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Abstract 31 

Background 32 

Phenotypic networks describing putative causal relationship among multiple phenotypes can be 33 

used to infer single-nucleotide polymorphism (SNP) effects in genome-wide association studies 34 

(GWAS). In GWAS with multiple phenotypes, reconstructing underlying causal structures 35 

among traits and SNPs using a single statistical framework is essential for understanding the 36 

entirety of genotype-phenotype maps. A structural equation model (SEM) can be used for such 37 

purpose.  38 

Methods 39 

We applied SEM to GWAS (SEM-GWAS) in chickens, taking into account putative causal 40 

relationships among body weight (BW), breast meat (BW), hen-house production (HHP), and 41 

SNPs. We assessed the performance of SEM-GWAS by comparing the model results with those 42 

obtained from traditional multi-trait association analyses (MTM-GWAS). 43 

Results 44 

Three different putative causal path diagrams were inferred from highest posterior density (HPD) 45 

intervals of 0.75, 0.85, and 0.95 using the IC algorithm. A positive path coefficient was estimated 46 

for BM→BW, and negative values were obtained for BM→HHP and BW→HHP in all 47 

implemented scenarios. Further, the application of SEM-GWAS enabled decomposition of SNP 48 

effects into direct, indirect, and total effects, identifying whether a SNP effect is acting directly or 49 

indirectly on given trait. In contrast, MTM-GWAS only captured overall genetic effects on traits, 50 

which is equivalent to combining the direct and indirect SNP effects from SEM-GWAS. 51 
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Conclusions 52 

Our results suggested that SEM-GWAS provides insights into mechanisms by which SNPs affect 53 

traits through partitioning effects into direct, indirect, and total components. Thus, we provide 54 

evidence that SEM-GWAS captures complex relationships and delivers a more comprehensive 55 

understanding of SNP effects compared to MTM-GWAS.  56 

Key words: Causal structure, GWAS, multiple traits, path analysis, SEM, SNP effect 57 

 58 

Background 59 

Genome-wide association studies (GWAS) have become a standard approach for investigating 60 

relationships between common genetic variants in the genome (e.g., single-nucleotide 61 

polymorphisms, SNPs) and phenotypes of interest in human, plant, and animal genetics [1-3]. A 62 

typical GWAS is based on univariate linear or logistic regression of phenotypes on genotypes for 63 

each SNP individually while often adjusting for the presence of nuisance covariates [4]. A 64 

statistically significant association indicates that SNPs may be in strong linkage disequilibrium 65 

(LD) with quantitative trait loci (QTLs) that contribute to the trait etiology. Alternatively, multi-66 

trait model GWAS (MTM-GWAS) can be used to test for genetic associations among a set of 67 

traits [5-7]. It has been established that MTM-GWAS reduces false positives and increases the 68 

statistical power of association tests, explaining the recent popularity of this method. MTM-69 

GWAS can be used to study genetic associations of multiple traits; however, it does not identify 70 

factors that mediate relationships between the detected effects and dependencies involving 71 

complex traits. 72 
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Complex traits are the product of various cryptic biological signals that may affect a trait of 73 

interest either directly or indirectly through other intermediate traits [8]. A standard regression 74 

cannot describe such complex relationships between traits and QTLs properly. For instance, some 75 

traits may simultaneously act as both dependent and independent variables. Structural equation 76 

modeling (SEM) is an extended version of Wright’s path analysis [9, 10], that offers a powerful 77 

technique for modeling causal networks. In a complex genotype-phenotype setting involving 78 

many traits, a given trait can be influenced not only by genetic and systematic factors but also by 79 

other traits (as covariates) as well. Here, QTLs may not affect the target trait directly; instead, the 80 

effects may be mediated by upstream traits in a causal network. Indirect effects may therefore 81 

constitute a proportion of perceived pleiotropy, and these concepts apply to sets of heritable 82 

traits, organized as networks, are common in biological systems. An example from dairy cattle 83 

production systems, described by Gianola and Sorensen [10] and Rosa, et al. [11], is that higher 84 

milk yield increases the risk of a particular disease, such as mastitis, while the prevalence of the 85 

disease may negatively affect milk yield. In humans, obesity is a key factor influencing insulin 86 

resistance, which subsequently causes type 2 diabetes. A list of causal networks across human 87 

diseases and candidate genes is described in Kumar and Agrawal [12] and Schadt [13].  88 

Although MTM-GWAS is a valuable approach, it only captures correlations or associations 89 

among traits and does not provide information about causal relationships. Knowledge of the 90 

causal structures underlying complex traits is essential, as correlation does not imply causation. 91 

For example, a correlation between two traits, T1 and T2, could be attributed to a direct effect of 92 

