 

description included in Methods section). Both TVD and HD are information divergences that follow 118 

asymptotic chi-square distribution [25]. However, HD converges faster and carries more information than 119 

TVD and, consequently, has higher discrimination power [26]. The improvement in discrimination power 120 

is visible in Fig. 1 By way of illustration, we used the drought stress data, where CTR designated 121 

unstressed control group and STR designated stressed group. Fig. 1a shows that treatment methylation 122 

signal on chromosome 1, expressed in terms of methylation level, was indistinguishable from control. 123 

Higher resolutions are reached with TVD and HD, with HD providing highest discrimination power.   124 

 125 

Ganguly et al. reported individual variation and pre-existing methylation differences in the drought stress 126 

materials [24], which is reflected by HD in Fig. 1c. The improvement in resolution attributed to HD 127 

derives from the fact that TVD takes into account only one dimension of the methylation change, while 128 
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HD is estimated in bi-dimensional space (𝑝", 1 − 𝑝"), where the goodness-of-fit test to detect differences 129 

is performed.  130 

 131 

Genome-wide Hellinger divergence for background methylation variation can be modeled by a Weibull 132 

distribution [12]. On the other hand, biologically meaningful methylation changes result in an increment 133 

of Hellinger divergence distinguishable in the signal detection step (Fig. 2). For a given level of 134 

significance α (Type I error probability, eg. α = 0.05), cytosine positions with  can be selected as 135 

sites carrying potential biological signal (shown as the blue shade region under the curve in Fig. 2). True 136 

signal is detected based on optimal cutpoint [27], which can be estimated by area under the curve (AUC) 137 

from a receiver operating characteristic (ROC) built from logistic regression with potential signals from 138 

control and treatment. The AUC is the probability to distinguish biological regulatory signal naturally 139 

generated in the control from that induced by the treatment. Cytosine sites carrying methylation signal are 140 

designated differentially informative methylation positions (DIMPs). The probability that a DIMP is not 141 

induced by the treatment is designated probability of false alarm (PFA, false positive, Fig. 2). As suggested 142 

in Fig. 2, we define DIMPs as cytosine positions with high probability to carry signal created in response 143 

to treatment. 144 

 145 

Estimation of optimal cutoff from AUC is an additional step to remove any remaining potential 146 

methylation background noise that still remains with probability α = 0.05 > 0. We define as methylation 147 

signal (DIMP) each cytosine site with Hellinger divergence values above the cutpoint (shown in Fig. 2 as148 

). Each DIMP-associated signal may or may not be represented within a DMP derived by Fisher’s 149 

exact test (or other current tests, Fig. 2). The difference in resolution by current methods versus Methyl-150 

IT is illustrated by positioning H value sensitivity for Fisher’s exact test (FET) at greater than Hmin for 151 

cytosine sites that are DMPs and DIMPs simultaneously (Fig. 2).  152 

 153 

Table 1 provides a critical but non-unique example; assume there is an experiment that yields read counts 154 

with , ,  , and , where ni
mCc and ni

mCt refer to methylated cytosine 155 

read counts in control and treatment, respectively, and ni
Cc and ni

Ct to non-methylated cytosine counts in 156 

control and treatment, respectively. In the given example, it’s clear that control and treatment have 157 

different methylation pattern, but Fisher’s exact test (including one tail test or Monte Carlo (MC) 158 

simulations with 3000 resamplings (3k)) failed to detect the difference (for significance level α= 0.05). 159 

Root-mean-square test (RMST) used in methylpy [20] and goodness-of-fit test based on Hellinger chi-160 

square test (HCT, with HD as statistic) [25, 28] proved the sensitivity but still failed to detect the 161 

05.0=aH

TDH33

8=cmC
in 2=cC

in 350=tmC
in 20=tCin
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difference (for α= 0.05). However, if the hypothetical methylation changes were to occur in the drought 162 

stress experiment, then Weibull distribution modeling in Methyl-IT would yield p-values of 5.08E-04, 163 

5.08E-04, and 3.20E-04 for each stressed plant (Table 1). Such methylation changes represent potential 164 

DIMPs. The conclusions will remain the same even for a generalized situation with ni
mCt running between 165 

80 and 350 ( ). Considering that even a small genome like Arabidopsis contains millions 166 

of cytosine sites, the situation presented in Table 1 is not rare, and the difference caused by statistical tests 167 

listed in Table 1 would be significant. A flow chart integrating the main procedures of Methyl-IT and 168 

optional downstream analysis is shown in Fig. 3.  169 

 170 

Methyl-IT sensitivity and genomic regions targeted by DIMPs    171 

To investigate the sensitivity of Methyl-IT, we applied DIMP detection to the drought stress dataset and 172 

compared with the outputs from other methods. Fig. 4 shows a direct comparison of DIMPs to DMPs 173 

estimated with Fisher’s exact test, DMSs (differentially methylated sites) estimated with root mean square 174 

test (RMST, approach implemented in methylpy [20, 21]), and DMCs (differentially methylated cytosines) 175 

estimated with Hellinger chi-square test (HCT).  176 

 177 

In all methylation contexts, 100% of DMPs (TVD > 0.25) found by Fisher’s exact test, 98.63% of DMSs 178 

(TVD > 0.25) found by RMST, and 98.45% of DMCs (TVD > 0.25) found by HCT are identified as 179 

DIMPs. On the other hand, DMPs only account for 30.9% of DIMPs, DMSs account for 59.8% of DIMPs, 180 

and DMCs account for 47% of DIMPs. These observations suggest a much higher sensitivity by Methyl-181 

IT than other methods. DMS and DMC classes were relatively close, which helps validate our use of HD. 182 

