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Abstract 12 

Establishing a connection between intrinsic and task-evoked brain activity is critical because it 13 

would provide a way to map task-related brain regions in patients unable to comply with such 14 

tasks. A crucial question within this realm is to what extent the execution of a cognitive task 15 

affects the intrinsic activity of brain regions not involved in the task. Computational models can 16 

be useful to answer this question because they allow us to distinguish task from non-task 17 

neural elements while giving us the effects of task execution on non-task regions of interest at 18 

the neuroimaging level. The quantification of those effects in a computational model would 19 

represent a step towards elucidating the intrinsic versus task-evoked connection. Here we used 20 

computational modeling and graph theoretical metrics to quantify changes in intrinsic 21 

functional brain connectivity due to task execution. We used our Large-Scale Neural Modeling 22 

framework to embed a computational model of visual short-term memory into an empirically 23 

derived connectome. We simulated a neuroimaging study consisting of ten subjects performing 24 

passive fixation (PF), passive viewing (PV) and delay match-to-sample (DMS) tasks. We used the 25 

simulated BOLD fMRI time-series to calculate functional connectivity (FC) matrices and used 26 

those matrices to compute several graph theoretical measures. After determining that the 27 

simulated graph theoretical measures were largely consistent with experiments, we were able 28 

to quantify the differences between the graph metrics of the PF condition and those of the PV 29 

and DMS conditions. Thus, we show that we can use graph theoretical methods applied to 30 

simulated brain networks to aid in the quantification of changes in intrinsic brain functional 31 

connectivity during task execution. Our results represent a step towards establishing a 32 

connection between intrinsic and task-related brain activity.  33 
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Author Summary 34 

 35 

Studies of resting-state conditions are popular in neuroimaging. Participants in resting-state 36 

studies are instructed to fixate on a neutral image or to close their eyes. This type of study has 37 

advantages over traditional task-based studies, including its ability to allow participation of 38 

those with difficulties performing tasks. Further, a resting-state neuroimaging study reveals 39 

intrinsic activity of participants’ brains. However, task-related brain activity may change this 40 

intrinsic activity, much as a stone thrown in a lake causes ripples on the water’s surface. Can we 41 

measure those activity changes? To answer that question, we merged a computational model 42 

of visual short-term memory (task regions) with an anatomical model incorporating major 43 

connections between brain regions (non-task regions). In a computational model, unlike real 44 

data, we know how different regions are connected and which regions are doing the task. First, 45 

we simulated neuronal and neuroimaging activity of both task and non-task regions during 46 

three conditions: passive fixation (baseline), passive viewing, and visual short-term memory. 47 

Then, applying graph theory to the simulated neuroimaging of non-task regions, we computed 48 

differences between the baseline and the other conditions.  Our results show that we can 49 

measure changes in non-task regions due to brain activity changes in task-related regions. 50 

  51 
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INTRODUCTION 52 

Recently, there has been significant interest in investigating the relationship between intrinsic 53 

and task-evoked brain activity. This interest is driven by the potential to discover information 54 

contained in intrinsic brain activity that would reveal the repertoire of functional brain 55 

networks used to execute goal-directed tasks (Cole, Bassett, Power, Braver, & Petersen, 2014). 56 

Intrinsic and task-evoked activity are strongly interdependent (Bolt, Anderson, & Uddin, 2017) 57 

and understanding this interdependence holds the promise of providing a link between resting 58 

state and task-based empirical findings (Cole et al., 2014). Furthermore, the establishment of a 59 

clear relationship between intrinsic and task brain activity would allow the assessment of task-60 

related brain areas in patients unable to comply with such tasks (Branco et al., 2016; H. Liu et 61 

al., 2009) 62 

 63 

Neuroimaging studies have shown that performance of a cognitive task alters the intrinsic 64 

functional connectivity in non-task related brain regions (Bluhm et al., 2011; Tommasin et al., 65 

2017; Vatansever, Menon, Manktelow, Sahakian, & Stamatakis, 2015). Bluhm and colleagues, 66 

for example, found increases in functional connectivity between two “default network” brain 67 

regions (posterior cingulate / precuneus and medial prefrontal cortex) and the rest of the brain 68 

during a visual working memory task as compared to a passive fixation task. In another study, 69 

Tommasin and colleagues found reductions in functional connectivity between brain regions 70 

within the “default mode network” (DMN) during an auditory working memory task as 71 

compared to an eyes-open resting state (RS) task. Similarly, Vatansever and colleagues found 72 
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reductions in functional connectivity within DMN brain regions during a motor task as 73 

compared to a RS task. 74 

 75 

A very powerful tool that has been used to quantify changes in intrinsic functional connectivity 76 

due to task execution employs graph theoretical methods (Adams, Shipp, & Friston, 2013; Bolt, 77 

Nomi, Rubinov, & Uddin, 2017; Cohen & D'Esposito, 2016; Fuertinger, Horwitz, & Simonyan, 78 

2015; Krienen, Yeo, & Buckner, 2014; Moussa et al., 2011). Graph theoretical metrics have been 79 

used in the last decade to study functional and structural brain networks as they provide ways 80 

to quantify both global network organization and local network properties (Bolt, Nomi, et al., 81 

2017; Rubinov & Sporns, 2010).   82 

 83 

A recent computational study (Lee, Bullmore, & Frangou, 2017) demonstrated the reliability of 84 

graph theoretical metrics obtained from simulated intrinsic brain activity. Lee and colleagues 85 

modeled brain regions as Kuramoto oscillators coupled by weights extracted from a structural 86 

connectome (Hagmann et al., 2008). After finding an optimal functional connectivity matrix 87 

(one that resembled the RS empirical connectivity matrix), they set out to compute global and 88 

local network metrics and compared them to empirically-obtained graph metrics during the 89 

resting state. They found that simulated brain activity can be reasonably used to model graph 90 

theoretical metrics of brain organization. 91 

 92 

However, there is a need to test the use of graph theoretical metrics on simulated intrinsic 93 

activity during task execution. We aimed to use computational modeling and graph theoretical 94 
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metrics to quantify differences in intrinsic functional brain connectivity of non-task-related 95 

brain regions due to increasing task demands. We used a large-scale computational model of 96 

visual processing that was previously verified against single-unit recordings in non-human 97 

primates and empirical PET, fMRI, and MEG data  (Banerjee, Pillai, & Horwitz, 2012; Corbitt, 98 

Ulloa, & Horwitz, 2018; Horwitz et al., 2005; Q. Liu, Ulloa, & Horwitz, 2017; Tagamets & 99 

