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SUMMARY  

 

Extracellular miRNAs and other small RNAs are implicated in cellular communication and may be 

useful as disease biomarkers. We systematically compared small RNAs in 12 human biofluid 

types using RNA-seq. miRNAs and tRNA-derived RNAs (tDRs) accounted for the majority of 

mapped reads in all biofluids, but the ratio of miRNA to tDR reads varied from 72 in plasma to 

0.004 in bile. miRNA levels were highly correlated across all biofluids but levels of some miRNAs 

differed markedly between biofluids. tDR populations differed extensively between biofluids. Y 

RNA fragments were seen in all biofluids and accounted for >10% of reads in blood plasma, 

serum, and CSF. Reads mapping exclusively to piRNAs were very rare except in seminal plasma. 

These results demonstrate extensive differences in small RNAs between human biofluids and 

provide a useful resource for investigating extracellular RNA biology and developing biomarkers. 

 

INTRODUCTION  

 

RNAs released from cells have been detected in many biofluids (Patton et al., 2015). Although 

some reports suggest that large RNAs, including functional mRNAs, can be present in biofluids, 

(Ni et al., 2002; Skog et al., 2008), most extracellular RNAs (exRNAs) are small RNAs (Hoy and 

Buck, 2012). Many reports have focused on miRNAs, which are small (typically 21-22 nt) RNAs 

produced by intracellular processing of larger precursor RNAs (Argyropoulos et al., 2013; Lee et 

al., 2010; Mitchell et al., 2008; Weber et al., 2010; Williams et al., 2013). Several pathways have 

been proposed to lead to release of miRNAs from cells and extracellular miRNAs can be found 

within exosomes and in complexes containing argonaute proteins (Arroyo et al., 2011) or 

lipoproteins (Patton et al., 2015). Extracellular miRNAs can enter cells and may target mRNAs in 

those cells (Patton et al., 2015). The potential of miRNAs as disease biomarkers is being explored 

by many investigators (Argyropoulos et al., 2013; Barger et al., 2016; Gray et al., 2017; Mitchell 

et al., 2008). 

 

Small RNA biotypes other than miRNAs have also been detected in biofluids. Piwi-interacting 

RNAs (piRNAs) are ~23-30 nt RNAs involved in transcriptional and post-transcriptional silencing 

of transposons and other targets in germ cells (Czech and Hannon, 2016). Sequences mapping 

to piRNAs have been reported in human seminal fluid plasma (Hong et al., 2016) as well as in 

blood plasma (Freedman et al., 2016), saliva (Bahn et al., 2015)  and urine (Yeri et al., 2017). 

Many small RNAs found in biofluids are thought to be derived from larger RNAs by specific 
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processing events or by non-specific degradation. Transfer RNA-derived RNAs (tDRs) are 

generated by cleavage of tRNAs at specific sites (Gebetsberger and Polacek, 2013). The variety 

of tDRs is extensive since there are many (>600) human tRNA genes and multiple fragment types, 

including 5’-halves, 3’-halves, 5’-tRNA-fragments (tRFs), 3’-tRFs, and internal tRFs (i-tRFs) have 

been identified (Loher et al., 2017).  Small RNAs derived from mRNAs, long non-coding RNAs, 

ribosomal RNAs (Semenov et al., 2004), and Y RNAs (Dhahbi et al., 2013) have also been 

detected in some biofluids. Their functions are not yet well understood.  

 

Extracellular RNAs have been detected in at least 15 biofluids to date (Sohel, 2016). The total 

concentration of RNA varies widely between biofluids, with certain biofluids such as breast milk 

and seminal fluid being more concentrated than more dilute biofluids like CSF and urine (Weber 

et al., 2010). Given the difficulties inherent in absolute quantification of exRNAs, most analyses 

have focused on relative quantification of specific RNAs. This approach has identified some 

differences in small RNA content between biofluid types. For example, a PCR-based study of 714 

miRNAs identified certain miRNAs that were abundant in most of the 12 biofluids studied along 

with other miRNAs that were enriched in specific biofluids (Weber et al., 2010). However, a more 

complete understanding of small RNA differences between biofluids is problematic since 

published studies rely on a diverse set of methods with different biases that preclude direct 

comparisons. Furthermore, most studies have focused primarily or exclusively on miRNAs and 

much less information is available about other RNA biotypes. 

 

One objective of the National Institutes of Health Extracellular RNA Communication Consortium 

(ERCC) is to identify the range of RNAs present in human biofluids. To address this goal, we 

compared the small RNA populations of a large and diverse collection of human biofluids using 

one standard RNA-seq approach that was validated as part of a multicenter ERCC study (Giraldez 

et al., 2017). This approach was designed for miRNAs but can also detect other small RNAs with 

a 5’ phosphate and a 3’ hydroxyl group. Our analysis of a total of 129 samples of 12 biofluid types 

from human donors reveals the presence of complex RNA repertoires in all biofluids and major 

differences in RNA composition between biofluid types. These results are publicly available 

through the exRNA Atlas (https://exrna-atlas.org). 
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RESULTS  

 

Characteristics of the study population 

We obtained samples of 12 different biofluid types (Table 1). With the exception of bile samples, 

which were obtained at the Mayo Clinic from patients who had previously undergone liver 

transplantation and had intact liver function, all samples were obtained from healthy subjects in 

the course of studies performed at UCSF. For each biofluid, we obtained 5-15 samples. In 

general, each sample of a given biofluid was obtained from a different participant, except that the 

10 ovarian follicle fluid samples were obtained from five participants who each provided two 

samples. Plasma, serum, and urine samples were obtained from a separate cohort of 12 

individuals who each provided samples of each of these three biofluids. For saliva, another cohort 

of 15 participants provided samples of both parotid saliva and submandibular/sublingual (SMSL) 

saliva. For amniotic fluid, BAL fluid, bile, cord blood plasma, CSF, seminal fluid, 10-12 participants 

from separate cohorts each provided a single sample of one biofluid.  

