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Abstract 

Fear of pain demonstrates significant prognostic value regarding the development of persistent 

musculoskeletal pain and disability. Its assessment often relies on self-report measures of pain-

related fear by a variety of questionnaires. However, based either on “fear of 

movement/(re)injury/kinesiophobia”, “fear avoidance beliefs” or “pain anxiety”, pain-related fear 

constructs seemingly differ while the potential overlap of the questionnaires is unclear.  

Furthermore, the relationship to other anxiety measures such as state or trait anxiety remains 

ambiguous.Because the neural bases of fearful and anxious states are well described, advances in 

neuroimaging such as machine learning on brain activity patterns recorded by functional magnetic 

resonance imaging might help to dissect commonalities or differences across pain-related fear 

constructs. We applied a pattern regression approach in 20 non-specific chronic low back pain 

patients to reveal predictive relationships between fear-related neural information and different 

pain-related fear questionnaires. More specifically, the applied Multiple Kernel Learning approach 

allowed generating models to predict the questionnaire scores based on a hierarchical ranking of 

fear-related neural patterns induced by viewing videos of potentially harmful activities for the 

back. We sought to find evidence for or against overlapping pain-related fear constructs by 

comparing the questionnaire prediction models according to their predictive abilities and 

associated neural contributors. The results underpin the diversity of pain-related fear constructs by 

demonstrating evidence of non-overlapping neural predictors within fear processing regions. This 

neuroscientific approach might ultimately help to further understand and dissect psychological 

pain-related fear constructs.  
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Significance 

Pain-related fear, often assessed through self-reports such as questionnaires, has shown prognostic 

value and clinical utility for a variety of musculoskeletal pain disorders. However, it remains 

difficult to determine a common underlying construct of pain-related fear due to several proposed 

constructs among questionnaires. The current study describes a novel neuroscientific approach 

using machine learning of neural patterns within the fear circuit of chronic low back pain patients 

that has the potential to identify neural commonalities or differences among the various pain-

related fear constructs. Ultimately, this approach might afford a deeper understanding of the 

suggested constructs and might be also applied to other domains where ambiguity exists between 

different psychological constructs.  
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1. Introduction 

Self-report measures of emotional states are paramount for behavioral neuroscience by enabling 

the understanding of brain response patterns (Shrout et al., 2017). However, the validity of self-

reports is limited (Choi and Pak, 2005), probably also because often overlapping psychological 

constructs are assessed, illustrated by the fact that various questionnaires attempt to assess related 

constructs. One example is pain-related fear (PRF), which is a major explanatory variable of 

disability in patients with persistent musculoskeletal pain (Crombez et al., 1999; Vlaeyen and 

Linton, 2000; Vlaeyen et al., 2016). Back straining activities (i.e. bending and lifting) are the most 

feared and pain-provoking movements among people with low back pain (LBP), based on ratings 

of perceived harmfulness or physiological responses (Caneiro et al., 2017; Leeuw et al., 2007a; 

Stevens et al., 2016; Glombiewski et al., 2015). As such, active or passive (e.g. through pictures) 

bending and lifting have been frequently used to provoke PRF (Leeuw et al., 2007c; Caneiro et al., 

2017; Barke et al., 2016; Trost et al., 2009). For the assessment of PRF, various questionnaires 

exist based on constructs such as fear of movement/(re)injury/kinesiophobia, fear avoidance 

beliefs or pain anxiety. However, despite the clinical relevance of PRF self-reports, their construct 

validity remains ambiguous and there is an open debate on what their scores reflect on the fear-

anxiety spectrum (Lundberg et al., 2011; Caneiro et al., 2017). Fear represents a reaction to an 

imminent threat, preparing the individual for “fight-flight-freeze”, whereas anxiety is described as 

more diffuse (e.g. cognitions about a future threat) (Kreddig and Hasenbring, 2017; LeDoux and 

Pine, 2016). While PRF questionnaires do not clearly distinguish between these emotions (Kreddig 

and Hasenbring, 2017; Lundberg et al., 2011), brain research provides evidence for a functional 

differentiation of fear and anxiety. Both emotions are controlled by the fear circuit (Tovote et al., 
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2015), however, subcortical regions (e.g. the amygdala) seem to be more involved in fast and 

defensive fear reactions (short defensive distance to threat) while cortical regions (e.g. the 

prefrontal cortex) are more likely responsible for complex cognitions of fear and anxiety (large 

defensive distance to threat) (Qi et al., 2018; McNaughton and Corr, 2004). Therefore, advances 

in neuroimaging enable exploring the (sub-)cortical contributions to PRF constructs through 

examining interrelations between self-reported emotional states and brain response patterns. 

Specifically, machine learning techniques such as multivariate pattern analysis (MVPA) if applied 

to functional magnetic resonance imaging (fMRI) data make it possible to directly study the 

predictive relationship between a content-selective cognitive or emotional state (expressed as a 

label) and corresponding multivoxel fMRI activity patterns (Haynes, 2015; Hebart and Baker, 

2017). The label may have discrete (classification) or continuous (regression) values such as 

questionnaire scores (Formisano et al., 2008). Therefore, we provoked PRF by presenting video 

clips of daily activities including bending and lifting (harmful condition for the back) and harmless 

activities such as walking (harmless condition) in a sample of 20 non-specific chronic LBP 

patients. We applied a pattern regression analysis in combination with Multiple Kernel Learning 

to assess potential neural predictors of the various PRF constructs based on weighting of 1) harmful 

and harmless conditions (condition weights) and 2) pattern information within sub-cortical and 

cortical fear processing regions (region weights). We first contrasted the different PRF 

questionnaires in terms of their model performance, namely the model’s ability to predict the 

questionnaires scores based on brain response patterns across fear processing regions. Second, we 

compared the different prediction models according to the distributions of their condition and 

region weights to explore potential neural commonalities or differences of related PRF constructs. 

If the PRF questionnaires share overlapping PRF constructs, then the regions weights should be 
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similarly distributed across fear processing regions. Conversely, if the contributing brain regions 

vary across the predictions models, this would provide evidence against a common PRF construct 

across questionnaires. Ultimately, this approach might help to further understand and dissect the 

various PRF constructs in chronic LBP. 

2. Methods 

2.1 Patients 

The study was approved by the Ethics Committee Zurich (Switzerland) and all patients provided 

written informed consent before participation. The study was conducted in accordance with the 

Declaration of Helsinki and involved a total of 20 patients (mean age = 39.35 years, SD = 13.97 

years, 7 females) with non-specific chronic LBP (Table 1). Non-specific chronic LBP is the most 

common form of back pain (about 85% of the cases) and constitutes a heterogeneous and complex 

biopsychosocial condition without a specific nociceptive cause (Maher et al., 2017; Deyo and 

Weinstein, 2001). Patients were recruited via local chiropractic and physiotherapy centres as well 

as via online advertisements. Inclusion criteria were low back pain of at least 6 months duration 

and age between 18 and 65 years. Exclusion criteria were a history of psychiatric or neurological 

disorders and specific causes for the pain (e.g. infection, tumour, fracture, inflammatory disease) 

that were ruled out by an experienced clinician.  

2.2 Self-report measures of pain-related fear 

PRF was assessed using several questionnaires:  

(1) The Tampa Scale of Kinesiophobia questionnaire (TSK) (Vlaeyen et al., 1995; Kori et al., 

1990) was used to assess fear of movement/(re)injury and kinesiophobia. The 17-item German 
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version of the TSK (TSK-17) with satisfactory internal consistency (Cronbach’s α = 0.76–0.84) 

contains statements focusing on fear of physical activity rated on a 4-point Likert scale from 1 = 

“strongly disagree” to 4 = “strongly agree” (Rusu et al., 2014). Due to additional versions of 

original 17-item TSK questionnaire, we also calculated the questionnaire scores of the 13- and 11-

item TSK versions (TSK-13, TSK-11). The 13-and 11-item versions were previously validated by 

confirmatory factor analysis and demonstrated acceptable levels of internal consistency 

(Cronbach’s α =0.80) (Goubert et al., 2004; Tkachuk and Harris, 2012). A two-factor solution of 

the TSK-11 version provides the best fit in terms of explaining variance across German, Dutch, 

Swedish and Canadian samples and included the subscales “activity-avoidance” (TSK-AA, the 

belief that that activity may result in (re)injury or stronger pain) and “somatic focus” (TSK-SF, the 

belief in underlying and serious medical problems) (Roelofs et al., 2007; Rusu et al., 2014).   