Horwitz, 1998; Ulloa & Horwitz, 2016). We embedded the visual processing model in a 100 

structural connectome (Hagmann et al., 2008) to examine differences in intrinsic neural activity 101 

between three conditions: passive fixation (PF), passive viewing (PV), and a visual delayed 102 

match-to-sample (DMS) task. Specifically, we set out to investigate whether computational 103 

modeling and graph theoretical metrics could be used to quantify and understand intrinsic 104 

neural activity changes in non-task brain regions due to increasing task demands. 105 

 106 

RESULTS 107 

To perform the current study, we embedded a biologically realistic model of visual short-term 108 

memory (Tagamets & Horwitz, 1998), shown in Figure 1, into an anatomical skeleton defined by 109 

a 998-node structural connectome (Hagmann et al., 2008), shown in Figure 2, using a blend of 110 

our large-scale neural model (LSNM) simulator (Ulloa & Horwitz, 2016) and the Virtual Brain 111 

(TVB) simulator (Sanz Leon et al., 2013). The visual short-term memory model used here has 112 

been previously verified against single-unit recordings in non-human primates (Tagamets & 113 

Horwitz, 1998) and empirical PET (Tagamets & Horwitz, 1998), MEG (Banerjee et al., 2012) and 114 

fMRI data (Corbitt et al., 2018; Horwitz et al., 2005; Q. Liu et al., 2017). Such a visual model 115 

comprises brain regions that are directly involved in performing a delayed match-to-sample 116 
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(DMS) task for visual objects. As mentioned above, we added a structural connectome to 117 

provide neural noise to the simulated neural activity during the DMS task, and in return, to 118 

receive inputs back from the DMS task nodes. We have described our framework in a previous 119 

paper (Ulloa & Horwitz, 2016) where we focused on the fMRI BOLD signal generation during the 120 

DMS task. In the current work, we sought to analyze the functional connectivity (FC) 121 

configurations in brain regions not driving task execution. These ‘non-task’ brain regions exhibit 122 

intrinsic activity and because of their reciprocal connections with task-specific brain regions, 123 

their neural activity can potentially be modulated during task execution.  124 

 125 

We generated ten virtual subjects by randomly varying the connection weights among brain 126 

regions in the structural visual model (see Methods section for details). We created three 127 

experimental conditions: passive fixation (PF), during which simulated subjects with a low “task 128 

signal” (roughly equivalent to subjects’ attention level during task execution, but see Methods 129 

for definition of this parameter) are fixating on a small dot; passive viewing (PV), during which 130 

subjects passively look at visual shapes; and a DMS task, during which subjects compared two 131 

shapes presented within 1.5 seconds of each other and responded whether the second shape 132 

matched the memory of the first. Each simulated subject performed one 198-second 133 

experiment that consisted of 3-trial blocks interspersed with rest blocks (see Methods section 134 

for details).  135 

 136 

Changes in simulated BOLD activity of non-task brain regions due to different task conditions. 137 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted May 1, 2018. ; https://doi.org/10.1101/250894doi: bioRxiv preprint 

https://doi.org/10.1101/250894


 8

Figure 3 shows typical (averaged across neuronal populations within each brain region) 138 

neuronal activity for each condition for task-related brain regions during one trial. Figure 3 139 

shows the task regions increasing activity due to both stimuli presentation (V1, V4, IT, PF), 140 

short-term memory maintenance (D1, D2), and response (FR). This increase occurs in the PV 141 

and DMS conditions (green and red lines) but not in the PF condition (blue line). Thus, the 142 

stimulus used in the PF condition (a small dot) does not generate visible changes in the 143 

neuronal activity of task regions. The details of the task-related responses shown in Figure 3 144 

have been discussed in detail in previous papers (Horwitz et al., 2005; Ulloa & Horwitz, 2016). 145 

Figure 4 shows the BOLD signal averaged across those brain regions with direct anatomical 146 

connections to task regions. Figure 2 shows a graphical depiction of the non-task nodes that are 147 

directly connected to task nodes. Notice how BOLD activity increases during the task blocks 148 

(shaded areas) and how they do so more prominently during DMS than during PV and during PV 149 

than during PF. Also notice how that BOLD activity change is larger for some of the brain 150 

regions with direct connections to IT, FS, D1, D2, FR than those regions with direct connections 151 

to V1 and V4. This is due to variations in the strength of the connecting weights from task-152 

related nodes to non-task nodes. As we can see in Figure 4, changes in all task-related brain 153 

regions correlate with BOLD signal changes in non-task brain regions directly connected to 154 

them.  155 

 156 

Intrinsic FC differences between PF, PV and DMS conditions. 157 

We computed FC matrices for the three simulated conditions and for all subjects. Figure 5 158 

shows across-subject averages of FC matrices for the three conditions. Figure 6 shows scatter 159 
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plots between PF and PV and between PF and DMS conditions. As shown in Figure 6, the 160 

correlation coefficients between PF and both PV and DMS were high (0.90 and 0.83, 161 

respectively), demonstrating only small differences in the pair-wise consistency of functional 162 

connections across conditions. As noted above, these correlation matrices consist only of 163 

connectome nodes (e.g., no LSNM task-based nodes were used to construct these matrices). In 164 

summary, there were small changes in the pair-wise functional connectivity between PF and PV 165 

and between PF and DMS conditions. 166 

 167 

Graph theoretical metrics of PF, PV, and DMS conditions. 168 

Using graph theoretical methods (Rubinov & Sporns, 2010), we computed eight network 169 

metrics (see Methods section for definition of each metric): global and local efficiencies, 170 

average clustering coefficient, characteristic path length, eigenvector centrality, betweenness 171 

centrality, participation coefficient, and modularity. We calculated these metrics using 172 

weighted FC matrices for a range of plausible threshold densities (Di, Gohel, Kim, & Biswal, 173 

2013). Figure 7 shows across-subject averages of those metrics for a range of network densities 174 

(Di et al., 2013). Figure 7 shows that as the task changed from PF to PV to DMS, there was an 175 

increase in global efficiency, local efficiency, average clustering coefficient and average 176 

betweenness centrality (mostly at the lowest threshold studied, 5%), and modularity. 177 

Conversely, as the task changed from PF to PV to DMS, there was a decrease in average 178 

characteristic path length, average eigenvector centrality, and average participation coefficient.  179 

 180 

Differences in graph metrics between PF and PV and between PF and DMS. 181 
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For each graph metric obtained, we computed the relative difference (see Methods section for 182 

details) between PF and PV and between PF and DMS (see Figure 8). We observed significant 183 

differences between PF and PV and between PF and DMS in modularity (54.2 ± 8% and 81.3 ± 184 