Results also suggest that differences in outcome between Methyl-IT and methylpy stem from signal 183 

detection limitations rather than implementation of RMST. Application of signal detection requires 184 

knowledge of the distribution of methylation background noise, which is not a component of the 185 

methylpy procedure. 186 

 187 

To evaluate whether DIMPs target genomic features in agreement with published reports [21-24], we 188 

assessed their distribution across the genome. Fig. 5 shows DIMP distribution pattern within three major 189 

genomic contexts (Gene regions in shades of blue, TE region in shades of red and small RNAs in shades 190 

of green). Because total cytosine number within CHH context is about 5 times higher than CG and CHG 191 

contexts, we have normalized data by presenting DIMP density (ratio of DIMP number at a given region / 192 

total cytosine context number at corresponding region) rather than absolute numbers.  193 

 194 

35080 ££ tmC
in
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Results showed general agreement with the Kawakatsu et al. original study [21]. Strong methylation 195 

changes were identified in all three contexts during the seed development process, with DIMP signal 196 

increasing from COT to MG to PMG to dry seed, and reaching its peak in leaf tissue.  CHG and CHH 197 

changes were associated predominantly with non-genic and TE regions, and CG DIMPs showed higher 198 

density within gene regions, which agreed with the DMP distribution pattern reported in the original 199 

study[21]. A surprising CHG peak was observed in leaf tissues relative to seed, which we did not pursue 200 

in detail, but may reflect a pronounced tissue-specific transition. Similar DIMP patterns were observed in 201 

the drought stress dataset relative to cytosine context, although with higher signal levels in each context.  202 

 203 

Hierarchical clustering based on AUC criteria and built on the set of 9893 DIMP-associated genes (using 204 

caTools R package) permitted classification of seed developmental stages into two main phases: 205 

morphogenesis/maturation versus dormancy (Fig. 6). In this analysis, methylation signal was expressed as 206 

the sum of Hellinger divergence within genes plus 2kb upstream. Within the 9893-dimensional metric 207 

space generated by 9893 AUC-selected genes, the linear cotyledon (COT) and mature green (MG) stages 208 

(morphogenesis-maturation phase) grouped into a cluster quite distant from post mature green (PMG) and 209 

dry seed (DRY) stages (dormancy phase). These observations indicate a detectably greater similarity in 210 

methylome patterns between cotyledon and mature green stages, transitioning to a distinguishable state 211 

for post-mature green and dry seed. This transition may relate to the desiccation and dormancy shift that 212 

occurs within this timing [29, 30]. 213 

 214 

DIMPs can be predicted using a machine learning approach 215 

An important test of DIMPs detected by the Methyl-IT pipeline is whether or not DIMPs identified within 216 

treatment samples can be discriminated from those in the control. To address this question, machine-217 

learning approaches were implemented.  218 

 219 

Each DIMP was represented as a four-dimensional vector with variables HD, TV, Weibull probability, 220 

and cytosine relative position. The classification result for simulated data and seed development data are 221 

presented in Table 2. Simulation experiments suggested that classification accuracy mainly depended on 222 

the distance separating Weibull distributions (noise plus signal) for control and treatment. Weibull model 223 

parameter values (alpha.1 and scale.1) from the first simulation for control samples (S11 to S13) were 224 

close to those estimated in the treatment group (S21 to S23), suggesting that corresponding distribution 225 

functions were close as well. Although the classifier performance to predict DIMPs could be considered 226 

acceptable (about 80% accuracy), discriminatory power to predict DIMPs from an external sample (not 227 

included to build the model) was relatively low. If probabilistic models were sufficiently distant, even a 228 
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classifier trained with samples having an overall mean TVD (absolute values of methylation differences) 229 

equal to 0.13 could achieve good discrimination of DIMPs from an external sample.  Importantly, a given 230 

DIMP with the same HD value in control and treatment groups could be discriminated from control group 231 

if the Weibull probability distributions from control and treatment were different.  232 

 233 

Classification of DIMPs was accomplished for the seed development dataset as well. Since each seed 234 

development stage comprised only one sample, groups were formed according to the hierarchical cluster 235 

presented in Fig. 6. The best classification accuracies were obtained for CG and CHH methylation 236 

contexts (Table 2). These were binary classifications, where control samples were the reference class. 237 

Thus, probability P(x) that a new DIMP x could be observed in the control class determined its 238 

classification, and the probability that a given DIMP did not classify within the control class was 1 - P(x). 239 

A classifier model built on the groups CT: COT and MG, and non-CT: PMG and DRY (Table 2) could be 240 

applied to classify a DIMP from the leaf stage sample as non-CT. If a DIMP from the leaf stage classified 241 

as ‘CT’, this would mean that, with probability 1 − 𝑃 𝑥 > 𝑃 𝑥 	,	its current methylation status for the 242 

corresponding cytosine position was not distinguishable from the status observed during early seed stages. 243 

The classifier model does not provide information for whether or not methylation status of a given 244 

cytosine position changed across the developmental stages.  245 

 246 

Differentially methylated genes identified by DIMPs are biologically meaningful 247 

To investigate DIMP-based resolution of differences between seed development stages or between 248 

stressed vs non-stressed conditions, we defined differentially methylated genes (DMGs) based on group 249 

comparison for DIMP counts by applying generalized linear regression model (GLM). Genes displaying 250 

statistically significant difference in DIMP number relative to control were defined as DMGs. The DMG 251 

is defined distinctly from differentially methylated regions (DMRs), which comprise regions of high 252 

density methylation changes.  In the original study of seed methylation data, enormous DMP numbers 253 

were identified in CHH context, corresponding to 23,195 DMRs that largely associated with transposable 254 

elements [21].  However, DMR association with gene regions was only scant. In the drought stress dataset, 255 

only 49 DMRs corresponding to drought stress were identified by the DSS method [24]. 256 

