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Abstract: While single-cell measurement technologies provide an unprecedented opportunity to 

dissect developmental processes, revealing the mechanisms of cell fate decisions from single-cell 

RNA-seq data is challenging due to both cellular heterogeneity and transcriptional noise in the data. 

Here we developed Topographer, a bioinformatic pipeline, to construct an intuitive (i.e., every cell 

is equipped with both potential and pseudotime) developmental landscape, reveal stochastic 

dynamics of cell types, and infer both dynamic connections of marker gene networks and dynamic 

characteristics of transcriptional bursting kinetics across development. Applying this method to 

primary human myoblasts, we not only identified three known cell types but also estimated both 

their fate probabilities and transition probabilities among them. We found that the percent of the 

genes expressed in a bursty manner is significantly higher at the branch point than before or after 

branch, and there are apparent changes in both gene-gene and cell-cell correlations before and after 

branch. In general, single-cell transcriptome data with Topographer can well reveal the stochastic 

mechanisms of cell fate decisions from three different levels: cell lineage (macroscopic), gene 

network (mesoscopic) and gene expression (microscopic). 

Key Words: cell fate decision, single-cell data, developmental landscape, cell-type dynamics, 

transition probability 

 

1. Introduction 

Multi-cell organisms start as a single cell that matures through a complex process involving multiple 

cell fate decision points, leading to functionally different cell types, many of which have yet to be 

defined. Transcriptional programs (in particular transcriptional networks) underlying cell fate 

decisions drive one cell type toward another often in a random manner due to both cellular 

heterogeneity1 and transcriptional noise2. Since the structure of a multi-cell tissue is tightly linked 

with its function3, elucidating the integrated (from gene to cell) mechanisms of cell fate decisions 

is crucial yet challenging. 
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Single-cell measurement technologies4,5, which can measure a large number of parameters 

simultaneously in single cells and interrogate an entire tissue without perturbation, provide a great 

opportunity to elucidate developmental pathways and cell fate decisions. Several algorithms7-15 

developed for analysis of single-cell data have successfully ordered single cells based on their 

maturity. However, this pseudo-temporal ordering is only the first step towards understanding 

complex developmental processes involving multiple cell fate decision points. Many other 

important biological issues, e.g., in single-cell transcriptome data representing a complete 

development pathway, how many cell types there are, how one cell type transitions another, and 

how genotype determines phenotype, remain unsolved. The challenge is to devise new analysis 

approaches to reveal the dynamic mechanisms of cell fate decisions from single-cell data that lacks 

spatiotemporal information6. 

Here we developed Topographer, a bioinformatics pipeline that can construct an intuitive 

developmental landscape where by ‘intuitive’ we mean that every cell is equipped with both 

potential and pseudotime, quantify stochastic dynamics of cell types by estimating both their fate 

probabilities and transition probabilities among them, and infer dynamic characteristics of 

transcriptional bursting kinetics along the developmental trajectory. In addition, it can also identify 

various possible (e.g., bi- and tri-branching) cell trajectories with high resolution from single-cell 

data and infer dynamic connections of marker gene networks along the identified cell trajectories. 

In general, single-cell data with Topographer can overcome difficulties in constructing complex 

cell lineages, resolving intermediate stages of cell progress through development, and revealing the 

integrated mechanisms of cell fate decisions from three different levels: cell lineage, gene network 

and transcriptional burst (referring to schematic Figure S1 in Supplementary Information). 

We demonstrate the power of Topographer by analyzing single-cell RNA-seq data on the 

differentiation of primary human myoblasts11. We identified three known cell types: proliferating 

cells, differentiating myoblasts and interstitial mesenchymal cells, and constructed an intuitive 

Waddington developmental landscape. By estimating the fate probabilities of the identified cell 

types and transition probabilities among them, we found that the transition probability from 

proliferating cells to interstitial mesenchymal cells was approximately twice that from the 

proliferating cells to differentiating myoblasts, and that the fate probability of the differentiating 

myoblast type was approximately equal to that of the interstitial mesenchymal cell type. We also 
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found that the percent of the genes expressed in a burst manner was apparently higher at the 

branch point (~97%) than before or after branch (not beyond 80%). In addition, mean burst size 

(MBS) / mean burst frequency (MBF) monotonically decreased / increased before branch but 

monotonically increased / decreased after branch, with the pseudotime. 

 

RESULT 

In order to reveal the stochastic dynamics of cell fate decisions from single-cell transcriptome data, 

Topographer makes the following assumption about the data: the information on the entire 

development process is adequate, or a snapshot of primary tissue represents a complete development 

pathway. The overall Topographer, a multifunctional algorithm, comprises five functional modules: 

(1) the backbone module (Figure 1B); (2) the landscape module (Figure 1C); (3) the dynamics 

module (Figure 1D); (4) the network module (Figure 1E); and (5) the burst module (Figure 1F).  

 

Figure 1 Overview of the five functions of Topographer, where every color represents the same 

meaning, and the only (C) subfigure is not schematic but is plotted using a set of data generated by 

a toy model (Supplementary Information). 

(A) Single-cell data are represented by a matrix.  

(B) Topographer identifies the backbone of cell trajectories from the data.  

(C) Topographer constructs an intuitive Waddington potential landscape where every cell is 

equipped with both potential and pseudotime (Online Methods).  

(D) Topographer quantifies stochastic dynamics of cell types by estimating the transition 

probabilities (indicated by symbols) between cell types and their fate probabilities (Online 

Methods), where numbers 1~5 represent cell types, the size of circle represents that of fate 

probability, and the thickness of the lines with arrows represents the size of transition probability. 

(E) Topographer infers dynamic connections of marker gene networks along the identified cell 
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trajectories, where the orange ball represents the marker gene, and the thickness of connection line 

represents the strength of correlation.  