(2) The German version of the fear avoidance beliefs questionnaire (FABQ) (Waddell et al., 1993; 

Pfingsten et al., 2000) consists of 16 back pain-specific items related to fear avoidance beliefs 

rated on a 7-point rating scale (0 = “completely disagree” to 6 = “completely agree”). It includes 

two distinct and established subscales related to beliefs about on how work (FABQ-W) and 

physical activity (FABQ-PA) affects LBP with internal consistencies of α = 0.88 and α = 0.77, 

respectively (Waddell et al., 1993).  

(3) The short version of the Pain Anxiety Symptoms Scale (PASS-20) assesses fear and anxiety 

responses related to pain including cognitive, physiological and motor response domains 

(McCracken and Dhingra, 2002). Items on the PASS-20 are measured on a 6-point Likert scale 

and relate to four different subscales including cognitive anxiety (PASS-C), fear (PASS-F), 

physiology (PASS-P) and escape/avoidance (PASS-E) (Roelofs et al., 2004b). The German 

version of the  PASS-20 has an internal consistency of α = 0.90 (Kreddig et al., 2015).  
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Furthermore, patients were asked to fill out the painDETECT (PD-Q) questionnaire that includes 

three 11-point numeric rating scales (NRS), with 0 being “no pain” and 10 being the “worst 

imaginable pain” to assess current pain, strongest and average pain intensity in the previous 4 

weeks (Freynhagen et al., 2006). Finally, to investigate potential differences or shared variance 

between PRF and general anxiety, we used the State-Trait Anxiety Inventory (STAI), the most 

widely used self-report measure of anxiety which including two subscales (Spielberger and 

Gorsuch, 1983; Julian, 2011): The State Anxiety Scale (S-Anxiety) assesses the current state of 

anxiety whereas the Trait Anxiety Scale (T-Anxiety) evaluates more stable aspects of anxiety such 

as “anxiety proneness” (Julian, 2011). All questionnaires were administered at the fMRI 

appointment prior to brain scanning. We tested the scores of the different questionnaires for the 

assumption of normality of the data using the Shapiro-Wilk test and visually using Q-Q plots 

implemented in IBM SPSS Statistics (version 23) (Ghasemi and Zahediasl, 2012).  

2.3 Scanning protocol and design 

Brain imaging was performed on a 3-T whole-body MRI system (Philips Achieva, Best, 

Netherlands), equipped with a 32-element receiving head coil and MultiTransmit parallel RF 

transmission. Each imaging session started with a survey scan, a B1 calibration scan (for 

MultiTransmit), and a SENSE reference scan. High resolution anatomical data were obtained with 

a 3D T1-weighted turbo field echo scan consisting of 145 slices in sagittal orientation with the 

following parameters: FOV = 230 × 226 mm2; slice thickness = 1.2 mm; acquisition matrix = 208 

× 203 (resulting in a voxel resolution of 1.1mm x 1.1mm x 1.2mm); TR = 6.8 ms; TE = 3.1 ms; 

flip angle = 9°; number of signal averages = 1. Functional time series were acquired using whole-

brain gradient-echo echo planar imaging (EPI) sequences (365 volumes), consisting of 37 slices 

in the axial direction (AC-PC angulation) with the following parameters: field of view (FOV) = 
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240 × 240 mm2; acquisition matrix = 96 × 96; slice thickness = 2.8 mm (resulting in a voxel 

resolution of 2.5mm x 2.5mm x 2.8mm); interleaved slice acquisition; no slice gap; repetition time 

(TR) = 2100 ms; echo time (TE) = 30 ms; SENSE factor = 2.5; flip angle 80°.  

The PRF-provoking stimuli (harmful condition) consisted of video clips with a duration of 4 s 

recorded from a 3rd person perspective (Meier et al., 2016). The video clips showed potentially 

harmful activities (back straining movements such as bending and lifting) selected from the 

Photograph Series of Daily Activities (PHODA) (Leeuw et al., 2007a). The original PHODA was 

developed in close collaboration with human movement scientists, physical therapists, and 

psychologists and is comprised of a fear hierarchy based on ratings of perceived harmfulness of 

daily activities in patients with chronic LBP. From the 40 potentially harmful activities included 

in the short electronic PHODA version (Leeuw et al., 2007a), we chose three scenarios from the 

top six most harmful activities, namely shoveling soil with a bent back, lifting a flowerpot with 

slightly bent back and vacuum cleaning under a coffee table with a bent back. Furthermore, we 

created video clips of three activities rated as less harmful, such as walking up and down the stairs 

and walking on even ground (harmless condition). Presentation® software (Neurobehavioral 

Systems, Davis, CA, USA) was used to present the video clips in a pseudo-randomized order (no 

more than two identical consecutive trials). The patients were asked to carefully observe the video 

clips which were displayed using MR-compatible goggles (Resonance Technology, Northridge, 

CA, USA). The three harmful and harmless activities were each presented five times (30 trials 

total). After the observation of each video clip, the patients were asked to rate the perceived 

harmfulness of the activity on a visual analog scale (VAS) which was anchored with the endpoints 

“not harmful at all” (0) and “extremely harmful” (10). All ratings were performed using a MR 

compatible track ball (Current Designs, Philadelphia, PA, USA). After the VAS rating, a black 
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screen with a green fixation cross appeared (duration jittered between 6 and 8s). This experimental 

protocol has been shown suitable for investigations of neural correlates of PRF self-reports in 

previous fMRI studies based on mass-univariate analyses (Meier et al., 2016; Meier et al., 2017). 

2.4 MR data organization and pre-processing 

We used an existing fMRI dataset of previously reported studies (Meier et al., 2016; Meier et al., 

2017). The fMRI data were organized according to the Brain Imaging Data Structure (BIDS), 

which provides a consensus on how to organize data obtained in neuroimaging experiments. 

Preprocessing was performed using FMRIPREP (version 1.0.0-rc2, 

https://github.com/poldracklab/fmriprep), a Nipype based tool (Gorgolewski et al., 2011), which 

requires minimal user input and provides easily interpretable and comprehensive error and output 

reporting. This processing pipeline includes state-of-the-art software packages for each phase of 

preprocessing (see https://fmriprep.readthedocs.io/en/stable/workflows.html for a detailed 

description of the different workflows). Each T1-weighted (T1w) volume was skullstripped using 

antsBrainExtraction.sh v2.1.0 (using OASIS template). The skullstripped T1w volume was co-

registered to skullstripped ICBM 152 Nonlinear Asymmetrical MNI template version 2009c using 

nonlinear transformation implemented in ANTs v2.1.0 (Avants et al., 2008). Functional data were 

slice time corrected using AFNI (Cox, 1996) and motion corrected using MCFLIRT v5.0.9 

(Jenkinson et al., 2002). This was followed by co-registration to the corresponding T1w volume 

using boundary based registration 9 degrees of freedom - implemented in FreeSurfer v6.0.0 (Greve 

and Fischl, 2009). Motion correcting transformations, T1w transformation and MNI template warp 

were applied in a single step using antsApplyTransformations v2.1.0 with Lanczos interpolation. 

Three tissue classes were extracted from T1w images using FSL FAST v5.0.9 (Zhang et al., 2001). 

Voxels from cerebrospinal fluid and white matter were used to create a mask used to extract 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/251751doi: bioRxiv preprint 

https://doi.org/10.1101/251751
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

 

physiological noise regressors using aCompCor (Behzadi et al., 2007). The mask was eroded and 

limited to subcortical regions to limit overlap with grey matter and six principal components were 

estimated. Independent component analysis (ICA)-based Automatic Removal Of Motion Artifacts 

(AROMA) was used to generate aggressive motion-related noise regressors. The AROMA 

classifier identifies motion components with high accuracy and robustness and is superior to 

motion artefact detection using 24 motion parameters or spike regression (Pruim et al., 2015). 

Finally, to preserve high spatial frequency while reducing noise, spatial smoothing with a full 

width at half maximum 4mm Gaussian kernel was applied. To accelerate data pre-processing we 

performed parallel computing using the Docker environment (https://www.docker.com/) and the 

GC3Pie framework (https://github.com/uzh/gc3pie) on the ScienceCloud supercomputing 

environment at the University of Zurich (S3IT, https://www.s3it.uzh.ch/). 

2.5 MVPA input data 

The pre-processed data were subsequently passed to Statistical Parametric Mapping software 

package (SPM12, version 6906, http://www.fil.ion.ucl.ac.uk/spm/) for model computation using a 

general linear model (GLM). For each patient a design matrix was built including the onsets of the 

video clips with a duration of 4s (harmful / harmless activities, each pooled across the three 

different activities resulting in 15 harmful and 15 harmless stimuli) as separate regressors. In 

addition, and for each patient, the following nuisance regressors were implemented in the GLM 

model: (1) the six regressors derived from the component based physiological noise correction 

method (aCompCor) and (2) the motion-related regressors generated by AROMA (see section 2.4). 

