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Abstract 35 
 36 
Ambient temperature is a critical environmental factor for all living organisms. 37 
It was likely an important selective force as modern humans recently 38 
colonized temperate and cold Eurasian environments. Nevertheless, as of yet 39 
we have limited evidence of local adaptation to ambient temperature in 40 
populations from those environments. To shed light on this question, we 41 
exploit the fact that humans are a cosmopolitan species that inhabits 42 
territories under a wide range of temperatures. Focusing on cold perception –43 
which is central to thermoregulation and survival in cold environments— we 44 
show evidence of recent local adaptation on TRPM8. This gene encodes for a 45 
cation channel that is, to date, the only temperature receptor known to 46 
mediate an endogenous response to moderate cold. The upstream variant 47 
rs10166942 shows extreme population differentiation, with frequencies that 48 
range from 5% in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail 49 
of the FST empirical distribution). When all populations are jointly analysed, 50 
allele frequencies correlate with latitude and temperature beyond what can be 51 
explained by shared ancestry and population substructure. Using a Bayesian 52 
approach, we infer that the allele originated and evolved neutrally in Africa, 53 
while positive selection raised its frequency to different degrees in Eurasian 54 
populations, resulting in allele frequencies that follow a latitudinal cline. We 55 
infer strong positive selection, in agreement with ancient DNA showing high 56 
frequency of the allele in Europe 3,000 to 8,000 years ago. rs10166942 is 57 
important phenotypically because its ancestral allele is protective of migraine. 58 
This debilitating disorder varies in prevalence across human populations, with 59 
highest prevalence in individuals of European descent –precisely the 60 
population with the highest frequency of rs10166942 derived allele. We thus 61 
hypothesize that local adaptation on previously neutral standing variation may 62 
have contributed to the genetic differences that exist in the prevalence of 63 
migraine among human populations today. 64 
 65 
 66 
  67 
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Author Summary  68 
Some human populations were likely under strong pressure to adapt 69 
biologically to cold climates during their colonization of non-African territories 70 
in the last 50,000 years. Such putative adaptations required genetic variation 71 
in genes that could mediate adaptive responses to cold. TRPM8 is potentially 72 
one such gene, being the only known receptor for the sensation of moderate 73 
cold temperature. We show that a likely regulatory genetic variant nearby 74 
TRPM8 has several signatures of positive selection rising its frequency in 75 
Eurasian populations during the last 25,000 years. While the genetic variant 76 
was and is rare in Africa, it is now common outside of Africa, with frequencies 77 
that strongly correlate with latitude and are highest in northern European 78 
populations. Interestingly, this same genetic variant has previously been 79 
strongly associated with migraine. This suggests that adaptation to cold has 80 
potentially contributed to the variation in migraine prevalence that exists 81 
among human groups today.   82 
 83 
 84 
Introduction 85 
While our ancestors lived in Africa for millions of years, their successful 86 
colonization of colder environments outside of Africa is relatively recent, 87 
occurring during the last ~50,000 years. A number of novel genetic 88 
adaptations in populations that settled extreme polar environments are 89 
documented [1-3]. This includes an allele in the gene CPT1A, which encodes 90 
a protein involved in the regulation of mitochondrial oxidation of fatty acids, in 91 
Northern Siberian populations [1, 2], and several alleles in genes involved in 92 
fatty acid metabolism in Greenlanders [3, 4]. These genetic changes likely 93 
represent adaptations to the highly specialized diets of these specific 94 
populations, which are rich in fatty acids. However, the putative adaptations to 95 
temperature and climate are largely unresolved.   96 
 97 
Even in non-polar environments, temperatures range substantially across 98 
human habitats. For example, average annual temperature is 28˚C in Nigeria 99 
(home to the Yoruba) and only 6˚C in Finland, with differences most 100 
pronounced from December to February (29˚C in in Nigeria and -4˚C in 101 
Finland). These temperature differences illustrate the habitat changes 102 
experienced by early human groups as they migrated north. Local adaptation 103 
has significantly contributed to population differentiation that exists among 104 
human populations [5]. So it is reasonable to expect that besides genetic 105 
adaptations to selective factors that correlate with climate, such as diet [1-3] 106 
and subsistence strategy [6], or pathogens [7] and their load [8], humans may 107 
harbour direct genetic adaptations to temperature and other climatic factors 108 
[6, 9].  109 
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 110 
Thermosensation (the sensation of innocuous environmental temperature) is 111 
crucial for thermoregulation (the process that maintains core body 112 
temperature) and is mediated by warm and cold receptor nerves that 113 
innervate the skin. At the molecular level, temperature sensation is due to the 114 
activation of transient receptor potential (TRP) ion channels. Among the few 115 
TRPs with clear thermoregulatory role (reviewed in [10]), only TRP cation 116 
channel subfamily M member 8 (TRPM8) is broadly agreed to play a central 117 
role in cold sensation and subsequent physiological thermoregulation [11-17]. 118 
TRPM8 is expressed in pain and temperature-sensitive neurons of the dorsal 119 
root ganglia [15], and at lower levels in other tissues such as prostate or liver 120 
[10, 18]. From approximately 15˚C to 30˚C the channel passes a mixed 121 
inward cationic current at cool to cold temperatures with strength inversely 122 
proportional to temperature. Interestingly, it is also activated by natural ligands 123 
such as menthol [17, 19] and is responsible for the local cooling sensation of 124 
mint-containing products [19]. Proof of its physiological role is that its deletion 125 
diminishes responses to cold [11-13] including behavioural responses to 126 
innocuous cool, noxious cold, injury-evoked cold hypersensitivity and cooling-127 
mediated analgesia [20]. In fact, it is the only TRP channel for which there is 128 
broad agreement about its central role in temperature detection, and the only 129 
well-stablished cold receptor. As such, TRPM8 is an obvious candidate to 130 
have mediated putative adaptations to cool and cold environments.  131 
 132 
TRPM8, located on the short arm of human chromosome 2, harbours genetic 133 
diversity with potential functional and phenotypic consequences. A single-134 
nucleotide polymorphism (SNP; rs10166942, C/T, chr2:234825093) upstream 135 