 257 

A total of 1068 DMGs were identified for the group comparison of morphogenesis/maturation versus 258 

dormancy phases for seed development (Additional file 1). To investigate the biological meaning of these 259 

DMGs, we conducted a network enrichment analysis test (NEAT). A statistically significant network 260 

enrichment of links between genes from the set of seed development DMGs and the set of GO-biological 261 

process associated with seed functions was observed (Table 3). The list of 16 networks identified includes 262 
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positive and negative regulation of GA-mediated signaling, positive and negative regulation of seed 263 

germination, regulation of seed dormancy, and raffinose family oligosaccharide biosynthesis, all well-264 

established seed processes (full gene list in Additional file 2: Table S2). GeneMANIA [31] identified 265 

interaction networks within the data, indicating that many DMGs in the seed development dataset 266 

function together (Additional file 3: Figure S1). To test the impact of different minimum cytosine 267 

coverage on Methyl-IT output, the pipeline was run without minimum coverage limit (Table 3) and with a 268 

minimum coverage of 10 reads (Additional file 4: Table S3). Results were similar with either setting.  269 

 270 

In the drought stress experiment, analyses performed by the original authors detected 2141 CG, 1039 271 

CHG and 718 CHH DMRs, which eventually led to identification of 49 drought stress-related DMRs 272 

[24]. A very weak relationship between methylome changes and phenotype or gene expression patterns 273 

was suggested in the original study [24]. With Methyl-IT, we identified 6669 DMGs (Additional file 5: 274 

Table S4). To investigate whether associations between identified DMGs and gene expression were 275 

evident, we compared the DMG list with the differentially expressed gene (DEG) dataset reported in the 276 

original study with 4371 genes [23]. Fig. 7a shows that the two lists shared 842 genes, accounting for 277 

19.25% DEGs and 12.6% DMGs. Applying NEAT and Network Based Enrichment Analysis (NBEA) to 278 

DEG and DMG datasets, we identified 73 significantly enriched DEG and 23 DMG networks. Among 279 

them, 11 were shared and all were related to plant stress response mechanisms. Fig. 8 shows four 280 

examples within the 11 networks, with MAPK cascade (GO:0000165), response to osmotic stress 281 

(GO:0006970), response to salt stress (GO:0009651), and response to abscisic acid (GO:0009737). Each 282 

gene shown carried significant DIMP signal (Additional file 5: Table S4, Additional file 6: Table S5), 283 

suggesting that a systematic methylation repatterning had occurred within these networks. At an 284 

individual gene level, numerous genes showed both significant gene expression and methylation changes 285 

associated with drought stress response. For example, ABA INSENSITIVE 1 (ABI1, AT4G26080) encodes 286 

a protein involved in abscisic acid signal transduction that negatively regulates ABA promotion of 287 

stomatal closure [32].  The locus carries 5 DIMPs on average in the three drought stressed plants, and is 288 

up-regulated 3.36 fold.  ABRE BINDING FACTOR 4 (ABF4, AT3G19290), encodes a bZIP transcription 289 

factor with specificity for abscisic acid-responsive elements (ABRE), and mediates ABA-dependent stress 290 

responses, acting through the SnRK2 pathway [33].  This gene has an average of 8.7 DIMPs and  2.6-fold 291 

up-regulation. ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING FACTOR 3 (ABF3, AT4G34000) 292 

encodes an ABA-responsive element-binding protein with similarity to transcription factors expressed in 293 

response to stress and abscisic acid [34]. In our study, this gene displays 11 DIMPs and is up-regulated 11 294 

fold. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1, AT2G46830) encodes a transcriptional repressor that 295 

performs overlapping functions with LHY in a regulatory feedback loop that is closely associated with the 296 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/252106doi: bioRxiv preprint 

https://doi.org/10.1101/252106


	
	

10	

circadian oscillator of Arabidopsis [35]. This gene shows an average of 7.7 DIMPs and is up-regulated 297 

38.6 fold. Taken together, these data provide enticing indication that differential gene methylation is 298 

subtle, goes undetected by common methodologies, and identifies gene networks that are compelling 299 

candidates for more detailed subsequent investigation. 300 

 301 

Discussion 302 

Methyl-IT draws from the perspective that DNA methylation functions to stabilize DNA [8, 36, 37] and, 303 

as such, may exist in “activated-signal” versus “maintenance” states with regard to bioenergetics. The 304 

theoretical premise underlying our approach, and based on Landauer’s principle, is detailed elsewhere [12, 305 

13], while the present study compares resolution of this methodology to current methods for analysis of 306 

whole-genome methylation datasets.  To date, there has not been a statistical biophysics model to 307 

simulate background methylome variation. Consequently, comparisons with other methylation analysis 308 

procedures presented here were limited to published experimental datasets. 309 

 310 

Methyl-IT permits methylation analysis as a signal detection problem. The model predicts that most 311 

methylation changes detected, at least in Arabidopsis, represent methylation “background noise” with 312 

respect to methylation regulatory signal, explainable within a statistical physical probability distribution. 313 

Implicit in our approach is that DIMPs can be detected in the control sample as well. These DIMPs are 314 

located within the region of false alarm in Fig. 1, and correspond to natural methylation signal not 315 

induced by treatment. Thus, using the Methyl-IT procedure, methylation signal is not only distinguished 316 

from background noise, but can be used to discern natural signal from that induced by treatment. 317 