T1 on T2, T2 on T1, or to additional variables that jointly influence both traits [11]. Likewise, if 93 

we know a “causal” SNP is linked to a QTL, we can imagine three possible scenarios: 1) causal 94 
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(𝑆𝑁𝑃 →  𝑇1 →  𝑇2), 2) reactive (𝑆𝑁𝑃 →  𝑇2 →  𝑇1), or 3) independent (𝑇1 ←  𝑆𝑁𝑃 →  𝑇2). 95 

Scenarios (1) and (2), do not causes pleiotropy but produce association.   96 

A SEM methodology has the ability to handle complex genotype-phenotype maps in GWAS 97 

placing an emphasis on causal networks [14]. Therefore, SEM-based GWAS (SEM-GWAS) may 98 

provide a better understanding of biological mechanisms and of relationships among a set of 99 

traits than MTM-GWAS. SEM can potentially decompose the total SNP effect on a trait into 100 

direct and indirect (i.e., mediated) contributions. However, SEM-derived GWAS has not been 101 

discussed or applied fully in quantitative genetic studies yet. Our objective was to illustrate the 102 

potential utility of SEM-GWAS by using three production traits in broiler chickens genotyped for 103 

a battery of SNP as a case example.  104 

Methods  105 

Data set 106 

The analysis included records for 1,351 broiler chickens provided by Aviagen Ltd. (Newbridge, 107 

Scotland) for three phenotypic traits: body weight (BW), ultrasound of breast muscle (BM) at 35 108 

days of age, and hen-house egg production (HHP), defined as the total number of eggs laid 109 

between weeks 28 and 54 per bird. The sample consisted of 274 full-sib families, 326 sires, and 110 

592 dams. More details regarding population and family structure were provided by Momen et al. 111 

[15]. A pre-correction procedure was performed on the phenotypes to account for systematic 112 

effects such as sex, hatch week, pen, and contemporary group for BW, BM, and HHP.  113 

Each bird was genotyped for 580,954 SNP markers with a 600k Affymetrix SNP [16] chip 114 

(Affymetrix, Inc., Santa Clara, CA, USA). The Beagle software [17] was used to impute missing 115 

SNP genotypes, and quality control was performed using PLINK version 1.9 [18]. After 116 
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removing markers that did not fulfill the criteria of minor allele frequencies < 1%, call 117 

rate > 95%, and Hardy–Weinberg equilibrium (Chi-square test p-value threshold was 10− 6), 118 

354,364 autosomal SNP markers were included in the analysis.  119 

Multiple-trait model for GWAS  120 

MTM-GWAS is a single-trait GWAS model extended to multi-dimensional responses. When 121 

only considering additive effects of SNPs, the phenotype of a quantitative trait using the single-122 

trait model can be described as:  123 

𝑦𝑖 = ∑ 𝑥𝑖𝑞𝛽𝑞

𝑘

𝑞=1

+ 𝑤𝑖𝑗𝑠𝑗 + 𝑒𝑖                                         (1) 124 

where 𝑦𝑖 is the phenotypic trait of individual i, 𝑥𝑖𝑞 is the incidence value for the ith phenotype in 125 

the qth level of systematic environmental effect, 𝛽𝑞 is fixed effect of the qth systemic 126 

environmental effect on the trait, 𝑤𝑗 = (𝑤1, … , 𝑤𝑝) is the number of A alleles (i.e., 𝑤𝑗 ∈ {0,1, 2}) 127 

in the genotype of SNP marker j, and 𝑠𝑗 is the allele substitution effect for SNP marker j. Strong 128 

LD between markers and QTLs coupled with an adequate marker density increases the chance of 129 

detecting marker and phenotype associations. Hypothesis testing is typically used to evaluate the 130 

strength of the evidence of a putative association. Typically, a t-test is applied to obtain p-values, 131 

and the statistic is 𝑇𝑖𝑗 = 𝑠̂j 𝑠𝑒(𝑠̂j)⁄ , where 𝑠̂ is the point estimate of the jth SNP effect and 𝑠𝑒(𝑠̂j) 132 

is its standard error.  133 

The single locus model described above is naïve for a complex trait because the data typically 134 

contain hidden population structure and individuals have varying degrees of genetic similarity 135 