of the gene is strongly associated with migraine in Europeans, with the 136 
ancestral C allele being protective of migraine with and without aura [21-24] 137 
with a relatively large effect (odds ratio 0.80-0.86 [22]). The precise molecular 138 
mechanism for this association remains unknown, although TRPM8 likely 139 
plays a role in pain perception at least with noxious cold stimuli and peripheral 140 
inflammation (reviewed in [25, 26]). Further, the channel mediates, for 141 
example, the analgesic effect of menthol in acute and inflammatory pain [27]. 142 
Genetic variation of TRPM8 is thus likely to affect thermal sensation, which 143 
could mediate adaptations to ambient temperature. Here, we use a 144 
combination of genetic methods to resolve the evolutionary history of TRPM8 145 
in human populations and show strong evidence for local adaptation that 146 
correlates with latitude and temperature.  147 
 148 
Materials & Methods 149 
The rs10166942 T allele 150 
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The variant rs10166942 is located ~1 kb upstream of the TRPM8 gene. We 151 
used a combination of bioinformatics tools to investigate possible functional 152 
effects of rs10166942 and it neighbouring variants in high linkage 153 
disequilibrium (LD). We explored the predicted effects on protein sequence 154 
using variant effect predictor (VEP) [28], focusing on the non-synonymous 155 
and splice-site SNPs, as well as indels annotated in the 1000 Genomes data 156 
(hereafter 1KGP). We explored effects on gene expression using Regulome 157 
DB annotations [29], GTEx data [30] and basal root ganglion RNA-Seq data 158 
(kindly provided by G. Gisselmann) [31].  159 
 160 
Modern genomes  161 
To investigate the patterns of genetic diversity of TRPM8 we used genome-162 
wide genotype data from the 1KGP phase III [32]. African ancestry: ESN 163 
(Esan in Nigeria), GWD (Gambian (Mandinka) in Western Divisions in 164 
Gambia), YRI (Yoruba in Ibadan, Nigeria), LWK (Luhya in Webuye, Kenya), 165 
MSL (Mende in Sierra Leone), ASW (African Ancestry in Southwest USA), 166 
ACB (African Caribbean in Barbados); European ancestry: GBR (British from 167 
England and Scotland), CEU (Utah  168 
Residents, USA, with Northern and Western European ancestry), FIN (Finnish 169 
from Finland), TSI (Toscani in Italia), IBS (Iberian Populations in Spain); East 170 
Asian ancestry: CHS (Southern Han Chinese), CHB (Han Chinese in Beijing, 171 
China), JPT (Japanese in Toyko, Japan), CDX (Chinese Dai in 172 
Xishuangbanna, China), KHV (Kinh in Ho Chi Minh City, Vietnam); South 173 
Asian ancestry: BEB (Bengali in Bangladesh), GIH (Gujarati Indians in 174 
Houston, USA), ITU (Indian Telugu in the UK), PJL (Punjabi in Lahore, 175 
Pakistan), STU (Sri Lankan Tamil in the UK). The American populations from 176 
the 1KGP have recent admixture with Europeans [33], and thus are not suited 177 
for our analysis and were excluded. Across the 22 populations the lowest 178 
sample size is 61 (ASW), so to minimise power differences among 179 
populations we randomly down-sampled each population to 61 unrelated 180 
individuals.  181 
 182 
We also used the data from the 142 populations of the Simons Genome 183 
Diversity Panel (SGDP) project dataset, which was obtained, together with its 184 
meta-information (including geographic location) [34]. For the geographic 185 
location, in the southern hemisphere we used the absolute value of the 186 
latitude. Most populations have high coverage whole-genome sequencing 187 
data for two representative individuals, so we used two individuals from each 188 
‘Panel C’ population with a sample size of at least two (110 populations).  189 
 190 
Early Eurasian genomes 191 
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Ancient genomes were used to infer the frequency of rs10166942 T in 192 
different pre-historic human populations. The genotype data from ancient 193 
paleo-eskimo individuals from the Saqqaq culture [35] were obtained from the 194 
Danish bioinformatics center. Data on early Europeans [36] was downloaded 195 
from the Reich lab webpage (see URLs). We transformed the binary 196 
eigenstrat file to a vcf using eigenstrat2vcf.py and extracted the genotype 197 
information for rs10166942. Age information was extracted from 198 
Supplementary Data 1 in [36]. After filtering, we were able to genotype 79 199 
ancient individuals for rs10166942. These individuals lived in Eurasia 3,000 to 200 
8,500 years ago and represent three different ancestry groups: Hunter-201 
Gatherers (8 individuals), Early Farmers (33 individuals), and Steppe 202 
pastoralists (38 individuals). 203 
 204 
Origin of the rs10166942 T allele 205 
We inferred the likely place of origin for the rs10166942 T allele by analysing 206 
haplotypes carrying the derived T allele, as levels of linked variation should be 207 
highest in the population closest to the one where it appeared. Since no 208 
homozygous T/T individuals are present in several of the 1KGP populations, 209 
we relied on the phased haplotypes across the 65 kb region of interest. We 210 
calculated pi after removing derived haplotypes with evidence of 211 
recombination with ancestral rs10166942 C allele (Table S1).   212 
 213 
Latitude and temperature estimates 214 
In order to investigate the correlation of allele frequencies with latitude and 215 
temperature, we jointly analysed genetic, latitude, and temperature 216 
information. For modern humans, we estimated the absolute latitude of the 217 
location of each population according to Wikipedia and Google Maps (Table 218 
1). The CEU population, of central European ancestry, was assigned the 219 
coordinates of Brussels. For early modern humans, latitude information was 220 
extracted from Supplementary Data 1 in [36] and updated when necessary 221 
(e.g., some individuals lacked geographic coordinates or had problems with 222 
the longitude/latitude information). 223 
 224 
Temperature time series information was extracted for 2001-2010 from a 225 
0.5˚x0.5˚ grid matrix assembled at the Climate Research Unit of the University 226 
of East Anglia (version 3.23; [37]). Data is available since 1960, but we used 227 
only the time series from 2001-2010 to guarantee comparable and high-228 
quality estimates across populations. Using the geographic coordinates of 229 
each population we extracted annual mean temperatures. 230 
 231 
Phylogenetic Generalized Least Squares (PGLS) 232 
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To investigate to what extent shared ancestry, latitude and temperature 233 
predict rs10166942 T allele frequency in each population we used two 234 
different linear models. We first used a Phylogenetic Generalized Least 235 
Squares (PGLS) analysis [38], which can account for the full phylogenetic 236 
signal (the population relationships) present in our data. The response 237 
variable is the mean derived allele frequency of the rs10166942 T allele per 238 
population. We first conducted a null/full model comparison. The null model 239 
contains only the shared ancestry information (the ‘phylogeny’); here, we used 240 