A high-pass filter with a cut-off of 128 s was used to remove low-frequency noise. Trials were 

modeled as boxcar regressors and convolved with the standard canonical hemodynamic response 
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function (HRF) as implemented in SPM12. Finally, for each patient, parameter estimates (beta 

images) for each condition were computed and served as the input images for the MVPA.  

2.6 Multivariate pattern analysis (MVPA) 

Compared to univariate analyses, MVPA can achieve greater sensitivity and is able to detect subtle 

and spatially distributed effects (Schrouff et al., 2013; Haynes, 2015). A pattern of activity can 

represent many more different states than each voxel individually, which leads to an information-

based view compared to the activation-based view of univariate analyses (Hebart and Baker, 

2017). MVPA was performed using routines implemented in PRoNTo v.2.0 (Schrouff et al., 2013). 

For the read-out of multivariate neural information that might serve as a potential score estimator 

of the different PRF questionnaires, we applied a newly introduced pattern regression approach 

based on supervised machine learning and testing phases using Multiple Kernel Learning (MKL). 

In brief, the objective in supervised pattern recognition regression analysis is to learn a function 

from data that can accurately predict the continuous values (labels), i.e. f(xi)=yi from a given 

dataset D={xi, yi}, i=1…N where xi represents pairs of samples or vectors and yi the different 

labels. Ultimately, the learned function from the learning set is used to predict the labels from new 

and unseen data (Schrouff et al., 2013). MKL allows to account for brain anatomy (determined by 

a brain atlas, see section 2.7) and different modalities (such as anatomical/functional data or in the 

current approach: conditions) during the model estimation by considering each brain region and 

modality as separate kernels. This approach allows determining the contribution of each brain 

region (region weights) and condition (condition weights) to the final decision function of the 

model in a hierarchical manner by simultaneously learning and combining the different linear 

kernels that are based on support vector machines (SVM) (Rakotomamonjy et al., 2008; Fernandes 

et al., 2017; Schrouff et al., 2018). Compared to conventional MVPA methods based on whole-
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brain voxel weight maps, this procedure provides a straight-forward approach to draw inferences 

on the region level without the need for multiple comparison correction (Schrouff et al., 2018). To 

account for possible differential contributions of the harmful and harmless conditions to the 

decision function, we included the individual SPM beta images of each condition as separate 

modalities in the MKL model (condition weights). The kernels were mean centered and 

normalized (to account for the different sizes of the involved brain regions) using standard routines 

implemented in PRoNTo. Subsequently, for each questionnaire, we trained a separate MKL 

regression model with the respective labels (FABQ, TSK-17-, -13- and -11-item, PASS and all 

subscale scores, state and trait anxiety). This resulted in a total of 15 MKL models providing 

outputs for model evaluation, including model performance, region and conditions weights. 

Furthermore, we trained MKL regression models based on the harmfulness ratings collected during 

the fMRI measurements (mean ratings of the harmful condition and harmless condition, 

respectively). To reduce the risk of overfitting for each model, we applied a nested cross-validation 

procedure using a “leave-one-subject-out” cross-validation scheme to train the model including 

optimization of the model's hyperparameter “C” (range [0.1 1 10 100 1000]). Furthermore, to 

generate a data-based null distribution of the performance measures (r and nMSE, see section 2.8), 

1000 permutations (permuting the labels across patients) were computed for each model. Results 

were considered significant at a threshold of p < 0.05. Finally, the MKL currently implemented in 

PRoNTo operates with sparsity (L1 regularization) in kernel combinations and might therefore not 

select brain regions that are highly associated with each other and the prediction variable (these 

regions will have kernel weights of zero) (Fernandes et al., 2017; Schrouff et al., 2013). This might 

influence the selection of regions across the models. Therefore, to confirm a dissociation regarding 

the selected brain regions across the predictive models, we performed a secondary cross-validation 
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by choosing the regions contributing most to the prediction (>10%, see Table 3) of each significant 

questionnaire model as a separate predictive brain set and subsequently trained and tested the labels 

of each questionnaire on the predictive brain set of the other models. In doing so, related non-

significant results of model performance would reinforce a dissociation of contributing brain 

regions between the different models and therefore would be indicative of non-overlapping fear 

constructs.  

2.8 Definition of brain regions and atlas registration  

Based on a-priori knowledge of brain regions involved in fear processing, we limited the feature 

space to bilateral fear-related brain regions including the amygdala, hippocampus, thalamus, 

anterior cingulate, insula, medial prefrontal and orbitofrontal cortices (Tovote et al., 2015; Braem 

et al., 2017; Meier et al., 2014). The respective brain regions were parcellated according to the 

Automated Anatomical Labeling (AAL, see Table 3 for the different labels) (Tzourio-Mazoyer et 

al., 2002) atlas and projected on the ICBM 152 Nonlinear template (section 2.4) by means of 

MATLAB (version R2017b) based surface-volume registration tools (svreg) implemented in 

BrainSuite (version 17a) (Shattuck and Leahy, 2002). BrainSuite was also used to generate 

surfaces of the selected AAL regions for visualization.  

2.8 Model evaluation and interpretation 

Model performance was assessed by two metrics commonly used to assess the performance of 

regression models (Ivanescu et al., 2016; Fernandes et al., 2017):  Pearsons’s correlation 

coefficient (r) and the mean squared error (MSE). The correlation coefficient characterizes the 

linear relationship between observed and predicted labels; the MSE is calculated as the average of 

the squared differences between the observed and predicted labels. A significant positive 
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correlation between observed and predicted labels would indicate strong decoding performance. 

Unlike in conventional correlation analysis, however, a negative correlation would indicate poor 

performance. For each model, we report the normalized MSE (nMSE) because the different 

questionnaires are based on different score ranges. To explore possible differential contributions 

of fear-related brain regions to the prediction models, we report the contribution rank of each brain 

region (region weight) within each condition (condition weight) provided by the MKL approach 

(Table 3). Importantly, the selection of regions by the MKL model might be influenced by small 

variations in the dataset (as induced by cross-validation) and might therefore lead to different 

subsets of regions being selected across cross-validation steps (folds). Providing a quantification 

of this variability, the “expected ranking (ER)” (see Table 3) characterizes the stability of the 

region ranking across folds: The closer the ER to the ranking of the selected fold, the more 

consistent is the ranking of the respective brain region across folds. On the other hand, if the ER 

is different from the ranking, this means that the ranking might be variable across folds. 

3. Results 

3.1 Ratings, questionnaire scores and correlations 

Importantly, the comparison of the ratings during fMRI measurements demonstrated that the 

potentially harmful activities were perceived as being significantly more harmful compared to the 

harmless activities (paired-T-Test: T = 8.22, p < 0.001, two-tailed). Descriptive statistics of the 

different questionnaires as well as age and sex of the patients are summarized in Table 1. 

Regarding the questionnaire data, visual inspection and the Shapiro-Wilk test indicated non-

normality of the data (p<0.05) of several questionnaires (FABQ, FABQ-W, FABQ-PA and T-

Anxiety) and therefore, the non-parametric Spearman’s rank correlation coefficient was used. 
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Several significant positive correlations between the different PRF questionnaires scores were 

observed (p < 0.05, Table 2). Most of the TSK scales significantly correlated with the PASS scales 

(0.97 < r’s > 0.46, p < 0.05) whereas the FABQ work scale did not show significant relationships 

with the TSK and PASS scales (p > 0.05), except for the PASS-F scale (r = 0.49, p < 0.05). 

Furthermore, only the S-Anxiety scale of the STAI scale demonstrated significant correlations 

with some, but not all, TSK scales (0.44 < r’s > 0.63, p < 0.05). Finally, only the PASS-F scale 

showed a positive and significant relationship with the mean rating of the harmful condition (r = 

0.44, p < 0.05, Table 2).  

3.2 Model performance 

The MKL models with significant performance results (p < 0.05) characterized by the Pearsons’s 

correlation coefficient (r) and the normalized mean squared error (nMSE) are depicted in Figure 1 

(A-E). The FABQ model demonstrated a significant decoding performance characterized by a 

positive correlation between true and predicted labels (r = 0.61, nMSE =4.25, p < 0.05). 

