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Converging evidence from activation, connectivity and stimulation studies suggests that auditory
brain networks are lateralized. Here we show that these findings can be at least partly explained by
the asymmetric network embedding of the primary auditory cortices. Using diffusion-weighted imag-
ing in three independent datasets, we investigate the propensity for left and right auditory cortex to
communicate with other brain areas by quantifying the centrality of the auditory network across a
spectrum of communication mechanisms, from shortest path communication to diffusive spreading.
Across all datasets, we find that the right auditory cortex is better integrated in the connectome,
facilitating more efficient communication with other areas, with much of the asymmetry driven by
differences in communication pathways to the opposite hemisphere. Critically, the primacy of the
right auditory cortex emerges only when communication is conceptualized as a diffusive process,
taking advantage of more than just the topologically shortest paths in the network. Altogether,
these results highlight how the network configuration and embedding of a particular region may
contribute to its functional lateralization.

INTRODUCTION

The brain is a complex network of anatomically con-
nected and functionally interacting neuronal populations.
These connectivity patterns span multiple spatial and
topological scales [6, 40], conferring the capacity for both
specialized processing and multimodal integration among
distributed systems. Increasing evidence suggests that
the anatomical connectivity patterns may not be per-
fectly symmetric however, with several systems marked
by lateralized connection density and topological features
[36].

Auditory networks in particular display a pronounced
tendency for functional asymmetry [11]. Numerous stud-
ies have reported both structural and functional differ-
ences between the left and right auditory cortex, and have
documented their differential contributions to a wide
range of sensory and cognitive tasks, including speech
[27] and tonal processing [67]. These asymmetries have
also been observed at the network level, with asymmetric
patterns of functional interactions or connectivity dur-
ing specific tasks involving auditory processing, such as
speech and language [48] and pitch processing [13].

Recent evidence from stimulation studies raises the
possibility that this lateralization is mediated by asym-
metric anatomical connectivity and network embedding
of the auditory cortices. For instance, stimulation of
the auditory network by transcranial magnetic stimula-
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tion (TMS) elicits highly asymmetric patterns of activ-
ity and functional connectivity, with more widespread
effects if the stimulus is applied over the right auditory
cortex compared to the left [2]. Importantly, individual
differences in responses to stimulation are predicted by
both interhemispheric anatomical connectivity and rest-
ing state functional connectivity [1]. Altogether, these
studies suggest that the functional asymmetry of the au-
ditory network may partly be a consequence of its topol-
ogy, with the right auditory cortex better positioned to
disseminate, exchange and integrate neural signals with
other systems.

Here we investigate whether the observed functional
asymmetry of the auditory system can be attributed
to the anatomical network embedding of left and right
auditory cortex. Using connectivity patterns recon-
structed from diffusion weighted imaging in three differ-
ent datasets, we assess the propensity for left and right
auditory cortex to maintain connections and potential
communication pathways with the rest of the brain.

Importantly, we investigate a range of measures that
embody different models of network communication. To
assess the potential for left and right auditory cortex
to communicate with the rest of the brain via shortest
paths, we estimate the path length between these areas
and the rest of the network (also referred to as closeness
centrality or nodal efficiency). To assess the potential for
these areas to communicate via an ensemble of paths, we
estimate their communicability with the rest of the net-
work [3, 17, 20, 24, 59]. Finally, we use a simple spreading
model in which focal perturbations in left and right au-
ditory cortex develop into global signaling cascades that
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diffuse through the network [31, 45, 61, 63]. Unlike path
length and communicability, the model is inherently dy-
namic, and allows us to trace the trajectories of putative
signaling cascades. We hypothesize that if the lateraliza-
tion of the auditory system has an anatomical origin, the
network embedding of the primary auditory cortices will
differ between the left and right hemispheres, with the
right auditory cortex better positioned to communicate
with, and influence, other areas.

