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Abstract (250 words) 

RNA-seq and small RNA-seq are powerful, quantitative tools to study gene regulation 

and function. Common high-throughput sequencing methods rely on polymerase chain 

reaction (PCR) to expand the starting material, but not every molecule amplifies 

equally, causing some to be overrepresented. Unique molecular identifiers (UMIs) can 

be used to distinguish undesirable PCR duplicates derived from a single molecule and 

identical but biologically meaningful reads from different molecules. We have 

incorporated UMIs into RNA-seq and small RNA-seq protocols and developed tools to 

analyze the resulting data. Our UMIs contain stretches of random nucleotides whose 

lengths sufficiently capture diverse molecule species in both RNA-seq and small RNA-

seq libraries generated from mouse testis. Our approach yields high-quality data while 

allowing unique tagging of all molecules in high-depth libraries. Using simulated and 

real datasets, we demonstrate that our methods increase the reproducibility of RNA-

seq and small RNA-seq data. Notably, we find that the amount of starting material and 

sequencing depth, but not the number of PCR cycles, determine PCR duplicate 

frequency. Finally, we show that computational removal of PCR duplicates based only 

on their mapping coordinates introduces substantial bias into data analysis. 
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Introduction 

High-throughput sequencing of long (>100 nt) or small (18–50 nt) RNA provides a 

quantitative measure of RNA abundance. However, RNA-seq and small RNA-seq 

library construction can introduce bias at multiple steps, such as fragmentation of long 

RNAs, reverse transcription, adapter ligation, library amplification by PCR, and 

sequencing. Commonly used high-throughput sequencing platforms, including those 

made by Illumina and Pacific Biosciences, require PCR amplification during library 

construction to increase the number of cDNA molecules to an amount sufficient for 

sequencing. However, PCR stochastically introduces errors that can propagate to later 

cycles (Cha and Thilly, 1993; Dohm et al., 2008). PCR also amplifies different molecules 

with unequal probabilities (Cha and Thilly, 1993). PCR duplicates are reads that are 

made from the same original cDNA molecule via PCR. 

A common practice to eliminate PCR duplicates is to remove all but one read of 

identical sequences, assuming that such reads have been created from the same 

cDNA molecule by PCR (Li et al., 2009). This assumption may be flawed, especially 

with ever higher sequencing throughput, which increases the chance of observing 

reads with identical sequences but from different cDNA molecules. The situation is 

further exacerbated for small genomes and for techniques that interrogate a subspace 

of the genome. For example, the majority of small RNA-seq reads are microRNAs 

(miRNAs) or PIWI-interacting RNAs (piRNAs), which derive from loci that amount to just 

a few percent of the genome (Aravin et al., 2006; Girard et al., 2006; Brennecke et al., 

2007; Li et al., 2013). The assumption also has systematic biases. For example, a 

shorter gene is more likely to give rise to identical RNA-seq reads than a longer gene 

with the same transcript level, simply because the “genomic space” for the random 

process of RNA fragmentation is smaller for the shorter gene. Finally, the conventional 

definition of PCR duplicates is based on mapping coordinates—reads mapping to the 
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exact same genomic location are considered to have identical sequences. However, 

many small RNAs with the same sequence can be produced from multiple genomic 

loci; thus, strategies using genome mapping to identify PCR duplicates ignore the 

situation that identical reads arise from distinct sites in the genome. 

Standard library preparation and sequencing procedures typically have pre-

specified PCR and sequencing error rates, but parameters such as the amount of 

starting RNA used to generate a library, the number of reads sequenced (i.e., 

sequencing depth), and the number of PCR cycles used are often adjusted to 

accommodate sample source, abundance, and quality. While the notion that more PCR 

amplification increases artefactual duplicate reads in high-throughput sequencing 

makes intuitive sense and is widely accepted, high PCR cycle numbers are often 

necessitated by scarce starting materials, another likely cause for duplicate reads. 

Thus, the contribution of PCR cycle number to PCR duplicates is often confounded 

with the contributions of starting materials and sequence depth.  

Unique molecular identifiers (UMIs) are often used to accurately detect PCR 

duplicates accurately and quantify transcript abundance (Fu et al., 2011; Kivioja et al., 

2011; Shiroguchi et al., 2012; Fu et al., 2014a; Fu et al., 2014b; Islam et al., 2014; 

Collins et al., 2015; Smith et al., 2017). If each molecule in the starting pool is barcoded 

with a UMI, i.e., all molecules are unique, then reads with the same UMI must be PCR 

duplicates. In practice, only the molecules in the starting pool that have identical 

sequences need to have different UMIs.  

One strategy to incorporate UMIs introduces pre-defined, manually-selected 

sequences into the adapters. This strategy can avoid UMIs with suboptimal GC 

content and minimize complementarity between or within UMI sequences (Shiroguchi 

et al., 2012). Because UMI identities are unambiguously defined, sequencing and PCR 

errors can be easily corrected. However, implementing pre-defined UMIs requires a 

large number of costly, custom-synthesized oligonucleotides. 
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An alternative strategy employs adapters that contain random nucleotides at 

certain positions in the adapters. The combinations of the random-nucleotide positions 

lead to an exponential number of different UMIs at almost no extra cost, because 

incorporating a random nucleotide costs the same as incorporating a specific 

nucleotide during DNA synthesis. UMIs bearing either five (45 = 1,024 unique barcodes) 

or ten random nucleotides (410 = 1,048,576 unique barcodes) were implemented cost-

effectively and shown to improve PCR duplicate removal (Kivioja et al., 2011; Islam et 

al., 2014). A higher number of unique combinations can be achieved simply by 

increasing the number of random-nucleotide positions. The number of UMI 

combinations must be sufficiently large because as mentioned above, the chance that 

two cDNA molecules with identical sequences in the starting pool are tagged with the 

same UMI combination needs to be infinitesimally small.  