the full pairwise FST matrix averaged across all positions polymorphic in that 241 
particular population pair. Following Weir and Cockerham, we calculated the 242 
genome-wide average FST between two populations as the “ratio of averages” 243 
(equation 10 in [39]). A neighbor-joining (NJ) tree was calculated using a 244 
matrix of the pairwise FST values with the R package ape [40], and rooted 245 
using ‘mid-point’ rooting with Archaeopteryx [41]. The full model includes 246 
additional predictor variables: latitude and annual mean temperature. In order 247 
to achieve convergence of the model we z-transformed each predictor. We 248 
excluded populations one at a time and compared the model estimates 249 
derived from the subsets with those obtained from the full data set, which 250 
revealed the model to have good stability. We assessed for the full model 251 
whether the assumptions of normally distributed and homogenous residuals 252 
were fulfilled by visual inspection of a QQ-plot of the residuals and residuals 253 
plotted against fitted values [42], which revealed no issues with these 254 
assumptions. As an overall test of the effect of the two test predictors (latitude 255 
and annual mean temperature), we compared the fit of the full model with that 256 
of the null model [43] using a likelihood ratio test [44].  257 
 258 
We then performed a multi-model inference [45] to compare the null model 259 
and all possible models that could be constructed with the two test predictors 260 
(four models in total). To quantify the relative performance of each model, we 261 
used Akaike's Information Criterion (AIC, corrected for small samples) as a 262 
measure of model fit penalized for model complexity and determined Akaike 263 
weights as a measure of the support a model received compared to all other 264 
models in the set [45]. In practice, we use the Akaike weights to derive the 265 
95% best model confidence (comprising the truly best model in the model set 266 
with a probability of 0.95) and also to determine Akaike weights for the 267 
individual predictors by summing the Akaike weights of the models comprising 268 
them. To infer the overall relevance of predictors in the model set we 269 
determined whether the null model was included in the 95% best model 270 
confidence set [46]. The analysis was conducted in R [47] using the function 271 
pgls of the package caper [48]. 272 
 273 
Generalized Linear Mixed Models  274 
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To be able to analyze both the 1KGP and the SGDP datasets (which has low 275 
sample size for a large number of populations, so allele frequencies cannot be 276 
estimated) we also used a generalized linear mixed model [49] (GLMM) fitted 277 
with binomial error structure and logit link function [50]. This model 278 
conceptually corresponds to a regression; however, it allows more flexibility 279 
with regard to the distribution of the response (e.g., normality and 280 
homogeneity of the residuals are not necessarily required), and it also allows 281 
us to effectively control for non-independence of the data due to multiple 282 
observations of the same populations or individuals [49]. The response 283 
variable is the genotype of rs10166942 in each individual, in a 2-column-284 
reponse-matrix (the derived and the ancestral allele counts). For the modern 285 
human genetic data, shared ancestry was controlled by adding as an 286 
additional fixed effect the genetic distance between each population and YRI, 287 
measured as the genome-wide average FST. Population identity was included 288 
as a random effect in the model, to account for random genetic drift. We 289 
further included a random effect per individual to account for the non-290 
independence of the ancestral and derived allele counts. The model that 291 
includes all these effects is the null model.  292 
 293 
To test for the effects of latitude and the annual mean temperature we 294 
included them as test predictor variables with fixed effects. In the analysis of 295 
the early Europeans, we added age as a further test predictor variable. For 296 
the comparison among models (multi model inference [45]) we considered the 297 
null model and all possible models that could be constructed with the two test 298 
predictors, totalling four models (eight in the early European analysis). We 299 
assessed model stability as in case of the PGLS, which revealed the model to 300 
have good stability (Table S2). Overdispersion was no issue (dispersion 301 
parameter of the full model in the 1KGP: 0.97 and the SGDP: 0.67). The 302 
models were fitted in R [47] using the library ‘lme4’ [51]. 303 
 304 
 305 
Signatures of local adaptation  306 
Local adaptation on a single variant can lead to a rapid rise in the frequency 307 
of the positively selected allele, resulting in strong population differentiation 308 
(measured for example by FST) between the population(s) with positive 309 
selection and those without it. We calculated per SNP FST with a custom perl 310 
implementation of the Weir and Cockerham estimator [39] for each pairwise 311 
population comparison.  312 
 313 
The allele under positive selection will rise in frequency together with its 314 
background haplotype, raising the frequency of linked alleles. When the 315 
favoured allele is young (e.g., under a classic selection from a de-novo 316 
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mutation model (SDN) hard sweep model), this results in a signature of 317 
extended haplotype homozygosity. To test for such signature, we calculated 318 
iHS [52] and XP-EHH [53] using selscan with default parameters [54]. For 319 
iHS, we used SNPs with derived allele frequencies higher than 5% and lower 320 
than 95%. For XP-EHH, we used SNPs with derived allele frequency higher 321 
than 5% in the test population. These filters follow previously established 322 
methods [55] and prevent signatures of extended LD to be broken by rare 323 
variants, while still obtaining XP-EHH values for derived alleles fixed or nearly 324 
fixed in the test population. For both analyses, only sites with a high 325 
confidence inferred ancestral allele were used (part of 1KGP genotype files). 326 
Recombination was estimated using the genetic map from HapMap Project, 327 
Phase 2 [56]. 328 
 329 
All three statistics were calculated genome-wide, and P-values for SNPs of 330 
interest were calculated based on the empirical distribution. Since both tests 331 
are sensitive for positive selection, the tail of the empirical distribution is 332 
enriched for the targets of positive selection. Our analysis is hypothesis-driven 333 
for the migraine risk allele in rs10166942, and, thus, no correction for multiple 334 
testing is required. 335 
 336 
Approximate Bayesian Computation analysis 337 
To infer the selective history of the gene, we used an approximate bayesian 338 
computation (ABC) approach, which allows us to assess the probability of 339 
different evolutionary models and their associated parameters [57]. Following 340 