[19, 20]. Therefore, accounting for covariance structure induced by genetic similarity is expected 136 
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to produce better inferences [21]. Ignoring effects that reveal genetic relatedness inflates the 137 

residual terms, compromises the ability to detect association. A random effect 𝑔𝑖 including a 138 

covariance matrix reflecting pairwise similarities between additive genetic effects of individuals 139 

can be included to control population stratification. The similarity metrics can be derived from 140 

pedigree information or from whole-genome marker genotypes. This model extended for analysis 141 

of 𝑡 traits is given by: 142 

 143 

𝑦𝑖𝑙 = ∑ 𝑥𝑖𝑞𝛽𝑞𝑙

𝑘

𝑞=1
+ 𝑤𝑖𝑗𝑠𝑗𝑙 + 𝑔𝑖𝑙 + 𝑒𝑖𝑙                                   (2) 144 

for 𝑖 = 1,2,···, 𝑛, 𝑙 = 1,2,···, 𝑡. In this extension, 𝑦𝑖𝑙 is the phenotypic value of the 𝑙th trait for the 145 

𝑖th subject, 𝛽𝑞𝑗 is the systematic effect of the 𝑞th environmental factor 𝑥𝑖𝑞 on the lth trait, 𝑠𝑗𝑙 is 146 

the additive effect of the 𝑗th marker on the 𝑙th trait, 𝑤𝑖𝑗 is as previously defined, and 𝑔𝑖𝑙 and 𝑒𝑖𝑙 147 

are the random polygenic effect and model residual assigned to individual i for trait 𝑙, 148 

respectively. Random effects within a trait follow the multivariate normal distribution, 149 

[
𝒈𝑙

𝒆𝑙
] ~N ([

𝟎

𝟎
] , [

𝑲𝜎𝑔𝑙
2 𝟎

𝟎 𝑰𝜎𝑒𝑙
2 ]), where 𝑲 is genetic relationship matrix, 𝜎𝑔𝑙

2  is the additive genetic 150 

variance of trait 𝑙, 𝑰 is an identity matrix, and 𝜎𝑒𝑙
2  is the residual variance for trait 𝑙. The multiple-151 

trait model accounts for the additive genetic (𝜌𝑙𝑙’) and residual correlation (𝜆𝑙𝑙′) between a pair of 152 

traits 𝑙 and 𝑙’.  153 

The positive definite matrix K may be a genomic relationship matrix (G) computed from marker 154 

data, or a pedigree-based matrix (A) computed from genealogical information. The A matrix 155 

describes the expected additive similarity among individuals, while the G measures the realized 156 
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fraction of alleles shared. Genomic relationship matrices can be derived in several ways [22-24]. 157 

Here, we used the form proposed by VANRADEN 2008: 158 

𝐆 =
𝐌𝐌′

2 ∑ pjqj
                                                     (3) 159 

where 𝐌 is an 𝑛 × 𝑝 matrix of centered SNP genotypes and  𝑝𝑗 and 𝑞𝑗 = 1 − 𝑝𝑗 are the allele 160 

frequencies at marker locus 𝑗.  We evaluated both A and G in the present study.  161 

 162 

Structural equation model association analysis 163 

A SEM consists of two essential parts: a measurement model and a structural model. The 164 

measurement model depicts the connections between observable variables and their 165 

corresponding latent variables. The measurement model is also known as confirmatory factor 166 

analysis. The critical part of a SEM is the structural model, which can have three forms. The first 167 

consists of observable exogenous and endogenous variables. This model is a restricted version of 168 

a SEM known as path analysis [9]. The second form explains the relationship between exogenous 169 

and endogenous variables that are only latent. The third type is a model consisting of both 170 

manifest and latent variables. 171 

SEM can be applied to GWAS as an alternative to MTM-GWAS to study how different causal 172 

paths mediate SNP effects on each trait. The following SEM model was considered:  173 

𝑦𝑖𝑙 = 𝜇𝑙 + ∑ 𝑦𝑚𝝀𝑙𝑚

𝑚∈𝐶

+ 𝑤𝑗(𝑙)𝑠𝑗(𝑙) + 𝑔𝑖𝑙 + 𝜀𝑖𝑙                    (4)   174 

where C is the set of phenotypic traits that directly affect the trait 𝑙, 𝝀𝑙𝑚is a structural coefficient 175 

representing the effect of trait m on trait l, and 𝑔𝑙~𝑁(0, 𝑲𝜎𝑙
2) is the polygenic effect of the 𝑙th 176 

trait. The remaining terms are as presented earlier with one important difference: the SNP effects 177 
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are not interpreted as overall effects on trait 𝑙 but instead represent direct effects on trait 𝑙. 178 

Additional indirect effects from the same SNP may be mediated by phenotypic traits in C. Each 179 

marker is entered into equation (4) one at a time, and its significance is tested. For a discussion of 180 

how SEM represents genetic signals on each trait through multiple causal paths, see Valente, et 181 

al. [25]. Despite the difference in interpretation, the distribution of the vector of polygenic effects 182 

is assumed to be the same as in the MTM-GWAS model. The same applies to residual terms 183 

within a trait. We also consider trait-specific residuals to be independent within an individual. 184 