 

Sequencing and quality control 

RNA-seq reads were aligned to the human transcriptome using the Genboree/exceRpt pipeline 

(http://www.genboree.org). By default, the pipeline assigns reads in the order miRNA, tRNA, 

piRNA, “Gencode” (other Ensembl transcripts including mRNAs and non-coding RNAs including 

Y RNAs, small nuclear RNAs, and long non-coding RNAs), and then circular RNA. This approach 

resulted in a substantial proportion of read counts assigned to piRNAs in adult blood plasma 

(median 13% assigned to piRNA), cord blood plasma (5%), and serum (6%) samples. Very large 

proportions of reads that mapped to piRNA in these three biofluids mapped to a single piRNA 

sequence (piRNAbase hsa_piR_016658, Genbank identifier DQ592931; 79% of piRNA reads in 

adult blood plasma, 48% in cord blood plasma, and 43% in serum). However, these reads also 

map to a Y RNA (RNY4) and each of these biofluids also contain large numbers of other reads 

that map to other regions of RNY4. In the aggregate, >99.7% of plasma or serum reads mapping 

to piRNAs also mapped to RNA(s) from a different biotype. Based upon these observations, we 

changed the order of read assignment to miRNA, tRNA, Gencode, piRNA, and then circular RNA. 

Using this approach, 0.3% of seminal plasma reads mapped to piRNAs whereas <0.1% of reads 

in other biofluids mapped to piRNAs. 

 

A total of 145 samples were analyzed. 16 samples failed quality control despite repeat analysis 

(see Experimental Procedures). The remaining 129 samples were used for the analyses 
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presented here. The median number of reads aligning to the human transcriptome was 3.6 ✕ 106 

(interquartile range [IQR]: 0.8-8.3 ✕ 106).  

 

Relative abundances of RNA biotypes differ widely between biofluids 

The fraction of reads mapping to different biotypes of human RNAs varied markedly between 

biofluid types (Fig. 1, Table S1). The median rate of mapping to miRNAs was >50% for adult and 

cord blood plasma and BAL fluid, whereas tDRs represented >50% of reads in bile, urine, seminal 

plasma, and amniotic fluid. Both miRNAs and tDRs each accounted for >25% of reads in the 

remaining biofluids (parotid saliva and SMSL saliva, ovarian follicle fluid, serum, and CSF). The 

relative abundance of miRNA to tRNA reads varied by >103-fold (from 72 in plasma to 0.004 in 

bile). Y RNA fragments represented >10% of mapped reads in adult and cord blood plasma, 

serum, and CSF but <0.8% of reads in urine and bile, with intermediate levels in other biofluids. 

miRNAs, tRNAs, and Y RNAs accounted for >90% of all mapped reads except in SMSL saliva, 

which had the largest proportion of reads mapping to portions of protein coding genes (mRNAs, 

7.6%), snRNAs (2.3%), retained introns (1.5%), and Gencode “processed transcripts” (1.2%). 

This may reflect the presence of RNA degrading enzymes, cellular debris, or microbial-derived 

small RNAs that map to the human genome in saliva samples. Reads that mapped to piRNAs but 

not to miRNAs, tRNAs, Y RNAs, or other Gencode transcripts represented 0.30% of reads in 

seminal plasma and <0.10% of reads in other biofluids. These results demonstrate that multiple 

classes of small RNAs are represented in each biofluid type studied, but the relative abundance 

of these classes varies widely between biofluids. 

 

miRNA profiles 

In each biofluid, we detected hundreds of miRNAs but a small number of miRNAs accounted for 

a large proportion of miRNA read counts (Fig. 2A-B, Fig. S1, and Table S2). Between 395 (parotid 

saliva) and 541 (CSF) miRNAs had a median of ≥10 reads/million total miRNA reads in each 

biofluid. The 10 most frequent miRNAs represented between 39% (CSF) and 62% (serum) of total 

miRNA reads (Table S3). Despite the marked differences in small RNA classes between biofluids, 

pairwise correlation coefficients for miRNA read counts between biofluids were generally high (R 

= 0.79 - 0.98, Fig. 2C-E). Correlations were highest between blood-derived biofluids (plasma, 

cord plasma, and serum; R = 0.94 - 0.98) and between saliva samples from the two different sites 

(R = 0.98). Seminal fluid and cord blood plasma were the least correlated (R = 0.79). We used a 

dimensionality reduction method, transfer stochastic neighbor embedding (tSNE), to determine 

whether there were consistent differences in the small miRNA composition of the 12 biofluid types. 
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Using all 2,153 miRNAs detected in any sample, tSNE analysis revealed that samples of most 

biofluid types formed distinct clusters (Fig. 2F). Samples of saliva from two different sites (parotid 

and submandibular/sublingual glands) formed overlapping clusters and two serum samples could 

not be clearly distinguished from the cluster of adult plasma samples. Therefore, although 

correlations in miRNA levels between biofluids were high, each biofluid (with the exception of the 

saliva samples from two different sites) had a distinct pattern of miRNAs.  