Interestingly, the FABQ-W model showed strong predictive power (r = 0.74, nMSE = 1.81, p < 

0.05) whereas the FABQ-PA scale was not decodable from fear-related brain response patterns (r 

= 0.03, nMSE = 1.68, p > 0.05). Among the TSK scales, only the TSK-13- (r = 0.37, nMSE = 1.09, 

p < 0.05) and the TSK-11- (r = 0.60, nMSE = 0.90, p < 0.05) models demonstrated a significant 

decoding performance. The TSK-17 model (r = 0.19, nMSE = 1.10, p > 0.05) and the TSK-11 

subscale models did not show a significant decoding performance (TSK11-SF: (r = -0.73, nMSE 

= 0.86, p > 0.05 / TSK-11-AA: r = -0.63, nMSE = 0.88, p > 0.05). In addition, none of the PASS 

scales were decodable from fear-related brain response patterns (p’s > 0.05, PASS: r = 0.18, nMSE 

= 4.63 / PASS-C: r = -0.44, nMSE = 1.64 / PASS-E: r = -0.32, nMSE = 1.38, PASS-F: r = -0.15, 

nMSE = 1.70 / PASS-P: r = -0.51, nMSE = 1.36). Furthermore, and interestingly, the T-Anxiety 
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model demonstrated a moderate decoding performance (r = 0.48, nMSE = 1.01) whereas the S-

Anxiety model was not significant (r = -0.46, nMSE = 1.51, p > 0.05). Finally, the ratings of 

perceived harmfulness during fMRI measurements were not decodable from fear-related brain 

response patterns (Rating harmful: r = -0.01, nMSE = 0.64, p > 0.05 / Rating harmless: r = -0.72, 

nMSE = 0.38, p > 0.05).  

3.3 Condition and region weights 

The condition and region weights of models with significant performance (p<0.05, section 3.2) are 

illustrated in Figure 1 (A-E) and described in detail in Table 3 (A-E). The decoding performances 

of the FABQ models (FABQ and FABQ-W) were driven by a major contribution of the harmful 

condition (88% and 87%, respectively). Within this condition, the left thalamus (rank 1), the right 

amygdala (rank 2) and the left hippocampus (rank 3) contributed more than 69% of the total region 

weights in the FABQ model (Table 3A). Similarly, the right amygdala (rank 1) and the left 

thalamus (rank 2) carried the most predictive neural information with 79,42% of the total region 

weights in the FABQ-W model (Table 3B). In both FABQ models, the right amygdala also 

demonstrated an association with the harmless condition, although of minor relevance (~11%). By 

comparison, the TSK models demonstrated a moderate contribution of the harmful condition 

(TSK-13:60%, TSK-11:66%). Both predictive model performances of the TSK were driven by a 

major contribution of the right lateral orbitofrontal cortex (lOFC, TSK-13: 52.7%, TSK-11: 

60,49%, Table 3C, 3D). Furthermore, the left medial orbitofrontal cortex (mOFC) and the right 

hippocampus carried predictive information within the harmless condition in both TSK models 

(TSK-13: left gyrus rectus 19.51%, right hippocampus: 14.03% / TSK-11: left gyrus rectus: 

21.29%, right hippocampus: 10.41%). Interestingly and with almost equal contributions of the 

harmful (52%) and harmless conditions (48%), the predictive model of T-Anxiety was mainly 
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driven by neural contributions of the left medial prefrontal (mPFC) and mOFC (accounting for 

44% of the total region weights in the harmful condition) and the left thalamus (together with the 

mOFC accounting for 44% of the total region weights in the harmless condition, Table 3E). 

Finally, the secondary cross-validation using each predictive brain set of the significant models 

(FABQ, TSK-13, TSK-11, T-Anxiety) and training and testing it with the labels of the other 

questionnaires did not result in significant performance results (p’s > 0.05).  

4. Discussion 

Evidence from cross-sectional and longitudinal behavioral studies demonstrates a strong 

association between PRF and disability in chronic pain (Leeuw et al., 2007b; Esteve et al., 2017; 

Wertli et al., 2014b). However, the different PRF constructs such as “fear of 

movement/(re)injury/kinesiophobia”, “fear avoidance beliefs” or “pain anxiety” are often used 

interchangeably in the literature (Lundberg et al., 2011) and it is unclear if they share a common 

PRF construct reflected by similar neural sources. The (sub-)cortical neural basis of  fear and 

anxiety that controls cognitions and regulates appropriate behavior dependent on threat 

characteristics is well described (Gray and MacNaughton, 2000; McNaughton and Corr, 2004; Qi 

et al., 2018; Shackman et al., 2011; Panksepp, 2011; LeDoux, 2000). Altough both emotions are 

linked to similar neuromodulatory systems of the fear circuit (Tovote et al., 2015), anxiety is less 

well understood and more complex than fear. Current research suggests a functional differentiation 

characterized by subcortical regions processing fast fear responses to an imminent threat 

(defensive responses) and cortical systems processing complex cognitions related to fear and 

anxiety where the threat is distal in space or time (Qi et al., 2018; LeDoux and Pine, 2016).  
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The current MVPA approach using MKL demonstrated the feasibility to neuronally dissect the 

proposed constructs of PRF self-reports based on their (sub-)cortical predictors during PRF related 

brain activity. The results revealed that while the individual variability of some questionnaires, 

specifically the FABQ- and FABQ-W-, TSK-13, TSK-11 and T-Anxiety-scale, was predictable 

from response patterns in fear-related, dissociable neural sources on subcortical and cortical levels, 

this was not the case for the FABQ-PA-, the TSK-11 subscales (TSK-11-AA and TSK-SF), the 

PASS scales and the S-Anxiety scale. Furthermore, the online ratings of perceived harmfulness 

were not decodable from fear-related brain response patterns.  

FABQ and TSK 

The FABQ and FABQ-W scales demonstrated the best model performances among the 

investigated PRF questionnaires, characterized by a strong contribution of neural information in 

the harmful condition (condition weights: 88% and 87%, respectively). Interestingly, the FABQ-

PA scale did not show a predictive association with fear-related brain response patterns. The better 

model performance of the FABQ-W is in line with the emerging evidence that the FABQ-W is a 

stronger moderator of treatment efficacy in chronic LBP compared to the FABQ-PA, although this 

might be dependent on the patient population (George et al., 2005; George et al., 2008; Waddell 

et al., 1993; Wertli et al., 2014a). In support of this, the FABQ-W scale qualified for a clinical 

prediction rule regarding improvement after spinal manipulation, whereas the FABQ-PA scale did 

not (Dougherty et al., 2014; Flynn et al., 2002).  

With respect to the region weights, the FABQ models were mainly driven by subcortical neural 

contributions involving the thalamus, hippocampus and the amygdala while frontal brain regions 

played a minor role. The thalamus and particularly its midline structures have been considered to 

be a non-specific arousing system (van der Werf et al., 2002). However, it has been recently shown 
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that parts of dorsal midline thalamic structures are necessary for fear memory processing by 

directly targeting the hippocampus, which plays an important role for context-dependent emotional 

memory (Penzo et al., 2015; Lara-Vásquez et al., 2016; Zheng et al., 2017). On the other hand, the 

amygdala has long been considered a “fear center” (Panksepp, 1998; Darwin, 1873). However, the 

heterogeneous structure consisting of several nuclei is not essential for the experience of fear,  

demonstrated in patients with amygdala lesions (Anderson and Phelps, 2002; Feinstein et al., 2013; 

LeDoux and Pine, 2016). Instead, the amygdala has been shown to be more strongly implicated in 

behavioral and physiological responses to threats (i.e. defensive processes); its relation to complex 

cognitions like fear and anxiety is controversial (Fanselow and Pennington, 2017; LeDoux and 

Pine, 2016; Panksepp, 2011). A recent opinion paper suggests that subjective feelings of fear and 

anxiety do not initially arise from subcortical activity of the fear circuit centered around the 

amygdala (LeDoux and Hofmann, 2018). Thus, amygdala activity and mediated physiological 

responses of fear and anxiety might be, at its best, only a correlate of subjective feelings of fear 

and anxiety (LeDoux and Hofmann, 2018). However, and in contrast to this view, the results 

presented here indicate a strong predictive association between subjective reports of PRF, assessed 

by the FABQ scales, and the amygdala.   

