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Abstract  24 

 25 
Data normalization is a crucial step in the gene expression analysis as it determines 26 

the validity of its downstream analyses. Although many metrics has been designed to 27 

evaluate the relative success of these methods, the results by different metrics did not show 28 

consistency. Based on the previous work, we designed a new metric named Area Under 29 

normalized CV threshold Curve (AUCVC) to evaluate 13 commonly used normalization 30 

methods and achieved consistency in our evaluation results using both bulk RNA-seq and 31 

scRNA-seq data from the same library construction protocol. These gene expression data, 32 

normalization methods and evaluation metrics have been included in an R package named 33 

NormExpression. NormExpression provides a framework for researchers to select 34 

normalization methods with a fast and simple way to evaluate different methods, 35 

particularly some data-driven methods or their own methods. 36 

 37 
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Introduction 54 

Global gene expression analysis provides quantitative information about the 55 

population of RNA species in cells and tissues [1]. High-throughput technologies to 56 

measure global gene expression levels started with Serial Analysis of Gene Expression 57 

method (SAGE) and are widely used with microarray and RNA-seq [2]. Recently, single-58 

cell RNA sequencing (scRNA-seq) has been used to simultaneously measure the expression 59 

levels of genes from a single-cell and to provide a higher resolution of cellular differences 60 

than bulk RNA-seq, which can only produce an expression value for each gene by 61 

averaging its expression levels across a large population of cells [3]. Gene expression raw 62 

data from these high-throughput technologies must be normalized to remove technical 63 

variation so that meaningful biological comparisons can be made. Data normalization is a 64 

crucial step in the gene expression analysis as it determines the validity of its downstream 65 

analyses. Although the significance of gene expression data normalization has been 66 

demonstrated [4], how to successfully select a normalization method is still a controversial 67 

problem, particularly for scRNA-seq data. 68 

Basically, two classes of methods are available to normalize gene expression data. 69 

They are the control-based normalization and the average-bulk normalization. The former 70 

class of methods assumes the total expression level summed over a small group of genes is 71 

approximately the same across all the samples. The latter class of methods assumes most of 72 

genes are not Differentially Expressed (DE) genes across all the samples. The control-based 73 

normalization often uses RNA from a group of internal control genes (e.g. housekeeping 74 

genes) or external spike-in RNA (e.g. ERCC RNA [5]), while the average-bulk 75 

normalization is more commonly used for their universality. Five average-bulk 76 

normalization methods designed to normalize bulk RNA-seq data are library size, median of 77 

the ratios of observed counts that is also referred to as the DESeq method [6], Relative Log 78 

Expression (RLE), upperquartile (UQ) and Trimmed Mean of M values (TMM) [7]. 79 

Recently, three new methods have been introduced as Total Ubiquitous (TU), Network 80 

Centrality Scaling (NCS) and Evolution Strategy (ES) with best performance among 15 81 

tested methods [8]. 82 
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Although many metrics has been designed to evaluate the relative success of these 83 

methods, the results by different metrics did not show consistency. In 2013, Gustavo et al. 84 

designed two novel and mutually independent metrics to evaluate 15 normalization methods 85 

and achieved consistent results using bulk RNA-seq data [8]. Based on their work, we 86 

designed a new metric named Area Under normalized CV threshold Curve (AUCVC) and 87 

tested it using both bulk RNA-seq and scRNA-seq data from the same library construction 88 

protocol. As a result, the evaluation by both our metric AUCVC and their metrics achieved 89 

consistency. On the other hand, with many new normalization methods developed, 90 

researchers need a fast and simple way to evaluate different methods, particularly some 91 

data-driven methods or their own methods rather than obtain information from published 92 

evaluation results, which could have bias or mistakes, e.g. misunderstanding of RLE, UQ 93 

and TMM methods [9]. To satisfy this demand, we developed an R package 94 

NormExpression to include gene expression data, normalization methods and evaluation 95 

metrics used in this study and provide a framework for researchers to evaluate and select 96 

methods for the normalization of their gene expression data. 97 

 98 

Figure 1 99 

Results 100 
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Normalization factor and library size 101 

In total, 13 normalization methods (Materials and Methods) have been included in 102 

the R package NormExpression. They are Housekeeping Genes (HG7), External RNA 103 