Here, we describe novel experimental protocols and computational methods to 

unambiguously identify PCR duplicates in RNA-seq and small RNA-seq data. We show 

that removing PCR duplicates using UMI information is accurate, whereas removing 

PCR duplicates without UMIs is overly aggressive, eliminating many biologically 

meaningful reads. Finally, we show that the amount of starting materials and 

sequencing depth determine the level of PCR duplicates, without additional 

contribution from the extent of PCR amplification.  
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Results 

Adapting standard RNA-seq procedures to incorporate UMIs 

To incorporate UMIs into RNA-seq, we modified a published, strand-specific, library 

construction protocol (Zhang et al., 2012). The original method has proved to be robust 

and time-efficient, and the adapter ligation step uses DNA adapter oligonucleotides 

that can be readily synthesized at a low cost (Li et al., 2013; Hayashi et al., 2014; Mohn 

et al., 2014; Zhang et al., 2014). The standard protocol uses a single Y-shaped DNA 

adapter comprising two partially complementary oligonucleotides and an unpaired 3′ 

thymidine that pairs with the single adenine tail added to both ends of the double-

stranded cDNA fragments. We modified the adapters by inserting a five-nucleotide 

random UMI (Fig. 1A,B). Consequently, each cDNA fragment is ligated to an adapter 

with a UMI at each end, randomly choosing one out of 1,048,576 (45 × 45) possible 

combinations provided by two UMIs.  

Our UMI RNA-seq adapters were designed so that the sequencing reaction 

begins at the very first nucleotide of the 5′ UMI (Fig. 1B). The random nucleotides of 

UMIs offer the sequence diversity in the initial five sequencing cycles. This sequence 

diversity is critical for commonly used Illumina sequencing platforms, such as HiSeq, 

MiSeq, and NextSeq, to generate base-calling templates and make accurate models 

for discriminating read clusters (Illumina, 2014; Mitra et al., 2015). To avoid insertions 

or deletions within or flanking a UMI, albeit rare, from altering the UMI identity, we 

further designed a “UMI locator”, a pre-defined trinucleotide 3′ to the UMI (e.g. 5′–

NNNNNATC–3′). The trinucleotide serves as an anchor allowing unambiguous 

identification of each UMI (Fig. 1B). Taking the properties of our sequencing instrument 

of choice—NextSeq 500—into consideration, the 3 nt UMI locator sequence and the 

mandatory thymidine required for ligation that immediately follows (Fig. 1B) 

corresponded to the sequencing cycles 6–9, after the first five critical cycles required 
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Figure 1. UMI incorporation into RNA-seq. (A) Overall workflow. Schematic of a read 
produced from RNA-seq with UMIs (B) and of UMI locators (C).
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by the instrument for template generation (Illumina, 2016). However, NextSeq still 

deemed these four invariant positions of low complexity and reported low-quality 

sequencing data. Previous approaches to tackle this problem include increasing the 

diversity of the initial sequences in the library, mixing the library with a high diversity 

sample (spike-in), lowering sequencing cluster density, or any combination of the 

above (Mitra et al., 2015). We designed three UMI locator sequences (Fig. 1C), and, by 

pooling adapters with one of these sequences at equimolar amounts, we were able to 

resolve the low complexity problem. Using this approach, we generated RNA-seq 

libraries from mouse brain, heart, kidney, liver, lung, muscle, spleen, and testis total 

RNAs. The libraries were sequenced at a read depth, coverage, and quality 

comparable to libraries generated using the original protocol without UMIs 

(Supplemental Table S1). Thus, our method of incorporating UMIs, as well as UMI 

locator, does not interfere with library preparation and sequencing. We subsequently 

observed that even two different UMI locator sequences sufficed to overcome the 

erroneous low-quality calling by NextSeq (small RNA-seq, Fig. 2). 

Adapting standard small RNA-seq protocol to incorporate UMIs 

Previously, we established a reliable and robust small RNA-seq protocol by modifying 

a published method which utilizes oligonucleotides compatible with Illumina 

sequencing platforms (Lau et al., 2001). Compared to UMI RNA-seq, incorporation of 

UMIs into this small RNA-seq protocol requires additional considerations. First, the 

number of distinct UMI combinations needs to be significantly greater than what is 

required for RNA-seq. For example, millions of piRNA species—an abundant class of 

small RNAs in the animal germ line—can be routinely detected in a single individual, 

and it is estimated that there can be as many as 1 million distinct piRNA molecules in a 

single spermatocyte or round spermatid (Girard et al., 2006; Aravin et al., 2007; 

Brennecke et al., 2007; Houwing et al., 2007). The most abundant piRNA species in 
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this study has 42,281 reads. In the soma, the most abundant miRNA can take 

up >40% of the total sequencing depth (Yue et al., 2014) —tens of millions of reads. 