11.6%, respectively), eigenvector centrality (16.3 ± 1.7% and 22.1 ± 1.8%, respectively) and 185 

clustering coefficient (7.9 ±  1.3% and 12.7 ± 2%); smaller changes in global efficiency (1.7 ± 186 

0.2% and 2.4 ± 0.3), local efficiency (2.2 ± 0.3% and 3.2 ± 0.4%), characteristic path length (1.7 187 

± 0.1% and 2.3 ± 0.3%), betweenness centrality (1.6 ± 0.3% and 2.6 ± 0.4%), and participation 188 

coefficient (0.2 ± 0.1% and 0.4 ± 0.1%).  189 

 190 

Differences in modularity between conditions. 191 

To further visualize the large differences in modularity configurations during the three 192 

simulated conditions, we rendered the binary FC network in each condition as connection space 193 

graphs using Gephi (Bastian, Heymann, & Jacomy, 2009); www.gephi.org). We used the 194 

algorithm of Blondel et al (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) to find the 195 

modularity at a density threshold of 10%. Figure 10 shows connection space graphs displayed 196 

on a radial axis layout (axis have a slight spiral to improve visualization of inter-module 197 

connectivity). Nodes that belong to the same module are represented by the same color and 198 

group together on the same radial axis. The connections between nodes have the color of the 199 

node where those connections originate. We can see a decrease in the number of modules, 200 

from 8 in PF to 6 in PV to 3 in DMS and an increase in modularity (see increase in modularity 201 

graph in Figure 7). The increase in modularity from PF to PV to DMS means that the functional 202 

network rearranges itself into fewer modules with more functional connections between nodes 203 
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within the same module (compare the very clearly defined modules in DMS versus PF and DMS 204 

versus PV in Figure 10).  We emphasize again that these results refer to non-task related nodes. 205 

 206 

DISCUSSION 207 

Using a large-scale computational model of visual short-term memory embedded into an 208 

anatomical connectome, we compared simulated intrinsic brain activity of non-task related 209 

brain regions during three tasks: passive fixation (PF), during which simulated subjects with a 210 

low “task signal” or “attention” level are fixating on visual stimuli (a small dot); passive viewing 211 

(PV), during which subjects passively watch changing visual shapes but take no action; and a 212 

DMS task, during which subjects compared two shapes presented within 1.5 seconds of each 213 

other and responded whether the second shape matched the memory of the first. The PF 214 

condition may be considered equivalent to a resting state condition as a passive fixation task 215 

has been often used in RS fMRI studies. The key difference between the PF and the PV 216 

conditions was that the stimulus during the PF condition was an unchanging small dot whereas 217 

in the PV condition several different and larger stimuli were presented. The key difference 218 

between the PV and the DMS conditions was the level of the “task” or attention signal, which 219 

was set to a low level in the PV condition and to a high level during the DMS condition. As 220 

discussed in the Methods section, the task signal level determines whether an input stimulus is 221 

going to be retained in short-term memory (Horwitz et al., 2005). Additionally, because of 222 

feedback connections from D1 in prefrontal cortex to IT and V4 (see model diagram in Figure 1), 223 

the task signal level indirectly influences neuronal activity in V1, V4, and IT (compare neuronal 224 

activity in V1, V4, and IT during different conditions in Figure 3).  225 
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 226 

To quantify differences between PF, PV and DMS conditions, we used pair-wise temporal 227 

Pearson correlations (FC matrices) and graph theory metrics of fMRI FC matrices. Whereas we 228 

found small differences between the FC matrices of the simulated conditions, these differences 229 

we not particularly impressive. However, we found clear-cut differences in each of the graph 230 

theory metrics: Graded increases from PF to PV to DMS in global efficiency, local efficiency, 231 

clustering coefficient, betweenness centrality and modularity; and graded decreases in the 232 

from PF to PV to DMS in characteristic path length, eigenvector centrality, and average 233 

participation coefficient. Our simulated graph theory results largely agree with empirical 234 

studies, as will be discussed below in detail. 235 

 236 

In our computer simulations, the intrinsic brain activity across different conditions is modulated 237 

by ongoing neural activity in brain regions engaged in each task (task brain regions). This 238 

modulation happens through the strength of the anatomical connections of those brain regions 239 

to the rest of the brain (non-task brain regions, see Figure 2).  240 

 241 

When the brain engages in a behavioral task, the activity in neuronal populations driving the 242 

task has the potential of reverberating throughout the brain, thereby altering the intrinsic 243 

neural activity of neuronal populations not involved in the task. A crucial question is whether 244 

one can quantify those changes in intrinsic functional connectivity. Computational modeling 245 

can be useful in this regard, as it allows us to isolate non-task from task neuronal populations 246 

and to convert simulated synaptic activity into neuroimaging time-series which in turn can be 247 
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converted to FC matrices. Furthermore, unlike empirical data, in a computational model we 248 

know which neuronal populations participate in the task and which ones do not. 249 

 250 

A commonly used method to simulate the resting state is by modeling local neuronal 251 

populations with oscillators and using the structural connections obtained from diffusion 252 

tractography as connection weights between the model neuronal populations. A parameter 253 

search is then conducted to find a global coupling parameter and a white matter conduction 254 

speed producing a simulated FC matrix that best matches an empirical FC matrix (Cabral, 255 

Hugues, Sporns, & Deco, 2011; Ghosh, Rho, McIntosh, Kotter, & Jirsa, 2008; Gilson, Moreno-256 

Bote, Ponce-Alvarez, Ritter, & Deco, 2016; Hansen, Battaglia, Spiegler, Deco, & Jirsa, 2015; 257 

Honey et al., 2009; Lee et al., 2017; Roy et al., 2014; Sanz-Leon, Knock, Spiegler, & Jirsa, 2015). 258 

This is the method we used to generate intrinsic activity in the “rest of the brain” of our 259 

simulations.   260 

 261 

Consistency of pair-wise functional connectivity across task conditions 262 

There was a high correlation between the pairs in the FC connectivity matrices between PF and 263 

PV and between PF and DMS (Figure 6).  Several researchers have used pair-wise spatial 264 

correlations between functional connectivity (FC) matrices to compare intrinsic to task-evoked 265 

conditions (Bolt, Nomi, et al., 2017; Buckner et al., 2009; Cohen & D'Esposito, 2016; Cole et al., 266 

2014; Di et al., 2013; Krienen et al., 2014; Smith et al., 2009). Generally, there is a relatively high 267 

spatial correlation (i.e., 0.64 – 0.9) between a passive condition (such as visual fixation or eyes 268 

closed, which are often used to study intrinsic brain activity) and a task condition. Despite such 269 
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high correlations, differences do exist between passive and task FC, and those differences may 270 

be attributable to functional modifications that allow the brain to focus on performing a given 271 

task (DeSalvo, Douw, Takaya, Liu, & Stufflebeam, 2014; Di et al., 2013; Tomasi, Wang, Wang, & 272 