 

A total of 15 miRNAs had much higher relative abundance in one biofluid than any other biofluid 

(≥103 reads/106 total miRNA reads, >10-fold higher in one biofluid than all other biofluids, adjusted 

p<0.05 for pairwise comparisons with all other biofluids by negative binomial Wald Test, Table 

S4). In some cases, these levels are likely explained by high expression of the miRNAs by cell 

types that are in direct contact with the biofluid. Three of the four miRNAs with higher levels in 

amniotic fluid (miR-483-5p, miR-1247-5p, and miR-433-3p) are highly enriched in extraembryonic 

cells (amniotic epithelial cells, placental epithelial cells, or chorionic membranes)  (de Rie et al., 

2017). The three miRNAs with much higher levels in CSF are miR-9-3p, which is highly enriched 

in the vertebrate nervous system; miR-1911-5p, a brain-specific miRNA that was detected in CSF 

exosomes but not blood plasma exosomes (Yagi et al., 2017), and miR-1298-5p, which is among 

the most abundant miRNAs in CSF exosomes (Yagi et al., 2017). miR-891a, which had much 

higher expression in seminal plasma, has been reported to be among the most abundant miRNAs 

in epididymis (Li et al., 2012). Combining results all blood-derived biofluids (adult and cord blood 

plasma and serum) into a single group and comparing with results each of the other biofluids did 

not identify any miRNAs that met the above criteria for much higher expression in blood-derived 

biofluids versus all other biofluids. Similarly, combining results from parotid and SMSL saliva 

samples did not identify any miRNAs with much higher expression in saliva versus all other 

biofluids.   

 

A comparison of umbilical cord blood plasma and adult blood plasma revealed that 18 miRNAs 

differed in relative abundance (Table S5). Three miRNAs, miR-487b-3p, miR-376c-3p, and miR-

127-3p were >5-fold higher in cord blood plasma. A previous report detected similar differences 

between cord and adult blood plasma and showed relatively high levels of each of these miRNAs 

in placenta (Williams et al., 2013). One miRNA, let-7b-5p, was >10-fold lower in cord blood 

plasma; this large difference was also seen previously (Williams et al., 2013).  
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We identified six groups of five or more miRNAs with similar abundance patterns across biofluids 

using Bayesian Relevance Network analysis (Ramachandran et al., 2017) (Figure 3, Figure S2). 

The largest group (group 1) contained 45 miRNAs. A subgroup (1A) containing 31 of these 45 

miRNAs had levels that were highest in amniotic fluid and cord blood plasma. All 31 subgroup 1A 

miRNAs are derived from the 14q32 cluster, which is the largest miRNA cluster in the human 

genome (54 miRNAs) (Hill et al., 2017). Subgroup 1B contained 14 miRNAs that were highest in 

cord blood plasma and adult blood plasma and serum but low in amniotic fluid. These include two 

pairs of miRNAs produced from the same pre-miRNA (miR-486-5p and -3p and miR-126-5p and 

-3p) and three miRNAs produced from a cluster on chromosome 17 (miR-451a, miR-144-3p, and 

miR-4732-3p). Group 2 (23 miRNAs) was enriched for for miRNAs derived from the two miR-200 

family clusters, miRs-200b/a/429 and miRs-200c/141. The miR-200 family has important roles in 

epithelial cells (Korpal and Kang, 2008) and miRNAs in this group were most abundant in seminal 

plasma and saliva and least abundant in blood-derived biofluids. Group 3 (8 miRNAs) includes 5 

miRNAs from the X chromosome miR-506-514 cluster; these miRNAs were highest in ovarian 

follicle fluid and were also relatively abundant in seminal plasma. Group 4 (23 miRNAs) included 

a subgroup of 17 miRNAs with highest relative abundance in urine and a second subgroup with 

6 members of the miR-34/449 family that were most abundant in CSF, BAL, and amniotic fluid. 

Group 5 comprises 7 miRNAs that were relatively abundant in bile and Group 6 comprises 5 

miRNAs that were relatively abundant in CSF. 

 

tDR profiles 

Sequences aligning to tRNAs were detected in all biofluids, although the frequencies of tDR reads 

varied considerably between biofluids (Fig. 1). Assigning tDRs to the human genome and 

transcriptome is challenging since many tDRs map to multiple tRNAs corresponding to the same 

anticodon, a different anticodon for the same amino acid, or even to different amino acids. The 

Genboree pipeline aggregates tDR reads by amino acid. To analyze tDR reads in more detail, we 

used MINTmap (Loher et al., 2017), a tDR analysis tool that counts each unique sequence, 

including those that differ in length by as little as 1 nt, separately. Using this approach, between 

954 (bile) and 4,997 (parotid saliva) tDRs had a median of ≥10 reads/million total tDR reads in 

each biofluid (Fig. 4A, Fig S3, and Table S6). The 10 most frequent tDR reads represent between 