Such enormous abundance requires a sufficiently high number of UMI combinations to 

capture all distinct sequences. Second, the length range of small RNAs (< 50 nt) plus a 

longer UMI is still well within the read length achievable by common sequencing 

instruments. Third, the length of a small RNA is a defining feature of its identity and 

thus, insertions or deletions could lead to misclassification of small RNAs. The second 

and third considerations also indicate that small RNA-seq is ideally suited for the 

testing of a large combination of UMIs.  

We tested UMIs containing 10 consecutive random nucleotides. Although both 

the 3′ and 5′ adapters containing 10-nt UMIs ligated to small RNAs with nearly the 

same efficiency as the original adapters without UMIs, the resulting small RNA-seq 

libraries yielded unexpectedly short, variable-length reads that contained truncated 

insert and adapter sequences (data not shown). We speculate that long stretches of 

random nucleotides interfere with oligonucleotide annealing, a critical step in cDNA 

synthesis, PCR, and sequencing, by increasing the chance that a primer anneals to a 

UMI instead of its target sequences. Inter- and intramolecular annealing of 10 nt UMIs 

may also contribute to truncated reads. 

To avoid a long stretch of random nucleotides, we used the UMI locator strategy 

described above to space out several short stretches of random nucleotides. For each 

adapter, we designed three trinucleotide UMI sequences, each separated from another 

by a trinucleotide UMI locator (e.g., 5′–NNN-CGA-NNN-TAC-NNN–3′; Fig. 2A,B). Two 

adapters with such UMIs can produce a trillion combinations, which should suffice all 

deep-sequencing applications. Similar to our RNA-seq strategy, we designed adapters 

with two different sets of UMI locator sequences—mixed at equimolar—to increase the 

sequence complexity in the early sequencing cycles. This strategy allowed us to 

successfully generate and sequence the UMI small RNA-seq libraries, unambiguously 
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locate UMIs, and computationally remove reads containing insertions or deletions in 

UMIs due to reverse transcription, PCR, and sequencing errors (Fig. 2B). We tested our 

method using total RNAs extracted from mouse testes isolated 17.5 days after birth. 

To assess the impact of the amount of starting materials on PCR duplicates, we 

prepared small RNA-seq libraries using a range of 39–5,000 ng RNAs made from serial 

dilution. To test the effect of PCR cycles, we gradually increased the PCR cycles for 

each library with a two-cycle increment. The resulting UMI small RNA-seq libraries 

yielded high-quality sequencing data, comparable to those generated with the original 

non-UMI protocol (Supplemental Table S1). 

Diverse UMIs capture all read species in RNA-seq and small RNA-seq 

As mentioned above, to accurately identify PCR duplicates using UMIs, it is critical that 

the number of distinct UMIs far exceeds the maximal number of starting molecules 

with identical sequences, such that these molecules have an infinitesimal probability of 

being ligated to adapters with the same UMI. Previous UMI methods were designed for 

sequencing single cells or an organism with a less complex transcriptome than 

mammals (Shiroguchi et al., 2012; Fu et al., 2014a). In particular, testis has a higher-

complexity transcriptome than many other tissues such as muscle, liver, and even 

brain (Soumillon et al., 2013), demanding a large number of UMI combinations. Our 

UMI RNA-seq protocol theoretically provides ~1 million (410) distinct combinations, and 

we asked whether this diversity far exceeded the maximal number of reads with 

identical sequences in our libraries. Indeed, the transcripts derived from the 299-bp 7S 

RNA 1 gene produce 19,271 identical reads mapping to the same genomic coordinate, 

all of which are attached to distinct UMI sequences, indicating that all of these reads 

were from different starting RNA molecules. In conclusion, our UMI RNA-seq protocol 

is more than sufficient to disambiguate biologically identical reads from PCR 

duplicates. 
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Our UMI small RNA-seq provides an even higher number of possible 

combinations with 18 nt UMIs—68.7 billion (418)—much larger than the number of 

reads currently produced by a sequencing run. The most abundant small RNA species  

in our datasets is a piRNA with 42,281 reads, far fewer than the number of UMI 

combinations our protocol provides. We conclude that the UMI lengths used in the 

RNA-seq and small RNA-seq protocols contain a sufficient UMI diversity for current 

and, most likely, future sequencing experiments. 

Error-correction for UMIs only slightly improves PCR duplicate identification 

To test whether UMIs could accurately identify PCR duplicates, we first evaluated their 

performance using simulated data. Assuming a library has sufficiently diverse UMI 

sequences, the simplest way to determine biologically identical reads is to look for 

reads with the same sequence but are tagged by different UMIs. This approach 

assumes that there is no error in the replication or reading of the UMI sequences, since 

such errors could render identical UMI sequences different and vice versa, causing 

misidentification of PCR duplicates. UMI errors could occur during PCR sequencing, 

and computationally correcting these errors has been shown to improve identification 

of PCR duplicates (Islam et al., 2014; Bose et al., 2015; Macosko et al., 2015; Yaari and 

Kleinstein, 2015; Smith et al., 2017).  