Volkow, 2014).  273 

 274 

Bolt and colleagues (Bolt, Nomi, et al., 2017) recently showed that one can have largely 275 

consistent FC between passive and task conditions, and at the same time have largely different 276 

whole-brain graph theoretical metrics between passive and task conditions. However, a 277 

description of the mechanisms behind those seemingly divergent results has not yet been 278 

provided.  279 

 280 

Increases in Global Efficiency 281 

Our study resulted in higher global efficiency for DMS than for PV and for PV than for PF. During 282 

the simulated PF condition, the stimuli used is small and mostly activates V1/V2 and V4 and IT 283 

areas to a small degree (blue lines in Figure 3), During the PV condition, the larger stimuli used 284 

causes an increase of neuronal activity in V1/V2, V4, IT, FS, D1, D2, FR (as shown in the trial 285 

time-series of Figure 3, green lines), thereby contributing to an increase in neuronal activity of 286 

non-task nodes directly connected to task nodes (see green lines in the shaded areas of the 287 

time-series in Figure 4). During the DMS condition, the neuronal activity across the task brain 288 

regions is higher than during the PV condition (red lines in Figure 3). This increase in neuronal 289 

activity of task brain regions contributes to an increase in neuronal activity of several of the 290 

non-task brain regions with direct connections to task regions during PV and DMS conditions as 291 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted May 1, 2018. ; https://doi.org/10.1101/250894doi: bioRxiv preprint 

https://doi.org/10.1101/250894


 15

compared to PF condition (see Figure 4). As shown in the FC matrices of Figure 5, there is an 292 

increase in the correlation of several pair-wise connections from PF to PV to DMS. This increase 293 

in functional connectivity contributed to a consistent increase in global efficiency from PF to PV 294 

to DMS (Figure 7). 295 

 296 

Graph theoretical measures in empirical studies have consistently shown higher global 297 

efficiency during task than during passive conditions (although this could depend on the 298 

complexity of the task, but see (Cohen and D’Esposito 2016)). The global efficiency has been 299 

found to be higher during a task than during passive fixation (Bolt, Nomi, et al., 2017; Cohen & 300 

D'Esposito, 2016), higher during a task than during an eyes closed condition (Fuertinger et al., 301 

2015), greater during a one-back visual memory task than during passive viewing and an eyes 302 

closed condition (Wen et al., 2015), and higher for coactivation studies than during RS (Di et al., 303 

2013). In our simulations, the global efficiency is higher during DMS than during PV and PF. This 304 

is due to the short-memory task causing an increase of neural activity in brain regions that are 305 

in turn connected to a widely distributed network in the rest of the brain.  306 

 307 

Increases in Local efficiency 308 

Our simulations showed a greater local efficiency for DMS than for PV and for DMS than for PF. 309 

This is consistent with empirical studies showing an increase in local efficiency with increasing 310 

task demands (Wen et al., 2015). 311 

 312 

Increases in Clustering Coefficient 313 
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Our simulations showed a greater clustering coefficient during DMS than during PV and during 314 

PV than during PF. Previous empirical studies have found a clustering coefficient that is greater 315 

for task than during passive fixation (Bolt, Nomi, et al., 2017), lower during a blend of activation 316 

studies than during resting state (Di et al., 2013), and greater during a language task than 317 

during eyes closed (Fuertinger et al., 2015). 318 

 319 

Increases in characteristic path length 320 

Our simulations showed smaller characteristic path length during DMS than during PV and 321 

during PV than during PF. This is to be expected because as the global efficiency increases, the 322 

characteristic path length decreases.  323 

 324 

Decreases in mean Eigenvector Centrality 325 

Our simulations showed smaller eigenvector centrality during DMS than during PV and during 326 

PV than during PF. The eigenvector centrality metric provides a measure of how well-connected 327 

a given node is considering how well connected that node’s neighbors are. Thus, eigenvector 328 

centrality is recursive because a given node’s eigenvector centrality depends on the node’s 329 

neighbors’ eigenvector centrality. To get a more detailed view of the reason behind smaller 330 

mean eigenvector centrality for more complex tasks (Figure 7), we rendered the eigenvector 331 

centrality for each node on axial and sagittal views of the brain (Figure 9A). Figure 9A shows 332 

that as the task complexity increases (from PF to PV to DMS) the eigenvector centrality 333 

increases in a few nodes and decreases in most other nodes. Thus, on average the eigenvector 334 

centrality decreases but the nodal eigenvector centrality in a few nodes increases as the task 335 
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complexity increases. Note that several of the nodes in which the eigenvector centrality 336 

increases during PF and DMS are the nodes that are directly connected to task nodes (compare 337 

to Figure 2). The reason the increases are concentrated on the right side of the brain is due to 338 

the task nodes, which are embedded in the right side of the brain, having direct connections 339 

mostly to the right side of the brain (see Figure 2). Compare the changes in eigenvector 340 

centrality with the changes in betweenness centrality (Figure 7) which remain almost the same 341 

during PF, PV and DMS (Figure 9B).   342 

 343 

Increases in Betweenness Centrality 344 

Our simulations show a higher betweenness centrality at the lower density threshold (5%) but 345 

the average betweenness centrality is very similar across all the other density thresholds 346 

(Figure 7). As mentioned above, the betweenness centrality at each individual node (Figure 9B) 347 

remains relatively constant across conditions. Previous empirical studies have shown a 348 

difference in nodal centrality when resting state and task are compared (Di et al., 2013).  349 

 350 

Decreases in Participation Coefficient 351 

Our simulations showed greater participation coefficient (in a predefined set of modules) for PF 352 

than for PV and for PV than for DMS (Figure 7). Participation coefficient measures each node 353 

participation in a set of predefined modules. We used the modules defined by Hagmann et al 354 

(Hagmann et al., 2008). Previous studies have shown a higher participation coefficient 355 

(between-module connectivity) during passive fixation than during a semantic task (DeSalvo et 356 

al., 2014).   357 
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 358 

Increases in Modularity 359 

Our simulations showed a smaller modularity for PF than for PV and for PF than for DMS. Some 360 

empirical studies have found a greater modularity metric during RS than during a blend of 361 

activation studies (Di et al., 2013), and a greater modularity during passive fixation than during 362 

an n-back task using visually-presented phonemes (Cohen & D'Esposito, 2016). However, Cohen 363 

et al (Cohen & D'Esposito, 2016) found a similar modularity during passive fixation and a finger 364 

tapping task. Other empirical studies have found that that the modularity varies as a function of 365 

performance, but here the evidence is also inconsistent. For example, Stevens et al (Stevens, 366 