This restriction is required to render structural coefficients likelihood-identifiable. In addition, the 185 

interpretation of inferences as having a causal meaning requires imposing the restriction that the 186 

residuals’ joint distribution be interpreted as the causal sufficiency assumption [26]. In the 187 

present study, all exogenous and endogenous variables were observable, and there was no latent 188 

variable. In hence, causal structure was assumed between the endogenous variables BM, BW, and 189 

HHP. 190 

We considered the following GWAS models, which their causal structures were recovered by the 191 

inductive causation (IC) algorithm [26]: (1) MTM-GWAS with pedigree-based kinship A (MTM-192 

A) or marker-based kinship G (MTM-G), and (2) SEM-GWAS with A (SEM-A) or G (SEM-G). 193 

Although nuisance covariates such as environmental factors can be omitted in the graph, they 194 

may be incorporated into the models as exogenous variables. The SEM representation allowed us 195 

to decompose SNP effects into direct, indirect, and total effects.  196 

A direct SNP effect is the path coefficient between a SNP as an exogenous variable and a 197 

dependent variable without any causal mediation by any other variable. The indirect effects of a 198 

SNP are those mediated by at least one other intervening endogenous variable. Indirect effects are 199 

calculated by multiplying path coefficients for each path linking the SNP to associated variable, 200 
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and then summing over all such paths [9]. The overall effect is the sum of all direct and indirect 201 

effects. By explicitly accounting for complex relationship structure among traits in such a way, 202 

SEM provides a better understanding of a genome-wide SNP analysis by allowing us to 203 

decompose effects into direct, indirect, and overall effects within a predefined casual framework.  204 

MTM-GWAS and SEM-GWAS were compared with the logarithm of the likelihood function 205 

(log L), Akaike’s Information Criterion (AIC), and the Bayesian Information Criterion (BIC). 206 

The model providing the lowest values for these information criteria is considered to fit the data 207 

better [27]. MTM-GWAS and SEM-GWAS were fitted using the SNP Snappy strategy, which is 208 

implemented in the Wombat software program [28].  209 

Searching for a phenotypic causal network in a mixed model  210 

In the SEM-GWAS formulation described earlier, the structure of the underlying causal 211 

phenotypic network needs to be known. Because this is not so in practice, we used a causal 212 

inference algorithm to infer the structure. Residuals are assumed to be independent in all SEM 213 

analyses, so associations between observed traits are viewed as due to causal links between traits 214 

and by correlations among genetic values (i.e., 𝑔1, 𝑔2, and 𝑔3). Thus, to eliminate confounding 215 

problem when inferring the underlying network among traits, we used the approach of Valente, et 216 

al. [29] to search for acyclic causal structures through conditional independencies on the 217 

distribution of the phenotypes, given the genetic effects. A causal phenotypic network was 218 

inferred in two stages: 1) a MTM model [30] was employed to estimate covariance matrices of 219 

additive genetic effects and of residuals, and 2) the causal structure among phenotypes from the 220 

covariance matrix between traits, conditionally on additive genetic effects inferred by the IC 221 

algorithm. The residual (co)variance matrix was inferred using Bayesian MCMC [29, 31], with 222 

samples drawn from the posterior distribution. For each query testing statistical independence 223 
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between traits 𝑦𝑙and 𝑦𝑙′, the posterior distribution of the residual partial correlation 𝜌𝑦𝑙,𝑦
𝑙′

|𝑆 was 224 

obtained, where 𝑆 is a set of variable (traits) that are independent. Three highest posterior density 225 

(HPD) intervals of  0.75, 0.85, and 0.95 were used to make statistical decisions for SEM-GWAS. 226 

We thus considered SEM-A75 (HPD > 0.75), SEM-A85 (HPD > 0.85), SEM-A95 (HPD > 0.95), 227 

and SEM-G75 (HPD > 0.75). An HPD interval that does not contain zero declares 𝑦𝑙 and 𝑦𝑙′ to 228 

be conditionally dependent. 229 

Results 230 

Figure 1 shows phenotypic relationship structures recovered by the IC algorithm for the three 231 

different HPD intervals. Edges connecting two traits represent non-null partial correlations as 232 

indicated by HPD intervals. We compared the two MTM-GWAS and four SEM-GWAS by using 233 

the three chicken traits (BW, BM, and HHP). Only causal structures among the three traits are 234 

shown in Figure 1, because other parts were the same across the different SEM models. Fully 235 

recursive SEM-A75 and SEM-G75 revealed direct effects of BM on BW and HHP, and those of 236 