We designed a strategy for correcting UMI errors with the following 

considerations in mind. First, UMI errors are rare, with rates stipulated by the chemistry 

of PCR and sequencing (~10-5 and ~10-3 errors per position respectively) (Lundberg et 

al., 1991; Zhou et al., 1991; Flaman et al., 1994; Schirmer et al., 2016)). Second, when 

two sufficiently long UMIs (for example, 10 and 18 nt in this study) that differ by just 

one base are connected to two reads with identical sequences, the probability that 

these are PCR duplicates of the same UMI with an error, albeit low (p < 10-3) is still 

much higher than the probability that these are two distinct UMIs (p = 4-10 for RNA-seq 
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and 4-18 for small RNA-seq in this study). Adopting an error-correction method 

previously developed for RNA-seq (Smith et al., 2017), we built a UMI graph for each 

group of reads (Fig. 3A). For RNA-seq, the reads that map to the same genomic 

position form a group. This approach does not work for small RNAs, because they 

often originate from multiple genomic loci. Thus, we simply defined a group of small 

RNA reads as those with identical sequences. In both the RNA-seq and small RNA-seq 

UMI graphs, a node denotes a unique UMI and further holds the number of reads with 

that UMI (Fig. 3A). For each pair of UMIs (say, UMI a and UMI b) that differ by just one 

base (one edit distance apart), we connect their nodes if na ≥ 2 × nb − 1, where na and 

nb represent read counts for the two UMIs. We require a twofold difference between na 

and nb, because as described above, the error rates for PCR and sequencing are low, 

and the twofold differences corresponds to the most extreme case whereby an error 

occurred during the first PCR cycle. However, a twofold difference is too stringent for 

pairs of UMIs with low read counts (e.g., 1 versus 2), for which the error predominantly 

arose from sequencing. We therefore added “−1” to ensure that these UMIs could be 

connected. All connected UMIs are then assumed to originate from the most abundant 

UMIs in the graph. This scheme allows correction of two or more errors in UMIs, 

provided that the intermediate UMIs are observed (for example, the intermediate UMI 

with one error and UMI with two errors in Fig. 3A–B). One could relax the stringency of 

this method by adding direct connections between two nodes that differ in two or more 

positions. 

The need for error-correction might depend on the experimental conditions, 

including the PCR amplification probability, PCR and sequencing error rates, UMI 

length, number of initial molecules, number of sequenced molecules, and number of 

PCR cycles. We performed computer simulations to investigate the effects of these 

seven experimental conditions on UMI error correction by systematically varying one 

variable at a time while holding the other six constant. Each round of simulation 
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Figure 3. Identifying PCR duplicates. (A) Strategy for correcting errors in UMIs. (B) 
Illustration of how correcting errors in UMIs increases accuracy of PCR duplicate 
elimination.
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produced a known number of PCR duplicates and therefore, unlike experimental data, 

the true fraction of all reads corresponding to PCR duplicates can be determined in the 

simulated data. To assess the accuracy of PCR duplicate identification using UMIs, we 

calculated the difference between the number of reads after PCR duplicate removal 

(“estimate”) and the true value (“truth”) relative to the true value: (estimate − truth) / 

truth. This metric reflects the extent to which UMIs over- or underestimate the truth as 

a fraction of the true value. We started the simulation with 100 initial molecules. We 

then performed PCR by randomly assigning a probability to each molecule (tagged 

with an 18 nt UMI) to be duplicated in each PCR cycle. The probability follows a 

uniform distribution between m and 1, where m denotes minimum amplification 

probability (it can be any value between 0 and 1 and is set to 0.8 in the baseline 

condition). Minimum amplification probability can be interpreted as PCR efficiency, 

because the efficiency (average probability) that a molecule is doubled during each 

PCR cycle is (1-m)/2. Ten cycles of PCR (PCR error rate set to 3×10-5) (Lundberg et al., 

1991; Zhou et al., 1991; Flaman et al., 1994) generated a pool of 61,000 ± 1,000 (mean 

± S.D.) molecules. To test the effect of sequencing depth, we randomly drew 100 

molecules from the pool for sequencing (sequencing error rate set to 10-3) (Schirmer et 

al., 2016) (Fig. 4; Supplemental Fig. S1). We call this set of parameters “baseline 

condition”, and it forms the base line from which we systematically varied each 

parameter. For each condition, we performed 10,000 trials. 

We first assumed that there was no error in UMIs (Fig. 3A) and found that on 

average, (estimate – truth) / truth = 2.10% across 10,000 trials under the baseline 

condition. Thus, without performing UMI error correction, we slightly overestimated the 

total number of biological molecules as an error in a UMI would artificially create an 

extra UMI, and in turn, we slightly underestimated the fraction of PCR duplicates (red 

vs gray lines in Fig. 4; Supplemental Fig. S1). Next, we used the UMI graph approach 

described above (Fig. 3A,B) for correcting errors in UMIs, and the new average of 
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(estimate – truth) / truth = 0.0388%. Even though correcting UMI errors consistently 

gives better (estimate – truth) / truth than not correcting the errors, the absolute 

difference in the fractions of PCR duplicates between the two approaches is small (Fig. 

4; Supplemental Fig. S1). For example, under the baseline condition, the true fraction 

of duplicates was 37.8 ± 3.2%; without correcting UMI errors yielded 36.5 ± 3.3%, and 

correcting UMI errors gave 37.8 ± 3.2%.  