Tappon, Garg, & Fair, 2012) found a positive correlation between RS modularity and visual 367 

working memory capacity and Meunier et al (Meunier et al., 2014) found a negative correlation 368 

between modularity and memory scores in an odor recognition task. Additionally, Yue et al (Yue 369 

et al., 2017) have found significant individual variability in modularity during resting state. 370 

 371 

Related computational studies comparing resting state and task-based functional 372 

connectivity. 373 

Two previous computational approaches have compared the intrinsic brain activity obtained 374 

during resting state versus the one obtained during task; however, none of those models was 375 

specifically concerned with quantifying intrinsic activity differences between different task 376 

conditions (which is the goal of our paper). The first one of those studies, by Ponce-Alvarez and 377 

colleagues (Ponce-Alvarez, He, Hagmann, & Deco, 2015) simulated RS using a set of mean field 378 

equations (excitatory-inhibitory pairs) interconnected by the anatomical connections of a 66-379 
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node connectome. A visual task was approximated by applying external stimulation (stationary 380 

inputs) to visual nodes during the RS simulation. Ponce-Alvarez’s model revealed a decreased 381 

synaptic activity variability during the visual task as compared to the RS condition.  382 

 383 

The second computational study comparing task versus rest (Cole, Ito, Bassett, & Schultz, 2016) 384 

similarly applied stationary inputs to a set of neighboring nodes in a simplified computational 385 

model to simulate six different tasks. Cole and colleagues used the FC strengths during a 386 

passive task to predict the fMRI task activation of a held-out brain region. They did this for each 387 

one of the brain areas simulated to produce a prediction of the fMRI activity in each one of the 388 

brain areas simulated given a passive task FC matrix.  389 

 390 

Caveats and limitations of our study 391 

Different passive experimental conditions have been used in neuroimaging to study intrinsic 392 

brain activity (also referred to as the “resting state (RS)”) (Biswal, Yetkin, Haughton, & Hyde, 393 

1995; Fox, Corbetta, Snyder, Vincent, & Raichle, 2006; Greicius, Krasnow, Reiss, & Menon, 394 

2003). Three of the conditions most commonly used as a resting state condition are passive 395 

fixation (PF), eyes open with no fixation, and eyes closed. Yan and colleagues (Yan et al., 2009) 396 

found significantly higher FC in Default Mode Network (DMN) brain areas during eyes open 397 

than during eyes closed condition. It is also important to emphasize that the functional 398 

magnetic resonance (fMRI) results can vary depending on several other factors including: how a 399 

RS task is defined (Van Dijk et al., 2010; Yan et al., 2009), which task instructions are given to 400 

subjects (Benjamin et al., 2010), and whether subjects were engaged in a task prior to RS 401 
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(Waites, Stanislavsky, Abbott, & Jackson, 2005). Thus, whereas one can compare (within the 402 

limitations outlined below) the results of our study with empirical studies using passive fixation, 403 

our results cannot be directly extrapolated to all RS-fMRI studies.  404 

 405 

One way in which the simulations presented here are different from our previous paper (Ulloa 406 

& Horwitz, 2016) is that the model response units have been relocated from prefrontal cortex 407 

to PreSMA. The relocation of the response units to PreSMA is based on an fMRI study by 408 

(Pessoa, Gutierrez, Bandettini, & Ungerleider, 2002), who found an increase in BOLD fMRI in 409 

the PreSMA area at the end of the delay period during a visual working memory task. 410 

Additionally, a study by (Petit, Courtney, Ungerleider, & Haxby, 1998) has also demonstrated 411 

BOLD fMRI activity in the PreSMA area during a working memory task. The relocation from 412 

previous studies from our lab of the model response units to PreSMA makes biological sense as 413 

it better reflects the complexity of the task we are trying to simulate. The identification of 414 

realistic locations within the brain for each one of the model units is crucial as different 415 

locations of task-related modules will modulate different non-task nodes in the connectome, 416 

thereby producing different FC configurations. 417 

 418 

One of the limitations of our study is that our model connectome does not have other sensory 419 

systems apart from the visual system. Therefore, one should exercise caution when comparing 420 

FC matrices of our simulation to empirical ones as the empirical ones would contain higher FC 421 

that are the result of other sensory systems being activated by either intrinsic or extrinsic 422 

processes.  For example, in an fMRI scanner room, there is significant auditory stimulation 423 
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(scanner noise) as well as somatosensory input, which we have not simulated in the present 424 

work.   425 

 426 

In our simulations, we only embedded the visual model in the right hemisphere. As a result, the 427 

intrinsic activity was mostly localized to the right hemisphere. Nonetheless, there were 428 

significant intrinsic activity changes in the left hemisphere, and those were caused by structural 429 

connectivity between both hemispheres. 430 

 431 

Another limitation of our study is that the weights of the structural connectome used in this 432 

paper are undirected and we assumed all connection weights to be excitatory. It is well known 433 

that diffusion tractography has serious limitations as it produces a significant number of false 434 

positives (Maier-Hein et al., 2017), has relatively low resolution and measures white tracts only 435 

indirectly (Jbabdi, Sotiropoulos, Haber, Van Essen, & Behrens, 2015). Some researchers have 436 

simulated whole brain activity using connectome datasets obtained from reconstructions of 437 

retrograde tracer injections in macaques (Chaudhuri, Knoblauch, Gariel, Kennedy, & Wang, 438 

2015) or a composite of diffusion spectrum imaging in humans and macaque tracer data (Sanz-439 

Leon et al., 2015). Despite the low resolution and lack of sign and direction of the human 440 

tractography data, we decided to use it as it allowed the “brain regions” of our task-based 441 

simulator to be embedded into plausible locations within the structural connectome.   442 

 443 

CONCLUSIONS 444 
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In conclusion, we used our large-scale neural modeling framework to quantitatively compare 445 

neural dynamics of non-task brain regions during passive fixation, passive viewing, and a visual 446 

short-term memory task. We were able to obtain quantitative measures of differences in 447 

simulated functional connectivity by using graph theoretical methods. Our simulated graph 448 

theory results largely agreed with experiments. We were also able to relate those network-level 449 

changes to the underlying model mechanisms. We showed that we can use computational 450 

modeling, functional connectivity and graph theoretical metrics to quantify changes in intrinsic 451 