[7, 58], we compared the genomic observations to simulations under three 341 
models with parameters drawn from uniform (U) prior distributions. These 342 
models are: (I) SDN, where the selected allele appeared as a single copy 343 
between 60,000 and 30,000 years ago (ya) (tmut~U(30,000, 60,000ya)) and 344 
was immediately advantageous with a selective coefficient that was allowed to 345 
differ between the African (sA~U(0,1.5%)) and the non-African 346 
(sNA~U(0.5,5%)) populations; (II) selection on standing variation (SSV), where 347 
a previously neutral allele at a given starting frequency (fsel~U(0,20%)) 348 
became positively selected (sNA~U(>0,5%)) in the non-African population after 349 
the out of Africa migration and before the European-Asian split (51,000 to 350 
21,000ya; tmut~U(21,000, 51,000ya)); (III) fully neutral model (NTR), where the 351 
allele appeared as in the SDN model (tmut~U(30,000, 60,000ya)) but was 352 
completely neutral. 353 
 354 
We ran one million simulations for each selection model and 100,000 355 
simulations for the neutral model using msms [59]. Each simulation comprised 356 
a stretch of 185 kb with 122 chromosomes of an African (population 1) and a 357 
non-African (population 2) population. Human demographic parameters 358 
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followed the model inferred by Gravel et al. [60], and in each simulation we 359 
analyze the African population with one non-African population (in Europe or 360 
Asia). To simulate the recombination hotspots across the locus, we simulated 361 
extended regions with a length that corresponded to the local increase in 362 
recombination rate above the baseline recombination rate (Figure S1). These 363 
regions were then removed before calculating summary statistics, such that 364 
they contribute recombination events but not mutation events to the data. The 365 
baseline recombination rate was the mean recombination rate across the 366 
locus excluding the peaks, based on a merged map from several 1KGP 367 
populations (Figure S1).  368 
 369 
For the ABC inference we used five summary statistics: XP-EHH, Fay and 370 
Wu’s H [61], Tajima’s D [62], FST [39] and derived-allele-frequency. XP-EHH 371 
and FST were calculated between YRI and the studied population. We 372 
calculated the LD based statistic XP-EHH on the selected allele using the 373 
entire simulated region. We calculated the statistics Fay and Wu’s H, Tajima’s 374 
D, and average FST (across SNPs in a section) in both simulated populations 375 
on two separate sections: the first section was the central ~65 kb part (since 376 
the genomic data shows strong population differentiation across 65 kb), and 377 
the second section were the combined flanking regions, together 120 kb long. 378 
We also used the allele frequency of the selected site in the African and non-379 
African population and its FST. 380 
 381 
As in the genomic data, for the XP-EHH statistic we required the variant 382 
investigated to have a derived allele frequency > 5% in the test non-African 383 
population. The absence of a long haplotype associated with the derived 384 
allele (XP-EHH) in the presence of strong population differentiation is an 385 
important attribute to differentiate between the SDN and the SSV model [63-386 
65]. Thus, we used only simulations where XP-EHH could be calculated, 387 
which biased minimally the previously uniform prior.  388 
 389 
All summary statistics were calculated in the same way for the simulations 390 
and the real data –where rs10166942 was used as a proxy for the selected 391 
site. The demographic history follows the [60] model.  African demography 392 
was based on YRI, all European populations (CEU, GBR, TSI, FIN, IBS) were 393 
simulated under the inferred European (CEU) demography, and all Asian 394 
populations (CDX, CHB, CHS, KHV, JPT, BEB, GIH, ITU, PJL, STU) under 395 
the inferred East Asian (CHB/JPT) demography. The ABC analysis was 396 
performed using the ABCtoolbox on BoxCox and PLS transformed summary 397 
statistics (following recommendations for ABCtoolbox) [66] retaining the top 398 
1,000 simulations matching our observation. We used the first five PLS 399 
components as they carried most information for each parameter (Figure S2). 400 
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The PLS transformed statistics differentiate between the different models and 401 
capture the variation observed (Figure S3), rendering them well-suited for the 402 
inference. 403 
 404 
Data availability statement 405 
No datasets were generated during the current study.  406 
 407 
Code availability statement 408 
Code is available upon request. 409 
 410 
 411 
Results 412 
To investigate the recent evolutionary history of TRPM8, we focused on the 413 
rs10166942 SNP following several lines of evidence that suggest functional 414 
relevance. The first one is association with disease, as the ancestral T allele 415 
shows strong association with reduced risk of migraine [67] that has been 416 
consistently replicated in different populations e.g. [21-23, 68]. Despite the 417 
obvious interest of these results, to date the molecular mechanism 418 
responsible for these associations remains unknown. This is most likely due 419 
to the restricted tissue expression of the gene and the temperature/ligand-420 
dependent activation of the protein, which severely hamper experimental 421 
functional assays – as, for example, typical genome-wide experiments are run 422 
under basal conditions [69]. It is worth noting, that computational predictions 423 
suggest rs10166942 alters transcription factor binding [70]. The very specific 424 
tissue expression of the gene makes it extremely challenging to test this 425 
prediction experimentally, but a regulatory function fits well the location of the 426 
SNP, which sits ~1 kb upstream of TRPM8. We note that no neighbouring 427 
SNP in high linkage disequilibrium (LD) shows stronger evidence of 428 
association with migraine [22] or functionality (Figures S4) than rs10166942. 429 
Thus, rs10166942 remains as the most likely functional variant in this 430 
genomic region and we chose it as our target variant –with the understanding 431 
that we cannot discard the possibility that it tags another functional variant in 432 
this locus which would, however, share its genetic signatures.  433 
 434 
Latitude and TRPM8-rs10166942  435 
rs10166942 shows interesting patterns of allele frequencies in the 1KGP 436 
project populations [32] (Figure 1A, Table 1). The levels of linked variation 437 
indicate that the T allele originated in Africa (Figure S6, Figure S7, Table S1) 438 
but while its frequency today is just 5% in the equatorial YRI, it reaches 439 
intermediate frequencies in Asia and up to 88% frequency in the northern 440 
European Finnish (Figure 1A, Table 1). Frequencies of the rs10166942 T 441 
allele in South Asia are on average 0.48, closer to those in East Asia (0.36) 442 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 19, 2018. ; https://doi.org/10.1101/251033doi: bioRxiv preprint 