Under some extreme conditions, correcting UMI errors yields substantially 

better results. For example, if we modify PCR error rate in the baseline condition from 

the default 3×10-5 (Lundberg et al., 1991; Zhou et al., 1991; Flaman et al., 1994) to 10-3, 

correcting UMI errors still yields a fraction of duplicates (37.2 ± 3.2%) very close to the 

truth (37.2 ± 3.1%), while not correcting the errors underestimates the fraction of 

duplicates (32.1 ± 3.5%). In conclusion, error-correction for UMIs consistently, albeit 

slightly, improves PCR duplicate identification. Therefore, we performed error 

correction for all following analyses. 

Removing PCR duplicates without using UMIs is fundamentally flawed 

Does the common practice of removing PCR duplicates without UMIs improve the 

quantification of both long and short transcripts and in particular, of small RNAs such 

as microRNAs or piRNAs, which collectively originate from a small portion of the 

genome? We compared PCR duplicate identification using UMIs together with 

mapping coordinates of the reads to the conventional approach of using coordinates 

alone. 

When only mapping coordinates were used (RNA-seq data from eight mouse 

tissues) (Supplemental Table S1A), 16.4%–44.5% RNA-seq reads were determined to 

be PCR duplicates, whereas using UMI information in conjunction with coordinates 

identified only 1.89%–10.67% as duplicates. That is, the majority of reads mapping to 

identical coordinates were in fact not PCR duplicates but rather from distinct starting 
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molecules that should be counted for transcript abundance. The situation is even 

worse for small RNA-seq data, when only small RNA sequences were used, the 

majority (56.0%–76.8%) of reads were flagged as PCR duplicates and therefore 

excluded from analysis. In contrast, when UMI information was used together with the 

sequences of reads, just 1.05%–13.6% of reads were determined to be duplicates. 

Thus, most of the identical reads in RNA-seq and small RNA-seq are biologically real 

and not PCR duplicates, consistent with the view that small RNAs, which tend to come 

from precisely the same small genomic regions, can easily be mistaken for PCR 

duplicates when UMI information is not used. Moreover, the assumption that common 

mapping coordinates indicate PCR duplicates becomes increasingly problematic as 

sequencing depth increases, because the chance of observing two identical reads that 

legitimately derive from different molecules before PCR also increases. 

We further tested whether PCR duplicate removal using only mapping 

coordinates is appropriate for transcript quantification (Fig. 5A). The conventional 

method underestimated the abundance of 119 transcripts by 1.25 fold or more: 

removing PCR duplicates based only on coordinates is too aggressive. These 119 

transcripts are significantly shorter (median length = 602 nt) and more highly expressed 

(median abundance = 200 FPKM) than the other transcripts (median length = 1,620 nt; 

median abundance = 13.2 FPKM; Wilcoxon rank sum test p values = 2.22 × 10-44 and 

1.80 × 10-59, respectively) (Fig. 5B). Thus, overestimation of PCR duplicates without 

UMIs reflects (1) a higher tendency of short transcripts to produce identical fragments 

due to more limited possibilities in fragmentation, and (2) a higher tendency of highly 

expressed genes to produce identical fragments. We conclude that removing PCR 

duplicates solely by mapping coordinates introduces substantial bias and that UMIs 

allow more accurate quantification of PCR duplicates and transcript abundance. 
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UMIs improve data reproducibility 

One metric for evaluating the quality of experimental data is the reproducibility 

between technical replicates. We evaluated how UMIs affect the reproducibility of 

transcript quantification using five libraries generated using the same sample of total 

mouse testis RNA, but with gradually decreasing amounts of starting RNA and 

correspondingly increasing numbers of PCR cycles: 4 µg (8 PCR cycles), 2 µg (9 PCR 

cycles), 1 µg (10 PCR cycles), 500 ng (11 PCR cycles), 125 ng (13 PCR cycles) 

(Supplemental Table S1A). We then analyzed the data sets treating PCR duplicates 

using one of three approaches: (1) no PCR duplicates were removed; (2) PCR 

duplicates were removed using the conventional approach of identical genomic 

locations; and (3) PCR duplicates were removed using UMIs together with mapping 

coordinates. We compared the three approaches by calculating coefficients of 

variation (CV = S.D. / mean) for transcript abundance across the five RNA-seq libraries. 

Compared to removing no duplicates, removing duplicates according to their mapping 

coordinates decreased the total CV by 5.80% (from 4,210 to 3,960), while using UMIs 

with mapping coordinates decreased the total CV by 6.67% (from 4,210 to 3,930) (Fig. 

5C). For example, when two RNA-seq libraries (125 ng with 12 PCR cycles and 1 µg 

with 10 PCR cycles) were compared, the number of transcripts whose abundance 

differed by ≥25% decreased when duplicates were removed (1,880 without duplicate 

removal, 1,503 removing duplicates by genomic coordinates, and 1,415 removing 

duplicates using UMIs). We conclude that removing PCR duplicates, using mapping 

coordinates alone or together with UMIs, improves the precision of transcript 

quantification. 