Among the TSK scales, the TSK-13 and the TSK-11 demonstrated a predictive association with 

fear-related brain response patterns, albeit with less contribution of the harmful condition 

compared to the FABQ scales (TSK-13: 60% and TSK-11: 66%). The TSK-11 version showed a 

stronger relationship between true and predicted labels compared to the TSK-13 version (r = 0.60, 

nMSE = 0.90, p < 0.05). This result might reflect the progress of previous research regarding the 

psychometric properties of the different TSK versions. Compared to the 17-item version, the 13-

item version has better psychometric properties without the four inversely phrased items (Roelofs 
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et al., 2004a; Neblett et al., 2016) and the 11-item version has been recommended for future 

research and clinical settings (for a chronological summary see Tkachuk and Harris, 2012). 

Interestingly, no predictive association could be “learned” by MKL using the TSK-11 subscale 

labels (TSK-11-SF and TSK-11-AA scores). Although these two lower order factors (activity 

avoidance and somatic focus) are reflective of the higher order construct “fear of movement and 

(re)injury/kinesiophobia”, the non-significant result might indicate that they are associated with 

inconsistent neural patterns across individuals.  

Regarding the region weights of the TSK models, the right lateral orbitofrontal cortex (lOFC) 

provided the most predictive information for the two TSK scales (TSK-13: 52%, TSK-11: 60%). 

In agreement with the phobia-related construct (kinesiophobia), dysfunction of the OFC has been 

shown to be implicated in the processing of phobia-related stimuli in disorders such as social 

anxiety disorder (Dilger et al., 2003). Specifically, lOFC activity was reduced when phobogenic 

trials were contrasted with fear-relevant trials (Aue et al., 2015). Furthermore, a hyperactive lOFC 

has been shown to be linked to anxiety-laden cognitions (Hahn et al., 2011). Interestingly, the 

higher cortical contributions of the TSK models were clearly dissociable from the largely 

subcortical contributions involving the amygdala, hippocampus and thalamus that predicted the 

FABQ scores.  

To conclude, the FABQ scales demonstrated high PRF sensitivity (harmful condition weights > 

87%) and were linked to subcortical predictors that have been associated with fear responses to an 

imminent threat and defensive behavior (LeDoux and Pine, 2016; McNaughton and Corr, 2004). 

In contrast, the TSK scales appeared to capture emotional states largely associated with cortical 

fear processing that might be related to cognitive aspects of PRF. In support of this, the observed 
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higher harmless condition weights of the TSK compared to the FABQ models might indicate that 

the TSK scales are associated with more diffuse anxiety-related cognitions. 

PASS 

Surprisingly, the PASS failed to demonstrate a predictive association with fear-related brain 

response patterns. There may be several explanations. First, whereas the FABQ and the TSK scales 

have been specifically developed for patients with musculoskeletal pain, the PASS is suitable for 

various pain phenotypes (Crombez et al., 1999). Second, the PASS has been shown to be more 

strongly associated with negative affect and was less predictive of pain disability and behavioral 

performance (Crombez et al., 1999). Third, in a recent study assessing fear of bending, the PASS 

(and the TSK) score was not related to physiological measurements such as startle responses 

(Caneiro et al., 2017). Fourth, all PASS subscales demonstrated significant multicollinearity in our 

sample suggesting non-independence between the different subscales. All these aspects may have 

led to less sensitivity of fear related neural patterns to the PASS and its subscales in the current 

study. 

The superiority of the FABQ scale (driven by the FABQ-W) in decoding performance compared 

to the TSK and PASS scales might also be influenced by the back-specific items of the FABQ in 

conjunction with the nature of the PRF-provoking stimuli (back straining movements). The items 

of the FABQ were specifically related to the back while the TSK and PASS can be used with 

various musculoskeletal pain diagnoses such as work-related upper extremity disorders, chronic 

LBP, fibromyalgia, and osteoarthritis (Roelofs et al., 2007). Nevertheless, the FABQ has also been 

adapted to shoulder pain where it demonstrated better factor structure and a stronger association 

with disability compared to the TSK-11 (Mintken et al., 2010). 
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State and Trait anxiety 

Beside PRF, anxiety and depression significantly mediate the relationship between pain and 

disability (Marshall et al., 2017). Nevertheless, fear responses specifically related to a patient`s 

pain and/or potentially painful movements might be more relevant for explaining disability in 

chronic LBP than general trait anxiety responses (McCracken et al., 1996). The current results are 

in line with this notion. First, most of the PRF measures did not show a significant relationship 

with state or trait anxiety. Second, state anxiety was not decodable from fear-related brain 

responses to potentially harmful activities in chronic pain patients. Interestingly, with respect to 

the trait anxiety model (T-Anxiety, Figure 1E), the harmful (52%) and the harmless conditions 

(48%) carried almost equal predictive neural information. This suggests that the trait anxiety 

measure is associated with neural content irrespective of the harmfulness of a stimulus, provoked 

by e.g. enhanced attention to visual information processed in fear-related brain regions (Berggren 

et al., 2015). This might indicate that the T-Anxiety scale captures neural responses that are 

associated with a more generalized fear response. This notion is supported by a study showing that 

individuals with high trait anxiety exhibit sustained PRF during extinction (Meulders et al., 2014).  

Regarding the regions weights, predictive information was predominantly provided by brain 

regions that were less involved in the prediction of the other PRF measures, namely parts of the 

mPFC and mOFC (Table 3E). This is in line with the proposed functional differentiation of neural 

structures regarding fear in response to an imminent threat (defensive response) and cognitive 

fear/anxiety (distal, uncertain threat) whereas the latter involves more rostral cortical structures 

such as the mPFC and mOFC (LeDoux and Pine, 2016; McNaughton and Corr, 2004). Moreover, 

research on self-report measurements indicates that trait anxiety is relatively distinct from tissue 
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damage fear, which supports a behavioral and neural dissociation of trait anxiety and PRF (Perkins 

et al., 2007; Cooper et al., 2007).  

Harmfulness ratings  

Interestingly, although the PRF-provoking harmful activities were significantly rated as more 

harmful compared to the harmless activities, the ratings of perceived harmfulness during fMRI 

measurements were not decodable from fear-related brain response patterns. Furthermore, the 

ratings did not show significant correlations with PRF measures (except the PASS-F scale, see 

Table 2). Others reported only moderate relationships (r’s < 0.39) between perceived harmfulness 

ratings of PHODA items and self-report measures such as the TSK, Pain Catastrophizing scale 

(PCS) or pain intensity (Leeuw et al., 2007a), indicating that ratings of perceived harmfulness 

assess something akin to, but also distinct from PRF self-report measures. The weak relationships 

between ratings of perceived harmfulness and self-report measures of PRF might be explained by 

the specificity of the potentially harmful movements depicted by the PHODA items. Namely, the 

ratings of perceived harmfulness were specifically related to back straining movements such as 

bending and lifting while the PRF measures might also be associated with other potentially harmful 

movements. As such, the fear-related neural patterns induced by the observation of potentially 

harmful activities for the back might not include information about movement specificity. Instead, 

these neural patterns might predict PRF and its constructs in a more general fashion that is captured 

by the TSK and FABQ.  

Limitations 

A limitation of this study is the relatively small sample size in conjunction with the cross-validation 

framework. Ideally, the predictive model should be trained and tested with completely independent 
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data. However, the results obtained are likely to be valid for several reasons:  1) the goal of the 

current study was not maximizing decoding performance, rather, multivariate decoding was used 

for the interpretation and understanding of the different fear constructs, for which significant 

predictive accuracy was obtained (Hebart and Baker, 2017); 2) the applied linear support vector 

machines have been shown to exhibit good performance even in very high dimensional settings 

with small sample sizes (Varoquaux and Thirion, 2014); 3) the applied regression approach using 

continuous variables enhances statistical power compared to a categorical analysis (e.g. low versus 

high fear) (Altman and Royston, 2006); 4) the variability of the regions most contributing to the 

models across cross-validation folds was very small (indicated by the expected ranking (ER)), 

demonstrating stable ranking across folds. For these reasons, the differences of the prediction 

models are unlikely to be caused by the small sample size. Finally, the study design only allows 

interpretations of PRF to back straining movements and LBP. Therefore, conclusions related to 

other musculoskeletal conditions should be drawn with caution. Nevertheless, the current approach 

might represent a promising new tool to dissect psychological constructs of self-report measures.    

Conclusion 

This is the first time that multivariate brain responses patterns are used to better understand and 

dissect a psychological construct, here, PRF, conventionally assessed by self-report 

(questionnaires). The FABQ scale demonstrated strong predictive power with high sensitivity to 

the harmful condition and was associated with subcortical fear processing regions (amygdala, 

thalamus, hippocampus). The TSK scales were more related to neural content of higher order 

structures such as the OFC and showed less sensitivity to the harmful condition compared to the 

FABQ scales. This might indicate that the construct of kinesiophobia is more related to diffuse 

anxiety related neural systems whereas the FABQ scales are more related to defensive systems of 
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fear. Finally, the PASS and its subscales failed to demonstrate a predictive association with fear-

related brain response patterns. To conclude, while self-reports still represent the best and direct 

measure of subjective feelings of fear and anxiety (LeDoux and Hofmann, 2018), the current 

results emphasize the need to carefully consider the different PRF questionnaires in research and 

clinical settings as their constructs are not interchangeable.   