 318 

Whereas methods underlying RMST (methylpy approach) and DSS provide essential information about 319 

methylation density, context and positional changes on a genome-wide scale, Methyl-IT provides 320 

resolution of subtle methylation repatterning signals distinct from background fluctuation. Data derived 321 

from analysis with FET, RMST, HCT or DSS alone could lead to an assumption that gene body 322 

methylation plays little or no role in gene expression, or that transposable elements are the primary target 323 

of methylation repatterning. Yet ample data suggest that this picture is incomplete [38].  Methyl-IT results 324 

show that these conclusions more likely reflect inadequate resolution of the methylome system. GLM 325 

analysis applied to the identification of DMR-associated genes by methylpy [21] and DSS indicates that 326 

DMRs (or DMR associated genes) do not provide sufficient resolution to link them with gene expression. 327 

 328 
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Signal detected by Methyl-IT may reflect gene-associated methylation changes that occur in response to 329 

local changes in gene transcriptional activity. Pathway-associated methylome changes detected in seed 330 

development data suggest participation of methylation in gene expression stage transitions, particularly 331 

prominent between mature green and post-mature green stages. Likewise, coincident patterns between 332 

methylome-associated gene networks and gene expression networks during drought stress appear to be 333 

strongly non-random. 334 

 335 

Methyl-IT analysis of various stages in seed development and germination showed evidence of 336 

methylation changes. Previous methylpy output [21] defined predominant changes in non-CG 337 

methylation residing within TE-rich regions of the genome, whereas Methyl-IT data resolved statistically 338 

significant methylation signal within gene regions.  With the complementary resolution provided by 339 

Methyl-IT, it becomes possible to investigate the nature of chromatin response within identified genes in 340 

greater detail during the various stages of a seed’s development. Several of the identified DMGs in this 341 

study involved genes that interact within known seed-associated pathways. 342 

 343 

A limitation to currently existing methylome data analysis platforms is that most require fairly advanced 344 

coding skills and statistics knowledge, rendering them less directly accessible to most biologists. Methyl-345 

IT has been designed to be highly user friendly, accessible to any biologist with basic R knowledge. 346 

Conclusions 347 

Methyl-IT is an alternative and complementary approach to plant methylome analysis that discriminates 348 

DNA methylation signal from background and enhances resolution. Analysis of publicly available 349 

methylome datasets showed enhanced signal during seed development and germination or during drought 350 

stress within genes belonging to related pathways, providing new evidence that DNA methylation 351 

changes occur within gene networks. Whereas, previous methylome analysis protocols identify changes in 352 

methylome density and landscape, predominantly non-CG, Methyl-IT reveals effects within gene space, 353 

mostly CG and CHG, for elucidation of methylome linkage to gene effects. 354 

Methods 355 

Methylome analysis 356 

The alignment of BS-Seq sequence data from Arabidopsis thaliana was carried out with Bismark 0.15.0 357 

[39]. BS-Seq sequence data from tomato experiment were aligned using ERNE 2.1.1 [40]. The basic 358 

theoretical aspects of methylation analysis applied in the current work are based on previous published 359 

results [12]. Details on Methyl-IT steps are provided in the next sections. 360 
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Methylation level estimation 361 

In Methyl-IT pipeline, it is up to the user whether to estimate methylation levels at each cytosine position 362 

following a Bayesian approach or not. In a Bayesian framework assuming uniform priors, the methylation 363 

level can be defined as:  (1), where and represent the numbers 364 

of methylated and non-methylated read counts observed at the genomic coordinate , respectively. We 365 

estimate the shape parameters and  from the beta distribution  (2) 366 

minimizing the difference between the empirical and theoretical cumulative distribution functions (ECDF 367 

and CDF, respectively), where  is the beta function with shape parameters  and . Since the 368 

beta distribution is a prior conjugate of binomial distribution, we consider the p parameter (methylation 369 

level ) in the binomial distribution as randomly drawn from a beta distribution. The hyper-parameters 370 

and are interpreted as pseudo counts. Then, the mean  of methylation levels , given 371 

the data D, is expressed by  (3). The methylation levels at the cytosine with 372 

genomic coordinate are estimated according to this equation. If the Bayesian framework is not selected, 373 

then methylation levels are estimated as: 𝑝" = 𝑛"
0& 𝑛"

0& + 𝑛"
& . 374 

Hellinger and Total Variation divergences of the methylation levels 375 

To evaluate the methylation differences between individuals from control and treatment we introduce a 376 

metric in the bidimensional space of methylation levels:	𝑃" = (𝑝", 1 − 𝑝"). Vectors 𝑃" provide a 377 

measurement of the uncertainty of methylation levels at position i. However, we do not perform a direct 378 

comparison between the uncertainty of methylation levels from each group of individuals, control ( ˆ cip ) 379 

and treatment ( ˆ tip ), but the uncertainty variation with respect to the same individual reference ( ˆ rip ) on 380 

the mentioned metric space. The reason to measure the uncertainty variation with respect to the same 381 

reference resides in that even sibling individuals follow an independent ontogenetic development. This a 382 

consequence of the "omnipresent" action of the second law of thermodynamics in living organisms, at 383 

molecular level manifested throughout the actions of Brownian motion and thermal fluctuations on DNA 384 

molecules. 385 

The difference between methylation levels from reference and treatment (control) experiments is 386 

expressed in terms of information divergences of their corresponding methylation levels, and ( ˆ cip ), 387 
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respectively. The reference sample(s) can be additional experiment(s) fixed at specific conditions, or a 388 

virtual sample created by pooling methylation data from a set of control experiments, e.g. wild type 389 

individual or group. 390 

If the read counts 𝑛"
0&  and 𝑛"

&  are provided and taken into account, then the Hellinger divergence 391 

between the methylation levels from reference and treatment experiments is defined as: 392 

  (4) 393 

Where ,  and . Otherwise, Hellinger 394 

divergence between the methylation levels from reference and treatment experiments is defined as: 395 