Next, we evaluated the performance of these three approaches for a series of 

small RNA-seq libraries (starting material 39–5,000 ng). Compared to removing no 

duplicates, using UMIs to remove duplicates decreased the total CV by 8.72% (Fig. 
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5C). Surprisingly, removing duplicates according to their mapping coordinates alone 

increased CV by 79.1% (from 6,490 to 11,620) (Fig. 5C). For example, between two 

small RNA-seq libraries in this series, one generated from 150 ng and the other from 1 

µg of the same total RNA sample, genomic loci (piRNA genes and GENCODE-

annotated genes) whose small RNA abundance differed by ≥25% decreased 8.30% 

when duplicates were removed using UMIs (from 2,613 to 2,396 genes). In contrast, 

when duplicates were removed using solely mapping coordinates, the number of such 

irreproducible genes increased by 159% (6,762 genes). These results show that 

removing PCR duplicates with UMIs leads to more consistent quantification across 

libraries, whereas removing duplicates without UMIs is overly aggressive and 

decreases the reproducibility of small RNA-seq experiments.  

PCR cycles alone do not determine the frequency of PCR duplicates 

It is widely accepted that the number of PCR cycles used to amplify the initial cDNA is 

the major cause of PCR duplicates in sequencing libraries (Andrews et al., 2016). We 

sought to test this assumption and to identify other experimental contributing factors. 

As described above, we performed computer simulations to test the impact of UMI 

error correction on PCR duplicate detection. We considered seven parameters that 

could impact the level of PCR duplicates during an RNA-seq or small RNA-seq 

experiment. Assuming that we have performed UMI error correction, we now examine 

in detail these seven parameters for their impact on the level of PCR duplicates. 

Four of the parameters—PCR amplification efficiency, PCR error rate, 

sequencing error rate, and UMI length—are specified by the experimental reagents and 

sequencing platform and typically not adjusted from experiment to experiment. Our 

simulation results indicate that varying the sequencing error rate, the PCR error rate, or 

the UMI length around their default values in the baseline condition (i.e., within the 

ranges stipulated by experimental settings) did not have a significant effect on the 
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faction of PCR duplicates (the blue line is flat around the dashed vertical line in Fig. 

S1A–C, top panels). In comparison, PCR efficiency had a measurable effect (the blue 

line in the top panel of Fig. S1D reveals a negative correlation with PCR efficiency). 

This is because that at lower PCR efficiency, some molecules are less likely to be 

amplified and become underrepresented, causing a decrease in library complexity and 

correspondingly higher fractions of PCR duplicates. 

 The other three parameters—the number of initial molecules, the number of 

molecules sequenced (i.e., sequencing depth), and the number of PCR cycles—are 

often adjusted to meet specific experimental conditions. Our simulations revealed that 

a change in PCR cycle number alone only minimally affected the fraction of PCR 

duplicates (the blue line in the top-left panel of Fig. 4 is nearly flat around the dashed 

vertical line), because the starting molecules of the original pool are proportionally 

propagated to the final library (Head et al., 2014). In contrast, decreasing the number of 

initial molecules or increasing the number of molecules sequenced sharply raised the 

frequency of PCR duplicates (Figure 4, two top-right panels). 

We further tested these findings using experimental datasets. We first analyzed 

a set of five UMI RNA-seq libraries made with gradually decreasing amounts of starting 

RNA and correspondingly increasing numbers of PCR cycles: 4 µg (8 cycles), 2 µg (9 

cycles), 1 µg (10 cycles), 500 ng (11 cycles), 125 ng (13 cycles) (Supplemental Table 

S1A). We observed that less starting RNA and correspondingly more PCR amplification 

resulted in higher fractions of PCR duplicates (Fig. 6A). For example, the 125 ng, 13-

cycle library yielded 10.7% (median over 43,432 genes) PCR duplicates, while the 4 µg, 

8-cycle library made by the same procedure contained only 1.79% PCR duplicates. 

Similarly, analysis of UMI small RNA-seq libraries generated from 39 ng (30 cycles) to 5 

µg (16 cycles) total RNA (Supplemental Table S1A) revealed that starting with less RNA 

caused higher fractions of PCR duplicates (Fig. 6A). 
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Simulations argue that the increase in PCR duplicates is not a consequence of 

greater PCR amplification but rather is caused by the use of lower starting material. To 

test this idea, we analyzed a second set of nine UMI small RNA-seq libraries, all 

generated from 5 µg total RNA from the same mouse testis, but amplified using 14 to 

30 PCR cycles (Supplemental Table S1A). Consistent with the simulations, these 

libraries did not show a discernable trend between fraction of PCR duplicates and the 

number of PCR cycles (Fig. 6B). Thus, the higher fraction of PCR duplicates observed 

in libraries made from low amounts of RNA followed by high PCR cycle numbers more 

likely reflects the reduced complexity of the starting pool, rather than the increased 

number of PCR cycles. Together, our simulated and experimental data demonstrate 

that less starting RNA or higher sequencing depth, but not more PCR cycles per se, 

accounts for the frequency of PCR duplicates. 

Discussion 

We have described experimental protocols and computational methods that, by 

incorporating UMIs into standard procedures, allow accurate PCR duplicate removal 

from RNA-seq and small RNA-seq data. Our approach increases reproducibility and 

decreases noise in sequencing libraries generated using a broad range of starting RNA 

amount and number of PCR cycles, enabling accurate quantification of the abundance 

of both long and short RNAs. We tested the importance of a key aspect of data 

processing—error correction for UMIs—and showed that under typical experimental 

conditions for bulk sequencing (represented by dotted lines in Fig. 4; Supplemental 

Fig. S1), correcting or not correcting errors in the UMI sequences has little absolute 

effect on PCR duplicate quantification. However, sequencing libraries made from a 

small number of cells, amount of tissue, or amount of RNA, have become increasingly 

common (Stegle et al., 2015), and they are more severely affected by PCR duplicates. 