https://doi.org/10.1101/251033
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

than in Europe (0.83), in contrast with the patterns of shared ancestry –443 
genome-wide South Asian populations are closer to Europeans than to East 444 
Asians (Figure S8) [32]. Together, allele frequencies paint a seemingly 445 
latitudinal cline of allele frequencies (Figure 1A, Table 1).  446 
 447 
We tested this hypothesis using linear models and, because of the 448 
thermoregulatory role of TRPM8, included temperature as a covariate. We 449 
tested, using a PGLS [71] analysis, to what extent shared ancestry, latitude 450 
and annual average temperature predict the observed allele frequency in 451 
each population. We first performed a model comparison between a null 452 
model (only ancestry information) and a full model (which includes latitude 453 
and temperature as predictor variables). The full model explains the data 454 
significantly better than the null model (c2 = 13.04, df = 2, P-value = 0.001). 455 
When we then assessed the influence of each predictor with multi model 456 
inference, the null model again receives weak support (Table 2). The highest 457 
support is for the model with latitude, followed closely by the model with 458 
latitude and temperature; together, they make up the 95% best model 459 
confidence set (Table 2), placing latitude alone or combined with temperature 460 
as a better predictor of rs10166942 T allele frequency than shared ancestry. 461 
The correlation between allele frequency and latitude in this model is evident 462 
in Figure 2A. GLMM, which uses one-dimensional ancestry information but 463 
can use genotype data and allows non-linear fits to the data, confirmed the 464 
significant latitude correlation, with or without temperature, in 1KGP data 465 
(Figure 2B; Table 2). In addition, we confirmed this result using 110 466 
populations of the SGDP dataset (Supplemental Data 1) [34], which provide a 467 
much denser worldwide population sample (Figure 2C, Figure S9, Table 2). 468 
Further, the significant correlation remains when only Eurasian populations 469 
are analysed (in the SGDP dataset, where the number of populations allows 470 
this analysis) showing that the inference is not driven by the low T frequencies 471 
in African populations (data not shown). 472 
 473 
Latitude is thus a strong predictor of genotype – that is, of the presence and 474 
frequency of the rs10166942 T allele in a given population. Temperature is a 475 
weaker predictor, perhaps because it is less stable over time. Available 476 
genomic data from prehistoric Eurasians (ages 3,000 to 8,500 years old [36, 477 
72]) show no significant support for any predictor (Materials and Methods; 478 
Figure S10), although the low number and restricted geographic origin of 479 
these ancient samples markedly hamper the analysis. In any case, ancient 480 
DNA suggests that the derived rs10166942 T allele was already at 481 
appreciable frequencies in pre-historic European groups that include Hunter-482 
Gatherers (frequency 81%), Farmers (77%), Steppe pastoralists (71%) and 483 
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possibly Paleo-Eskimos from Greenland (the available genome is T 484 
homozygote) [72]. 485 
 486 
Signatures of positive selection at TRPM8-rs10166942 487 
The observation that rs10166942 frequencies are better explained by latitude 488 
than population history, with extremely high frequencies of the T allele in 489 
Northern Europe, raises the possibility that adaptation to north Eurasian 490 
environments resulted in increased frequency of this TRPM8 allele. We first 491 
explored signatures of local positive selection using FST, a measure of 492 
population differentiation to the equatorial YRI population. rs10166942 is 493 
among the most strongly differentiated SNPs genome-wide between YRI and 494 
not only all European populations (GBR, FIN, IBS, TSI, CEU; empirical P-495 
values = 0.0002-0.0006), but also all South East Asian (STU, ITU, GIH, BEB, 496 
PJL; P-values = 0.041-0.007), and one East Asian (JPT; P-value = 0.0356) 497 
population (Figure 1B, Table 1). The high FST signature extends for ~65 kb in 498 
the upstream half of TRPM8, and, due to LD, some SNPs show comparable 499 
signatures, however only rs10166942 has been associated with a phenotype 500 
(Figure S11). FST sharply declines beyond the 65 kb upstream portion of 501 
TRPM8, probably due to recombination (Figure S11, Figure S1). Although 502 
non-African populations show relatively high LD in the locus (Figure S12), LD-503 
based statistics show weak evidence of population-specific (XP-EHH [53]) or 504 
incomplete (iHS [52]) selective sweeps on a new advantageous mutation at 505 
rs10166942 and nearby SNPs (Table 1, Figure S11). 506 
 507 
Evolutionary history of TRPM8-rs10166942  508 
The combination of unusually high FST values with ordinary LD patterns 509 
suggests that this locus evolved under recent, local positive selection but not 510 
under a classical hard selective sweep. We formally evaluated this possibility 511 
using an ABC approach, which allows us to assess the probability of different 512 
evolutionary models and their associated parameters [57]. We used the ABC, 513 
as in [7, 58], to differentiate between three models: SSV, SDN, and a neutral 514 
model (Figure 3A) . 515 
 516 
We have high power to identify the correct evolutionary model (the fraction of 517 
correctly assigned simulations is 96% for SDN, 81% for SSV, and 96% for 518 
NTR) with high sensitivity and specificity (Table S3). Across all populations, 519 
the ABC results consistently favour the SSV model (Figure 3B). Bayes factors 520 
(Bayesian measure of confidence) range from 4.6 to over 500 (Table 3), 521 
representing strong to decisive evidence for the SSV model [73]. Only in KHV 522 
(2nd most southern non-African population) the model choice result is 523 
inconclusive, although the SSV model still has the strongest support (Figure 524 
3B). Interestingly, the support for the SSV model correlates moderately 525 
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(almost significantly) with latitude (Pearson correlation r=0.49, p=0.06) 526 
because the signatures of selection are stronger at higher latitudes, as 527 
expected if the selective advantage of the T allele grew with latitude. 528 
 529 
The ABC framework allows estimation of the parameters of the SSV model 530 
(Table 3), although these always have large confidence intervals so median 531 
point estimates should be taken with caution. We infer that selection started 532 
about 26,000 years ago on an allele that was at a moderate frequency (the 533 
estimate, 7.5%, is close to its current frequency in western Africa) (Table 3) 534 
and was moderately favourable in Asia (sNon-Africa=0.28%). In Europe, we could 535 
not confidently infer the strength of selection as this parameter’s posterior 536 
distribution is quite flat (Figure 3C). This is because selection coefficients 537 
higher than 0.5 lead to almost identical summary statistic distributions (Figure 538 
S3). However, selection strength was likely higher than 0.5 in European 539 
populations (posterior probability = 0.88), whereas in Asian populations there 540 
is little support for such high selection (posterior probability = 0.12). Together, 541 
the ABC results provide strong evidence for positive selection on neutral 542 
standing variation in all non-African populations, albeit with different selection 543 
intensities in different human groups. 544 
 545 
 546 
Discussion 547 
Here we present evidence that the derived T allele of rs10166942 in TRPM8 548 
arose in frequency due to positive selection in a latitude-related manner. We 549 
note that while rs10166942 T is the most likely target of selection, we cannot 550 
discard that selection targeted an unknown, strongly linked allele –but this 551 
should not substantially affect our inferences. The SNP shows unusually high 552 
levels of population differentiation – it is among the 0.02% most differentiated 553 
alleles between the Yoruba and Finnish populations. Although there is a 554 
distinctive signature of high LD in the region in non-Africans, the patterns do 555 
not show clear evidence of an incomplete, hard sweep of positive selection. In 556 
fact, we infer that the derived T allele appeared in Africa and segregated 557 
neutrally, and only after the out-of-Africa migration moderate positive selection 558 
rose the standing T allele in non-African populations. ABC parameter 559 
inferences are noisy and have large confidence intervals, but our point 560 
estimates indicate that selection began about 26,000 years ago, incidentally 561 
coinciding with the last glacial maximum around 26,500 years ago [74]. 562 
According to our results, selection was moderate in Asian populations and 563 
probably stronger in Europeans. This agrees well with the high frequency of 564 
the T allele in the genomes of prehistoric Europeans. 565 
 566 
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Latitude, with or without temperature, predicts the rs10166942 allele 567 
frequency better than population history (the full phylogeny for PGLS, pairwise 568 
differentiation for GLMM) in both datasets analysed. Together with the FST 569 
signatures and ABC inferences, this suggests positive selection along a 570 
latitudinal cline raised the frequency of the rs10166942 T allele. We note, 571 
however, that even under comparable environmental pressure for one factor, 572 
alleles do not necessarily reach similar frequencies across populations, as 573 
many other environmental factors differ and contribute to the overall allele-574 
frequency. In fact, while the latitudinal cline is significant latitude and 575 
frequency do not correlate perfectly, so additional environmental factors may 576 
be at play (perhaps in Asian populations; Figure 1, Figure S9). 577 
 578 
Given the function of TRPM8, the cold temperatures in northern latitudes are 579 
particularly likely to drive positive selection in this locus. The fact that overall 580 
current average temperature is a weaker predictor of allele frequency than 581 
latitude could be due to the considerable fluctuations of temperature over time 582 
(here, thousands of years) and the fact that the recorded data (monthly 583 
averages) is not particularly informative about long-term selective pressures. 584 
Latitude is strongly correlated with numerous other aspects of climate and is 585 
likely a good proxy for the long-term effects of climate in each of the human 586 
populations analysed, perhaps even better than current temperature. 587 
Nevertheless, it remains possible that other unknown functions of TRPM8 588 
have mediated the allele frequency change. For instance, a gastrointestinal 589 
role has been described for TRPM8 [75] as well as an association of 590 
rs10166942 with inflammatory bowel syndrome [70], however, its expression 591 
in the gut has not been unequivocally established [76].  592 
 593 
As mentioned above, rs10166942 is also among the most strongly associated 594 
SNPs with migraine incidence genome-wide [21-23]. Migraine is a debilitating 595 
neurological disorder that affects millions of people worldwide 596 
[77]. While several non-genetic traits increase the individual risk of migraine, 597 
notably being of middle age, female, suffering high stress levels and having a 598 
low socio-economic status [78, 79], genetics play an important role. In fact, 599 
migraine is a highly heritable (34% - 57% heritability [80 ]) yet polygenic 600 
disease [23]. Given the association between rs10166942 C and low risk of 601 
migraine, the adaptive local rise in frequency of the T allele (due to direct 602 
positive selection or linkage to a selected site) could have contributed, to 603 
some extent, to differences in migraine prevalence in certain human groups. 604 
This agrees with epidemiological data: according to the World Health 605 
Organization, migraine shows low prevalence in Africa, highest prevalence in 606 
Europe, and intermediate prevalence in the Asian countries at intermediate 607 
latitudes among the two [77, 81]. In the USA migraine prevalence has 608 
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consistently been shown to be higher for European-Americans than African-609 
Americans after non-genetic confounding factors are accounted for [81, 82]. 610 
Although the putative influence of rs10166942 in migraine risk is moderate, 611 
and additional factors are likely at play, migraine prevalence correlates with 612 
the evidence of positive selection and the frequency of the T allele. Thus, 613 
local adaptation in TRPM8 may have contributed to modify, by yet unknown 614 
molecular mechanisms, pain-related phenotypes in human populations. 615 
 616 
 617 
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 655 
Figure 1. Overview of the populations used and their allele frequencies 656 
for rs10166942, average temperature, and FST signatures.  657 
(A) Geographic location of the 1KGP populations used, with the derived allele 658 
frequency of the rs10166942 allele in piecharts (T allele in color according to 659 
population), and their latitude. (B) In columns, annual mean temperature at 660 
the geographic location of each population, the level of FST-based population 661 
differentiation with YRI, the log10 empirical P-value of this FST value, and the 662 
proportion of SNPs in the 65kb target region with an empirical P-value lower 663 
than 0.05.  664 
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 665 
Figure 2. Correlation between latitude and derived allele 666 
frequency.  Correlation of the frequency of the rs10166942 T allele with 667 
latitude. The fitted function (dashed line) results for the 1KG data from (A) the 668 
PGLS and (B) GLMM analysis. (C) Results of the best model in the PGLS 669 
analysis. The fitted response is shown as gridded surface, and the dots 670 
represent the average frequency of the rs10166942 T allele per cell of the 671 
gridded surface. Points above the surface are filled, points below are open. 672 
The volume of the points corresponds to the number of populations per cell.  673 
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 674 
Figure 3. ABC analysis. (A) Graphical representation of the three models 675 
(SSV, SDN, NTR) and their associated parameters. The range of the prior 676 
distribution for time of selection start is depicted by a star and a blue line. (B) 677 
Posterior probabilities for each model and population. (C) Prior distribution of 678 
each parameter as a histogram. Posterior distribution of the SSV model 679 
parameters as a line for each population.  680 
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Supplemental Data Legend 682 
 683 
Supplemental Data 1. Overview SGDP data. For each individual used from 684 
the SGDP ‘C Panel’ the ID, population, continent, rs10166942 ancestral and 685 
derived allele count, latitude, longitude and mean year wise temperature are 686 
given (txt file). 687 
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Population 
 