Control Consortium (ERCC), Total Read Number (TN), Total Read Count (TC), Cellular 104 

RNA (CR), Nuclear RNA (NR), the ratios of observed counts (DESeq), Relative Log 105 

Expression (RLE), upperquartile (UQ), Trimmed Mean of M values (TMM), Total 106 

Ubiquitous (TU), Network Centrality Scaling (NCS) and Evolution Strategy (ES). Currently, 107 

all the commonly used methods are used to normalize a raw gene expression matrix (n 108 

samples by m genes) by the multiplication of a factor to each column of it and produce a 109 

normalized gene expression matrix (Figure 1A). This factor is named as normalization 110 

factor in the package NormExpression or scaling factor in TU, NCS and ES methods. In 111 

NormExpression, the reciprocal of normalization factor is named as library size (Figure 112 

1B), which is also named as size factor in the Bioconductor package DESeq [6]. Definitions 113 

of normalization factor and size factor in the Bioconductor package edgeR [7] are different 114 

from the definition of normalization factor in NormExpression and the definition of size 115 

factor in DESeq. RLE, UQ and TMM in edgeR produce normalization factors to adjust 116 

library sizes, which should be used to calculate the Counts Per Million (CPM) for the 117 

normalization of gene expression data and CPM should be calculated by one million 118 

multiplying reciprocals of adjusted library sizes (Figure 1B). However, edgeR provides a 119 

function named calcNormFactors to produce normalization factors for library-size 120 

adjustment, which have been wrongly used for the normalization of gene expression data in 121 

many studies [9]. Since ES. HG7, ERCC, TN, TC, CR, NR and TU produce normalization 122 

factors by the estimation of library sizes as CPM, their normalization factors are amplified 123 

by one million for a uniform representation (Figure 1B) in NormExpression. DESeq, RLE, 124 

UQ and TMM have been modified to ignore zero values for both scRNA-seq and bulk 125 

RNA-seq data and the resulting normalization factors need be further normalized by their 126 

geometric mean values (Figure 1B). UQ and TMM use library sizes estimated by NR. After 127 

modification, RLE is identical to DESeq. We verified that these modifications did not 128 

change the evaluation or normalization results. 129 

 130 
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Evaluation of 13 normalization methods 131 

In the previous study [8], Gustavo et al. had quantified success of normalization 132 

methods by the number of uniform genes (Materials and Methods) and used the 133 

Coefficient of Variation (CV) cutoff 0.25 to determine the number of uniform genes for 134 

each method. This metric was designed based on the theory that the relative values among 135 

different normalization methods were quite stable, although the absolute number of uniform 136 

genes depended on the cutoff value. However, it is almost impossible to determine a CV 137 

cutoff for scRNA-seq data since the CV in scRNA-seq data has a much more large dynamic 138 

range than that in bulk RNA-seq data.  139 

 140 

Figure 2. 141 

Inspired by Area Under the receiver operating characteristic Curve (AUC) [10], we 142 

designed a new metric named Area Under normalized CV threshold Curve (AUCVC) to 143 

evaluate 13 normalization methods using one scRNA-seq dataset scRNA663 and one bulk 144 

RNA-seq dataset bkRNA18 (Materials and Methods). A single housekeeping gene 145 

GAPDH was also used for comparision in the evaluation of normalization methods using 146 

bulk RNA-seq data, but it was not available for that using scRNA-seq data due to zero 147 

counts of GAPDH in many samples. Parameter grid of non-zero ratio (Materials and 148 

Methods) from 0.2 to 0.9 for scRNA663 and from 0.8 to 1 for bkRNA18 was used to 149 
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produce AUCVC values of all methods (Figure 2). For each non-zero ratio, TU used the 150 

maximum AUCVC, which had been determined by testing all possible combinations of 151 

presence rate, lower and upper cutoffs (Materials and Methods) at 5% resolution. The 152 

presence rate was tested from 0.2 to 0.6 for scRNA663 and set 1 for bkRNA18. The lower 153 

cutoff was tested from 5% to 40% and the upper cutoff was tested from 60% to 95%. In 154 

addition, the calculation only considered each combination of lower and upper cutoffs 155 

which produced ubiquitous genes (Materials and Methods) more than 1,00 for scRNA663 156 

and more than 1,000 for bkRNA18. For each non-zero ratio, NCS and ES used the 157 

ubiquitous genes produced by the TU method, when it achieved the maximum AUCVC. 158 