Single-cell sequencing poses three specific challenges for PCR duplicate removal. 
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First, it uses a limited amount of starting RNA, causing too low library complexity. 

Second, the ongoing discovery of new species of non-coding RNAs, many poorly 

understood, increases the number of species being measured, requiring longer UMIs. 

Finally, the increasingly high sequencing depth provided by advances in technology 

increases both the number of species that can be detected and the background noise. 

Together, these three factors make PCR duplicate measurement without UMI error 

correction especially problematic for single-cell sequencing. Our UMI approach should 

be directly applicable to single-cell RNA-seq. Error correction for UMIs mitigates these 

challenges by improving PCR duplicate identification. 

The two most widely used computational tools for PCR duplicate removal, 

Picard MarkDuplicates (http://broadinstitute.github.io/picard/) and SAMtools rmdup (Li 

et al., 2009) rely only on the mapping coordinates of sequencing reads. Our data 

suggest that most identical reads reflect biological reality. Thus, removing PCR 

duplicate reads using only mapping coordinates erroneously eliminates many usable 

reads, particularly those produced from short transcripts and small RNAs. 

The eight mouse tissues we analyzed span a range of transcriptome complexity: 

previous analyses showed that the mouse testis transcriptome contains ~18,700 

autosomal protein-coding transcripts, ~8,600 non-coding RNAs, and ~31.7 Mb of 

intergenic RNA, while the liver transcriptome contains only ~15,500 autosomal protein-

coding transcripts, ~1,000 non-coding RNAs, and ~7.2 Mb of intergenic RNA 

(Soumillon et al., 2013). Among the eight mouse tissues we tested, removing duplicate 

reads based on only mapping coordinates eliminates many biologically meaningful 

reads even when the libraries were made using ample starting RNA and optimal 

experimental conditions. Given the anti-correlation between RNA complexity and PCR 

duplicate occurrence, UMIs will improve the accuracy of comparing long or small RNA 

abundance across different tissues or cell types. Short RNAs, such as miRNAs and 

piRNAs, as well as highly abundant transcripts are particularly susceptible to 
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underestimation by the conventional mapping coordinate method of PCR duplicate 

removal. 

Our UMI approach builds on well-established protocols, requiring few changes 

in the procedures and little additional cost. We expect UMI analysis to be particularly 

useful when sequencing RNAs derived from a limited number of genomic loci, such as 

CaptureSeq (Mercer et al., 2014) and CAGE-seq (Carninci et al., 2006). Our approach 

can theoretically be adapted to any sequencing technique using synthetic 

oligonucleotide adapters. For example, sequencing immunoprecipitated chromatin 

(ChIP-seq) and the alternative CUT&RUN survey the genomic regions bound by 

proteins of interest (Park, 2009; Skene and Henikoff, 2017). The CUT&RUN method 

uses a nuclease to achieve more precise chromatin cleavage than the conventional 

ChIP-seq procedure, which utilizes sonication to randomly shear the DNA. Therefore, 

the likelihood of yielding identical reads also increases for CUT&RUN. By nature, 

protein-bound fragments also map to a smaller portion of genomic positions than 

RNA-seq reads. UMIs can improve discovery of protein binding sites by minimizing 

noise. Similarly, degradome sequencing profiles the 5′ ends of 3′ cleaved RNA 

products (Addo-Quaye et al., 2008); incorporating UMIs will enable precise 

quantification of cleaved RNA abundance. 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2018. ; https://doi.org/10.1101/251892doi: bioRxiv preprint 

https://doi.org/10.1101/251892
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

Methods 

Ribosomal RNA depletion for RNA-seq 

Total RNA was extracted from tissues using the mirVana kit (ThermoFisher Scientific, 

Waltham, MA, USA) following manufacturer’s instructions. The ribosomal RNA 

depletion method was adapted from previously published protocols for human 

samples (Morlan et al., 2012; Adiconis et al., 2013). One hundred and eighty-six 50 nt-

long DNA oligonucleotides complementary to the entire sequences of mouse 18S, 28S, 

5S, and 5.8S rRNAs, and mitochondria 16S rRNA and 16S rRNA precursor were used 

at 0.5 µM (f.c.) for each oligonucleotide. Total mouse testis RNA was incubated with 1 

µL of the DNA oligonucleotide mixture per 1 µg, and rRNA oligonucleotide hybridization 

buffer (100mM Tris-Cl pH 7.4, 200 mM NaCl) was added to make up to 10 µL. 

Oligonucleotide hybridization was carried out by heating the sample at 95ºC for 3 min, 

then slowly cooling it down (−0.1ºC/second) to 22ºC in a thermocycler. The reaction 

was further incubated at 22ºC for 5 min before being placed on ice. Thermostable 

RNase H (Lucigen, Middleton, MA) was added (5 U/µg total RNA), and the reaction 

adjusted to 50 mM Tris-Cl pH 7.4, 100 mM NaCl, and 20 mM MgCl2. and incubated at 

45ºC for 30 min. After DNase treatment with Turbo DNase (1 µL/µg total RNA) 

according to the manufacturer’s instructions, the rRNA-depleted RNA was purified 

using RNA Clean & Concentrator-5 (Zymo Research, Irvine, CA, USA). 