(F) Topographer infers dynamic characteristics of transcriptional bursting kinetics (characterized 

by both burst size and burst frequency) along the pseudotime, where arrows represent the 

pseudotime direction.  

We point out that: (1) different from the existing algorithms7-15, Topographer identifies the 

backbone of cell trajectories by finding valley floor lines of a developmental landscape (Online 

Methods). The identified backbone is actually a projection of this landscape. (2) Previous 

algorithms7-15 (partially) solved the question of ordering single cells in a dataset (Figure 1B) but 

not the others (Figure 1C~1F). 

Below we simply introduce every functional module of Topographer. See Online Methods for 

more details and Supplementary Information for a complete description. 

1. Topographer identifies the backbone of cell trajectories from single-

cell data 

The backbone module is a fast and local pseudo-potential-based algorithm (here pseudo-potential 

is defined as the negative of the logarithm of a local density function), which aims to identify the 

backbone of cell trajectories cross development from single-cell RNA-seq data. The essence of this 

module is to find valley floor lines in a developmental landscape.  

Starting from an initial cell (Figure 2A) selected either based on the global minimal pseudo-

potential or according to the prior knowledge, Topographer calculates an adaptive step 

(Supplementary Information) and searches for pseudo-potential wells on a super-ring (i.e., a high-

dimensional circular tube) centered at this initial cell and with the radius equal to the step length 

(also Figure 2A). The search method, which is in essence to cluster cells on super-rings, is based 

on the idea that cluster centers are characterized by a lower pseudo-potential than their neighbors 

and by a relatively larger distance from points with lower pseudo-potentials (e.g., the only two ‘large’ 

pseudo-potential wells are desired in Figure 2D). This idea forms the basis of a procedure to find 

pseudo-potential wells on a super-ring. In this process, the number of pseudo-potential wells arises 

intuitively, outliers are automatically spotted and excluded from extra analysis, and pseudo-potential 

wells are recognized regardless of their shape and of the dimensionality of the space in which they 

are embedded. We stress that although there is analogy between our method and a density-based 

approach developed originally by Rodriguez and colleagues17, the difference is that the former is 
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carried out on super-rings rather than in the full cell state space. Note that if the number of the found 

pseudo-potential wells (but not including the one found on the ‘reverse’ search direction) is more 

than 1, then this implies the existence of branching trajectories. Moreover, the greater number of the 

found pseudo-potential wells means more branching trajectories. The segments linking the center 

and the newly found pseudo-potential well/or wells on the super-ring can be taken as approximate 

part/or parts of the entire developmental trajectory. Similar processes are repeated recursively on 

sequential super-rings along a search direction until no new pseudo-potential wells are found 

(Figure 2B). Again by linking the centers and the pseudo-potential wells found on super-rings, 

Topographer thus builds a tree-like developmental backbone (Figure 2C). By projecting every cell 

onto this backbone (Online Methods) and by selecting a root node in the tree according to, e.g., the 

prior knowledge, Topographer thus orders all the single cells in the dataset, and equips every cell 

with pseudotime if this root node is set as an initial moment (without loss of generality, the full 

pseudotime may be set as the interval between 0 and 1). 

 

Figure 2 Topographer identifies the backbone of branching trajectories from a dataset. 

(A, B, C) A flowchart (indicated by arrows): Topographer first selects an initial cell (A) as the center 

of a super-ring in the cell state space and searches for pseudo-potential wells on this ring (A), where 

a special case is shown with two desired pseudo-potential wells and the undesired one indicated in 

(D). Then, Topographer repeats recursively on every newly found pseudo-potential well (B), where 

symbol ‘X’ represents a pseudo-potential well found on a reverse search direction, which needs to 

be excluded in the search process) until no pseudo-potential wells are found, thus obtaining a tree-

like backbone of cell trajectories (C). Finally, Topographer projects every cell onto the backbone, 

thus ordering all the cells in the dataset. 

(E) Bi-branching trajectories identified from an artificial set of data.  

(F) Tri-branching trajectories identified from another artificial set of data.  

Figure 2E showed a doubly bi-branched trajectory identified from one artificial set of data 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 21, 2018. ; https://doi.org/10.1101/251207doi: bioRxiv preprint 

https://doi.org/10.1101/251207


6 
 

whereas Figure 2F showed a tri-branched trajectory identified from another artificial set of data. 

Figure 3A below showed a two-dimensional projection of the de novo cell trajectories identified 

from single-cell RNA-seq data on the development of primary human myoblasts11 whereas Figure 

3B showed the evolutions of five marker genes (MYOG, MYF5, MYH2, CDK1 and MEF2C) with 

branches along the identified developmental trajectory (or along the pseudotime). Supplementary 

Information demonstrated results obtained by analyzing other two examples (Figure S12 and 

Figure S14), which further showed the power of Topographer.  

We point out that mainly because of the ability to find pseudo-potential wells on super-rings, 

Topographer can identify developmental trajectories with non-, bi- and multi-branches (referring to 

Figure 1E and 1F) (remark: the low resolution of experimentally sampling data may lead to, e.g., 

tri-branches). Thus, Topographer is advantageous over previous algorithms7-15. 

2. Topographer constructs a developmental landscape using single-cell 

data 

The backbone module uses pseudo-potentials to construct the backbone of cell trajectories, which 

extracts the information on branches and cell ordering from single-cell data, but this kind of potential 

cannot correctly reflect transitions between different cell types since probability fluxes would exist 

between them due to cell division, cell death and/or other factors. For example, precursor cells 

should in principle have higher potentials (see Online Methods for definition) in a Waddington’s 

developmental landscape in contrast to their generations, but if the precursor cells have higher 

densities, then they have lower pseudo-potentials. Both are apparently inconsistent. In addition, 

pseudo-potential lacks the time information on differentiation or development. 