FC of non-task brain regions due to increasing task demands. Our work is relevant to the 452 

characterization of intrinsic brain activity differences between passive and active task 453 

conditions and to the use of neural modeling in the design of empirical studies and the 454 

comparison of competing hypothesis of brain function.  455 

 456 

METHODS 457 

In the present work, we analyzed functional connectivity derived from BOLD fMRI time-series, 458 

calculated from simulated neural activity data using the framework presented in a previous 459 

paper (Ulloa & Horwitz, 2016).  Whereas in our previous paper we evaluated the FC between 460 

brain regions directly involved in executing a task, in the present paper we examined the 461 

intrinsic FC in the rest of the brain (brain regions not involved in task execution). To better 462 

address that question, we performed a model parameter search to find a reasonable match 463 

between empirical and model FC. Below we briefly describe the components of the framework 464 

and how it was used to generate the simulated multi-subject experiment presented in this 465 
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study. The source code of our modeling work, including simulation, analysis and visualization 466 

scripts, is freely available at https://nidcd.github.io/lsnm_in_python/. 467 

 468 

Visual object processing model and The Virtual Brain 469 

a.  Visual object processing model 470 

 Our in-house visual (Tagamets & Horwitz, 1998) object processing model consists of 471 

interconnected neuronal populations representing the cortical ventral pathway that has been 472 

shown to process primarily the features of a visual object.  This stream begins in striate visual 473 

cortex, extends into the inferior temporal lobe and projects into ventrolateral prefrontal cortex 474 

(Haxby et al., 1991; McIntosh et al., 1994; Ungerleider & Mishkin, 1982).  The regions that 475 

comprise the visual model include ones representing primary and secondary visual cortex 476 

(V1/V2), area V4, anterior inferotemporal cortex (IT), and prefrontal cortex (PFC) (see Fig. 1).  477 

Each of these regions contain one or more neural populations with different functional 478 

attributes (see caption to Fig. 1 for details).  This model was designed to perform a short-term 479 

memory delayed match-to-sample (DMS) task during each trial of which a stimulus S1 is 480 

presented for a certain amount of time, followed by a delay period in which S1 must be kept in 481 

short-term memory. When a second stimulus (S2) is presented, the model must respond as to 482 

whether S2 matches S1.  The model can also perform control tasks: passive fixation (PF) and 483 

passive perception of the stimuli (PV), in which no response is required.  Multiple trials of the 484 

active and passive tasks constitute a simulated functional neuroimaging study.   485 

 The key feature used to define a visual object was shape.  Model neurons in V1/V2 and 486 

V4 were assumed to be orientation selective (for simplicity, horizontal and vertical orientations 487 
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were used).  The structural submodels employed were based on known monkey 488 

neuroanatomical data.  An important assumption for the visual model, inferred from such 489 

experimental data, was that the spatial receptive field on neurons increased along the ventral 490 

processing pathway (see (Tagamets & Horwitz, 1998) for details). 491 

 Each neuronal population consisted of 81 microcircuits, each representing a cortical 492 

column.  The model employed modified Wilson-Cowan units (an interacting excitatory and 493 

inhibitory pair of elements for which spike rate was the measure of output neural activity) as 494 

the microcircuit (Wilson & Cowan, 1972).  The input synaptic activity to each neuronal unit can 495 

also be evaluated and combinations of this input activity were related to the fMRI BOLD signals 496 

via a forward model.  497 

  In an earlier version of the model (Horwitz et al., 2005), half the neural populations 498 

within the model were 'non task-specific’ neurons that served as noise generators to ‘task-499 

specific’ neurons that processed shapes during the DMS task.  The model generated time series 500 

of simulated electrical neuronal and synaptic activity for each module that represents a brain 501 

region. The time series of synaptic activity, convolved with a hemodynamic response function, 502 

was then used to compute simulated fMRI BOLD signal for each module representing a brain 503 

region, as well as functional connectivity among key brain regions (see (Horwitz et al., 2005) for 504 

details on this method).  This model was able to perform the DMS task, generate simulated 505 

neural activities in the various brain regions that matches empirical data from non-human 506 

preparations, and produces simulated functional neuroimaging data that generally agree with 507 

human experimental findings (see (Tagamets & Horwitz, 1998) and (Horwitz et al., 2005) for 508 

details).  In the current paper, we employ the version of the model introduced by Ulloa and 509 
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Horwitz (Ulloa & Horwitz, 2016) in which non task-specific neurons are replaced by noise-510 

generated activity from neural elements in The Virtual Brain software simulator (Sanz Leon et 511 

al., 2013). 512 

 513 

  b.  The Virtual Brain 514 

The Virtual Brain (TVB) software (Sanz Leon et al., 2013; Sanz-Leon et al., 2015) is a simulator of 515 

primarily resting state brain activity that combines: (i) white matter structural connections 516 

among brain regions to simulate long-range connections, and (ii) a given neuronal population 517 

model to simulate local brain activity. It also employs forward models that convert simulated 518 

neural activity into simulated functional neuroimaging data.  TVB source code and 519 

documentation are freely available from https://github.com/the-virtual-brain. 520 

In the current paper, for the structural model, we chose the DSI-based connectome described 521 

by (Hagmann et al., 2008), which contains 998 nodes.  For the neural model for each node, we  522 

employed Wilson-Cowan population neuronal units (Wilson & Cowan, 1972) to model the local 523 

brain activity because our in-house LSNM simulators use modified Wilson-Cowan equations as 524 

their basic neuronal unit.  Our forward model that converts simulated neural activity into 525 

simulated fMRI is a modification of the Balloon-Windkessel model of Friston et al. (Friston, 526 

Mechelli, Turner, & Price, 2000; Stephan, Marshall, Penny, Friston, & Fink, 2007) that is 527 

included in the TVB. 528 

  529 

Integrating TVB and LSNM 530 
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To perform our computational study, we concurrently ran two neural simulators: Our Large-531 

Scale Neural Model (LSNM) simulator, which generated task-driven neural activity of the brain 532 

regions directly involved in the visual DMS task, and The Virtual Brain simulator (TVB) (Sanz 533 

Leon et al., 2013) to generate resting-state neural activity in the brain regions not involved in 534 

the task. Because the task-based brain nodes were embedded within resting-state brain ROIs, 535 

we expected that the neuroimaging activity in key connectome ROIs would differ between 536 

passive fixation (PF), passive viewing (PV), and task-based simulations. Here, we sought to 537 

quantify those differences, first by comparing the pattern of functional connectivity across 538 

conditions, then by using graph theoretical methods to quantify those differences. 539 