Sequencing 

RNA-seq library generation was similar to previously published (Zhang et al., 2012), 

except for using UMI-containing adapters. Briefly, first strand cDNA was generated 

using ribosomal-depleted, fragmented total RNA. Resulting cDNA was incubated with 

a mixture of three sets of UMI-containing adapters, each carrying a distinct consensus 

sequence as described in the results for adapter ligation (Fig. 1B–C). The cDNA 
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fragments ligated to adapters were amplified by PCR, and the length distributions and 

quality of the resulting libraries were analyzed by Agilent 2100 Bioanalyzer (Agilent 

Genomics, Santa Clara, MA, USA). The libraries were quantified using the KAPA library 

quantification kit (KAPA Biosystems, Wilmington, MA, USA) and sequenced using 

NextSeq 500 (Illumina, San Diego, CA, USA) paired-end sequencing. 

Small RNA-seq library preparation was as previously described (Ghildiyal et al., 

2008; Seitz et al., 2008). Briefly, 18–35 nt small RNAs were size-selected by 

polyacrylamide gel electrophoresis using RNA markers. Small RNAs were first ligated 

to 3′ DNA adapters with adenylated 5′ and dideoxycytosine-blocked 3′ ends. These 

contained UMIs in 3 nt-blocks of random nucleotides separated by pre-defined 3 nt 

consensus sequences (NNN-GTC-NNN-TAG-NNN, Fig. 2B). The ligated products were 

purified by polyacrylamide gel electrophoresis and ligated to a mixed pool of equimolar 

amount of 5′ RNA adapters containing UMIs in 3 nt-blocks of random nucleotides and 

one of the two distinct consensus sequence sets (NNN-CGA-NNN-UAC-NNN and 

NNN-AUC-NNN-AGU-NNN). The length distributions and quality of the resulting 

libraries were analyzed by Agilent 2100 Bioanalyzer. The libraries were quantified using 

the KAPA library quantification kit and sequenced using NextSeq 500 single-end 

sequencing. 

Bioinformatics 

Simulation procedure was performed according to (Smith et al., 2017). Briefly, we 

simulated 7 parameters: PCR amplification probability, PCR and sequencing error 

rates, UMI length, number of initial molecules, number of sequenced molecules, and 

PCR cycle numbers, by varying one parameter and keeping other parameters constant. 

For each combination of the 7 parameters, we performed 10,000 replicates. UMI error 

correction was implemented as described in (Smith et al., 2017), except that we used 

read sequences instead of genomic coordinates when determining PCR duplicates for 
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small RNA-seq. We used NetworkX (Hagberg et al., 2008) for graph-related algorithms, 

and pysam (https://github.com/pysam-developers/pysam) for handling SAM/BAM files. 

Reads were mapped to the mouse mm10 genome as described in (Han et al., 2015). 

When reads were analyzed without UMIs, PCR duplicates were identified using Picard 

(https://github.com/broadinstitute/picard). 

Data access 

The tools developed for handling UMIs in our RNA-seq and small RNA-seq data can be 

found at https://github.com/weng-lab/umitools, and via PyPI (package: umitools). 

RNA-seq and small RNA-seq data have been deposited in the NCBI SRA under the 

accession number PRJNA416930. 
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Table legends 

Supplemental Table S1. Mapping and UMI statistics of (A) RNA-seq and (B) small 

RNA-seq data generated in this study. 
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Figure Legends 

Figure 1. UMI incorporation into RNA-seq. (A) Overall workflow. Schematic of a read 

produced from RNA-seq with UMIs (B) and of UMI locators (C). 

Figure 2. UMI incorporation into small RNA-seq. (A) Overall workflow. The method 

uses a 3′ adapter composed of DNA, except for a single, 5′ ribonucleotide (rA); the 5′ 

adapter is entirely RNA. A standard index barcode allows multiplexing. (B) Schematic 

of a read produced from small RNA-seq with UMIs. 

Figure 3. Identifying PCR duplicates. (A) Strategy for correcting errors in UMIs. (B) 

Illustration of how correcting errors in UMIs increases accuracy of PCR duplicate 

elimination. 

Figure 4. Simulation of PCR duplicate removal with or without error correction for 

UMIs. One parameter (PCR cycle number, starting material, or sequencing depth) was 

varied with the other parameters kept constant. Upper plots show the fraction of 

duplicates, while lower plots show the accuracy of duplicate detection. Each dotted 

line indicates the value for this parameter used in other simulations. 

Figure 5. (A) Transcript abundance (FPKM) calculated by removing PCR duplicates 

using only mapping coordinates compared to using mapping coordinates and UMIs. 

(B) Using only mapping coordinates significantly biases against abundant and short 

genes. Outliers omitted. Wilcoxon rank sum test; n, number of genes in each group. (C) 

Relationship between cumulative coefficient of variation and transcript abundance. 

Figure 6. Fraction of PCR duplicates across genes for (A) a series of UMI RNA-seq and 

small RNA-seq libraries made with different amount of starting materials, and (B) a 

series of UMI small RNA-seq libraries all made with 5µg of total mouse testis RNA and 

with an increasing number of PCR cycles. 
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Figure S1. Accuracy and fraction of duplicates for simulated data varying (A) 

sequencing error rate, (B) UMI length, (C) PCR error rate, or (D) minimum amplification 

probability. Each dotted line indicates the value for this parameter used in other 

simulations. 
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