Because of the above shortcomings of pseudo-potential and since the Waddington’s potential 

landscape has extensively been viewed as a powerful metaphor for how differentiated cell types 

emerge from a single and totipotent cell, the landscape module (an algorithm) is designed to 

construct a ‘stereometric’ developmental landscape where by ‘stereometric’ we mean that every cell 

is equipped with potential and pseudotime, in contrast to the ‘planimetric’ backbone constructed in 

the backbone module. The landscape module aims to provide a more intuitive understanding for the 

entire developmental process. The principle is simply stated as follows. 

Since single-cell data are in general noisy due to both cellular heterogeneity and gene 
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expression noise, transitions among the cells scattered in the cell state space can be viewed as a 

random walker who randomly moves from a cell point to another18. Topographer first constructs a 

weighted directed graph based on the pseudotime information obtained in the backbone module, 

and then defines a conditional probability (Online Methods) that the random walker moves from 

one cell to another as the relative link weight. With these weights, Topographer calculates the visit 

probability for every cell by solving a master equation (also Online Methods). Furthermore, 

Topographer calculates the potential of every cell in the dataset, where potential is defined as the 

negative of the logarithm of visit probability (Online Methods). All these potentials are then used 

to construct a ‘stereometric’ developmental landscape in contrast to the ‘planimetric’ backbone 

constructed using pseudo-potentials. Note that when drawing such a landscape, dimension 

reduction16 is used to visualization, the nearest neighbor interpolation is used to fit a landscape 

function of two variables in a 2-dimension space, and a Gaussian kernel is used to smooth 

interpolation (see Online Methods or Supplementary Information for details). Also note that in 

the constructed developmental landscape, every cell is equipped with both potential and pseudotime, 

two important attributes of a cell. 

Since the constructed ‘stereometric’ developmental landscape considers the potential of every 

cell in the dataset whereas the constructed ‘planimetric’ backbone of cell trajectories considers 

pseudo-potential wells, the latter can in vision be viewed as an aerial photograph of the former 

(comparing Figure 3C with Figure 3A).  

In order to demonstrate developmental landscapes constructed by the landscape module, we 

analyzed two examples (see Supplementary Information for details): the one for the same set of 

artificial data as in Figure 2E, with the result shown in Figure 1C, and the other for a set of single-

cell data on the differentiation of primary human myoblasts, with the constructed developmental 

landscape demonstrated shown in Figure 3C (where both the identified cell trajectories and the root 

cell selected according to the prior knowledge were indicated). It seemed to us that Figure 3C was 

the first Waddington’s developmental landscape constructed from a realistic set of data (compared 

with Figure 5 in Ref. [19], which is a cartoon). Supplementary Information exhibited another 

Waddington’s developmental landscape constructed using single-cell data on the development of 

somatic stem cells (Figure S13), which provides an intuitive understanding for the developmental 

process of this kind of cell.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 21, 2018. ; https://doi.org/10.1101/251207doi: bioRxiv preprint 

http://dict.cn/aerial%20photograph
https://doi.org/10.1101/251207


8 
 

 

Figure 3. Analysis of single-cell data on the differentiation of primary human myoblasts. 

(A) Topographer constructs a pseudo-potential landscape, where PCA1 and PCA2 represent 

components.  

(B) Evolutions of the expression levels of five marker genes (indicated by different colors) 

associated to cell fate decisions along the pseudotime (i.e., along the identified cell trajectories), 

where dashed lines represent gene levels after branch. 

(C) Topographer constructs a Waddington’s potential landscape, where a thick green line with 

branches corresponds the backbone of cell trajectories identified by the backbone module, and each 

small, grey circle represents one cell. The normalized potential is shown with depth of color 

representing the size of potential.  

(D) Topographer quantifies stochastic dynamics of cell types along branching trajectories by 

estimating both the survival probabilities of cell types (distinguished by colors) and transition 

probabilities among them. Three known cell types: proliferating cells, differentiating myoblast and 

interstitial mesenchymal cells, are indicated by dashed ellipse and circles. The dashed ellipse shows 

that the proliferating cell type (top panel) can further be classified into two subtypes (below panel). 

The survival probability of every cell subtype and transition probabilities between these subtypes 

are also indicated.  

We point out that: (1) in contrast to the backbone module that aims to find a ‘road’ but ignores 

bumpiness of the road, the landscape module considers both the road (actually a valley floor of the 

constructed Waddington potential landscape) and its bumpiness (reflected by the potential of every 

cell). (2) Both the backbone module and the landscape module can identify cell trajectories from a 
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dataset, but the former uses pseudo-potentials that rely on neither pseudotime nor cell type whereas 

the latter use potentials depend on both pseudotime and cell type (see Eq. (8) with Eq. (4) in Online 

Methods). (3) Pseudo-potential cannot correctly reflect the motion of a ‘ball’ in the constructed 

Waddington potential landscape in which the ball has lower potential at the beginning than at the 

end, since a lower cell density means a higher pseudo-potential according to definition, referring to 

Figure S5 in Supplementary Information. 

3. Topographer estimates stochastic dynamics of cell types in single-cell 

data 

Cellular heterogeneity and inherent noise in gene expression may result in stochastic transitions 

between cell types (even including those between cell subtypes). Quantifying such a transition using 

single-cell data is challenging but would be important for understanding the formation and 

functioning of cell types. 

In order to quantify stochastic dynamics of cell types in single-cell RNA-seq data, it is first 

needed to determine types of the cells, which however is a fundamental issue in cell biology. 

Topographer determines cell type according to the following rule: (1) every branch of the identified 

developmental trajectory is viewed as a kind of cell type but a different branch as a different cell 

type; (2) for every branch, every found potential well is taken as a kind of cell subtype but a different 

potential well as a different cell subtype. Thus, the number of cell types is equal to that of branches 

whereas the total number of cell subtypes is equal to that of potential wells. In the following, we 

will not distinguish cell type and cell subtype unless confusion arises. We point out that the cell 

types determined in such a manner depend on the shapes of rugged potential wells (but the prior 

knowledge can provide guidelines in some cases). Therefore, the classification of cell types is not 

absolute but relative, referring to Figure 3D where the proliferating cell type indicated by a dashed 

ellipse is further divided into two subtypes. We also point out that in some situations, a potential 

well in the constructed Waddington potential landscape would not be apparent but would represent 

a small cell subtype or an intermediate cell state, which however may have important biological 

implications. 