Within the LSNM, connections and parameter choices closely follow those in the original 540 

papers.  Likewise, the connections and parameter choices among TVB nodes closely follow 541 

those described by Sanz-Leon et al. (Sanz-Leon et al., 2015). There are two differences between 542 

the simulations presented in this paper and the previous (Ulloa & Horwitz, 2016) paper: The 543 

location of the FR units has been changed to PreSMA and the global coupling parameter has 544 

been changed (after a parameter search procedure detailed below). 545 

a.  Task-based model node placement in the TVB 546 

The connectome derived by Hagmann and colleagues (Hagmann et al., 2008) serves as a 547 

source of neural noise to our task-based neural model.  Such a connectome was obtained by 548 

averaging the weighted network of five experimental subjects, where each one of the 998 549 

nodes represents a region of interest covering a surface area of approximately 1.5 cm
2
.  The 550 

connection weights among the nodes represent cortico-cortical connections given by white 551 
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matter connection density among the given nodes.  As stated above, each node is represented 552 

by a Wilson-Cowan population unit and thus each node is assumed to be comprised of one 553 

excitatory and one inhibitory neural population. We implemented noise as an additive term to 554 

the stochastic Euler integration scheme provided by the TVB software. 555 

 556 

 The locations of the four PFC nodes (FS, D1, D2, FR) require some comment.  The 557 

inclusion of these four neural populations in the original LSNMs was based on the 558 

electrophysiological studies of Funahashi et al. (Funahashi, Bruce, & Goldman-Rakic, 1990) that 559 

found in monkey PFC four distinct neuronal responses during a delayed response task:  neurons 560 

that (1) increased their activity when a stimulus was present (FS), (2) increased their activity 561 

during the delay part of the task (D1), (3) increased their activity during both when a stimulus 562 

was present and during the delay period (D2), and (4) increased their activity prior to making a 563 

correct response (FR).  It is not known if these neuronal types are found in separate anatomical 564 

locations in PFC or are intermixed within the same brain area, although the latter is the more 565 

likely case (except possibly for the FR population).  In the original modeling studies of Tagamets 566 

and Horwitz (Tagamets & Horwitz, 1998) and Husain et al. (Husain, Tagamets, Fromm, Braun, & 567 

Horwitz, 2004), the functional neuroimaging data represented a single region that included all 568 

four nodes.   To illustrate the integrated synaptic activity and fMRI signal for each one of the 569 

modules of the combined LSNM / TVB model separately, we have assigned a different spatial 570 

location to each one of the four PFC sub-modules. We have used the Talairach coordinates of 571 

the prefrontal cortex, based on (Haxby et al., 1991), for the submodule D1 and have designated 572 
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spatial locations in adjacent regions of interest for the FS and D2 submodules. The FR 573 

submodule has been allocated to a spatial location determined by an fMRI study of working 574 

memory in humans (Pessoa et al., 2002). See Table 1 for coordinate locations of each 575 

module/submodule of the visual short-term memory nodes within the structural connectome. 576 

b.  Simulating electrical activity and fMRI activity  577 

Electrical activities of each node in Hagmann’s connectome (TVB equations) 578 

Each one of the nodes in Hagmann’s connectome is represented as a Wilson-Cowan 579 

model of excitatory (E) and inhibitory (I) neuronal populations, as described in Sanz-Leon et al. 580 

(Sanz-Leon et al., 2015): 581 

 582 

����� � 1�� ���� 	 
�� � ������ ��� ������ � ����� � �� 	 ���� , �, ������� 

 583 

and 584 

 585 

����� � 1�� ���� 	 
�� � ������ ��� ������ � ����� � �� 	 ���� , �, ������� 

 586 

where ��  and ��  are sigmoid functions described by 587 

 588 

����
�� � �
1 	 �����	�
�����

 

 589 
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��� , ��� , ��� , ���   are the connections within the single neuronal unit itself; note that, although 590 

the original TVB Wilson-Cowan population model allows us to consider the influence of a local 591 

neighborhood of neuronal populations, we have not used this feature in our current 592 

simulations and have left that term out of the equations above; �
�� , �, ��� is the long-range 593 

coupling function, defined as 594 

 595 

���� , �, ���� � !� "# �����
� � ����

���
	 # �����
� � ����

���
$  

 596 

where % is the number of nodes in the connectome and n is the number of LSNM units 597 

connected to a connectome node; !� is a global coupling parameter (see Supplementary Table 598 

S1 and Table S2 for the definition and value of the parameters in the above equations). 599 

 600 

Electrical activities of each LSNM unit 601 

Each one of the submodules of the LSNM model contains 81 neuronal population units. 602 

Each one of those units is modeled as a Wilson-Cowan population of excitatory (�) and 603 

inhibitory (�) elements. The electrical activities of each one of those elements at time t is given 604 

by the following equations: 605 

 606 

���
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 607 

and 608 
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���
��� � ∆ ' 11 	  ������������������������������
( � )��
� 

 609 

where ∆ is the rate of change, ) is the rate of decay, *� , *� are gain constants, +� , +� are input 610 

threshold values, ,
� is a noise term, -�� , -�� , -�� are the weights within a unit (the values of 611 

∆, ), *, �, , are given in the Supplementary Table S3); ./��
�, ./��
� are the inputs coming 612 

from other brain regions at time �.   ./��
� is given by: 613 

 614 

./��
� � # -��
���
� 	 # -��

� ��
� 	 # ���0���1�
�
���

 

 615 

where -��
� and -��

�  are the weights originating from excitatory (E) or inhibitory (I) unit j from 616 

another LSNM unit into the ith excitatory element, 1�  is the connectome excitatory unit j with 617 

connections to the LSNM unit i, 0���  is the value of the anatomical connection weight from 618 

connectome unit j to LSNM unit i, and ��� is a coupling term, which was obtained by using 619 

Python’s Gaussian pseudo-random number generator (random.gauss), using !�/81 as the 620 

mean value. The input coming into the ith inhibitory element, ./��
�, is given by: 621 

 622 

./��
� � # -��
� ��
� 	 # -��

� ��
�
��

 

where -��
�  and -��

�  are the weights originating from excitatory (E) or inhibitory (I) unit k from 623 

another LSNM unit into the ith inhibitory element. Note that there are no connections from the 624 

connectome to LSNM inhibitory units. See Supplementary Tables S4 and S5 for details.  Note 625 
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also that, whereas TVB simulator incorporates transmission delay among the connectome 626 

nodes, the LSNM nodes do not. 627 

Integrated synaptic activity 628 

Prior to computing fMRI BOLD activities we compute the synaptic activity, spatially 629 

integrated over each LSNM module (or connectome node) and temporally integrated over 50 630 

milliseconds as described by (Horwitz & Tagamets, 1999) 631 

 632 

��4, � # �,�
�
�,�

 