BW on HHP, as well as an indirect effect of BM on HHP. In addition, SEM-A85 detected a 237 

direct effect of BM on BW, the direct effect of BW on HHP, and the indirect effect of BM on 238 

HHP mediated by BW. Finally, SEM-A95 only identified a direct effect of BM on BW because 239 

of a statistically stringent HPD cutoff imposed.   240 

Given the causal structures inferred from the IC algorithm, the following SEM was fitted: 241 

{

𝒚
1 = 𝜇 + 𝒁𝑖𝒈1 + 𝑊𝑖𝑗𝑆𝑗 + 𝜺𝑖

𝒚2 = 𝜇 + 𝜆21𝒚1 + 𝒁𝑖𝒈2 + 𝑊𝑖𝑗𝑆𝑗 + 𝜺𝑖

𝒚3 = 𝜇 + 𝜆31𝒚𝟏 + 𝜆32𝒚2 + 𝒁𝑖𝒈3 + 𝑊𝑖𝑗𝑆𝑗 + 𝜺𝑖

                        (5)  242 

Note that only a small number of the entries in the structural coefficient matrix (𝜆 in equation 5) 243 

are nonzero due to sparsity. These nonzero entries specify the effect of one phenotype on other 244 
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phenotypes. The corresponding directed acyclic graph is shown in Figure 2 assuming the causal 245 

relationships among the three traits, where y1, 𝑦2, and 𝑦3 represent BM, BW, and HHP, 246 

respectively; 𝑆𝑁𝑃𝑗  is the genotype of the jth SNP; 𝑆𝑗𝑙 is the direct SNP effect on trait 𝑙; and the 247 

remaining variables are as presented earlier. This diagram depicts a fully recursive structure in 248 

which all recursive relationships among the three phenotypic traits are shown. Arrows represent 249 

causal connections, whereas double-headed arrows between polygenic effects are correlations.  250 

<< Figure 1 about here>> 251 

   << Figure 2 about here>> 252 

We examined the fit of each model implemented to assess how well it describes the data (Table 253 

1). Valente, et al. [25] showed that re-parametrization and reduction of a SEM mixed model yield 254 

the same joint probability distribution of observation as in MTM suggesting that expected 255 

likelihood of SEM and MTM should be the same. As expected, SEM-GWAS and MTM-GWAS 256 

showed very similar results (e.g., SEM-A75 vs. MTM-A and SEM-G75 vs. MTM-G). Among the 257 

models considered, the ones involving G exhibited a better fit. SEM-A85 and SEM-A95, sharing 258 

a subset of the SEM-A75 structure, presented almost identical AIC and BIC values.   259 

<<Table 1 about here>> 260 

Structural coefficients 261 

Table 2 presents the causal structural path coefficients for endogenous variables (BM, BW, and 262 

HHP). All models have positive effects for BM→BW, whereas the BM→HHP and BW→HHP 263 

relationships have negative path coefficients. The latter confirmed the fact that chicken breeding 264 

is divided into broiler and layer sections due to the negative genetic correlation between BW and 265 

HHP. 266 
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<<Table 2 about here>> 267 

Also shown in Table 2 are the magnitudes of the SEM structural coefficient reflecting the 268 

intensity of the causality. The positive coefficient 𝜆21 quantifies the (direct) causal effect of BM 269 

on BW. This suggests that a 1-unit increase in BM results in a 𝜆21 -unit increases in BW. 270 

Likewise, the negative causal effects 𝜆31 and 𝜆32 offer the same interpretation.  271 

Decomposition of SNP effect paths using a fully recursive model 272 

We can decompose the SNP effects into direct and indirect effects using Figure 2. The direct 273 

effect of the SNP 𝑗 on 𝑦3 (HHP) is given by 𝑑𝑆𝑁𝑃𝑗→𝑦3
: 𝑆̂𝑗(𝑦3), where 𝑑 denotes the direct effect. 274 

Note there are only one direct and many indirect paths. We find three indirect paths from 𝑆𝑁𝑃𝑗  to 275 

𝑦3 mediated by 𝑦1 and 𝑦2 (i.e., the nodes formed by other traits). The first indirect effect is 276 