18% (adult blood plasma) and 77% (BAL) of total tDR reads (Fig 4B). Pairwise correlation 

coefficients for tDR read counts between biofluids ranged from 0.08 - 0.89 (Fig. 4C-E) and were 

typically far lower than those found for pairwise correlations using miRNA reads. Correlations 

were highest between adult and cord blood plasma (R = 0.89) and between saliva samples from 
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the two different sites (R = 0.84). The proportion of mapped reads that represented tDRs was 

much higher for serum (37%) than for adult plasma (0.8%) and the pairwise correlation for tDR 

read counts between serum and adult plasma was only moderate (R = 0.65). Using all 8,672 tDRs 

detected in any sample, tSNE analysis revealed that samples of most biofluid types formed largely 

distinct clusters (Fig. 4E). As with miRNAs, parotid and submandibular/sublingual glands saliva 

samples formed overlapping clusters. Urine and CSF samples were also overlapping. Although 

tSNE analysis based on miRNAs produced overlapping clusters of serum and plasma samples, 

these biofluid types were clearly distinct when the tSNE analysis was based on tDRs.  

 

To further analyze tDRs, we grouped together tDRs based on the amino acid that corresponds to 

the tRNA of origin (Fig. 5A and Fig. S4). tDRs that could not be unambiguously assigned to an 

amino acid were excluded from this analysis. Glycine tDRs were predominant in urine, serum, 

and CSF. Leucine tDRs were predominant in BAL (62%) but were much less frequently found 

(<15%) in other biofluids. Glutamic acid tDRs were predominant in amniotic fluid, bile, plasma 

from cord blood and adult blood, and both types of saliva, whereas methionine tDRs were 

predominant in seminal plasma. Glycine, glutamate, and methionine each represented >20% of 

tDR reads in ovarian follicle fluid. Median tDR reads for tyrosine, asparagine, phenylalanine, and 

isoleucine tDRs were <1% each for all biofluid types. Normalized read counts for many tDR-

associated amino acids differed markedly between biofluids. For example, tRNA reads aligning 

to glycine made up 68.9% of tDR reads in urine but ≤43.4% of tDR reads in every other biofluid. 

A short (16 nt) read mapping to the 5’ end of leucine tRNAs accounted for the majority (59%) of 

all tDR reads in BAL fluid samples but was rare in all other biofluids (0.003%-1.6%).  

 

For amino acids encoded by more than one codon, we examined the distribution of reads for each 

possible anticodon (Fig. 5B and Fig. S5). For some amino acids (e.g., glycine), anticodon 

frequency varied substantially between biofluids but for others (e.g., leucine) anticodon frequency 

was less variable. We also classified tDRs by fragment type (Fig. 5C and Fig. S6). Fragment types 

differed substantially according to the tRNA of origin. For example, in most biofluids glycine tDRs 

mapped primarily to the 5’ region (5’ tRFs and 3’ halves), whereas methionine and histidine tDRs 

mapped primarily to internal regions of tRNAs (i-tRF). To examine differences in tDR fragments 

between biofluids in more detail, we constructed read coverage maps for four tDRs with the 

largest numbers of mapped reads (Fig. S7). Inspection of these coverage maps reveals large 

differences in fragment types across biofluids (e.g., increased 3’ coverage in amniotic fluid for 
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three of these four tRNAs) and illustrates major differences in fragment sizes (e.g., shorter 5’ 

fragments for tRNA7 LeuAAG compared with the other three tRNAs).  

 

Y RNA profiles 

We found reads mapping to each of the four human Y RNA genes in every biofluid (Figure 6A 

and Tables S7 and S8). In each biofluid except for BAL fluid, most reads that mapped to Y RNA 

mapped to RNY4. In BAL fluid, the mean mapping rate for RNY4 was 43% and RNY5 accounted 

for 49%. Most reads mapped to either the 5’ region or the 3’ region of full-length Y RNAs, with 

relatively few reads mapping to the central portion of Y RNAs (Figure 6B). The proportion of 5’ 

reads to 3’ reads varied between biofluids and between different Y RNA genes. For example, 

RNY4 fragments more frequently mapped to the 5’ end in seminal plasma and CSF but more 

frequently mapped to the 3’ end in adult blood plasma, BAL fluid, and saliva.  

 

piRNA profiles  

As discussed previously, some biofluids contained substantial proportions of reads that mapped 

to both piRNAs and other Gencode RNAs (especially RNY4). The majority of reads that mapped 

to piRNAs also mapped to other RNA biotypes except in one biofluid, seminal plasma. 57% of 

seminal plasma reads that mapped to piRNAs did not map to another biotype. After exclusion of 

ambiguously mapped reads (see Experimental Procedures), the number of piRNAs detected was 

higher in seminal fluid (5588 distinct piRNAs in one or more samples) than in other fluids (94-

1068 piRNAs). The most frequent 57 piRNAs accounted for 50% of seminal plasma reads that 

mapped exclusively to piRNAs (Table S9). 

 

DISCUSSION 

We applied a standardized RNA-seq approach to identify small RNAs in 12 human biofluid types. 

This work extends previous analyses of biofluid extracellular RNAs by applying a method that 

allows for relative quantification of small RNAs from multiple biotypes to a diverse collection of 

normal biofluids. We found small RNAs that mapped to transcripts of many biotypes. In each 

biofluid tested, the majority of mapped reads could be assigned to miRNAs, tDRs, or Y RNAs. 