METHODS

Datasets

We performed all analyses in three diffusion-weighted
imaging datasets. The main (discovery) dataset was col-
lected at the Department of Radiology, University Hos-
pital Center and University of Lausanne, (LAU; N=40).
We also included two replication cohorts, one from the
Human Connectome Project (HCP; N=215) [60] and
Nathan Kline Institute Rockland Sample (NKI; N=285)
[49]. Structural connectivity was reconstructed from
diffusion-weighted imaging: diffusion spectrum imaging
(DSI) for LAU, high angular resolution diffusion imaging
(HARDI) for HCP and diffusion tensor imaging (DTI) for
NKI. Although dataset LAU had the fewest participants,
we selected it as the main dataset to demonstrate our
findings because of the quality of the DSI sequence. Be-
low we describe the acquisition, processing and connec-
tome reconstruction procedure for each dataset in more
detail.

LAU. A total of N = 40 healthy young adults (16
females, 25.3 ± 4.9 years old) were scanned at the De-
partment of Radiology, University Hospital Center and
University of Lausanne. Grey matter was parcellated
according to the Desikan-Killiany atlas [22]. These re-
gions of interest were further divided into 114 approx-
imately equally-sized nodes [10]. Structural connectiv-
ity was estimated for individual participants using deter-
ministic streamline tractography as implemented in the
Connectome Mapping Toolkit [10], initiating 32 stream-
line propagations per diffusion direction for each white
matter voxel. For more details regarding the acquisition
protocol and reconstruction procedure, see [45].

HCP. A total of N = 215 healthy young adults (112
females, 29.7± 3.4 years old) were scanned as part of the
HCP Q3 release (Van Essen et al., 2013). Grey matter
was parcellated according to the Desikan-Killiany atlas
[22]. These regions of interest were further divided into
219 approximately equally-sized nodes [10]. Structural
connectivity was estimated for individual participants us-
ing generalized q-sampling (GQI) [64] and deterministic
streamline tractography. For more details regarding the
acquisition protocol and reconstruction procedure, see
[44].

NKI. A total of N = 285 healthy adults (112 fe-
males, 44.38 ± 19.7 years old) were scanned as part of

the NKI initiative [49]. Grey matter was parcellated into
148 regions of interest according to the Destrieux atlas
[23]. Structural connectivity was estimated for individual
participants using the Connectome Computation System
(CCS: http://lfcd.psych.ac.cn/ccs.html). For more de-
tails regarding the acquisition protocol and reconstruc-
tion procedure, see [6].

Defining auditory and visual regions

Primary auditory and visual cortex were delineated
according to the Desikan-Killiany (for LAU and HCP;
[22]) and Destrieux atlases (for NKI; [23]). Both atlases
are based on automated anatomical labeling of MR im-
ages using gyrual and sulcal landmarks. Primary au-
ditory cortex was defined as the “transverse temporal”
(Desikan-Killiany) and the “G_temp_up-G_T_transv”
(Destrieux) nodes. Primary visual cortex was defined as
the “pericalcarine” (Desikan-Killiany) and “S_calcarine”
(Destrieux) nodes. None of these nodes were subdivided
into smaller units than defined in the original atlases.

Consensus adjacency matrices

Given recent reports of inconsistencies in reconstruc-
tion of individual participant connectomes [37, 57], as
well as the sensitive dependence of network measures
on false positives and false negatives [65], we adopted a
group-consensus approach, whereby for each dataset we
estimated edges that occur most consistently across par-
ticipants [19, 54]. In constructing a consensus adjacency
matrix, we sought to preserve (a) the density and (b) the
edge length distribution of the individual participants’
matrices [6, 45]. The approach is conceptually similar to
the procedures proposed by [19, 54].