The raw gene expression matrix (None) was also used to produce AUCVC values for 159 

comparison. 160 

The evaluation results using both scRNA663 and bkRNA18 achieved consistency that 161 

all the normalization methods were classified into three groups (Figure 2) based on their 162 

AUCVC values sorted in descending order. The first group including TU, NCS and ES 163 

achieved the best performances using both scRNA663 and bkRNA18. The second group 164 

including ERCC, TC, CR, NR, DESeq, RLE, UQ and TMM achieved medial performances 165 

using both scRNA663 and bkRNA18. In the second group, ERCC, TC, CR and NR 166 

outperformed DESeq, RLE, UQ and TMM using scRNA663, while DESeq, RLE, UQ and 167 

TMM outperformed ERCC, TC, CR and NR using bkRNA18. The third group achieved the 168 

poorest performances, including TN and None for scRNA663 (Figure 2A) and HG7, 169 

GAPDH and None for bkRNA18 (Figure 2B). HG7 and GAPDH achieved the poorest 170 

performances using bkRNA18, which suggested that a predefined set of housekeeping 171 

genes could not be appropriate guides for data normalization of bulk RNA-seq data. 172 

However, it could be coincidental that HG7 was classified into the first group using 173 

scRNA663. TN outperformed the second group of methods using bkRNA18 but was 174 

outperformed by the second group of methods using scRNA663. 175 

The evaluation results by the medians of Spearman Correlation Coefficients (SCCs) 176 

(Materials and Methods) and the cluster analysis results were also consistent with the 177 

evaluation results by AUCVC. Generally speaking, a normalization method with a higher 178 

AUCVC value produced a lower median of Spearman Correlation Coefficients (SCCs) 179 
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between normalized expression profiles of ubiquitous gene pairs using both scRNA-seq and 180 

bulk RNA-seq data. The hierarchical clustering result showed that 13 methods had been 181 

classified into the same groups (Figure 3CF) by SCCs between normalization factor pairs 182 

as those (Figure 2AB) by AUCVC. By our new designed metric AUCVC, TU, NCS and 183 

ES were evaluated as the best normalization methods using both scRNA-seq and bulk 184 

RNA-seq data, which enhanced the discovery using only bulk RNA-seq data in the previous 185 

study [8]. Since the non-zero ratio 0.2 allowed the maximum number of uniform genes for 186 

calculation, we presented this snapshot of evaluation results to show the consistency of the 187 

evaluation results using both scRNA663 (Figure 3ABC) and bkRNA18 (Figure 3DEF).  188 

 189 

Figure 3. 190 

Implementation and availability 191 

The gene expression data (scRNA663 and bkRNA18), normalization methods and 192 

evaluation metrics (AUCVC and SCCs) have been included in the R package 193 

NormExpression. All the functions except the NCS and ES methods have been 194 

implemented in R programs [2] for their running on R platforms of any version. The NCS 195 

and ES methods had been implemented in Perl programs on the Linux system by Gustavo et 196 

al. [8] but they need be installed with many Perl modules. We have modified them into a 197 

stand-alone program (Supplementary file 2).  198 
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A quick evaluation is usually started with 10 normalization methods, which are HG7, 199 

ERCC (if available), TC, CR, NR, DESeq, RLE, UQ, TMM and TU. The quick evaluation 200 

produce AUCVC values of 10 methods and the raw gene expression matrix for users to 201 

evaluate and select methods. NCS and ES are not included in 10 methods, since they have a 202 

similar performance of TU but are much more time consuming. The non-zero ratio and 203 

presence rate can be set to 1 to calculate AUCVC for bulk RNA-seq data, while they need 204 

be set to appropriate values (default 0.2) for scRNA-seq data to avoid parameter grid. Based 205 

on our experiences, both non-zero ratio and presence rate need be set to the values to ensure 206 

that both the product of the sample number multiplying non-zero ratio and that of the 207 

sample number multiplying presence rate are larger than 100 for scRNA-seq data. 208 