 

 

Table 1. Patient characteristics and descriptive statistics of questionnaires. Tampa Scale of 

Kinesiophobia (TSK, SF = somatic focus subscale, AA = activity avoidance subscale), Pain Anxiety 

Symptome Scale (PASS, PASSc = cognitive anxiety, PASSe = escape/avoidance, PASSf = fear, PASSp 

= physiology), Fear Avoidance Beliefs (FABQ, FABQ-PA = physical activity, FABQ-W = work), State-

Trait Anxiety Inventory (S-Anxiety, T-Anxiety).  

  Minimum Maximum Mean SD 

cLBP patients (N = 20, 7 females) 
 

Age 21 62 39,35 13,97 

TSK-17 26 52 36,90 5,59 

TSK-13 16 43 27,60 5,96 

TSK-11 13 38 23,20 5,71 

TSK-11-SF 5 16 9,70 2,69 

TSK-11-AA 5 20 11,90 3,35 

PASS 13 68 38,15 16,57 

PASS-C 1 15 8,70 4,19 

PASS-E 3 21 9,85 4,77 

PASS-F 2 20 9,45 5,28 

PASS-P 0 15 7,35 4,21 

FABQ 3 83 35,45 22,53 

FABQ-PA 2 21 12,80 5,59 

FABQ-W 0 40 15,50 12,12 

S-Anxiety 36 53 43,70 4,78 

T-Anxiety 31 59 43,00 6,05 

PainDETECT current pain 0 8 3,77 2,49 

PainDETECT strongest pain 2 10 6,15 2,16 

PainDETECT average pain 
(previous 4 weeks) 

1 7 3,75 1,88 

Ratings harmful activities 0 10 5,44 2,38 

Ratings harmless activities 0 5 1,28 1,32 
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Table 2. Spearman’s rank correlations between the different pain-related fear questionnaires. Tampa Scale of Kinesiophobia (TSK, SF = somatic focus subscale, AA = activity 

avoidance subscale), Pain Anxiety Symptom Scale (PASS = total score, PASS-C = cognitive anxiety, PASS-E = escape/avoidance, PASS-F = fear, PASS-P = physiology), Fear 

Avoidance Beliefs (FABQ = total score, FABQ-PA = physical activity, FABQ-W = work), State and Trait Anxiety Inventory (S-Anxiety, T-Anxiety). **p < 0.005 (bold), *p<0.05 

(bold).  

  TSK-

17 

TSK-

13 

TSK-

11 

TSK-

11_SF 

TSK-

11_AA 

PASS PASS-

C 

PASS-

E 

PASS-

F 

PASS-

P 

FABQ FABQ-

PA 

FABQ-

W 

S-

ANXIETY 

T-

ANXIETY 

Rating 

harmful 

Rating 

harmless 

TSK-17 Corr.coeff. 1,000 ,834** ,800** ,609** ,759** ,611** ,503* ,614** ,556* ,647** ,337 ,494* ,280 ,449* ,299 ,133 ,289 

Sig.  
 

,000 ,000 ,004 ,000 ,004 ,024 ,004 ,011 ,002 ,146 ,027 ,231 ,047 ,200 ,577 ,216 

TSK-13 Corr.coeff. ,834** 1,000 ,960** ,754** ,789** ,686** ,559* ,777** ,666** ,558* ,344 ,442* ,339 ,451* ,139 ,240 ,168 

Sig.  ,000 
 

,000 ,000 ,000 ,001 ,010 ,000 ,001 ,011 ,138 ,050 ,144 ,046 ,558 ,307 ,479 

TSK-11 Corr.coeff. ,800** ,960** 1,000 ,793** ,779** ,685** ,559* ,766** ,643** ,565** ,360 ,404 ,378 ,470* ,071 ,276 ,091 

Sig.  ,000 ,000 
 

,000 ,000 ,001 ,010 ,000 ,002 ,009 ,120 ,077 ,101 ,037 ,766 ,238 ,703 

TSK-

11_SF 

Corr.coeff. ,609** ,754** ,793** 1,000 ,350 ,519* ,462* ,529* ,502* ,502* ,351 ,315 ,411 ,629** ,034 ,044 ,178 

Sig.  ,004 ,000 ,000 
 

,131 ,019 ,040 ,016 ,024 ,024 ,130 ,176 ,071 ,003 ,886 ,854 ,452 

TSK-

11_AA 

Corr.coeff. ,759** ,789** ,779** ,350 1,000 ,477* ,268 ,564** ,486* ,421 ,336 ,375 ,280 ,284 ,035 ,270 ,135 

Sig.  ,000 ,000 ,000 ,131 
 

,034 ,254 ,010 ,030 ,065 ,147 ,103 ,231 ,224 ,883 ,250 ,570 

PASS Corr.coeff. ,611** ,686** ,685** ,519* ,477* 1,000 ,895** ,899** ,886** ,801** ,415 ,535* ,400 ,320 ,156 ,317 -,118 

Sig.  ,004 ,001 ,001 ,019 ,034 
 

,000 ,000 ,000 ,000 ,069 ,015 ,081 ,168 ,510 ,173 ,620 

PASS-C Corr.coeff. ,503* ,559* ,559* ,462* ,268 ,895** 1,000 ,737** ,690** ,707** ,329 ,424 ,344 ,227 ,118 ,214 -,254 

Sig.  ,024 ,010 ,010 ,040 ,254 ,000 
 

,000 ,001 ,000 ,157 ,063 ,137 ,336 ,621 ,366 ,280 

PASS-E Corr.coeff. ,614** ,777** ,766** ,529* ,564** ,899** ,737** 1,000 ,918** ,544* ,472* ,592** ,419 ,387 ,161 ,330 -,062 

Sig.  ,004 ,000 ,000 ,016 ,010 ,000 ,000 
 

,000 ,013 ,036 ,006 ,066 ,092 ,499 ,156 ,795 

PASS-F Corr.coeff. ,556* ,666** ,643** ,502* ,486* ,886** ,690** ,918** 1,000 ,541* ,577** ,736** ,486* ,291 ,188 ,445* ,085 

Sig.  ,011 ,001 ,002 ,024 ,030 ,000 ,001 ,000 
 

,014 ,008 ,000 ,030 ,213 ,428 ,049 ,720 

PASS-P Corr.coeff. ,647** ,558* ,565** ,502* ,421 ,801** ,707** ,544* ,541* 1,000 ,261 ,304 ,328 ,289 ,112 ,118 -,023 

Sig.  ,002 ,011 ,009 ,024 ,065 ,000 ,000 ,013 ,014 
 

,267 ,193 ,157 ,216 ,639 ,619 ,925 

FABQ Corr.coeff. ,337 ,344 ,360 ,351 ,336 ,415 ,329 ,472* ,577** ,261 1,000 ,781** ,951** ,314 -,032 ,195 ,009 

Sig.  ,146 ,138 ,120 ,130 ,147 ,069 ,157 ,036 ,008 ,267 
 

,000 ,000 ,178 ,894 ,410 ,970 

FABQ-PA Corr.coeff. ,494* ,442* ,404 ,315 ,375 ,535* ,424 ,592** ,736** ,304 ,781** 1,000 ,638** ,140 ,009 ,377 ,178 

Sig.  ,027 ,050 ,077 ,176 ,103 ,015 ,063 ,006 ,000 ,193 ,000 
 

,002 ,557 ,969 ,101 ,452 

FABQ-W Corr.coeff. ,280 ,339 ,378 ,411 ,280 ,400 ,344 ,419 ,486* ,328 ,951** ,638** 1,000 ,291 -,069 ,185 -,040 

Sig.  ,231 ,144 ,101 ,071 ,231 ,081 ,137 ,066 ,030 ,157 ,000 ,002 
 

,213 ,772 ,435 ,867 

S-

ANXIETY 

Corr.coeff. ,449* ,451* ,470* ,629** ,284 ,320 ,227 ,387 ,291 ,289 ,314 ,140 ,291 1,000 ,128 -,198 ,090 