The dynamics module (also an algorithm) aims to reveal stochastic dynamics of the identified 

cell types in the dataset. For this, Topographer mainly calculates two kinds of probabilities: the fate 
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probability for every cell type and the transition probability between every two cell types. 

Importantly, in these calculations, Topographer makes use of the information on the cell trajectories 

identified in the backbone module.  

Specifically, Topographer first calculates a weight of the directed edge from a cell to another 

based on the pseudotime (Online Methods), and then uses all the possible weights to calculate the 

so-called visit probability that the random walker visits a cell point in the cell state space, and further 

the conditional probability that is defined as a relative link weight. With these two kinds of 

probabilities, Topographer further calculates the probability that the random walker visits every cell 

type, and the transition probabilities between every two cell types (also Online Methods). These 

calculations indicate that transitions between cell types are in general not deterministic but random 

(referring to Figure 3D). 

In order to demonstrate stochastic cell-type dynamics estimated by the dynamics module, we 

again analyzed an artificial set of data with results shown in Figure S6 of Supplementary 

Information and a realistic set of single-cell RNA-seq data on the development of human myoblasts 

with results shown in Figure 3D (as well as another realistic set of single-cell RNA-seq data on the 

development of somatic stem cells with results shown Figure S13 of Supplementary Information). 

From Figure 3D, we observed that the fate probability (~0.53) for the proliferating cell type is about 

the half of that for the differentiating cell or interstitial mesenchymal cell type (this is not strange 

since the proliferating cells are root cells) but the fate probabilities for the latter two (~0.99 and 

~0.98) are approximately equal. In addition, proliferating cells differentiate into differentiating cells 

at the ~0.16 probability but the inverse differentiation probability is very small (~0.001). On the 

other hand, proliferating cells differentiate into interstitial mesenchymal cells at the ~0.31 

probability but the inverse differentiation probability is also very small (~0.01), implying that 

proliferating cells tend to differentiate into interstitial mesenchymal cells. Figure 3D also showed 

the fate probabilities of cell subtypes and transition probabilities between them (low panel).  

Apart from the above three main functional modules, Topographer can also infer both dynamic 

connections of marker gene networks and dynamic characteristics of transcriptional bursting 

kinetics along the pseudotime. We point out that the connections or characteristics to be inferred can 

in turn be used to infer whether and when (along the pseudotime) the branches of a developmental 

trajectory occur. 
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4. Topographer infers dynamic connections of marker gene networks 

along the pseudotime 

A Waddington’s potential landscape provides an intuitive understanding for developmental 

trajectories, but cell fate decisions mainly depend on the underlying regulatory networks. The 

network module, also an algorithm, aims to infer the trend of how marker gene networks 

dynamically change along the identified cell trajectories. For this, Topographer uses the network 

neighborhood analysis method20 (or see Online Methods) to explore dynamic connections in a gene 

regulatory network (GRN) across development.  

First, Topographer uses GENIE321 to generate a series of GRNs along the pseudotime. Then, 

based on these GRNs, it further analyzes the covariation partners of some particular gene (or genes) 

using a topological network analysis scheme22 that can identify those genes that are most closely 

correlated with a given gene (or genes) of interest and most closely correlate to each other. See 

Online Methods for details. 

 

Figure 4 Topographer infers dynamic changes in the local connection network of a marker gene 

along the pseudotime from single-cell data on the differentiation of primary human myoblasts.  

(A) Dynamic changes in a connection network of seven genes along the pseudotime, where the 

PEBP1 gene (orange) is taken as a core node of connection networks. 

(B) Dynamic changes in gene-gene correlations along the pseudotime before and after branch (see 

different colors), where 6 empty circles correspond to the networks at 6 stages indicated in (A), 

respectively. 

(C) Dynamic changes in cell-to-cell correlations along the pseudotime before and after branch. 

(D) Dynamic changes in the ratio of the gene-to-gene correlation degree over the cell-to-cell 

correlation degree along the pseudotime before and after branch.  

Here, we used the network module to analyze single-cell data on the differentiation of primary 
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human myoblasts11, obtaining characteristics of the dynamic changes in connections of marker 

genes along the identified cell trajectory. Figure 4A demonstrated dynamic changes in the 

connection of a neighborhood network of the PEBP1 gene (as a marker) along the pseudotime, 

whereas Figure 4B~4D) displayed how mean gene-gene correlations (Figure 4B) and mean cell-

cell correlations (Figure 4C) change also along the pseudotime. We observed that before branch, 

each of the mean gene-gene and cell-cell correlation degrees was a monotonically decreasing 

function in pseudotime (the blue line in Figure 4B or 4C), but after branch, it becomes first 

monotonically increasing and then monotonically decreasing on one branch (the orange line in 

Figure 4B or 4C), and it becomes monotonically increasing on the other branch (the green line in 

Figure 4B or 4C). However, the change tendency for the ratio of the former degree over the latter 

degree was just opposite to the described trend (Figure 4D). 