Additional reads mapping to piRNAs, mRNAs, long non-coding RNAs, small nuclear RNAs, and 

other RNAs were also detected but were less common. A major finding was that the relative levels 

of different RNA biotypes differed dramatically between biofluids. The relative abundance of the 

two major biotypes, miRNAs and tDRs, varied by >103-fold across the set of 12 biofluids. Our 

results are consistent with those from another recent study that found relatively high levels of 
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tDRs in urine and relatively high levels of Y RNA fragments in plasma (Yeri et al., 2017). Despite 

differences in overall small RNA composition, miRNA levels were generally highly correlated 

between biofluids (R = 0.79 - 0.98). In contrast, tDR levels were less well correlated (R = 0.08 - 

0.89). Biofluids that had highly similar profiles for small RNAs of one biotype sometimes had very 

different profiles for RNAs of other biotypes. For example, adult blood plasma and serum miRNA 

levels were highly correlated (R = 0.98) but tDR levels in these biofluids were much less well 

correlated (R = 0.68). Our findings demonstrate the extensive diversity of small RNA populations 

within each biofluid type and highlight both similarities and differences between biofluids. 

 

The methods we used have advantages and limitations compared with those used in previous 

studies. A major feature of our work is that we used a uniform approach to RNA isolation, RNA-

seq library preparation, sequencing library size selection, sequencing, and data analysis for all 

samples. Like some other studies, we used RNA-seq rather than other methods such as PCR- or 

hybridization-based methods that focus only on certain predefined RNAs. The RNA-seq method 

we used has been shown to reduce bias by employing oligonucleotides with random nucleotide 

sequences for adaptor ligation (Giraldez et al., 2017) and we used a permissive size selection 

strategy rather than one designed to enrich for small RNAs in the miRNA size range. We used a 

publicly available analysis pipeline and our data are publicly available, which allows for re-analysis 

of the primary data as databases and analysis tools are updated. To obtain a broad view of small 

RNAs in biofluids, we extracted RNA from unfractionated biofluids. Other studies have shown 

differences in small RNA content of specific biofluid compartments such as exosomes and 

argonaute 2-containing ribonucleoprotein complexes (Arroyo et al., 2011), and further work will 

be required to understand the compartmentalization of RNAs in the large set of biofluids we 

studied. While our method detected many RNAs belonging to multiple biotypes, the method is 

designed for sequencing of RNAs with a 5’ phosphate and a 3’ hydroxyl group and not for RNAs 

with other end modifications or post-translational modifications such as those frequently found in 

tRNAs. Finally, the method we used is well suited for relative quantification of each RNA species 

across multiple samples, but different approaches will be necessary for rigorous measurements 

of absolute quantities of RNAs in different biofluids. 

 

The miRNA profiles of these 12 biofluids were remarkably similar overall. Four miRNAs were 

among the top 10 detected in most biofluids (miR-92a-3p in 10 biofluids, miR-99a-5p in 9 biofluids, 

and miR-24-3p and miR-26a-5p in 7 biofluids; see Table S3). A previous report also identified a 

small group of miRNAs as being highly abundant in many biofluids (Weber et al., 2010). Seven 
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biofluid types from that prior PCR-based study (adult blood plasma, urine, seminal plasma, saliva, 

amniotic fluid, BAL, and CSF) were included in the set of biofluids we analyzed by small RNA-

seq. The prior study identified nine miRNAs that were ranked within the top 10 miRNAs in at least 

4 of these 7 biofluids: miR-335* (now known as miR-335-3p), miR-515-3p, miR-518e, miR-616* 

(miR-616-5p), miR-302d, miR-892a, and miR-509-5p. None of those miRNAs were identified as 

being among the top 10 miRNAs in any of the biofluids in our RNA-seq analysis. This likely reflects 

differences in specificity or bias between the methods used in the two studies. A recent evaluation 

of the RNA-seq-based method we used showed good performance characteristics for analysis of 

human extracellular miRNAs and low bias as assessed using large panels of synthetic miRNAs 

(Giraldez et al., 2017). Nonetheless, RNA-seq and other methods in common use (including PCR- 

and hybridization-based methods) are better suited for comparing levels of each miRNA between 

samples rather than comparing levels of different miRNAs within each sample.  

 

We identified large differences in levels of some miRNAs between biofluids. These may arise 

from differences in local production of cellular miRNAs. Consistent with that idea, we found higher 

levels of extraembryonic cell miRNAs in amniotic fluid, nervous system cell miRNAs in CSF, and 

an epididymal miRNA in seminal plasma. We found many cases in which miRNAs produced from 

the same pre-miRNA or the same miRNA cluster had highly correlated levels across the full set 

of miRNAs, which also suggests that miRNA production is a major determinant of differences in 

miRNA abundance. In addition to differences in local production of cellular miRNAs, differences 

in extracellular miRNAs could arise from preferential secretion of miRNAs from cells (Valadi et 

al., 2007) and from differences in processing or elimination of extracellular miRNAs. Since 

extracellular miRNAs have been shown to be capable of entering cells may modulate gene 

expression (Patton et al., 2015), our results suggest that differences in miRNA composition 

between biofluids may be functionally important. 