𝑖𝑛𝑑(1)𝑆𝑁𝑃𝑗→𝑦3
: 𝜆32(𝜆21𝑆̂𝑗(𝑦1)) in the path mediated by y1 and y2, where 𝑖𝑛𝑑 denotes the indirect 277 

effect. The second indirect effect 𝑖𝑛𝑑(2)𝑆𝑁𝑃𝑗→𝑦3
: 𝜆32𝑆̂𝑗(𝑦2), is mediated by 𝑦2. The last indirect 278 

effect, is 𝑖𝑛𝑑(3)𝑆𝑁𝑃𝑗→𝑦3
: 𝜆31𝑆̂𝑗(𝑦1), mediated by y1. Therefore, the overall effect is given by 279 

summing all four paths, 𝑇𝑆𝑁𝑃𝑗→𝑦3
: 𝜆32(𝜆21𝑆̂𝑗(𝑦1)) + 𝜆32𝑆̂𝑗(𝑦2) + 𝜆31𝑆̂𝑗(𝑦1) + 𝑆̂𝑗(𝑦3). The fully 280 

recursive model of the overall SNP effect is then: 281 

{

𝑇𝑆̂𝑗→𝑦1: 𝑆̂𝑗(𝑦1)

𝑇𝑆̂𝑗→𝑦2
: 𝜆21(𝑆̂𝑗(𝑦1))+𝑆̂𝑗(𝑦2)

𝑇𝑆̂𝑗→𝑦3: 𝜆32[ 𝜆21(𝑆̂𝑗(𝑦1))+𝑆̂𝑗(𝑦2)]+𝜆31(𝑆̂𝑗(𝑦1))+𝑆̂𝑗(𝑦3)

                                      (6) 282 

For 𝑦1 (BM), there is only one effect, so the overall effect is equal to the direct effect. For 𝑦2 283 

(BW) and 𝑦3 (HHP), direct and indirect SNP effects are involved. There are two paths for 𝑦2: one 284 

indirect, 𝑖𝑛𝑑𝑆𝑗→𝑦2
: 𝑆̂𝑗(𝑦1) → 𝑦1 → 𝑦2, and one direct, 𝑑𝑆𝑗→𝑦2

: 𝑆̂𝑗(𝑦2) → 𝑦2. Here, SNP effect is 285 
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direct and mediated thorough other phenotypes according to causal networks in SEM-GWAS 286 

(Figures 1 and 2). For instance, the overall SNP effect for 𝑦3 into four direct and indirect paths is 287 

𝑇𝑆̂𝑗→𝑦3
: 𝜆32𝜆21𝑆̂𝑗(𝑦1) + 𝜆32𝑆̂𝑗(𝑦1) + 𝜆31𝑆̂𝑗(𝑦1) + 𝑆̂𝑗(𝑦3).  288 

The scatter plots in Figure 3 compare the estimated total effects for HHP (𝑇𝑆̂𝑗→𝑦3
) obtaind from 289 

SEM-GWAS and those from MTM-GWAS. We observed good agreement between SEM-GWAS 290 

and MTM-GWAS. The total SNP signals derived from SEM and MTM are the same but SEM 291 

provides biologically relevant additional information.  292 

<<Figure 3 about here>> 293 

Supplementary Figures S1-S4 present scatter plots of MTM-GWAS and SEM-GWAS signals 294 

(SEM-A75, SEM-G75, SEM-A85, and SEM-A95) for the 𝐵𝑀 → 𝐵𝑊 path, which was a common 295 

path across all SEM-GWAS considered. These two traits have a genetic correlation of 0.5 (results 296 

not shown). We break the SEM causal link into direct, indirect, and overall effects based on the 297 

IC algorithm with HPD > 0.85, whereas MTM-GWAS capture an overall SNP effect on BW. 298 

Scatter plots of the overall effects from SEM-GWAS and the total effects from MTM-GWAS 299 

indicated almost perfect agreement (top left plots, Supplementary Figures S1–S4). We observed 300 

concomitance between estimated overall and direct effects (top right plots, Supplementary 301 

Figures S1–S4). In contrast, there was less agreement in the magnitude of the SNP effects when 302 

comparing overall vs. indirect effects (bottom left plots, Supplementary Figures S1–S4). There 303 

was no linear relationship between the indirect and direct SNP effects (bottom right plots, 304 

Supplementary Figures S1–S4). In short, genetic signals detected in SEM-GWAS were close to 305 

those of MTM-GWAS for overall effects because both models are based on a multivariate 306 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2018. ; https://doi.org/10.1101/251421doi: bioRxiv preprint 

https://doi.org/10.1101/251421
http://creativecommons.org/licenses/by-nd/4.0/


15 
 

approach with the same covariance matrix. In all SEM-GWAS, results showed that direct effect 307 

contributed to overall effects than the indirect effects.  308 

Manhattan plot of direct, indirect, and overall SNP effects 309 

Figure 4 depicts a Manhattan plot summarizing the magnitude of direct, indirect, and overall SNP 310 

effects. We plotted the decomposed SNP effects on BW along chromosomes to visualize 311 

estimated marker effects from SEM-GWAS. The indirect and direct effects provide a view of 312 