( ) ( ) ( )2 2
ˆ ˆ ˆ ˆ ˆ ˆ, 2 1 1r t t r t r
i i i i i iH p p p p p p= - + - - -            (5) 396 

The total variation of the methylation levels ( )ˆ ˆ ˆ ˆ,r t t r
i i i iTV p p p p= -  (6) indicates the direction of the 397 

methylation change in the treatment, hypo-methylated  or hyper-methylated . TV is 398 

linked to a basic information divergence, the total variation distance, defined as: 399 

  (7) [41].  Distance  and Hellinger divergence (as given in 400 

Eq. 4) hold the inequality: ( ) ( )1ˆ ˆ ˆ ˆ, ,r t r t
i i i i

i

TVD p p H p p
l

£  (8), where 2i iwl = , which is a direct 401 

consequence of the Cauchy-Schwarz inequality. Under the null hypothesis of non-difference between 402 

distributions and , Eq. 4 asymptotically has a chi-square distribution with one degree of freedom, 403 

which set the basis for a Hellinger chi-square test (HCT). The term  introduces a useful correction for 404 

the Hellinger divergence, since the estimation of and are based on counts (see Table 1). 405 

In Methyl-IT pipeline, the statistics mean, median, or sum of the read counts at each cytosine site of some 406 

control samples can be used to create a virtual reference sample. It is up to the user whether to apply the 407 

'row sum', 'row mean' or 'row median' of methylated and unmethylated read counts at each cytosine site 408 

across individuals. 409 
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Non-linear fit of Weibull distribution 410 

The cumulative distribution functions (CDF) for  can be approached by a Weibull 411 

distribution (9) [12]. Parameter  and were estimated by non-412 

linear regression analysis of the ECDF  versus  [12]. The ECDF of the 413 

variable  is defined as:  414 

 (10) 415 

, where is the indicator function. Function  is easily computed 416 

(for example, by using function “ecdf” of the statistical computing program “R”[42]). 417 

A statistical mechanics-based definition for a potential/putative methylation signal (PMS) 418 

Most methylation changes occurring within cells are likely induced by thermal fluctuations to ensure 419 

thermal stability of the DNA molecule, conforming to laws of statistical mechanics [12]. These changes 420 

do not constitute biological signals, but methylation background noise induced by thermal fluctuations, 421 

and must be discriminated from changes induced by the treatment. Let  be the probability 422 

that energy , dissipated to create an observed divergence between the methylation levels from two 423 

different samples at a given genomic position , can be lesser than or equal to the amount of energy . 424 

Then, a single genomic position shall be called a PMS at a level of significance  if, and only if, the 425 

probability  to observe a methylation change with energy dissipation 426 

higher than  is lesser than . The probability  can be given by a member of the 427 

generalized gamma distribution family and, in most cases, experimental data can be fixed by the Weibull 428 

distribution [12]. Based on this dynamic nature of methylation, one cannot expect a genome-wide 429 

relationship between methylation and gene expression. A practical definition of PMS based on Hellinger 430 

divergence derives provided that is proportional to and using the estimated Weibull CDF for 431 

given by Eq. 8. That is, a single genomic position shall be called a PMS at a level of significance 432 
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 if, and only if, the probability  to observe a 433 

methylation change with Hellinger divergence higher than  is lesser than . 434 

The PMSs reflect cytosine methylation positions that undergo changes without discerning whether they 435 

represent biological signal created by the methylation regulatory machinery. The application of signal 436 

detection theory is required for robust discrimination of biological signal from physical noise-induced 437 

thermal fluctuations, permitting a high signal-to-noise ratio [18]. 438 

Robust detection of differentially informative methylated positions (DIMPs)  439 

Application of signal detection theory is required to reach a high signal-to-noise ratio [43, 44]. To 440 

enhance DIMP detection, the set of PMSs is reduced to the subset of cytosines with 441 

, where is a minimal total variation distance defined by the user, preferably 442 

. If we are interested not only in DIMPs but also in the full spectrum of biological signals, 443 

this constraint is not required. Once potential DIMPs are estimated in the treatment and in the control 444 

samples, a logistic regression analysis is performed with the prior binary classification of DIMPs, i.e., in 445 

terms of PMSs (from treatment versus control), and a receiver operating curve (ROC) is built to estimate 446 

the cutpoint of the Hellinger divergence at which an observed methylation level represents a true DIMP. 447 

There are several criteria to estimate the optimal cutpoint, many of which are implemented in the R 448 

package OptimalCutpoints [27]. The optimal cutpoint used in Methyl-IT corresponds to the H value that 449 

maximizes Sensitivity and Specificity simultaneously [45, 46]. These analyses were performed with the R 450 

package Epi [47].  451 

Once all pairwise comparisons are done, a final decision of whether a DFMP is a DIMP is taken based on 452 

the highest cutpoint detected in the ROC analyses (Fig. 1). That is, the decision is taken based on the 453 

cutpoint estimated in the ROC analysis for the control sample with the closest distribution to treatment 454 

samples. The position of the cutpoint will determine a final posterior classification for which we would 455 

estimate the number of true positive, true negatives, false positives and false negatives. For each cutpoint 456 

we would estimate, the accuracy and the risk of our predictions. We may wish to use different cutpoints 457 

for different situations. For example, if our goal is the early detection of a terminal disease and high 458 

values of the target variable indicates that a patient carries the disease, then to save lives we would prefer 459 

the lowest meaningful cutpoint reducing the rate of false negative. 460 

DIMP simulation and machine learning classifier 461 

Methyl-IT pipeline was applied to seven random generated individual samples, each on with 2×105 462 

simulated cytosine positions with their corresponding methylation levels. A reference individual sample 463 
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was generated with parameters 𝛼 = 1.54	and 𝛽 = 2 with mean of methylation levels 𝐸 𝑝 = 0.435 and 464 

variance 𝑉𝑎𝑟 𝑝 = 0.0541. Two simulation experiments were performed. For the first simulation, total 465 

variations values for three control samples (S11 to S13) were generated using normal distribution with 466 

means (standard deviation): 0.297 (0.31), 0.297 (0.32), and 0.295 (0.34) and for three treatment (S21 to 467 