We first collated the extant edges in the individual par-
ticipant matrices and binned them according to length.
The number of bins was determined heuristically, as the
square root of the mean binary density across partici-
pants. The most frequently occurring edges were then
selected for each bin. Thus, if the mean number of
edges across participants in a particular bin is equal
to k, we selected the k edges of that length that oc-
cur most frequently across participants. To ensure that
inter-hemispheric edges are not under-represented, we
carried out this procedure separately for inter- and intra-
hemispheric edges. The binary densities for the final
whole-brain matrices were 20.1% (LAU), 8.2% (HCP)
and 11.1% (NKI). For each of the matrices, the densi-
ties of the left and right hemispheres were 32.2 vs 32.0%
(LAU), 14.3 vs 13.7% (HCP) and 18.8 vs 21.0% (NKI)
(Fig. S2).
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Communicability

Communicability (Cij) between two nodes i and j is a
weighted sum of all paths and walks between those nodes
[24]. For a binary adjacency matrix A, communicability
is defined as

Cij =
∞∑

n=0

[An]ij
n!

= [eA]ij (1)

with walks of length n normalized by n!, such that
shorter, more direct walks contribute more than longer
walks.

Linear threshold model

The linear threshold model (LTM) is a simple conta-
gion model that describes how a perturbation introduced
at one or more seed nodes develops into a cascade and
spreads through a network [31, 61]. The perturbation
and subsequent cascade are modeled as an active state;
any given node adopts this active state only if a supra-
threshold proportion of its neighbors have also adopted
the active state. A form of contact percolation, the cas-
cading behaviour described by LTM have been exten-
sively studied over a wide range of networks, including
spatially embedded brain networks [38, 39, 45, 50, 63].
The models capture how generic focal perturbations, such
as the transduction of a sensory stimulus, spread through
connected neuronal populations (see Discussion for a dis-
cussion of the neurobiological interpretation and limita-
tions).

Formally, the state of a node i at time t is denoted
as a binary variable ri(t) = {0, 1}, with only two pos-
sible states: active (1) or inactive (0). At initialization
(t = 0), the entire network is inactive, except for a sub-
set of activated seed nodes. The model is then updated
synchronously at each time step according to the rule:

ri(t+ 1) =

{
1 if θsi <

∑
j∈Ni

rj(t)
0 otherwise. (2)

Thus, at each time step the state of node i depends on
its neighborhood, Ni and specifically on the number of
incident connections (degree or strength, si). The node
adopts the active state only if the proportion of inputs
from active nodes exceeds the threshold θ. In the case of
binary networks, the threshold represents the proportion
of a nodeâĂŹs neighbors that must be active to propa-
gate the cascade. The model can be naturally extended
to weighted and directed networks, whereby the thresh-
old represents the proportion of a node’s total weighted
inputs (strength) that must be connected to active neigh-
bors. In all scenarios, the fundamental performance mea-
sure is the adoption or spread time Ai→k, from seed node
i to target node k.

How does the threshold influence spreading dynamics?
At lower thresholds, nodes require fewer neighbors to be
active at time t to become active at time t + 1. Thus,
nodes will be activated at the earliest possible time step,
and the cascade will effectively propagate along the short-
est path. As the threshold is increased beyond the inverse
of the highest degree/strength in the network, cascades
can no longer influence the most highly connected nodes
and do not spread through the whole network (Fig. S3).
Specifically, at higher thresholds it is more difficult to
activate nodes, as more of their neighbours need to be
active, so the dynamics are more dependent on local
connectivity. At lower thresholds, the dynamics are less
constrained by local connectivity and more influenced by
global topology.

In the present study, we selected the threshold us-
ing the following criteria. The threshold had to be low
enough to ensure that all perturbations will cause a com-
plete cascade, so that spread times from the left and
right auditory cortex could be unambiguously compared
(Fig. S3). Increasing the threshold biases spreading away
from shortest paths, with much of the spreading pro-
cess occurring via alternative paths as well. As a result,
spread times become less correlated with path length at
greater thresholds (Fig. S4a). We therefore selected a
threshold (θ = 0.05) at which cascades could reach the
whole network. In all three datasets, this corresponded
to θ = 0.05.

How sensitive is the main effect of interest - the differ-
ence in spread time for perturbations originating in left
and right auditory cortices - to this parameter setting?
Fig. S4b shows the effect of varying the threshold on the
left-right auditory cortex asymmetry. At lower thresh-
olds spreading is similar to shortest path routing, and
there are no significant differences between left and right
auditory cortex. As the threshold is increased, there is
a range in parameter space ([0.04 0.09]) where spread-
ing is significantly faster from the right auditory cortex
compared to left auditory cortex.