SNP effects from a perspective that is not available for the total effect of MTM-GWAS. For 313 

instance, many pleiotropic QTLs have positive direct effects on BW but negative effects on BM. 314 

There were two estimated SNP effects on chromosomes 1 and 2 that deserve particular attention. 315 

These two SNPs are highlighted with black circles and red ovals. The overall effect of the first 316 

SNP consisted of large indirect and small direct effects on BM, whereas the opposite pattern was 317 

observed for the second SNP, which showed large direct and small indirect effects. Although the 318 

overall effects of these SNPs were similar (top Manhattan plot, Figure 4), use of decomposition 319 

allowed us to find out that the trait of interest is affected in different manners: the second SNP 320 

effect acted directly on BW without any mediation by BM, whereas the first SNP reflected a 321 

large effect mediated by BM on BW. Collectively, new insight regarding the direction of SNP 322 

effects can be obtained using the SEM-GWAS methodology. 323 

It should also be noted that the estimated additive SNP effects obtained from the four SEM-324 

GWAS can be used for inferring pleiotropy. For instance, a pleiotropic QTL may have a large 325 

positive direct effect on BW but may exhibit a negative indirect effect coming from BM, which 326 

in turn reduces the total QTL effect on BW. Arguably, the methodology employed here would be 327 

most effective when the direct and indirect effects of a QTL are in opposite directions. If the 328 
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direct and indirect QTL effects are in the same direction, the power of SEM-GWAS may be the 329 

same as the overall power of MTM-GWAS.  330 

<<Figure 4 about here>> 331 

Discussion 332 

It is becoming increasingly common to analyze a set of traits simultaneously in GWAS by 333 

leveraging genetic correlations between traits [32, 33]. In the present study, we illustrated the 334 

potential utility of a SEM-based GWAS approach, which has the potential advantage of 335 

embedding a pre-inferred causal structure across phenotypic traits [29]. SEM-GWAS accounts 336 

for the relationship of mediating variables that could be either dependent or independent with 337 

restriction on a residual covariance. This is a useful approach when multiple mediators interplay 338 

influencing the final outcomes [34, 35]. SEM-GWAS is achieved by first inferring the structure 339 

of network between phenotypic traits. For this purpose, we used a modified version of the IC 340 

algorithm described by Valente, et al. [29]. The IC algorithm was used to explore putative causal 341 

links among phenotypes obtained from a residual covariance matrix, in a model that accounted 342 

for systematic and genetic confounding factors such as polygenic additive effects. It then 343 

produced a posterior distribution of partial residual correlations between any possible pairs of 344 

variables. Three different causal path diagrams were inferred from HPD intervals of 0.75, 0.85, 345 

and 0.95. We observed that the number of identified paths decreased with an increase in the HPD 346 

interval value. Only a path connecting BM and BW was present in all HPD intervals considered. 347 

Moreover, we found that the partial residual correlation between BM and HHP was weaker than 348 

that between BM and BW. This may explain why the path between BM and HHP was not 349 

detected with HPD intervals larger than 0.75.  350 
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Estimated path coefficients reflect the strength of each causal link. For instance, a positive path 351 

coefficient from BM to BW suggests that a unit increase in BM directly results in an increase in 352 

BW. Our results showed that MTM-GWAS and SEM-GWAS were similar in terms of the 353 

goodness of fit as per the AIC and BIC criteria. This finding is in agreement with theoretical 354 

work of  Valente, et al. [25] showing the equivalence between models. Thus, MTM-GWAS and 355 

SEM-GWAS produced the same marginal phenotypic distributions and goodness of fit values. A 356 

similar approach has been proposed by Li, et al. [14], Mi, et al. [36], and Wang and van Eeuwijk 357 

[37]. The main difference between our approach and theirs is that they used SEM in the context 358 

of standard QTL mapping, whereas our SEM-GWAS is developed for GWAS based on a linear 359 

mixed model. 360 

The advantage of SEM-GWAS over MTM-GWAS is that the former decomposes SNP effects by 361 

tracing inferred causal networks. Our results showed that by partitioning SNP effect into direct, 362 

indirect, and total components, an alternative perspective of SNP effects can be obtained. As 363 

shown in Figure 4, direct and indirect effects may differ in magnitude and sign, acting in the 364 

same direction or even antagonistic manners. Note that the total SNP effects inferred from SEM-365 