S23) individual with means (standard deviation): 0.44 (0.3), 0.45 (0.33), and 0.43 (34). The overall mean 468 

of all the pairwise differences of methylation levels between control and treatment sample is 0.03.  469 

 470 

TV treatment means were increase in the second simulation with values: 0.54, 0.55, and 0.53. The overall 471 

mean of all the pairwise differences of methylation levels between control and treatment sample is 0.13. 472 

DIMPs were estimated according to Methyl-IT pipeline and a classifier model was inferred with the three 473 

control samples and the first two treatment samples to classify DIMPs into two classes: control (CT) and 474 

treatment (non-CT or ‘TT’). Each cytosine site is represented as a four dimensional vector with variables: 475 

HD, TV, Weibull probability, and cytosine relative position estimated as (x - xmin)/(xmax - x), where xmin 476 

and xmax are the maximum and minimum positions for the corresponding chromosome. 477 

 478 

The set of four dimensional vectors integrated by control and treatment was randomly split into two 479 

subsets: training (60%, used to train the model) and test (40%, used to evaluate the classifier). The 480 

classification performance was evaluated with Monte Carlo resampling and the classifier model was 481 

applied to predict DIMPs from the third treatment sample not included in the construction of the classifier 482 

model. In the case of Monte Carlo resampling, a new random split of the samples is performed for each 483 

resampling. 484 

 485 

Currently, there are seven classifiers available to use with Methyl-IT:  logistic regression model (LRM), 486 

linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector machine 487 

(SVM), PCA-LRM using the principal component (PCA) as predictor variables in LMR, PCA-LDA and 488 

PCA-QDA. 489 

Estimation of differentially methylated genes (DMGs) using Methyl-IT 490 

Our degree of confidence in whether DIMP counts in both control and treatment represent true biological 491 

signal was set out in the signal detection step. To estimate DMGs, we followed similar steps to those 492 

proposed in Bioconductor R package DESeq2 [48], but the test looks for statistical difference between the 493 

groups based on gene body DIMP counts rather than read counts. The regression analysis of the 494 

generalized linear model (GLMs) with logarithmic link was applied to test the difference between group 495 

counts. The fitting algorithmic approaches provided by glm and glm.nb functions from the R packages 496 
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stat and MASS were used for Poisson (PR), Quasi-Poisson (QPR) and Negative Binomial (NBR) linear 497 

regression analyses, respectively. 498 

Likewise for DESeq2 we used the linear regression model , with design matrix 499 

elements , coefficients , and mean , where normalization constants are considered 500 

constant within a group. Only two groups were compared at a time. The design matrix elements indicate 501 

whether a sample j is treated or not, and the GLM fit returns coefficients indicating the overall 502 

methylation strength at the gene and the logarithm base 2 of the fold change (log2FC) between treatment 503 

and control [48]. In particular, in the case of NBR, the inverse of the variance was used as prior weight 504 

( , where disp is data dispersion computed by the estimateDispersions function from 505 

DESeq2 R package). 506 

To test difference between group counts we applied the fitting algorithmic approaches: PR and PQR if 507 

( ), NBR and NBR with ‘prior weights’. Next, best model based on Akaike 508 

information criteria (AIC). The Wald test for significance of the independent variable coefficient indicates 509 

whether or not the treatment effect is significant, while the coefficient sign (log2FC) will indicate the 510 

direction of such an effect.  511 

Bootstrap goodness-of-fit test for 2x2 contingency tables 512 

The goodness-of-fit RMST 2x2 contingency tables as implemented in methylpy [20] for the estimation of 513 

DMSs (based on the root-mean-square (RMS) statistics) is explained in Perkins et al. in reference [49](a 514 

complemental description is found at arXiv:1108.4126v2). The bootstrap heuristic to perform the test is 515 

given in reference [50]. An analogous bootstrap goodness-of-fit test based on Hellinger divergence was 516 

also applied to estimate DMCs. In this case, Hellinger divergence estimated according to the first statistic 517 

given in Theorem 1 from reference [51].  518 

Network enrichment analysis  519 

Network based enrichment analysis (NBEA) was applied using the EnrichmentBrowser R package [52, 520 

53] and the Network Enrichment Analysis Test (NEAT) was performed by using the R package "neat" 521 

version 1.1.1[53]. 522 
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CDM: Cytosine DNA methylation 525 

DAGs: DMR associated genes 526 

DEG: Differentially expressed gene 527 

DIMPs: Differentially informative methylated positions 528 

DMGs: Differentially methylated genes 529 

DMPs: Differentially methylated positions 530 

DMRs: differentially methylated regions 531 

DSS: Dispersion Shrinkage for Sequencing 532 

FET: Fisher’s exact test 533 

GLM: generalized linear regression model 534 

HD: Hellinger divergence 535 

HCT: Hellinger chi-square test. Goodness-of-fit test based on Hellinger divergence  536 

NEAT: Network Enrichment Analysis Test 537 

NBEA: Network based enrichment analysis 538 

RMST: Root-mean-square test 539 

ROC: Receiver operating characteristic curve 540 

SD: Signal detection 541 

TVD: total variation distance 542 

PMS: Potential/putative methylation signal 543 
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Figures 576 