RESULTS

White matter networks (connectomes) were recon-
structed from diffusion weighted imaging (DWI) in three
cohorts of healthy adults. We investigated the lateraliza-
tion of primary auditory cortex by quantifying the topo-
logical distance from the left and right auditory cortex
to the rest of the brain. We estimated topological dis-
tance using three measures, each of which makes different
assumptions about the nature of inter-regional commu-
nication: path length (the minimum number of edges
between two nodes), communicability (weighted sum of
all walks between two nodes) and spread time (the time
required for a signaling cascade to spread from one node
to another; see Methods for details of model implemen-
tation). The spread time is a dynamic measure of inter-
regional communication, estimated by simulating how a
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focal perturbation develops into a global signaling cas-
cade and spreads through the network.

Right auditory cortex is topologically more central

To assess the statistical reliability of differences in the
anatomical centrality or embedding between the left and
right auditory cortex, we used nonparametric tests. In
the case of communicability, we used Wilcoxon signed-
rank tests [62]. In the case of path length and spread
times, which are not continuous, we used unpaired per-
mutation tests (10,000 repetitions).

Two salient findings emerge. First, there are differ-
ences in the anatomical embedding of left and right au-
ditory cortex, but these differences only emerge when one
considers communication metrics that assume diffusion of
information, rather than shortest path routing. Namely,
we find that the left and right auditory cortex are indis-
tinguishable in terms of their path length to the rest of
the brain (P = 0.39). Conversely, the right auditory cor-
tex is topologically closer to other brain areas in terms
of diffusive spreading, including greater communicabil-
ity (P = 0.04) and faster spreading times (P < 10−5)
(Fig. 1, top row). As shown in Fig. S2, the two hemi-
spheres are comparable in their connection density, so
the observed effects are more likely to have arisen from
differences in topology.

Second, despite significant differences in acquisition
protocol, processing parameters, resolution and tractog-
raphy algorithm, these results were replicated in the HCP
and NKI datasets (Fig. 1, middle and bottom rows). In
both datasets, left and right auditory cortex were statis-
tically indistinguishable in terms of their path length to
the rest of the network (P = 0.23 in HCP; P = 0.08 in
NKI), while the spread time for cascades originating in
right auditory cortex was significantly faster compared to
those originating in left auditory cortex (P = 5×10−3 for
HCP; P < 10−5 for NKI). The asymmetry was not only
statistically significant, but also associated with a large
overall effect size in all three datasets (Cohen’s d = 0.90,
0.27, 0.54 for LAU, HCP and NKI datasets, respectively).

Auditory asymmetries are cumulative

We next sought to pinpoint the origin of these anatom-
ical asymmetries. Are left-right topological asymmetries
due to a specific anatomical connection, or do they reflect
a more global, cumulative effect? To answer this ques-
tion, we used the spreading model because (a) it is dy-
namic, allowing us to trace the evolution of each signaling
cascade through individual nodes and connections, and
(b) the spread time measure consistently displayed the
greatest effect size for the left-right asymmetry (Fig. 1).

To investigate how the cascade spreading trajecto-
ries differed between the left and right auditory cortices,
we further investigated spread times to specific targets.

Fig. 2 shows spread times for the left and right audi-
tory seeds separately, stratifying the target ROIs into
those contralateral and ipsilateral to the auditory seed
node. We note three trends: (a) consistent with Fig. 1,
spread times are generally faster from the right audi-
tory seed, (b) spread times are faster for ipsilateral com-
pared to contralateral targets (P = 5.19 × 10−6 and
P = 1.35×10−7 for left and right auditory cortex, respec-
tively), and (c) the biggest discrepancies between ipsilat-
eral and contralateral targets are observed for temporal
lobe targets, suggesting that much of the observed asym-
metry is driven by less efficient communication between
the left auditory cortex and the contralateral temporal
lobe. Comparable results were observed in the two repli-
cation datasets, where signals originating from right au-
ditory cortex reach the contralateral temporal lobe faster
than signals originating from the left auditory cortex
(Fig. S1).