Sig.  ,047 ,046 ,037 ,003 ,224 ,168 ,336 ,092 ,213 ,216 ,178 ,557 ,213 
 

,592 ,402 ,707 

T-

ANXIETY 

Corr.coeff. ,299 ,139 ,071 ,034 ,035 ,156 ,118 ,161 ,188 ,112 -,032 ,009 -,069 ,128 1,000 ,185 ,378 

Sig.  ,200 ,558 ,766 ,886 ,883 ,510 ,621 ,499 ,428 ,639 ,894 ,969 ,772 ,592 
 

,435 ,100 

Rating 

harmful 

Corr.coeff. ,133 ,240 ,276 ,044 ,270 ,317 ,214 ,330 ,445* ,118 ,195 ,377 ,185 -,198 ,185 1,000 ,289 

Sig.  ,577 ,307 ,238 ,854 ,250 ,173 ,366 ,156 ,049 ,619 ,410 ,101 ,435 ,402 ,435 
 

,217 

Rating 

harmless 

Corr.coeff. ,289 ,168 ,091 ,178 ,135 -,118 -,254 -,062 ,085 -,023 ,009 ,178 -,040 ,090 ,378 ,289 1,000 

Sig.  ,216 ,479 ,703 ,452 ,570 ,620 ,280 ,795 ,720 ,925 ,970 ,452 ,867 ,707 ,100 ,217 
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Table 3. Condition and region weights showing the contribution of the two different conditions and fear-related brain regions to 

the final decision function of each MKL model (questionnaires A-E with model performance p < 0.05) in hierarchical order. The 

brain regions (left and right hemisphere) were parcellated according to the AAL atlas: Medial orbitofrontal regions (mOFC: 

Rectus, Frontal_Sup_Orb, Frontal_Med_Orb), lateral orbitofrontal regions (lOFC: Frontal_Mid_Orb, Frontal_Inf_Orb), medial 

prefrontal cortex (mPFC: Frontal_Sup_Medial), anterior cingulate cortex (Cingulum_Ant), Thalamus, Amygdala, Hippocampus 

and Insula. ER = expected ranking. *predictive brain set for secondary cross-validation 

 

 

 

 

 

 

 

 

A. FABQ     

 Harmful activities condition weight 
                                88% 

Harmless activities condition weight 
     12% 

Rank Brain region 

AAL label 

region 

size 
(vox) 

Region 

weight 
(%) 

ER Brian region 

AAL label 

region 

size 
(vox) 

Region 

weight 
(%) 

ER 

1 Thalamus_L* 519 27.25 1.8 Amygdala_R* 96 11.06 0.95 

2 Amygdala_R* 96 24.69 1.6 Hippocampus_R 424 0.61 14.70 

3 Hippocampus_L* 400 17.29 2.6 Amygdala_L 97 0.43 18.10 

4 Frontal_Med_Orb_R 413 9.56 4.0 Frontal_Inf_Orb_L 714 0.19 5.15 

5 Frontal_Inf_Orb_R 744 6.39 6.1 Frontal_Sup_Orb_L 451 0.00 2.35 

6 Frontal_Med_Orb_L 324 2.17 7.5 Frontal_Sup_Orb_R 469 0.00 3.30 

7 Hippocampus_R 424 0.31 8.2 Frontal_Mid_Orb_L 408 0.00 4.25 

8 Frontal_Sup_Orb_L 451 0.00 6.1 Frontal_Mid_Orb_R 444 0.00 5.20 

9 Frontal_Sup_Orb_R 469 0.00 7.0 Frontal_Inf_Orb_R 744 0.00 6.90 

10 Frontal_Mid_Orb_L 408 0.00 8.0 Frontal_Sup_Medial_L 1417 0.00 7.85 

11 Frontal_Mid_Orb_R 444 0.00 8.9 Frontal_Sup_Medial_R 1006 0.00 8.80 

12 Frontal_Inf_Orb_L 714 0.00 9.9 Frontal_Med_Orb_L 324 0.00 9.75 

13 Frontal_Sup_Medial_L 1417 0.00 11.1 Frontal_Med_Orb_R 413 0.00 10.70 

14 Frontal_Sup_Medial_R 1006 0.00 12.1 Rectus_L 381 0.00 11.65 

15 Rectus_L 381 0.00 13.3 Rectus_R 352 0.00 12.60 

16 Rectus_R 352 0.00 14.3 Insula_L 887 0.00 13.55 

17 Insula_L 887 0.00 15.2 Insula_R 821 0.00 14.50 

18 Insula_R 821 0.00 16.2 Cingulum_Ant_L 599 0.00 15.45 

19 Cingulum_Ant_L 599 0.00 17.1 Cingulum_Ant_R 639 0.00 16.40 

20 Cingulum_Ant_R 639 0.00 18.1 Hippocampus_L 400 0.00 17.35 

21 Amygdala_L 97 0.00 19.9 Thalamus_L 519 0.00 19.95 

22 Thalamus_R 478 0.00 20.9 Thalamus_R 478 0.00 20.90 
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B. FABQ-W     

 Harmful activities condition weight 
                                87% 

Harmless activities condition weight 
     13% 

Rank Brain region 
AAL label 

region 
size 
(vox) 

Region 
weight 
(%) 

ER Brain region 
AAL label 

region 
size 
(vox) 

Region 
weight 
(%) 

ER 

1 Amygdala_R 96 40.20 1.40 Amygdala_R 96 11.82 1.05 

2 Thalamus_L 519 39.42 1.45 Hippocampus_R 424 0.64 16.21 

3 Frontal_Med_Orb_L 324 4.17 4.90 Frontal_Med_Orb_L 324 0.22 7.57 

4 Frontal_Med_Orb_R 413 2.42 7.25 Cingulum_Ant_R 639 0.16 14.52 

5 Hippocampus_L 400 0.52 16.55 Frontal_Sup_Orb_L 451 0.00 2.36 

6 Cingulum_Ant_R 639 0.24 16.50 Frontal_Sup_Orb_R 469 0.00 3.31 

7 Thalamus_R 478 0.13 20.00 Frontal_Mid_Orb_L 408 0.00 4.26 

8 Frontal_Sup_Orb_L 451 0.00 4.30 Frontal_Mid_Orb_R 444 0.00 5.21 

9 Frontal_Sup_Orb_R 469 0.00 5.25 Frontal_Inf_Orb_L 714 0.00 6.15 

10 Frontal_Mid_Orb_L 408 0.00 6.20 Frontal_Inf_Orb_R 744 0.00 7.10 

11 Frontal_Mid_Orb_R 444 0.00 7.15 Frontal_Sup_Medial_L 1417 0.00 8.05 

12 Frontal_Inf_Orb_L 714 0.00 8.10 Frontal_Sup_Medial_R 1006 0.00 9.00 

13 Frontal_Inf_Orb_R 744 0.00 9.05 Frontal_Med_Orb_R 413 0.00 10.63 

14 Frontal_Sup_Medial_L 1417 0.00 10.00 Rectus_L 381 0.00 11.57 

15 Frontal_Sup_Medial_R 1006 0.00 10.95 Rectus_R 352 0.00 12.52 

16 Rectus_L 381 0.00 12.55 Insula_L 887 0.00 13.47 

17 Rectus_R 352 0.00 13.50 Insula_R 821 0.00 14.42 

18 Insula_L 887 0.00 14.45 Cingulum_Ant_L 599 0.00 15.36 

19 Insula_R 821 0.00 15.40 Hippocampus_L 400 0.00 17.15 

20 Cingulum_Ant_L 599 0.00 16.35 Amygdala_L 97 0.00 18.94 

21 Hippocampus_R 424 0.00 19.05 Thalamus_L 519 0.00 19.89 

22 Amygdala_L 97 0.00 20.00 Thalamus_R 478 0.00 20.84 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/251751doi: bioRxiv preprint 

https://doi.org/10.1101/251751
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31 

 

C. TSK-13     

 Harmful activities condition weight 
                        60% 

Harmless activities condition weight 
                  40% 

Rank Brain region 
AAL label 

region 
size 
(vox) 

Region 
weight 
(%) 

ER Brain region 
AAL label 

region 
size 
(vox) 

Region 
weight 
(%) 