5. Topographer infers dynamic characteristics of transcriptional bursting 

kinetics along the pseudotime 

Transcription occurs often in a bursty manner and single-cell experimental measurements have also 

provided evidence for transcriptional bursting both in bacteria and in eukaryotic cells23. By 

analyzing a simple stochastic model of gene expression, Xie, e al showed24 that the number of 

mRNAs produced in the bursty fashion followed a Gamma distribution determined by two 

parameters: MBF (i.e., the mean number of mRNA production bursts per cell cycle), and MBS (i.e., 

the average size of the mRNA bursts). The burst module, also an algorithm, is designed to infer the 

trend of how transcriptional bursting kinetics dynamically changes across development. For this, 

Topographer uses the maximum likelihood method25 to infer the two parameters of MBF and MBS 

from single-cell RNA-seq data (see Online Methods for details), thus revealing dynamic 

characteristics of transcriptional bursting kinetics before branch, at the branching point and after 

branch of the developmental trajectory. 

We used the burst module to analyze single-cell data on the differentiation of primary human 

myoblasts11. Figure 5A~5E showed how the cells at four pseudotime points (two before branch, 

one at branch point and one after branch) were distributed in the logarithmic plane of burst frequency 

(BF) and burst size (BS). A reference system (see two orthogonal blue lines: the horizontal line for 

MBF and the vertical line for MBS) was used to guide visual comparison between the rates (see the 
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indicated fractions) of cell numbers over the total cell number at a particular pseudotime point. The 

four quadrants of the reference system clearly showed how the genes in the dataset are expressed, 

e.g., the fourth quadrant showed that the genes were expressed in a manner of high frequency (i.e., 

the BF is more than 0.33) and small burst (i.e., the BS number is less than 200). We observed that 

the genes expressed in a bursty manner (i.e., the remaining three cases except for the case in the 

fourth quadrant) are more at the branch point (97%) than before or after branch (approximate or 

below 80%). In other words, the percent of the genes expressed with high frequency and small burst 

was apparently lower at the branch point. From these figures, we concluded that during the 

differentiation of primary human myoblasts, the percent of the genes expressed in a bursty manner 

was significantly greater at the branch point than before or after branch. 

 

Figure 5 Topographer infers dynamic characteristics of transcriptional bursting kinetics along the 

pseudotime from single-cell data on the differentiation of primary human myoblasts.  

(A-E) Scatter plot of the cells in the logarithmic plane of burst size (BS) and burst frequency (BF) 

at four pseudotime points respectively, where every circle represents a cell in the dataset. Four rates 

are indicated in a reference system (see two orthogonal blue lines at every subfigure, which 

correspond to mean BS and BF, respectively). Numbers 4 and 5 actually represent the same 

pseudotime point.  

(F) Evolution of the mean BF along the pseudotime, where the branch point is indicated and two 

empty circles after the branch point correspond to (D) and (E), respectively.  

(G) Evolution of the mean BS along the pseudotime.  

(H) Evolution of the mean mRNA expression level along the pseudotime.  

Figure 5F and Figure 5G showed the dependences of MBF and MBS on the pseudotime, 

respectively. We observed that there were apparently different trends before and after branch. Figure 
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5H showed the dependence of the mean mRNA expression level on the pseudotime, demonstrating 

the change tendency opposite to that of MBF. Although fundamentally similar to the trend of MBS 

on the whole, the mean mRNA level changed almost stably with the pseudotime for one branched 

trajectory (referring to the top line after branch in Figure 5H). These three subfigures implied that 

BF or BS can be taken as a better indicator of the branch occurrence than the mean mRNA 

expression level. 

DISCUSSION 

We have developed a bioinformatic pipeline -- Topographer, which enables the construction of 

developmental landscapes, the identification of de novo continuous developmental trajectories, and 

the uncovering of stochastic cell-type dynamics. The high resolution of Topographer can elaborately 

characterize both dynamic transcriptional bursting kinetics and dynamic connections of the 

networks of marker genes underlying cell fate decisions across development. When identifying the 

backbone of cell trajectories from single-cell data, Topographer is robust to the noise in the dataset 

(Figure S8 - Figure S10). When applied to the differentiation of primary human myoblasts11, 

Topographer first constructed an intuitive developmental landscape that provided an order and 

timing of events that closely recapitulated previous studies of this system, and then but more 

importantly, estimated the sizes of the fate probabilities for cell types and the transition probabilities 

between them. These estimations indicated not only that the transition from one kind of cell type to 

another during the differentiation of primary human myoblasts occurred in a probabilistic rather 

than deterministic manner, but also that the transitions between cell types may be unidirectional and 

bidirectional. Thus, our results challenged the traditional view that the development of primary 

human myoblasts was tree-like or that the process from a predecessor to its generations was both 

deterministic and unidirectional3.  

When applied to analysis of single-cell transcriptome data, Topographer (like similar methods 

in the literature) needs sufficiently many cells since it was established essentially based on the 

estimation of cell density. If the number of cells is too few (e.g., less than 100), this would lead to, 

e.g., inaccuracy of finding pseudo-potential wells on a super-ring in the backbone module. 

Fortunately, more and more cells currently can simultaneously be measured by single measurement 

technologies22. In addition, not limited to analysis of single-cell RNA-seq data, Topographer can 
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also be used to analysis of mass cytometry data26 and single-cell PCR data27. This greatly extends 

the application ranges of Topographer. 

Cell fate decisions would involve many factors or processes, which may lead to the hierarchy 

of cell types including intermediate cell states or cell subtypes. These cell subtypes, some of which 

have not been defined yet, may have important biological implications. Identifying elaborate cell 

types is a fundamental yet challenging problem in molecule biology. Apart from identifying known 

cell types (e.g., proliferating cells, differentiating cells and interstitial mesenchymal cells) from 

single-cell transcriptome data on the differentiation of primary human myoblasts, Topographer has 

the ability to identify cell subtypes, which in general correspond to shallow or small potential wells 

in the constructed developmental landscape (referring to the right below panel in Figure 3D). 

Moreover, Topographer can estimate the fate probability of every identified cell subtype and 

transition probabilities between every two identified cell subtypes (right below, Figure 3D). This is 

a main point of Topographer advantageous over the methods in the existing literature7-15. In addition, 

Topographer enables identification of non-, bi- and multi-branches (Figure 2C and 2D), which is 

another advantage over the existing algorithms even including Wishbone12.  