 577 
 578 
 579 
Fig. 1 Comparison of three variables used to measure DNA cytosine methylation. 580 

The heatmap for  CG methylation distribution represented by (a) methylation level (percentage), (b) total 581 

variation distance (TVD), and (c) Hellinger divergence (HD) on chromosome 1 for the drought stress 582 

experimental data are shown.  Chromosomes were split into 2-kb non-overlapping windows (regions). 583 

The mean of methylation levels for each region i was estimated as: 𝑝" = 𝑚𝐶"B/ (𝑚𝐶"B + 𝑢𝐶"B)EFG
"BHI

EFG
BHI , 584 

while 𝑇𝑉𝐷" = 𝑇𝑉𝐷"𝑗EFG
BHI  and 𝐻𝐷" = 𝐻𝐷"BEFG

BHI .  585 

 586 
 587 
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 588 
 589 
 590 
Fig. 2 Schematic of the theoretical principle underlying Methyl-IT. Methyl-IT is designed to identify a 591 

statistically significant cutoff between thermal system noise (conforming to laws of statistical physics) 592 

and treatment signal (biological methylation signal), based on Hellinger divergence (H), to identify “true” 593 

differentially informative methylation positions (DIMPs). Empirical comparisons allow the placement of 594 

Fisher’s exact test for discrimination of DMPs.  595 

 596 

 597 

 598 

 599 
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 600 
 601 

Fig. 3  Methyl-IT processing flowchart. Ovals represent input and output data, squares represent 602 

processing steps, with signal detection processing steps highlighted in blue and DIMPs and DMGRs, as 603 

main outputs of Methyl-IT, highlighted in yellow. The generalized linear model is incorporated for group 604 

comparison of genomic regions (GRs) based on the number of DIMPs in the treatment group relative to 605 

control group. DIMPs and DMGRs can be subjected to further statistical analyses to perform network 606 

enrichment analysis and to identify potential signature genes, multivariate statistical analysis (and 607 

machine learning applications) for individual and group classifications. 608 

 609 

 610 

 611 

 612 
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 613 
Fig. 4 Venn diagrams of overlapping DMSs (RMST implemented in methylpy software), DMPs 614 

(obtained with Fisher Exact Test), DMCs (obtained with HCT, see methods) and DIMPs (obtained with 615 

Methyl-IT) for the drought experimental data. Only methylated cytosine positions with total variation 616 

distance (TVD) greater than 0.25 (25% of methylation level difference) are shown for the three 617 

methylation contexts. DIMPs carrying methylation signal are in the region within the dashed oval.  618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 
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 627 
 628 

 629 

Fig. 5 Results of signal detection with Methyl-IT for genome-wide methylome data from seed 630 

development samples from Kawakatsu et al [21] at five seed stages (GLOB, COT, MG, PMG, DRY) and 631 

leaf (globular (GLOB) stage used as control), and drought stress experiment control (CTR) and stress 632 

(STR) samples from Ganguly et al. [24].  The experimental results provide a direct, scaled comparison of 633 

methylation signal between datasets. The relative frequency of DIMPs was estimated as the number of 634 

DIMPs divided by the number of cytosine positions. 635 

 636 
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 637 
 638 

Fig. 6 Classification of seed development stages based on identified DIMPs. A hierarchical cluster built 639 
on the set of 7006 selected DIMP-associated genes, based on AUC criteria, classified the stages into two 640 
groups: morphogenesis-maturation phase and dormancy phase.   641 
 642 

 643 

 644 
Fig. 7 Differential expressed genes(DEGs) vs differential methylated genes(DMGs) in unstressed plants 645 

vs drought stressed plants comparison. (a) 4371 DEGs were identified by [24] and 6669 DMGs were 646 

identified by Methyl-IT. (b) 73 and 23 significantly enriched networks were identified from 4371 DEGs 647 

and 6669 DMGs, respectively. NEAT and NBEA analysis were used to identify enriched network (see 648 

Method). 649 

 650 
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 651 
 652 

Fig. 8 Examples of enriched networks identified by NBEA using DMGs. Genes involved in (a) MAPK 653 

cascade, (b) response to salt stress, (c) response to osmotic stress, and (d) response	to	abscisic	acid are 654 

in circles. Network graphs were generated by EnrichmentBrowser R package in R. Details of DIMPs 655 

number for each gene could be found in additional file 6. 656 

  657 
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Tables 658 

Table 1. Relative sensitivity differences between several statistical tests applied to identify differentially 659 

methylated cytosines. P-values for the 2x2 contingency table with read counts , , 660 

, and . 661 

Approach p-value Significance(α= 0.05) 

FET 0.108615              No 

FET one tail 0.108615              No 

FET p.value MC 3k(1) 0.1086              No 

RMST Boot 3k(2) 0.051              No 

HT Boot 3k (3) 0.050667              No 

Weibull STR1 CG(4) 5.08E-04              Yes 

Weibull STR2 CG(4) 3.20E-04              Yes 

Weibull STR3 CG(4) 3.20E-04              Yes 
1p.value simulated with Monte Carlo (MC) simulation with 3000 resamplings (3k). 2Bootstrap goodness-of-fit 662 
RMST as implemented in methylpy [20]. 3Bootstrap goodness-of-fit test based on Hellinger divergence estimated 663 
according to the first statistic given Theorem 1 from reference [51]. 3p-value based on the Weibull distribution for 664 
memory lines (STR 1 to 3). ni

mCc refers to methylated cytosine counts in control, ni
Cc refers to non-methylated 665 

cytosine counts in control,  ni
mCt refers to methylated cytosine counts in treatment and ni