 

We found large differences in tDRs across biofluids. tRNAs can be processed into tDRs by 

specific enzymatic cleavage events and tDRs have been previously identified in human biofluids, 

including human serum and urine, and in exosomes from human semen (Dhahbi, 2015; Yeri et 

al., 2017). We classified tDRs according to the tRNA of origin (amino acid and anticodon) and the 

fragment type (5’ or 3’ halves or 5’, 3’, or intermediate fragments) and found differences in each 

of these classifications across the set of biofluids. Many factors, including tRNA levels, tRNA 

cleavage, tDR secretion, and biodistribution and elimination of extracellular tDRs may contribute 

to determining the levels of tDRs in each biofluid. Intracellular tDRs have been reported to have 
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many roles, including inhibiting protein translation during cellular stress (Ivanov et al., 2011) and 

mediating intergenerational inheritance (Chen et al., 2016; Sharma et al., 2016). The roles of 

extracellular tDRs remains enigmatic, but the presence of relatively high levels of extracellular 

tDRs in biofluids such as bile, urine, seminal plasma, and amniotic fluid (where tDRs represented 

the majority of all mapped small RNA reads) suggests that extracellular tDRs may be functionally 

important. At least some of the functional roles of intracellular tDRs are quite specific: for example, 

a tDR from the Gly-GCC tRNA but not other tDRs were shown to regulate retroelement-driven 

transcription of genes that are highly expressed in preimplanation embryos (Sharma et al., 2016). 

Differences in tDR populations between biofluids may therefore have important functional 

implications. 

 

Y RNA fragments represented a substantial proportion of the small RNAs that we detected in 

some biofluids, including adult and cord blood plasma, serum, and CSF. A previous RNA-seq 

study also reported that Y RNA fragments made up a large proportion of small RNA reads in 

human serum and plasma (Dhahbi et al., 2013). That study found that >95% of fragments mapped 

to the 5’ end of Y RNAs. Our results, obtained using an RNA-seq method developed to reduce 

bias, revealed a substantially higher proportion of 3’ Y RNA fragments. Intact cellular Y RNAs are 

required for the initiation of DNA replication, regulation of RNA stability, and cellular responses to 

stress (Kowalski and Krude, 2015). The role of Y RNA fragments is less well understood. It has 

been reported that RNY5 fragments produced in cancer cell extracellular vesicles trigger rapid 

cell death in primary cells but not in cancer cells (Chakrabortty et al., 2015), suggesting that further 

studies of the biogenesis, trafficking, and function of Y RNA fragments found in biofluids are 

warranted. 

 

We found that blood plasma and serum contained a substantial number of small RNAs with 

sequences that map to piRNAs. A previous study also detected many sequences that mapped to 

piRNAs in human plasma (Freedman et al., 2016). However, we urge caution about inferring that 

small RNA reads that map to piRNAs are derived from piRNAs. The large majority of piRNA-

mapped reads we obtained in our plasma and serum samples also mapped to other RNA biotypes 

(especially Y RNAs) that are abundant in these biofluids. In our study, the piRNA with the largest 

number of mappings shares sequence with a fragment of RNY4, a Y RNA. The most frequent 

piRNA-mapped read in the prior study (Freedman et al., 2016) was piR-33043 (Genbank 

accession DQ592931), which also shares sequence with RNY4. We therefore confined our 

analysis of piRNAs to sequences that did not map to RNAs of other biotypes. piRNAs have 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2018. ; https://doi.org/10.1101/251496doi: bioRxiv preprint 

https://doi.org/10.1101/251496
http://creativecommons.org/licenses/by-nc-nd/4.0/


prominent roles in the testis (Girard et al., 2006) and even when using this more conservative 

approach we found that a substantial number and variety of piRNA sequences were detected in 

seminal plasma. A previous report also identified piRNAs in seminal plasma and identified a set 

of piRNAs that were associated with infertility (Hong et al., 2016). Although previously suggested 

to be germline-specific, piRNAs also play roles in non-gonadal cells (Ishizu et al., 2012) and non-

gonadal cells might therefore be a source of piRNAs in biofluids outside the reproductive tract. 

However, we found relatively few reads that mapped only to piRNAs in biofluids other than 

seminal plasma. The functional significance of extracellular piRNAs is not yet known. 

 

By using a uniform RNA-seq-based approach, we produced an extensive catalog of small RNAs 

that are present in a large set of human biofluids. The RNA composition of biofluids differed 

widely, with major differences in the distribution of biotypes and of specific RNAs within each 

biotype. This work provides a resource for investigators seeking to understand the production, 

distribution, and function of extracellular RNAs. Biofluid small RNAs are being explored as 

disease biomarkers and our work also helps to identify RNAs that are present in multiple biofluids 

and may have potential as novel biomarkers. 
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FIGURE LEGENDS 

 

Figure 1. Distribution of RNA biotypes differs between biofluids 

Reads mapping to miRNAs, tRNAs, Y-RNAs, piRNAs, mRNAs, or other RNA biotypes as a 

fraction of total reads mapping to the human transcriptome. Boxes represent median and 

interquartile ranges, whiskers represent 1.5 times the interquartile range. Dots represent 

outliers. 

 

Figure 2. miRNA profiles in 12 biofluid types 

(A) Number of miRNAs detected as a function of read depth. 

(B) Cumulative distribution of miRNA reads.  

(C and D) Examples of pairwise correlations between biofluids. Each point represents the 

median normalized read count for a single miRNA for the indicated biofluids. One normalized 

read count was added to each measurement to allow representation of log read counts for 

miRNAs with no reads. 

(E) Correlations for all pairs of biofluids. 