It should be pointed out that Topographer provides only a framework for analyzing the 

stochastic mechanisms of cell fate decisions based on single-cell data from three different aspects: 

cell lineage committing dynamics (macroscopic), dynamic connections of gene networks 

(mesoscopic) and transcriptional bursting kinetics of genes (microscopic). First, these three aspects 

are inter-coupled and interplayed. Topographer provided useful information on their relationships 

that are implied by the pseudotime, but this kind of time only reflects the impact of the former on 

each of the latter two. The issues of how and in what degree the inferred gene connection networks 

or/and transcriptional bursting kinetics influence or/and determine cell fates in the underlying 

developmental process, remain unexplored. In order to study the relationship between the 

mesoscope or microscope and the macroscope, a possible way is to establish the so-called balance 

equation27. Second, in order to estimate the transition probabilities between cell types and their fate 

probabilities (see Eq. (9) and Eq. (12) in Online Methods, respectively), Topographer makes an 

assumption, that is, the transition from one cell to another along a developmental trajectory is linear 

(referring to Eq. (4) in Online Methods or Eq. (6) in Supplementary Information). In a realistic 

scenario, however, such a transition would be nonlinear since, e.g., cell-cell communication by 
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signal molecules would be nonlinear. Third, while cell-state dynamics are of particular significance 

in, e.g., tumor pathobiology28, the traditional Waddington landscape figuratively describes a cell 

differentiation process as the trajectory of a ball into branching valleys, each of which represents a 

developmental state29. Topographer uses the potential of every cell to construct an intuitive 

developmental landscape helpful for understanding the underlying developmental pathway, and 

both the transition probabilities between cell types and their fate probabilities to characterize cell 

lineage committing dynamics. It is worth pointing out that these probabilities have definite physical 

meanings since they actually represent the Krammer escape rates30 between potential wells in the 

constructed developmental landscape. However, how cell fate decisions including cell-state 

dynamics are related to Krammer escape rates is unclear. Fourth, based on the transition 

probabilities between cell types, one can establish a model of cell population dynamics, and further 

study stochastic state transitions from a dynamical-systems view (referring to an example analysis 

in Supplementary Information). Issues along these four directions are worth deep study. 

 

Methods 

Methods, including statements of data availability and any associated accession codes and 

references, are available in the online version of the paper. 

Note: Any Supplementary Information and Source Data files are available in the online version of 

the paper. 
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Online Methods 
 

Cell differentiation or development is a complex process involving multiple cell fate decision points. 

Recent single-cell analysis technologies such as single-cell RNA-seq, which are enabling generation 

of data with high resolution, offer a great opportunity to reveal developmental processes and cell 

fate decisions, but require computational algorithms capable of exploiting this resolution. Although 

previously developed algorithms can successively order single cells in some single-cell data, this 

pseudo-temporal ordering is only the first step towards understanding developmental processes and 

cell fate decisions. Many other important yet fundamental issues, e.g., in single-cell transcriptome 

data representing a complete development process, e.g., how many cell types there are, how cell 

types are identified, how one cell type transitions another, and how genotype determines phenotype, 

remain unsolved. Using high-dimensional single-cell RNA-seq data, Topographer aims to reveal 

the integrated mechanisms of cell fate decisions across development from macroscope (e.g., cell 

lineage committing dynamics) to mesoscope (e.g., dynamic connections of gene networks) and to 

microscope (e.g., transcriptional bursting kinetics), referring to Figure S1 in Supporting 

Information. 

Topographer is a bioinformatic pipeline, comprising five functional modules: (1) identifying the 

backbone of cell trajectories from single-cell transcriptome data; (2) constructing a developmental 

landscape based on the data; (3) revealing stochastic dynamics of cell types in the data system; (4) 

inferring dynamic connections of marker gene networks along the identified developmental 

trajectory; and (5) inferring dynamic changes of transcriptional bursting kinetics along the identified 

cell trajectories. Main details of the method for every functional module are stated below and a 

complete detail is given in Supplementary Information. Because of irregularity, single-cell data 

needs pre-processing (Supplementary Information). 

 

1. The method for identifying the backbone of cell trajectories from 

single-cell data 

Assume that there are m  cells and n  genes in single-cell RNA-seq data of interest, which 

can in principle be represented as m  points in the n -dimensional space ( X ) of gene expression 
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(called the cell state space for convenience).  

The first functional module of Topographer (i.e., the backbone module) aims to identify the 

backbone of cell trajectories during development from the dataset. The essence is to find valley 

floors in a developmental landscape. Specifically, Topographer finds valleys with local minimal 

pseudo-potentials, where pseudo-potential is defined as 

   logE  x x                                                              (1) 

with  

 
 
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 
  
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 


y

x y
x                                                     (2) 

In Eq. (2), d  is the Euclidean distance between two state points x  and y  in the cell state space 

X  (note: other kinds of distances are also suitable to Topographer). Note that   represents the 

local cell density, mostly accounting for the number of cells in a neighborhood defined by  .  

Roughly speaking, Topographer starts by cell state 
0x  (i.e., an initial cell) and then searches 

for pseudo-potentials wells on super-rings (which are actually circular tubes in a high-dimensional 

space) by recursively applying a cluster algorithm16. Finally, all the centers of the super-rings are 

represented in a tree, T . Main details are stated below. 