 209 

Materials and  Methods 210 

Datasets 211 

In the previous study by Lin Liu et al. (SRA: SRP113436), 663 single-cell samples and 212 

18 bulk samples had been sequenced using the Smart-seq2 scRNA-seq protocol. In this 213 

study, we built a scRNA-seq dataset including 653 single cells from colon tumor tissues and 214 

10 single cells from distal tissues (>10 cm) as control. We also built a bulk RNA-seq dataset 215 

including nine samples from colon tumor tissues and nine samples from distal tissues. 216 

Samples with total read number less than 288,289 were removed in the data filtering step. 217 

The cleaning and quality control of both scRNA-seq and bulk RNA-seq data were 218 

performed using the pipeline Fastq_clean [15] that was optimized to clean the raw reads 219 

from Illumina platforms. Using the software STAR [11] v2.5.2b, we aligned all the cleaned 220 

scRNA-seq and bulk RNA-seq reads to the human genome GRCh38/hg38 and the 221 

expression levels of 57,992 annotated genes (57,955 nuclear genes and 37 mitochondrial 222 

genes) were quantified. Non-polyA RNAs were not discarded to test the robustness of 223 

normalization methods, although the Smart-seq2 protocol theoretically had only captured 224 

polyA RNAs. In addition, the expression levels of 92 ERCC RNA and the long non-coding 225 

RNA (lncRNA) MDL1 in human mitochondrial [12] were also quantified. ERCC RNA had 226 

been spiked into 208 single-cell samples before library construction, the expression levels 227 
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of ERCC RNA in other 455 single-cell samples and 18 bulk samples were simulated by 228 

linear regression. Finally, two datasets were named scRNA663 (58085 × 663) and 229 

bkRNA18 (58085 × 18) and included into the R package NormExpression. 230 

 231 

Normalization methods 232 

All 13 methods in the package NormExpression are HG7, ERCC, TN, TC, CR, NR, 233 

DESeq, RLE, UQ, TMM, TU, NCS and ES. HG7, ERCC, TN, TC, CR, NR and TU are 234 

based on a set of pre-selected genes and each of these methods uses the gene expression 235 

level summed over these pre-selected genes in a sample as the library size (Figure 1B) to 236 

calculate the normalization factor. HG7 includes seven genes (UBC, HMBS, TBP, GAPDH, 237 

HPRT1, RPL13A and ACTB), which had been used to achieve the best evaluation result 238 

among those using all possible combinations of tested housekeeping genes in the previous 239 

study by Gustavo et al. [8]. ERCC is a set of commonly used spike-in RNA consisting of 92 240 

polyadenylated transcripts with short 3' polyA tails but without 5' caps [5]. The pre-selected 241 

genes used by HG7, ERCC, and TU are seven housekeeping genes, 92 ERCC RNA and 242 

ubiquitous genes (described below), respectively. NR only counts reads which have been 243 

aligned to nuclear genomes, while CR counts reads which have been aligned to both nuclear 244 

and mitochondrial genomes. The library size estimated by TC is equal to that estimated by 245 

CR plus that estimated by ERCC. TN uses the number of all reads which can be aligned to 246 

ERCC RNA, nuclear and mitochondrial genomes. 247 

The DESeq method was obtained from the Bioconductor package DESeq [6] and 248 

modified to process scRNA-seq data. RLE, UQ and TMM were obtained from the 249 

Bioconductor package edgeR [7] and modified to process scRNA-seq data. TU, NCS and 250 

ES were obtained from the previous study by Gustavo et al. [8]. Since TU sums counts of 251 

all ubiquitous genes as the library size to calculate the normalization factor, a process to 252 

select ubiquitous genes (describe below) has been integrated into the TU method. TU 253 

maximizes AUCVC instead of the number of resulting uniform genes to select ubiquitous 254 

genes in the R package NormExpression. 255 

 256 

Uniform genes and ubiquitous genes 257 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 22, 2018. ; https://doi.org/10.1101/251140doi: bioRxiv preprint 

https://doi.org/10.1101/251140
http://creativecommons.org/licenses/by/4.0/


 - 11 - 

A uniform gene was defined if the Coefficient of Variation (CV, Formula 1) of its 258 

post-normalization expression levels across all samples was not more than a cutoff. 259 