ER 

1 Frontal_Inf_Orb_R* 744 52.70 1.55 Rectus_L* 381 19.51 2.00 

2 Rectus_L 381 2.37 6.00 Hippocampus_R* 424 14.03 1.80 

3 Insula_L 887 1.33 8.90 Amygdala_L 97 2.34 16.40 

4 Hippocampus_L 400 0.67 14.05 Cingulum_Ant_L 599 1.09 13.95 

5 Insula_R 821 0.62 11.55 Rectus_R 352 0.59 11.65 

6 Amygdala_R 96 0.33 17.10 Frontal_Sup_Orb_R 469 0.44 4.50 

7 Frontal_Mid_Orb_R 444 0.12 5.60 Hippocampus_L 400 0.41 15.85 

8 Frontal_Med_Orb_R 413 0.12 10.35 Thalamus_R 478 0.14 19.55 

9 Hippocampus_R 424 0.12 16.50 Frontal_Med_Orb_R 413 0.12 11.25 

10 Frontal_Med_Orb_L 324 0.12 9.60 Amygdala_R 96 0.12 18.40 

11 Frontal_Inf_Orb_L 714 0.12 6.95 Frontal_Inf_Orb_L 714 0.12 6.95 

12 Thalamus_R 478 0.11 20.25 Frontal_Inf_Orb_R 744 0.12 7.90 

13 Frontal_Sup_Medial_L 1417 0.11 8.05 Frontal_Sup_Orb_L 451 0.12 3.50 

14 Rectus_R 352 0.11 12.15 Frontal_Sup_Medial_L 1417 0.12 8.90 

15 Amygdala_L 97 0.11 17.90 Cingulum_Ant_R 639 0.12 16.10 

16 Frontal_Sup_Medial_R 1006 0.11 9.20 Frontal_Mid_Orb_R 444 0.12 6.30 

17 Frontal_Mid_Orb_L 408 0.11 5.650 Thalamus_L 519 0.11 19.75 

18 Thalamus_L 519 0.11 19.80 Frontal_Med_Orb_L 324 0.11 11.00 

19 Cingulum_Ant_R 639 0.11 15.50 Insula_R 821 0.11 14.65 

20 Frontal_Sup_Orb_R 469 0.11 4.90 Insula_L 887 0.11 13.80 

21 Cingulum_Ant_L 599 0.11 14.70 Frontal_Sup_Medial_R 1006 0.11 10.30 

22 Frontal_Sup_Orb_L 451 0.00 4.10 Frontal_Mid_Orb_L 408 0.11 5.85 
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D. TSK-11     

 Harmful activities condition weight 
                          66% 

Harmless activities condition weight 
               34% 

Rank Brain region 
AAL label 

region 
size 
(vox) 

Region 
weight 
(%) 

ER Brain region 
AAL label 

region 
size 
(vox) 

Region 
weight 
(%) 

ER 

1 Frontal_Inf_Orb_R* 744 60.49 1.05 Rectus_L* 381 21.29 1.60 

2 Insula_L 887 0.90 11.15 Hippocampus_R* 424 10.41 1.90 

3 Amygdala_R 96 0.65 17.20 Thalamus_L 97 0.41 17.60 

4 Hippocampus_L 400 0.61 14.95 Amygdala_L 599 0.12 17.25 

5 Amygdala_L 97 0.56 17.00 Cingulum_Ant_L 352 0.12 14.65 

6 Insula_R 821 0.46 12.55 Thalamus_R 469 0.11 20.00 

7 Frontal_Med_Orb_R 413 0.34 9.35 Frontal_Mid_Orb_R 400 0.11 5.75 

8 Frontal_Mid_Orb_R 444 0.12 4.90 Cingulum_Ant_R 478 0.11 15.70 

9 Frontal_Med_Orb_L 324 0.12 8.65 Frontal_Sup_Medial_L 413 0.11 8.55 

10 Hippocampus_R 424 0.11 16.55 Amygdala_R 96 0.11 18.50 

11 Rectus_L 381 0.11 10.70 Hippocampus_L 714 0.11 16.75 

12 Frontal_Inf_Orb_L 714 0.11 6.30 Frontal_Med_Orb_R 744 0.11 11.45 

13 Thalamus_R 478 0.11 20.40 Frontal_Inf_Orb_L 451 0.11 7.00 

14 Rectus_R 352 0.11 11.75 Frontal_Sup_Orb_L 1417 0.11 3.45 

15 Frontal_Sup_Medial_R 1006 0.11 8.30 Frontal_Inf_Orb_R 639 0.11 8.05 

16 Cingulum_Ant_R 639 0.11 15.35 Frontal_Sup_Medial_R 444 0.11 9.90 

17 Frontal_Sup_Medial_L 1417 0.11 7.50 Rectus_R 519 0.11 12.65 

18 Cingulum_Ant_L 599 0.11 14.55 Insula_R 324 0.11 14.50 

19 Frontal_Mid_Orb_L 408 0.11 4.90 Frontal_Sup_Orb_R 821 0.11 4.65 

20 Thalamus_L 519 0.11 19.90 Frontal_Mid_Orb_L 887 0.10 5.60 

21 Frontal_Sup_Orb_R 469 0.10 4.10 Insula_L 1006 0.10 13.75 

22 Frontal_Sup_Orb_L 451 0.00 3.25 Frontal_Med_Orb_L 408 0.10 11.10 
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E. T-Anxiety     

 Harmful activities condition weight 
                       52% 

Harmless activities condition weight 
                   48% 

Rank Brain region 
AAL label 

region 
size 
(vox) 

Region 
weight 
(%) 

ER Brain region 
AAL label 

region 
size 
(vox) 

Region 
weight 
(%) 

ER 

1 Frontal_Sup_Medial_L* 1417 20.20 1.95 Frontal_Med_Orb_L* 324 20.86 1.05 

2 Frontal_Med_Orb_L* 324 13.82 1.90 Thalamus_L* 519 13.29 3.75 

3 Rectus_L 381 9.97 3.25 Frontal_Sup_Orb_R 469 9.87 2.85 

4 Frontal_Mid_Orb_R 444 3.48 7.30 Amygdala_L 97 2.06 10.15 

5 Insula_R 821 2.85 6.90 Amygdala_R 96 0.44 18.95 

6 Rectus_R 352 0.98 10.40 Frontal_Sup_Medial_L 1417 0.40 9.15 

7 Cingulum_Ant_R 639 0.87 14.50 Frontal_Mid_Orb_R 444 0.23 6.30 

8 Amygdala_L 97 0.25 17.35 Cingulum_Ant_R 639 0.06 15.95 

9 Frontal_Inf_Orb_R 744 0.22 9.00 Hippocampus_L 400 0.00 16.95 

10 Amygdala_R 96 0.07 19.00 Frontal_Sup_Orb_L 451 0.00 4.35 

11 Frontal_Sup_Orb_L 451 0.00 4.70 Frontal_Mid_Orb_L 408 0.00 5.35 

12 Frontal_Sup_Orb_R 469 0.00 5.65 Frontal_Inf_Orb_L 714 0.00 7.25 

13 Frontal_Mid_Orb_L 408 0.00 6.60 Frontal_Inf_Orb_R 744 0.00 8.20 

14 Frontal_Inf_Orb_L 714 0.00 8.45 Frontal_Sup_Medial_R 1006 0.00 10.10 

15 Frontal_Sup_Medial_R 1006 0.00 10.40 Frontal_Med_Orb_R 413 0.00 11.05 

16 Frontal_Med_Orb_R 413 0.00 11.35 Rectus_L 381 0.00 12.00 

17 Insula_L 887 0.00 13.10 Rectus_R 352 0.00 12.95 

18 Cingulum_Ant_L 599 0.00 14.35 Insula_L 887 0.00 13.90 

19 Hippocampus_L 400 0.00 16.20 Insula_R 821 0.00 14.85 

20 Hippocampus_R 424 0.00 17.15 Cingulum_Ant_L 599 0.00 15.80 

21 Thalamus_L 519 0.00 19.95 Hippocampus_R 424 0.00 18.55 

22 Thalamus_R 478 0.00 20.90 Thalamus_R 478 0.00 20.90 
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Figure 1 
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Figure legends 

Figure 1. The model performance (r, MSE) characterizes the strength of relationship between true 

and predicted labels. Condition and region weights show the predictive contribution of the two 

different conditions (harmful, harmless) and fear-related brain regions (parcellated according to 

the AAL atlas, L = left, R = right) to the final decision function of each MKL model (questionnaires 

A-E with model performance p < 0.05). Brain regions (feature set): Thalamus (1), Hippocampus 

(2), Amygdala (3), Insula (4), mOFC: Rectus (5), Frontal_Sup_Orb (6), Frontal_Med_Orb (7) , 

lateral OFC: Frontal_Mid_Orb (8), Frontal_Inf_Orb (9)), mPFC: Frontal_Sup_Medial (10), 

anterior cingulate cortex (Cingulum_Ant (11)).      indicates not visible contralateral homologue.   
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