GWAS were the same as the estimated SNP effects from MT-GWAS (Figure 3). However, 366 

knowledge derived from the decomposition of SNP effects may be critical for animal and plant 367 

breeders to breaking unfavorable indirect QTL effects, or to obtain better SNP effects estimates 368 

than those from MTM-GWAS [e.g., 36]. 369 

Conclusion 370 

SEM offers insights into how phenotypic traits relate to each other. We illustrated potential 371 

advantages of SEM-GWAS relative to the commonly used standard MTM-GWAS by using three 372 
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chicken traits as an example. SNP effects pertaining to SEM-GWAS have a different meaning 373 

than those in MTM-GWAS. Our results showed that SEM-GWAS enabled the identification of 374 

whether a SNP effect is acting directly or indirectly, i.e. mediated, on given trait. In contrast, 375 

MTM-GWAS only captures overall genetic effects on traits, which is equivalent to combining 376 

direct and indirect SNP effects from SEM-GWAS together. Thus, SEM-GWAS offers more 377 

information and provides an alternative view of putative causal network, enabling a better 378 

understanding the genetic quiddity of traits at the genomic level.   379 
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Figures 504 

 505 

Figure 1 Causal graphs inferred using the IC algorithm among three traits: breast meat 506 

(BM), body weight (BW) and hen-house production (HHP) in the chicken data. SEM-A75 507 

and SEM-G75 were the inferred fully recursive causal structures with HPD > 0.75 and corrected 508 

for genetic confounder using A (pedigree-based) and G (marker-based) matrices. SEM-A85 and 509 

SEM-A95 were obtained with HPD > 0.85 and HPD > 0.95, respectively, corrected with A. 510 

Arrows indicate direction of causal relationships. Dashed lines indicate negative coefficients, and 511 

the continuous arrows indicate positive coefficients. 512 

 513 
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 519 

 520 

 521 

Figure 2 A diagram for causal path analysis of SNP effects in a fully recursive structural 522 

equation model for three traits, 𝒑 exogenous independent SNP variables, and three 523 

correlated polygenic effects. Arrows indicate the direction of causal effects and dashed lines 524 

represent associations among the three phenotypes. Genetic correlation between traits (𝑟𝑔), 525 

polygenic effects (𝑔𝑙), environmental effect on trait 𝑙 (𝑒𝑙), effects of 𝑗 th SNP on 𝑙 th trait (𝑆𝑗(𝑦𝑙)),  526 

and recursive effect of phenotype 𝑙′ on phenotype 𝑙 (𝜆𝑙,𝑙′).  527 
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 541 

 542 

 543 

 544 

 545 

Figure 3 Comparison of multiple trait (MTM) and fully recursive overall SNP effects 546 

obtained with A (pedigree-based) and G (marker-based) from structural equation modeling 547 

(SEM)-based GWAS. Overall effects in SEM are the sum of all direct and indirect effects. HHP: 548 

hen-house egg production.  549 
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 560 

Figure 4 Manhattan plot showing overall, direct, and indirect SNP effects using a full recursive model based on G matrix for 561 

body weight (BW).  562 

 563 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2018. ; https://doi.org/10.1101/251421doi: bioRxiv preprint 

https://doi.org/10.1101/251421
http://creativecommons.org/licenses/by-nd/4.0/


27 
 

Tables 564 

 565 

Table 1 Model comparison criteria: logarithm of the restricted 

maximum likelihood function (log L), Akaike's information 

criteria (AIC), Schwarz Bayesian information criteria (BIC) to 

evaluate model fit for two MTM and four SEM models. 

Model Maximum log L -1/2 AIC -1/2 BIC 

MTM-A -7093.480 -7105.48 -7142.436 

SEM-A75 -7098.370 -7110.415 -7147.321 

SEM-A85 -7095.188 -7107.188 -7144.143 

SEM-A95 -7097.517 -7109.517 -7146.470 

MTM-G -6529.270 -6541.276 -6578.232 

SEM-G75 -6537.391 -6549.391 -6586.34 

A: pedigree-based relationship matix, G: VanRaden’s mrker-based relationship 

matrix 
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 575 

Table 2 Estimates of three causal structural coefficients (𝝀) derived from 

four different structural models. BM: breast meat. BW: body weight. HHP: 

hen-house production. SEM-75: HPD > 0.75. SEM-G75: HPD > 0.75. SEM-

A85: HPD > 0.85. SEM-A95: HPD > 0.95. 

 Structural Models 

Path SEM-75 SEM-G75 SEM-A85 SEM-A95 

𝜆𝐵𝑀→𝐵𝑊(𝜆21) 2.13 2.19 2.14 2.14 

𝜆𝐵𝑀→𝐻𝐻𝑃(𝜆31) -0.17 -0.28 *** *** 

𝜆𝐵𝑊→𝐻𝐻𝑃(𝜆32) -0.27 -0.096 -0.31 *** 
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