1.1 Constructing a developmental tree 

Starting by an initial cell that has the global minimal pseudo-potential or by the cell that the user 

chooses according to the prior knowledge, Topographer calculates an adaptive radius or step (see 

Subsection 2.1.4 in Supplementary Information) and searches for potential wells on a super-ring 

centered at this cell and with the radius (referring to Figure 2A). The search method (called as the 

pseudo-potential well search algorithm) is based on the idea that cluster centers on the super-ring 

are characterized by a lower pseudo-potential than their neighbors and by a relatively larger distance 

from points with locally lower pseudo-potentials. Specifically, Topographer first defines 

 
     
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
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

 

                                      

(3) 

and then finds local pseudo-potential wells on the super-ring, based on a combination of relatively 

smaller E  and relatively larger  . Therefore, there is analogy between the pseudo-potential well 

search algorithm and a density-based approach developed originally by Rodriguez and colleagues16. 
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The segments linking the center and the potential wells found on the super-ring can be taken as 

approximate parts of the entire developmental trajectory.  

Then, taking every found pseudo-potential well as the center of a new super-ring with a new 

adaptive radius, Topographer performs similar calculations as at the previous step, thus finding 

pseudo-potential wells on this new super-ring. Again, the segments linking the new center and the 

newly found pseudo-potential wells on the new super-ring can be taken as other approximate parts 

of the entire developmental trajectory. This process is repeated until no new pseudo-potential wells 

are found. By linking the cluster centers, Topographer thus builds a tree-like developmental 

backbone, which is actually composed of valleys.  

Note that for a super-ring’ center rather than the starting point, the newly found valleys would 

include valleys on the “reverse direction” in the processes of searching local pseudo-potential wells 

on super-rings, which are not expected in our algorithm. To handle such an exception, Topographer 

excludes those valleys that are too close to the found valleys. In addition, any two newly found 

valleys with the distance smaller than the step length are merged by discarding the valleys with 

larger pseudo-potentials. Such a treatment may greatly improve the algorithm’s robustness against 

the noise in the dataset.  

Also note that a complete valley floor is constructed by terminating the recursive process for 

some super-ring on which there are no desired pseudo-potential wells to be found. Since no loops 

are assumed to exist in the developmental trajectory, there is definitely a boundary, implying that 

the search process necessarily stops within finite steps. 

After the above search process is completed, all the found pseudo-potential valley floors are 

represented in an undirected acyclic graph (a tree with branches). To achieve better accuracy and 

coverage, Topographer refines a pseudo-potential valley tree by searching pseudo-potential wells 

on the line linking two centers on every edge of the tree. To that end, Topographer finishes 

construction of the backbone of a developmental tree from a given set of single-cell data. 

1.2 Cell projection and pseudotime assignment 

After a developmental tree has been constructed, Topographer then projects every cell point in 

the cell state space onto some edge of the tree according to the shortest distance principle (i.e., the 

perpendicular distance from the cell point to the edge is required to be shortest). Thus, every cell 

has its unique relative position in the identified backbone (or in the constructed tree). 
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Next, Topographer assigns a pseudotime for every cell in the dataset. Before that, however, it 

is needed to determine a root node in the constructed tree. Topographer chooses a root cell in such 

a manner that the distances between this cell and those cells that are initially set according to, e.g., 

the prior knowledge, are as short as possible. An initial pseudotime is assigned to this root node. 

Then, every other cell in the dataset is in order assigned with a pseudotime according to its position 

in the identified tree. Without loss of generality, the full pseudotime may be set as the interval 

between 0 and 1.  

2. The method for constructing a developmental landscape based on 

single-cell data 

2.1 Calculation of cell potential 

After the backbone of a developmental trajectory has been identified and every cell has been 

equipped with a pseudo-moment, the second functional module of Topographer (i.e., the landscape 

module) is to calculate the potential of every cell in the dataset. All these potentials will then be 

used to construct a developmental landscape. It is expected that the potential to be introduced can 

be avoid shortcomings of the pseudo-potential as pointed out in the main text. For this calculation, 

Topographer will analogize transitions between cells at distinct stages of the differentiation process 

to a random walker who moves randomly between the data points scattered in the cell state space17. 

In addition, in order to construct a weighted directed graph W , it is important that Topographer 

will use the pseudotime information.  

Specifically, Topographer defines the weight of the directed edge from cell   to cell   as 

 
0  .W W e    

 

 

 
                                                            

(4) 

(Supplementary Information gives a reason for this definition), where   and   represents the 

pseudotime points for cells   and   respectively, and positive constant   represents a 

linearly changing rate that cell   transitions to cell   (this implies the assumption that the 

evolutional process from one cell to another along the pseudotime is linear). The setting of the   

value in general depends on the dataset under consideration (Supplementary Information gives a 

simple discussion) but the value of   is set as 30 in our cases. It is worth pointing out that the 
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weight defined in such a manner has used the information on the pseudo-temporally ordered cell 

trajectories, and is a key for the full calculation.  

Then, in order to determine cell visit probability on a random walk, Topographer defines a 

conditional probability that the random walker moves from cell   to cell   as the relative link 

weight, given by 

 ,
W

p
W

 

 

 










                                                            

(5) 

which is apparently independent of initial 
0W . If the stationary visit probability of cell   is 

denoted by p , then this probability can in principle be derived from a recursive system of the form 

 ,p p p   


                                                              (6) 

which represents the probability that the random walker visits the   cell from all the other cells. 

Note that Eq. (6) is actually a master equation25 and can efficiently be solved with the power-

iteration method26. However, to ensure that the unique solution of this equation is independent of 

the starting node in the directed network, the random walker instead teleports to a random node at 

a small rate  . In addition, to obtain more robust results depending less on the teleportation 

parameter  , it is most often to use teleportation to a node proportional to the total weight of the 

links to the node27. Because of these two points, the resulting stationary visit distribution for cell 

  is modified as 

 
,

1  .
W

p p p
W
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   
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  



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                                             (7) 

Finally, Topographer calculates the potential of every cell in the dataset, according to  

log  ,E p                                                                   (8) 

where p  is given by Eq. (7). Apparently, the potential defined in such a manner has made use of 

the information on the identified cell trajectories due to Eq. (4). We point out that the potential of a 

cell depend on pseudotime but the pseudo-potential lacks the information on pseudotime. 