Ubiquitous genes were defined as the intersection of a trimmed sets of all samples [8]. This 260 

trimmed set of genes were selected for each sample by 1) excluding genes with zero values, 261 

2) sorting the non-zero genes by expression level in that sample, and 3) removing the upper 262 

and lower ends of the sample-specific expression distribution. Gustavo et al. determined the 263 

upper and lower cutoffs by testing all possible combinations of lower and upper cutoffs at 264 

5% resolution to maximize the number of resulting uniform genes using one bulk RNA-seq 265 

dataset [8]. The size of a scRNA-seq dataset is usually very large, which could result in a 266 

very small or even empty set of ubiquitous genes, since the number of ubiquitous genes 267 

depends on the sizes of datasets. To select ubiquitous genes using scRNA-seq data, we 268 

defined a parameter named presence rate, which required that one selected ubiquitous gene 269 

must appear in at least a proportion of the trimmed sets. 270 

 271 

Evaluation metrics 272 

In the previous study [8], Gustavo et al. designed two novel and mutually independent 273 

metrics, which were the number of uniform genes and Spearman Correlation Coefficients 274 

(SCCs) between expression profiles of gene pairs. Two basic ideas to support these two 275 

evaluation metrics are sucessiful normalization methods increase the number of uniform 276 

genes and decrease the correlation between the expression profiles of gene pairs. In this 277 

study, we designed a new metric AUCVC instead of the number of uniform genes to 278 

evaluate normalization methods. We randomly selected 1,000,000 ubiquitous gene pairs to 279 

calculate the medians of SCCs. Then, we compared the evaluation results of all the 280 

normalizaiton methods by the medians of SCCs with those by AUCVC.  281 

AUCVC is created by plotting the number of uniform genes (y-axis) at each 282 

normalized CV (Formula 2) threshold (x-axis). To determine the number of uniform genes 283 

using scRNA-seq data containing a high frequency of zeros, we only considered genes with 284 

non-zero expression values divided by the sample number not less than a thresthold, which 285 

was designed as a parameter non-zero ratio. Since a high or a low normalized CV threshold 286 

produces more false or less uniform genes, it is reasonable to consider the overall 287 
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performance of each method at various threshold settings instead of that at one specific 288 

threshold setting. In formula 1 and 2, symbols have the same meanings as those in figure 1 289 

and n* does not count zero elements in each sample.  290 

 291 

 292 
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Conclusion and Discussion 295 
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 354 

 Figure legends 355 

Figure 1. Normalization factor and library size  356 

(A). A raw gene expression matrix can be transformed into a normalized gene expression 357 
matrix by the multiplication of a factor fj to each column. Each column represents the 358 
expression levels of all genes from a sample and each row represents the expression levels 359 
of a gene across all samples. (B). HG7, ERCC, TN, TC, CR, NR and TU use library sizes 360 
Nj* to calculate normalization factors. Nj represents the library size estimated by TC. 361 
DESeq, RLE, UQ and TMM have been modified in NormExpression to ignore zero values 362 
and the resulting normalization factors need be further normalized by their geometric mean 363 
values. After modification, RLE is identical to DESeq. Q3 means that about 75% of genes 364 
in the jth sample have expression levels below Q3 and about 25% have those above Q3. For 365 
all methods, log represents the natural logarithm. 366 
 367 
 368 
Figure 2. Parameter grid to evaluate normalization methods 369 

Parameter grid of non-zero ratio from 0.2 to 0.9 for scRNA663 and from 0.8 to 1 for 370 
bkRNA18 was used to produce AUCVC values All the normalization methods were 371 
classified into three groups based on their AUCVC values sorted in descending order using 372 
one scRNA-seq dataset scRNA663 (A) and one bulk RNA-seq dataset bkRNA18 (B).  373 

 374 

Figure 3. Consistency in the evaluation results by different metrics 375 

A normalization method with a higher AUCVC value produced a lower median of 376 
Spearman Correlation Coefficients (SCCs) between normalized expression profiles of 377 
ubiquitous gene pairs using both scRNA-seq (AB) and bulk RNA-seq data (DE). The 378 
hierarchical clustering result showed that 13 methods had been classified into the same 379 
groups (CF) by SCCs between normalization factor pairs as those (Figure 2AB) by 380 
AUCVC. 381 
 382 
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