(F)  tSNE plot produced using miRNA read counts. Each point represents a single biofluid 

sample. 

 

Figure 3. miRNAs with highly correlated read counts across 12 biofluids.  

Hierarchical clustering heat map depicting scaled miRNA read counts for six groups (1-6) of five 

or more miRNAs with similar abundance patterns across biofluids using Bayesian Relevance 

Network analysis. Z-scores indicate levels of miRNA relative to levels of the same miRNA in 

other biofluids. 

Figure S2 is a larger version of this figure that includes names of each miRNA. 
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Figure 4. tDR profiles across 12 biofluid types 

(A) Number of tDRs detected as a function of read depth. 

(B) Cumulative distribution of tDR reads. 

(C and D) Examples of pairwise correlations between biofluids. Each point represents the 

median normalized read count for a single tDR for the indicated biofluids. One normalized read 

count was added to each measurement to allow representation of read counts for tDRs with no 

reads on a log scale. 

(E) Correlations for all pairs of biofluids. 

(F)  tSNE plot produced using tDR read counts. Each point represents a single biofluid sample. 

 

Figure 5. tDR abundance by amino acid, anticodon, and fragment type 

(A) tDR abundance by amino acid. 

(B) tDR abundance by anticodon. 

(C) tDR abundance by fragment type. 

Data are shown for tDRs from the five most highly represented tRNAs. Data for other tDRs are 

shown in Figures S4-S6. 

 

Figure 6. Y RNA fragments in 12 biofluid types 

(A) Distribution of Y RNA reads by Y RNA gene. 

(B) Y RNA read mapping positions. We determined the number of reads covering each 

nucleotide of each full-length Y RNA. Values are normalized to the position of each Y RNA with 

the largest number of reads in each biofluid. 
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TABLES 

Table 1. Study Participant Demographic Summary 

 

a F, female; M, male 

b Median (interquartile range) 

  

   Race Ethnicity 

Biofluid Sexa Age (years)b African 
American 

Asian White 
Other 

(mixed) 
Unknown 

Pacific 
Islander 

Hispanic 
Non-

Hispanic 
Declined 
to State 

Unknown 

Amniotic Fluid 10F Unknown     10     10 

BAL fluid 4F, 6M 29.5 (28.3-33.0) 3 1 6    1 9   

Bile 6F, 6M 57.5 (53.3-60.3)   12     11 1  

Cord Blood Plasma 
(Maternal 

demographics) 
10F 31 (29.5-33.5) 1  4 2 2  3 5  2 

Cord Blood Plasma 
(Fetal demographics) 

6F, 4M 0 (0-0) 1 2 2 3 2  3 4  3 

CSF 3F, 8M 40 (37.5-43.0) 6 1 4     11   

Ovarian Follicle Fluid 5F 28 (26-28)  2 3     5   

Plasma 9F, 3M 26 (24.8-35.3)  7 4   1 2 10   

Serum 8F, 3M 26 (24.5-30.0)  7 3   1 1 10   

Urine 8F, 2M 27.5 (25.3-43.8)  7 2    1 9   

Parotid Saliva 8F, 5M 29 (24-30)  3 8  2  2   11 

SMSL Saliva 8F, 7M 29 (27-33)  3 10  2  2   13 

Seminal Fluid 10M 40.5 (33.8-40.5) 1 3 6    1 9   
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EXPERIMENTAL PROCEDURES 

Human Subjects 

With the exception of bile samples, which were obtained at the Mayo Clinic following liver 

transplantation, all samples were obtained from healthy subjects enrolled in a variety of studies 

conducted at the University of California, San Francisco. Protocols were approved by Institutional 

Review Boards at the Mayo Clinic (bile) and the University of California San Francisco (all other 

specimen types). Except for cord blood plasma, which was obtained at birth, all other samples 

were obtained from studies enrolling subjects aged 18 years or older. Details of sample collection 

and storage for each sample type are provided in Supplemental Experimental Procedures.  

 

RNA Isolation, Library Preparation, and Sequencing 

After thawing, samples were spun at 2,000 x g for 5 minutes at 4°C. RNA was isolated from 200 

µL of biofluid using the Qiagen miRNEasy Micro Kit according to the manufacturer’s protocol 

except that 1 mL of Qiazol and 180 µL of chloroform were used. Small RNA-seq libraries were 

prepared using 4N protocol D as previously described (Giraldez et al., 2017).  This method relies 

on a version of the TruSeq Small RNA Library Preparation Kit modified by using randomized 

adapters, adding PEG to the adapter-RNA solution, and including steps to enzymatically remove 

excess adapter after 3’ ligation. Multiple libraries with unique indexes were pooled, purified using 

the Qiagen MinElute PCR Purification Kit per the manufacturer’s recommendations. Libraries 

were size-selected using the PippinPrep (Sage Science) with a 3% agarose gel. In pilot 

experiments, we adjusted the size selection parameters to maintain a low proportion of adapter 

dimers (132 bp) and maximize the proportion of library with inserts of ~22-30 bp. We selected the 

PippinPrep broad range option to deplete sequences <137 bp and >166 bp but maintain a range 

of insert sizes within this range. Size-selected DNA was sequenced on an Illumina HiSeq 4000 

(single end 50 base mode).  