Continent Latitude Longitude Temperature DAF FST FST P-value XP-EHH P value iHS P-value 
FIN EUR 60,25N 24,75E 5.7 0.87 0.805 0.0002 0.205 0.166 

GBR EUR 54,75N 1,25W 10.0 0.80 0.724 0.0006 0.287 0.304 
CEU EUR 50,75N 4,25E 10.7 0.82 0.751 0.0004 0.228 0.36 
TSI EUR 43,25N 11,25E 14.2 0.84 0.778 0.0002 0.26 0.622 
IBS EUR 40,25N 3,25W 14.9 0.80 0.733 0.0004 0.291 0.656 
CHB EAS 39,75N 116,25E 13.4 0.39 0.279 0.0550 0.939 0.219 
JPT EAS 35,25N 139,25E 14.8 0.45 0.349 0.0356 0.947 0.593 
PJL SEA 31,25N 74,25E 25.3 0.57 0.472 0.0066 0.651 0.869 
BEB SEA 23,25N 90,25E 26.1 0.52 0.428 0.0102 0.605 0.8 
GIH SEA 23,25N 72,75E 27.7 0.53 0.437 0.0101 0.587 0.821 
CHS EAS 22,25N 114,25E 23.4 0.36 0.254 0.0666 0.927 0.161 
CDX EAS 22,25N 100,25E 19.2 0.30 0.184 0.1051 0.895 0.926 
ITU SEA 16,75N 80,75E 28.6 0.39 0.278 0.0367 0.804 0.952 