2.2 Scatter plot of developmental landscape 

After all the cells are equipped with potentials, all these potentials are then used to draw a 

developmental landscape. The method is stated as follows. First, dimension reduction is needed for 

visualization (the tSNE method28 or the PCA method29 may be used to achieve this purpose). In 
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general, dimension reduction cannot explicitly reflect the information on coordinates in a visualized 

landscape, e.g., PCA1 and PCA2 in Figure 3C do not actually represent components in the dataset. 

Second, Topographer uses the nearest neighbor interpolation method to perform interpolation on a 

3-dimensional scattered data set. Specifically, Topographer uses ScatteredInterpolant (a function of 

the MATLAB software) to establish corresponding relationships between a set of points,  ,x y , 

and a set of cell potentials, E . These relationships, denoted by  ,E F x y , in principle define a 

curved surface in the 3-dimensional space for the developmental landscape, which in return passes 

through all the sampling points in the space under consideration. Topographer then uses the nearest 

neighbor interpolation to evaluate this surface at any query point  ,q qx y , obtaining an 

interpolating value of every known potential given by Eq. (8), i.e., obtaining  ,q q qE F x y . Third, 

a Gaussian kernel is used to smooth interpolation, and the identified developmental trajectory is 

drawn on the obtained developmental landscape (referring to the thick colored line in Figure 1A or 

the thick green line in Figure 3C). 

We point out that pseudo-potential cannot correctly reflect the motion of a ‘ball’ in the 

constructed Waddington potential landscape in which the ball has lower potential at the beginning 

than at the end, since a lower cell density implies a higher pseudo-potential according to definition. 

3. The method for quantifying dynamics of cell types in single-cell data 

In order to quantify cell type dynamics, it is first needed to determine cell types. For this, 

Topographer adopts the following rule: Every branch in the identified developmental trajectory is 

defined as one kind of cell type, and a different branch is defined as one different kind of cell type. 

Furthermore, every potential well on every branch is defined as one kind of cell subtype, and a 

different potential well is defined as one different kind of cell subtype. Thus, the number of cell 

types is equal to that of branches, and the number of cell subtypes is equal to that of potential wells. 

It should be pointed out that the cell type determined in such a manner is not unique but depends on 

the choice of E  and   (see their above respective definitions). In the following, we will not 

distinguish cell type and cell subtype unless confusion arises. 

3.1 Estimating transition probabilities between cell types 

Equation (5) has given the conditional probability ( p 
) that the random walker moves from 
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cell   to cell  , whereas Eq. (7) has given the stationary visit probability of cell  , i.e., p . 

Then, Topographer calculates the transition probability at which a random walker visits the thj

cell type from the thi  cell type (denoted by 
i jq ), according to 

,

 ,i j

i j

q q 
 



 

                                                               (9) 

and the transition probability at which the random walker exits the thi  cell type (denoted by 
iq ), 

according to 

,

 ,i

i i

q q 
 



 

                                                               (10) 

where the unrecorded visit rate on a link, q 
 is given by 

 .q p p                                                                   (11) 

3.2 Estimating cell-type fate probabilities 

   The fate probability for cell type i , denoted by ifate , is defined as 

1  ,i ifate q                                                                 (12) 

which implies that a larger transition probability at which the random walker exits cell type i  

corresponds to a smaller fate probability for this cell type. This definition is in accordance with our 

intuition, so it is reasonable. Again, we emphasize that the above formulae for transition probability 

(
i jq ), and fate probability ( ifate ) have all used the information on the pseudo-temporally ordered 

cell trajectories. 

4. The method for inferring dynamic connections of gene networks along 

the pseudotime 

In complex mixtures of cells, correlations of gene expression patterns would arise from 

differences between different cell lineages. To explore this correlation between the patterns of gene 

expression across cell development, Topographer constructs a series of gene regulatory networks 

(GRNs) along the pseudotime, which are directed networks for gene-gene interactions. 

Unsupervised GRNs are then created by GENIE320, which takes advantage of the random forest 

machine learning algorithm. 

Based on the constructed GRNs, Topographer further explores the covariation partners of some 

particular gene (or genes) using a topological network analysis scheme21. The method is to identify 
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the set of those genes that are most closely correlated with a given gene (or genes) of interest and 

that correlate also most closely with each other, at a given pseudotime point (in fact, a window) (in 

Figure 4 of the main text, however, we showed dynamic connections of gene networks at several 

representative pseudotime points). Supplementary Information provides more details of the 

method.  

5. The method for inferring dynamic characteristics of transcriptional 

bursting dynamics along the pseudotime 

Transcriptional bursting kinetics can be characterized by burst size and burst frequency. As is 

well known, Gamma distribution can well capture this bursty expression in some cases23. 

Topographer uses a Gamma distribution to infer dynamic characteristics of transcriptional bursting 

kinetics along the cell trajectories identified from single-cell RNA-seq data. Assume that this 

distribution takes the form 

 
 

1

 ,
xa

b
a

x
p x e

b a







                                                           (13) 

where x  represents the number of transcripts, a  is the mean burst frequency (i.e., the mean 

number of mRNA production bursts per cell cycle) whereas b  is the mean burst size (i.e., the 

average size of the mRNA bursts), and     is the common Gamma function.  

   In order to infer dynamic characteristics of transcriptional bursting dynamics along the 

pseudotime, the key is to estimate two parameters a  and b  from the dataset at every pseudotime 

point. For this, Topographer makes use of the maximum likelihood method24. Since the number of 

cells at a single pseudotime point would be very few, Topographer uses the cell data in a window 

of this point to obtain more reliable estimations of a  and b . 

6. Data availability and software 

Single-cell data on development of primary human myoblasts can be downloaded from 

doi:10.1038/nbt.285930. The MATLAB codes used for data analysis and simulations are freely 

available on request from the corresponding author. 
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