No comparable asymmetry in the visual system

While our results suggest a consistent asymmetry of
the auditory cortices, it is possible that this lateraliza-
tion is not unique to the auditory system, but perhaps
a more general feature of sensory systems. To investi-
gate this possibility, we repeated the analyses described
above, but with a focus on primary visual (pericalcarine)
cortex (Fig. 3). Unlike the auditory cortex, there was no
evidence to suggest hemispheric asymmetry, with no sta-
tistically significant differences in path length (P = 0.30),
communicability (P = 0.80) or spread time (P = 0.55).

DISCUSSION

The present investigation reveals a network-level asym-
metry of the auditory system across multiple datasets.
We highlight three principal findings: (1) the right au-
ditory cortex is better integrated in the connectome, fa-
cilitating more efficient global communication, (2) these
differences emerge only when communication processes
are assumed to involve more than just the topologically
shortest paths, and (3) much of the asymmetry is driven
by differences in communication pathways to the oppo-
site hemisphere.

Lateralization of auditory networks

These findings support the notion that the functional
asymmetry of the auditory system can be at least partly
attributed to its embedding in the global anatomical
network. Converging evidence from activation studies
[27, 67], functional connectivity [13, 48], anatomical con-
nectivity [1, 11] and stimulation [1, 2] points toward the
possibility that the right auditory cortex is better po-
sitioned to communicate with and influence other sys-
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tems. Our results suggest that the asymmetry could be
at least partly explained by differences in several anatom-
ical pathways, and that these differences potentially “ac-
cumulate” as information travels from auditory cortex
towards more distant areas.

Specifically, our results suggest that the asymmetric
influence of left and right auditory cortex is most pro-
nounced with respect to the contralateral hemisphere.
Spreading toward proximal areas in the ipsilateral hemi-
sphere proceeded at a comparable pace for the two seeds,
but the differences became more pronounced as the cas-
cades coursed through the contralateral hemisphere, with
the greatest differences observed for contralateral tempo-
ral lobe areas (Fig. 2). Building on previous reports that
individual differences in the strength of auditory tran-
scallosal pathways are related to TMS-induced modula-
tion of interhemispheric functional connectivity [1], our
results point to the possibility that these asymmetries
are also partly due to indirect pathways. Interestingly,
a previous study of left-right asymmetries found that
the connectivity patterns and lateralization of the audi-
tory cortex may be more nuanced; while several anterior-
posterior projections emanating from the auditory cortex
were stronger on the right, other, mainly ventral-dorsal
projections, were found to be stronger on the left [11].
Altogether, these studies raise the possibility that differ-
ences in anatomical connectivity impart a distinct func-
tional profile on the left and right auditory cortices.

While the present results emphasize the existence of a
lateralized auditory network, it is important to note that
this lateralization may be more general and may man-
ifest in other systems as well [16]. Although we found
no evidence to suggest a similar lateralization in primary
visual cortex, other studies have reported differences in
anatomical connectivity for the two hemispheres. For
instance, lateralization of connectivity and centrality is
observed in several areas, with the right hemisphere dis-
playing a more highly interconnected architecture, result-
ing in shorter average path lengths [36]. This observation
suggests that the rightward asymmetry of the auditory
system observed in the present study may be part of a
broader pattern and warrants further investigation.

The present findings may be interpreted in the light of
long-standing models of hemispheric specialization that
have proposed various organizational principles to ex-
plain the phenomenon. Half a century ago, based on hu-
man lesion data, [55] postulated that hemispheric func-
tional asymmetries could be explained on the basis of
more focal representation of function on the left com-
pared to a more diffuse representation on the right. This
idea and other related concepts have been debated over
many years without resolution [9], one of the problems
being the rather vague nature of the description, and
the lack of clear neuroanatomical basis. This idea may
be reinterpreted in light of the asymmetric patterns of
spread of activity: rather than reflecting more diffuse or-
ganization as such, the enhanced connectivity of the right
auditory cortex with other parts of the brain may lead to

greater integration of functional processes across widely
distributed areas, which might manifest as a more dif-
fuse pattern in response to lesions; conversely the reduced
connectivity of left auditory cortex would be associated
with more specific interactions especially within the left
hemisphere, leading to more focal lesion effects.