GWD AFR 13,25N 16,25W 27.2 0.06 -0.007 0.8610 NAb 0.39 
KHV EAS 10,25N 106,25E 28.2 0.30 0.193 0.0953 0.938 0.69 
ESN AFR 6,75N 6,25E 27.0 0.04 -0.007 0.8046 NAb NAc 
STU SEA 9,25N 80,25E 28.5 0.37 0.262 0.0411 0.866 0.626 
MSL AFR 7,75N 11,25W 26.6 0.03 -0.005 0.6836 NAb NAc 
YRI AFR 7,25N 3,75E 27.6 0.05 NAa NAa NAa, b 0.699 
LWK AFR 0,75N 34,75E 20.5 0.07 -0.002 0.6912 NAb 0.901 

Table 1. Overview of populations and signatures of natural selection. Geographic coordinates (in degrees), mean annual 688 
temperature (in degrees Celsius), and the frequency and signatures of selection for the rs10166942 T allele (empirical P-value), per 689 
population, ordered by latitude. DAF: derived allele frequency. Continents: (EUR) Europe, (EAS) East Asia, (SEA) South East Asia, 690 
(AFR) Africa. 691 
a Not calculated because YRI was used as background population. 692 
b XP-EHH not calculated within Africa. 693 
c Allele frequency did not meet criteria (see Methods). 694 
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 695 
 696 