Ct refers to non-methylated 666 
cytosine counts in treatment.The R script to compute RMST and H MC estimation is provided in GitLab: 667 

https://git.psu.edu/genomath/MethylIT 668 

  669 

  670 
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 671 

Table 2. Classification of DIMPs into two classes: control (CT) and non-control (non-CT) 672 

Parameters from the best fitted Weibull model estimated for simulate data 
Parameters  

(1)S11  S12 S13  S21 S22 S23  TVD mean 

alpha.1(2) 
 

0.645650 0.645195 0.645586 
 

0.649747 0.651112 0.650272  

0.03 
scale.1 

 

0.249118 0.253707 0.253919 
 

0.257382 0.268151 0.258988  

alpha.2(3) 
 

0.645650 0.645195 0.645586 
 

0.656598 0.654718 0.652522  

0.13 
scale.2 

 

0.249118 0.253707 0.253919 
 

0.290850 0.300384 0.290910  

Performance of classifier models built on simulated data 
Classifier 
model  Accuracy 

(4) MC. 
Accuracy Sensitivity   

 Specificity  Pos. 
Pred 

Neg. 
Pred 

 
 

CT/non-CT 
(S23) 

PCA-QDA.1 
 

0.8088 0.8101 0.537 
 

0.9763 0.9483 0.7592 
 

1213/378 
PCA-QDA.2 

 
0.9997 0.9998 1 

 
0.9994 0.9995 1 

 

0/2508 

Performance  of classifier models built on CT: COT and MG, and non-CT: PMG and DRY 

Methylation
Context 

 
 

Classif.  
Model   Accuracy Sensitivity   

 Specificity  Pos Pred  Neg. 
Pred   

 
 
 

Predictions 
for LEAF  

 
 CT/non-CT 

CG 
 

Logistic 0.9011 0.9984 
 

0.7222 0.8685 0.996 
 

18/166186 
CHG 

 

Logistic 0.7541 0.8842 
 

0.5574 0.7512 0.7611  
 

3174/205463 
CHH 

 

PCA-QDA 0.9074 0.9716 
 

0.671 0.9158 0.865  
 

69102/3906 
 673 
(1)Simulated samples were denoted S11, S12… S23 (S11 to S13 are control, the remainder treatment). (2)1st 674 

simulation experiment. (3) 2nd simulation experiment. (4) Accuracy mean for 500 Monte Carlos resamplings.  675 

 676 

 677 
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Table 3. Network enrichment analysis test (NEAT) on the set of GO-biological process (BP-GO) for the 678 

differentially methylated genes in Ws-0 seed development dataset. 679 

 680 

BP-GO NAB Expected 

NAB 

Adj. p-

value 

GO:0000902 cell morphogenesis 3 0.2492 0.00280 

GO:0006623 protein targeting to vacuole 4 0.299 < 0.001 

GO:0006891 intra-Golgi vesicle-mediated transport 4 0.3323 < 0.001 

GO:0009723 response to ethylene 8 2.9072 0.00873 

GO:0009740 gibberellic acid mediated signaling pathway 5 0.9802 0.00375 

GO:0009845 seed germination 6 1.3456 0.00301 

GO:0009938 negative regulation of gibberellic acid mediated signaling pathway 4 0.2658 < 0.001 

GO:0010162 seed dormancy process 5 1.03 0.00434 

GO:0010187 negative regulation of seed germination 3 0.4319 0.00916 

GO:0010325 raffinose family oligosaccharide biosynthetic process 5 0.3323 0.00102 

GO:0016049 cell growth 3 0.3655 0.00640 

GO:0016192 vesicle-mediated transport 5 0.3987 < 0.001 

GO:0016197 endosomal transport 2 0.0665 0.00280 

GO:0048444 floral organ morphogenesis 5 0.3323 < 0.001 

GO:2000033 regulation of seed dormancy process 3 0.1994 0.0017 

GO:2000377 regulation of reactive oxygen species metabolic process 4 0.4153 0.00154 

 681 
Only over-enriched pathways are included 682 
NAB: observed number of (network) links from DMG list to GO term gene list 683 
Expected NAB: expected number of links from DMG list to GO term gene list (in absence of enrichment) 684 
Enrichment Fold: the ratio of NAB (observed number of network links) / expected nab (expected number of links) 685 
 686 

Table 4. Overlapped pathways between DEGs and DMGs in drought stress data 

No.                                             Gene Ontology term 
1 GO:0000165 MAPK cascade 
2 GO:0006970 response to osmotic stress 
3 GO:0009409 response to cold 
4 GO:0009651 response to salt stress 
5 GO:0009723 response to ethylene 
6 GO:0009737 response to abscisic acid 
7 GO:0009862 systemic acquired resistance, salicylic acid mediated signaling pathway 
8 GO:0009863 salicylic acid mediated signaling pathway 
9 GO:0009867 jasmonic acid mediated signaling pathway 

10 GO:0031348 negative regulation of defense response 
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11 GO:0042742 defense response to bacterium 
 687 
 688 
 689 

Additional files 690 

Additional file 1: Table.S1   DMGs from Arabidopsis seed development dataset. 691 
 692 

Additional file 2: Table.S2   List of seed develoment DMGs found_in networks based on NEAT. 693 

 694 

Additional file 3: Figure.S1  Interaction network built for the seed development DMGs in networks 695 

identified with NEAT using GeneMNIA. 696 

 697 

Additional file 4: Table.S3 Enriched network from seed development DMGs (with minimum coverage 10 698 

reads). 699 

 700 

Additional file 5: Table.S4 List of 6669 DMGs identifed in the drought stress experiment. 701 

 702 

Additional File 6: Table. S5 DMGs in the enriched networks identifited by NBEA for the drought stress 703 

data. 704 

 705 
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