The present findings are also compatible with a long-
standing conjecture that hemispheric specialization may
be related to interhemispheric conduction times [53], so
that computations that require relatively rapid interac-
tions across regions may be better supported by local
circuitry within a hemisphere. Speech processing, for in-
stance, has been proposed to depend on critical intra-
hemispheric computations relating auditory, motor, and
other structures within the left hemisphere [48], and may
be linked to enhanced auditory temporal resolution [66].
Such speech-related processes may thus benefit from the
more focal left-side intrahemispheric organization we de-
scribe. A number of prior studies have also reported en-
hanced white-matter tracts within the left-hemisphere
speech system compared to the right [12, 21, 51], in
keeping with a more tightly organized intrahemispheric
system. As well, Iturria-Medina et al [36] point out
that the right hemisphere show higher graph-theoretic
indices of efficiency and interconnectivity than the left,
again broadly consistent with our findings. Other, more
local patterns of anatomical asymmetries within audi-
tory cortices that have been described in the literature
[35, 42, 43, 52] can now also be re-examined in light of
the long-range anatomical connectivity asymmetries de-
scribed here.

Our anatomical findings also fit well with more re-
cent reports of functional asymmetries. For example
Tomasi and Volkow [58] report greater short and long-
range connectivity in the right temporal cortex compared
to the left, consistent with better transfer of informa-
tion from right auditory-related areas to the rest of the
brain. Liu et al. [41] report greater left-hemisphere
functional connectivity from resting-state date for sev-
eral seed regions, including left superior temporal gyrus,
indicating that this region has greater exchange of in-
formation with other left-hemisphere structures than its
homologue on the right. Similarly, Gotts et al [29] report
that resting-state connectivity patterns support greater
within-hemisphere interactions on the left side (segrega-
tion) but greater between-hemisphere interactions on the
right side (integration), a pattern that is consistent with
our observations. Importantly, these authors demon-
strated that the degree of integration vs segregation is
related to individual differences in performance on cogni-
tive task, thus demonstrating that degree of lateralization
is related to behavioral ability (but see [12]), and raising
the possibility that cognitive function or dysfunction may
in future be linked to the patterns of communication un-
covered with the present methods.
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Beyond shortest path communication

Interestingly, this auditory asymmetry is not observed
when communication is assumed to occur exclusively
along shortest paths, and only emerges when additional
communication pathways are taken into account, as oper-
ationalized by the communicability and spread time mea-
sures. These results are part of a growing realization that
distributed communication and synchronization in brain
networks may proceed via alternative routes [5, 26, 30],
with several recent methods developed to quantify path
ensembles [3, 4, 17, 18, 25, 32] and the potential for
pathways to participate in the diffusion of information
[28, 46, 47]. Other recent methodologies revolve around
similar ideas, including controllability of linear time-shift
invariant systems [7, 34], activity flow mapping [15, 33]
and simulated perturbations of ongoing oscillatory dy-
namics [14, 56]. Our results highlight the need to consider
the form of communication that a particular measure as-
sumes [8], and that measures founded exclusively on the
concept of shortest paths may not adequately capture the
richness and complexity of distributed computations in
brain networks [5, 26].