Table 2. PGLS and GLMM analysis. All models considered, ordered by their fit 697 
(Model rank). Three measures of model support are shown: AIC, delta AIC, and 698 
Akaike weight. The cumulative Akaike weights are shown together with the 699 
cumulative probability, and resulting confidence set (models that together provide 700 
just over 0.95 cumulative Probability; indicated by ‘yes’). k: number of estimated 701 
parameters. Results using the 1000 Genomes data are shown for the PGLS, and for 702 
the GLMM, and the GLMM results for the SGDP data.  703 
 704 
 705 

 
Models 

Model 
Rank 

AIC 
 

delta 
AIC 

weight 
AIC 

cumulative 
Pr. 

confid. 
Set k 

1KGP 
PGLS 

Null+Lat. 1 -49.43 0 0.504 0.504 yes 5 
Null+Temp.+Lat. 2 -49.186 0.244 0.446 0.95 yes 6 
Null+Temp. 3 -44.147 5.283 0.036 0.986 no 5 
Null 4 -42.255 7.175 0.014 1 no 4 

1KGP 
GLMM 

Null+Lat. 1 1929.7 0 0.5165 0.5165 yes 5 
Null+Temp.+Lat. 2 1929.8 0.1458 0.4802 0.9966 yes 6 
Null+Temp. 3 1939.8 10.1411 0.0032 0.9999 no 5 
Null 4 1946.2 16.4724 0.0001 1 no 4 

SGDP 
GLMM 

Null+Temp.+Lat. 1 435.206 0 0.943 0.943 yes 6 
Null+Lat. 2 440.841 5.635 0.056 1 yes 5 
Null+Temp. 3 451.699 16.494 0 1 no 5 
Null 4 452.458 17.252 0 1 no 4 
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Population 
Bayes 
Factor 

Post. 
Prob. 

t0 (in years) 
median       2.5%       97.5% 

SNA (in %) 
median     2.5%       97.5% 

fsel (in %) 
median     2.5%        97.5% 

FIN 9.6 0.906 35055 22052 49881 1.238 0.304 2.430 0.078 0.010 0.189 
GBR 588.3 0.998 29783 21384 49231 1.352 0.333 2.456 0.075 0.012 0.182 
CEU 474.8 0.998 31390 21311 49593 1.453 0.346 2.425 0.080 0.012 0.187 
TSI 23.3 0.959 36789 22088 50000 1.418 0.304 2.446 0.111 0.018 0.194 
IBS 17.5 0.946 32558 21520 49666 1.209 0.250 2.409 0.090 0.012 0.191 
CHB 81.8 0.988 24,529 21067 47771 0.270 0.045 0.693 0.081 0.008 0.191 
JPT 25.8 0.963 25509 21103 48685 0.269 0.050 0.734 0.080 0.008 0.193 
PJL 70 0.986 25017 21101 48055 0.378 0.109 2.100 0.077 0.006 0.192 
BEB 7.4 0.882 26887 21118 48393 0.293 0.075 0.713 0.082 0.006 0.193 
GIH 17.4 0.946 26,298 21122 48234 0.314 0.087 0.836 0.079 0.006 0.192 
CHS 220.9 0.996 24407 21047 47586 0.271 0.049 0.711 0.079 0.007 0.189 
CDX 4.6 0.823 26438 21088 47862 0.234 0.033 1.103 0.075 0.005 0.187 
ITU 10.6 0.914 26,297 21100 48424 0.249 0.041 0.991 0.073 0.005 0.189 
KHV 3.1 0.755 26399 21110 48452 0.204 0.025 1.041 0.075 0.005 0.186 
ITU 10.6 0.914 26,297 21100 48424 0.249 0.041 0.991 0.073 0.005 0.189 
Table 3. ABC results of the SSV model for each population. Bayes factor (measure of confidence) and the resulting posterior 706 
probability (Post. Prob.) for the SSV model in each population, ordered by latitude. t0: time when selection starts; SNA: selection 707 
strength in non-African population; fsel: frequency of allele at selection start. The median of the posterior distribution of each inferred 708 
parameter is shown together with its 95% confidence interval (2.5% - 97.5%). 709 
 710 
 711 
 712 
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