 

Sequence alignment 

All FASTQ files were processed using the exceRpt small RNA-seq pipeline version 4.6.2 available 

on the Genboree Workbench (http://www.genboree.org/). Sequence reads were clipped 4 nt from 

the invariant portions of both 5’ and 3’ adapters to remove the 4 randomized nt in the adapters. 

Clipped reads were aligned with a one mismatch allowance. To exclude piRNAs that mapped to 

other biotypes, we changed the order of mapping assignment to count Gencode alignments in 

preference to piRNA alignments (alignment order: miRNAs, tRNAs, all annotations from Gencode, 
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piRNAs, and circular RNA). We also eliminated piRNA mappings if the large majority (>98%) of 

reads mapping to a given piRNA also mapped to an RNA of a different biotype. 

 

RNA-seq data inclusion criteria 

RNA-seq results were included if: 1) ≥100,000 reads mapped to the  transcriptome, 2) the number 

of reads mapping to annotated transcripts represented at least 50% of the number of reads 

mapping to the human genome, and 3) R ≥ 0.85 for correlation of miRNA reads with most other 

samples of the same biofluid. For samples that failed to meet inclusion criteria on initial analysis, 

duplicate biofluid samples were used for a second round of RNA isolation and library preparation. 

If the repeat analysis met inclusion criteria, these results were used for all analyses. If the repeat 

analysis did not meet the inclusion criteria, data from that sample were not used for subsequent 

analyses. There was no case in which replicate analysis of a sample gave consistent results (R 

≥ 0.85 for miRNAs) but these results were poorly correlated (R < 0.85) with most other samples 

of the same biofluid type.  

 

RNA Biotype Distribution Analysis 

We used the biotype counts file generated by the small RNA-seq pipeline on the Genboree 

Workbench. Since Y RNA reads represented a large proportion of Gencode transcript reads in 

some biofluids, we used the Gencode read counts file to quantify Y RNA reads separately from 

other Gencode reads.  

 

miRNA analysis 

miRNA diversity analyses were performed using the mean normalized miRNA read counts for all 

samples of a given biofluid type. Read counts for each miRNA in each sample were normalized 

by dividing by the total number of miRNA read counts in that sample. For analyses of the numbers 

of miRNAs detected as a function of read depth, we excluded all miRNAs with mean read counts 

< 1/106 total miRNA reads (lower limit of detection). For biofluids where miRNAs represented a 

small proportion of total RNA reads, the total number of miRNA reads for all samples was <106. 

For those biofluids, the lower limit of detection was defined as 106 divided by the total number of 

miRNA reads for that biofluid.  For analyses of cumulative distributions, we ranked miRNAs in 

descending order of normalized mean read counts for a given biofluid and calculated the 

cumulative sum until we included enough miRNAs to account for 99.9% of miRNA reads. 

For pairwise correlations and tSNE analyses, we normalized read counts by DESeq2 

(Love et al., 2014) and determined mean read counts for all samples of each biofluid. We 
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calculated the Pearson correlation coefficient of each biofluid pair using R. We generate tSNE 

plots using the Rtsne function of the Rtsne R package with perplexity 20 and a maximum iteration 

of 5,000. We plotted the results using the xyplot function from the lattice R package. We used 

Bayesian Relevance Networks (Ramachandran et al., 2017) to generate a list of co-expressing 

miRNAs. We normalized miRNA read counts with DESeq2, transformed the counts data using 

the varianceStabilizingTransformation function, identified the top 25% most frequent miRNAs (by 

mean), and then selected the top 13% most variable as input to the Bayesian Relevance Networks 

algorithm. We selected all co-expressing miRNAs with a Bayesian correlation ≥ 0.80, which had 

an estimated false discovery rate of 0.012. We used the pheatmap function from the pheatmap R 

package to generate a hierarchical clustering diagram for all miRNAs belonging to networks with 

3 or more miRNAs. 

 

tDR analysis 

We used MINTmap (Loher et al., 2017) to analyze tDRs. We removed adapters, trimmed 4 

nucleotides from each end of the read, and removed low quality reads (using standard Genboree 

parameters) from all fastq files with the fastx-toolkit. Fastq files were then processed individually 

by MINTmap. We only counted alignments that mapped exclusively to annotated tRNA regions 

to reduce ambiguity. For analyses of amino acid or anticodon read counts, reads that mapped 

ambiguously (to multiple amino acids or anticodons) were deemed “undetermined.” All reads were 

aggregated by sum and normalized by the total number of tDR reads within each sample or 

biofluid type. To analyze tRNA coverage, we took the normalized mean of each sample and 

aggregated read counts by biofluid and the start and end position.  

 

Y-RNA analysis 

Using the bam files generated by the Genboree pipeline using the “Upload Full Results” option, 

we searched for any alignment to the 4 human Y RNAs (RNY1-201, RNY3-201, RNY4-201, and 

RNY5-201) and considered each unique fragment a distinct read. To plot read coverage, we 

followed the same strategy as outlined above for tDRs. 

 

Data Availability 

Data are available through the exRNA Atlas (https://exrna-atlas.org/) and as supplemental tables. 

For two biofluid types (parotid saliva and SMSL saliva), the IRB-approved consent process 

permitted release of read counts but not sequences and is available through accession number 
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EXR-DERLE1PHASE1PROT-AN. For the other 10 biofluid types, both raw sequence data and 

read counts are available (EXR-DERLE1PHASE1OPEN-AN).  
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