Methodological considerations

The replicability of the effect suggests robust asymme-
tries in the auditory system, but it is important to note
several limitations as well. First, all our conclusions are
based on networks reconstructed from diffusion weighted
imaging, a method known to be susceptible to false pos-
itives and negatives [37, 57]. Although we attempted to
mitigate inaccuracies that may be present at the single-
subject level by focusing on group-consensus networks de-
rived from high-quality acquisitions (e.g. DSI, HARDI)
in large samples of participants, and by repeating our
analyses in multiple datasets, systematic errors or biases
in the tractography procedure may still be present. In
addition, networks derived from diffusion imaging are by
definition undirected, limiting inferences about direction-
ality of influence. These considerations highlight the need
for new technologies for noninvasive mapping of white

matter projections in the human brain.
Second, our ability to capture network asymmetries is

contingent on the accuracy of our communication models.
All network measures âĂŞ including simple path length
âĂŞ assume some form of communication [8], but how in-
formation is transferred among topologically distant neu-
ral elements remains unknown. Although we estimated
the centrality of the auditory network across a spectrum
of communication mechanisms, from shortest path com-
munication to diffusive spreading, it is nevertheless pos-
sible that inter-regional communication proceeds via a
different mechanism.

Conclusion

The present study highlights how the network config-
uration and embedding of a particular region may con-
tribute to its functional lateralization. As our ability
to image, reconstruct and stimulate specific neural cir-
cuits advances, theoretical models of how perturbations
and influence spread through brain networks will become
increasingly important. These techniques will ultimately
help to create a closer correspondence between structural
and functional properties of specific areas and systems.
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FIG. 1. Communication distance from auditory cortices to the rest of the brain | The centrality of left and right
auditory cortices was estimated by their topological distance to other brain areas in terms of path length, communicability and
spread time. Shorter path length, greater communicability and shorter spread times indicate greater proximity. Mean values
for each distribution are indicated by solid horizontal black lines. For visualization, a random horizontal jitter was added to
all points. In the case of path length, which is a discrete-valued variable, an additional vertical jitter was added to all points.
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FIG. 2. Simulated spreading from auditory cortices to specific target regions | (a) Spreading times to other nodes of
the network, separated by lobe and hemisphere (blue for ipsilateral areas, orange for contralateral areas). (b) Spreading times
for left and right auditory seeds projected to the cortical surface. The projected locations of the primary auditory nodes are
indicated by white dots.
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FIG. 3. Communication distance from primary visual cortices to the rest of the brain | The centrality of left and
right visual cortices was estimated by their topological distance to other brain areas in terms of path length, communicability
and spread time. Shorter path length, greater communicability and shorter spread times indicate greater proximity. Mean
values for each distribution are indicated by solid horizontal black lines. For visualization, a random horizontal jitter was added
to all points. In the case of path length, which is a discrete-valued variable, an additional vertical jitter was added to all points.
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FIG. S1. Simulated spreading from auditory cortices to specific target regions in the (a) HCP and (b) NKI
datasets | Perturbations are introduced in the left and right auditory cortices (L and R AC). Spreading times to other nodes
of the network are stratified by lobe and hemisphere (blue for ipsilateral areas, orange for contralateral areas).
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FIG. S2. Binary density of the group-level networks | Density is shown for each group-consensus network, as well as for
each of the subgraphs corresponding to the hemispheres.

FIG. S3. The effect of threshold on global spreading | The linear threshold model (LTM) was used to simulate the effects
of focal perturbations at each of the 114 nodes in the Lausanne (LAU) dataset. At low thresholds, the whole network can be
trivially activated. As the threshold is increased, some nodes become increasingly difficult to activate, and the total proportion
of the network that is activated begins to decrease.
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FIG. S4. Choosing a threshold | (a) The effect of threshold on the correlation between spread time and path length. When
the threshold is low, the dynamics of the model resemble a breadth-first search and spread times are perfectly correlated
with path length. As the threshold is increased, spreading is driven away from shortest paths (as evidenced by the decreasing
correlation) and more akin to diffusion. (b) The effect of threshold on left-right auditory cortex (AC) asymmetry. The difference
in spread time between left (L) and right (R) auditory cortex is shown as a function of threshold. The difference is quantified as a
Cohen’s d effect size. At lower thresholds, when spreading is similar to shortest path routing, there are no significant differences
between L and R AC. As the threshold is increased, there is a range in parameter space where spreading is significantly faster
from the right auditory cortex compared to left auditory cortex (Wicoxon rank sum test, FDR corrected).
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