 633 

where �,�
� is the sum of absolute values of all inputs to both E and I elements of unit i, at 634 

time t, and is given by:  635 

 636 

�,�
� � -����
� 	 -����
� 	 |-����
�| 	 # -����
�
�,�

 

 637 

Note that the first three terms above are the synaptic weights from within unit i and the last 638 

term is the sum of synaptic connections originating in all other LSNM units and connectome 639 

nodes connected to unit i.  Note also that, in our current scheme, there are no long-range 640 

connections from inhibitory populations. 641 

 642 

Generation of subjects and task performance of the LSNM model 643 
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 We generated simulated subjects by creating several different sets of connection 644 

weights among submodules of the LSNM visual network until we obtained the number of 645 

desired subjects whose task performance was above 60 percent. However, the weights among 646 

the nodes with the TVB connectome remained unchanged across subjects. The generation of 647 

different connectome sets to simulate individual subjects is outside the scope of the current 648 

paper but will be essential for future simulation studies investigating the effects of a behavioral 649 

task on non-task brain nodes. Task performance was measured as the proportion of correct 650 

responses over an experiment. A response in the response module (FR, described in the caption 651 

to Fig. 1) was considered a correct response in each trial if at least 2 units had neuronal 652 

electrical responses above a threshold of 0.7 during the response period.  To create different 653 

sets of weights that were different from the ideal subject, we multiplied feedforward 654 

connections among modules in the LSNM visual model by a random proportion of between 655 

0.95 and 1. 656 

 657 

Equations for the forward fMRI BOLD model 658 

 We implemented the BOLD signal model described by (Stephan et al., 2007). We use the 659 

output of the integrated synaptic activity above as the neural state equation to the 660 

hemodynamic state equations below. The BOLD signal for each region of interest, y(t), is 661 

computed as follows: 662 

 663 

6
� � 7� "8��
1 � 9
� 	 �� '1 � 9
�:
�( 	 � 
1 � :
�; .8 
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 664 

where the coefficients ��, ��, �  are computed as: 665 

 666 

�� � 4.3?���@� 

�� � A����@� 

� � 1 � A 

 667 

where V0 is the resting venous blood volume fraction, q is the deoxyhemoglobin content, v is 668 

the venous blood volume, E0 is the oxygen extraction fraction at rest, A is the ratio of intra- and 669 

extravascular signals, and �� is the slope of the relation between the intravascular relaxation 670 

rate and oxygen saturation, ?� is the frequency offset at the outer surface of the magnetized 671 

vessel for fully deoxygenated blood at 3T, and TE is the echo time.  The evolution of the venous 672 

blood volume v and deoxyhemoglobin content q is given by the balloon model hemodynamic 673 

state equations, as follows: 674 

 675 

�� �:�� � �
� � :
�� !⁄  

�� �9�� � �
� 1 � 
1 � ��� 	⁄

��
� :
�� !⁄ 9
�:
� 

 676 

where �� is the hemodynamics transit time, �represents the resistance of the venous balloon 677 

(vessel stiffness), and �
� is the blood inflow at time t and is given by 678 

 679 
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���� � B 

 680 

where s is an exponentially decaying, vasodilatory signal given by 681 

 682 

�B�� � CD
� � B
��# � 
�
� � 1�	  

 683 

where Cis the efficacy with which neuronal activity x(t) (i.e., integrated synaptic activity) causes 684 

an increase in signal, �# is the time constant for signal decay, and �	 is the time constant for 685 

autoregulatory feedback from blood flow (Friston et al., 2000).  See Supplementary Table S6 for 686 

the values of the above parameters. The simulated fMRI BOLD time series resulting from the 687 

above equations were low-pass filtered (<0.25Hz) and down-sampled every two seconds. 688 

 689 

Resting State parameter exploration 690 

We performed a global parameter exploration (for which we used exclusively the TVB simulator 691 

and the structural connectome with no task nodes) to obtain a reasonable match between 692 

empirical and model FC (Cabral et al., 2011). We obtained the empirical functional connectivity 693 

datasets from (Hagmann et al., 2008) which we used as a target for our simulated FC. Note that 694 

we used a low resolution (66 nodes) FC of matrices to perform the comparisons between 695 

empirical and resting state simulations (Honey et al., 2009): We transformed all correlation 696 

coefficients to Fisher’s Z values and averaged the FC matrices across subjects within each 697 

condition. We then calculated low-resolution (66 ROIs) matrices (each ROI corresponding to a 698 
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brain region in the Desikan-Killiany parcellation (Desikan et al., 2006) for each condition 699 

(Hagmann et al., 2008; Honey et al., 2009) by averaging FC coefficients within each one of the 700 

low-resolution ROIs (Hagmann et al., 2008) and converted back to correlation coefficients using 701 

an inverse Fisher’s Z transformation. We systematically varied the global coupling parameter 702 

(!� in the long-range coupling equation above) and the white matter conduction speed and 703 

conducted a 198-second resting state simulation for each parameter combination. We 704 

calculated a Pearson correlation coefficient between the model FC matrix (for each parameter 705 

combination) and the empirical FC matrix. Then, we chose the parameter combination that 706 

gave us the highest correlation value and used that combination for the PF, PV and DMS 707 

simulations of our study. The global strength parameter range used was between 0.0042 and 708 

0.15 with a step of 0.01. The conduction speed parameter range used was between 1 and 10 709 

m/s with a step of 1. The best combination of parameters was (0.15, 3) which yielded a 710 

correlation value between simulated and empirical FC of r=0.37. Note that absent structural 711 

connections were removed from this correlation calculation as in (Honey et al., 2009), but not 712 

in the rest of the paper. 713 

 714 

From RS to PF, PV, and DMS 715 

After finding an optimal match between empirical and simulated RS, we performed a simulation 716 

of RS with stimulation in visual task nodes using only the TVB simulator (Sanz-Leon et al., 2015). 717 

The correlation between RS FC and RS with stimulation FC was 0.90. Subsequently, we used a 718 

blend of our LSNM simulator and TVB to simulated PF. The correlation between RS with 719 

stimulation and PF was 0.9. As a last step, we performed a DMS simulation and compared it to 720 
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the PF simulation (correlation was 0.79). Thus, we used a TVB RS simulation (matched to 721 

empirical RS) as a starting point for our PF and task-based simulations. 722 

 723 

Network construction 724 

The simulations were performed using the TVB simulator with the 998-node Hagmann 725 

connectome and the LSNM visual short-term memory simulator described above. We isolated 726 

the synaptic activity timeseries of connectome nodes from the task nodes’ synaptic activity. We 727 

used the Balloon model to estimate fMRI BOLD activation over each one of the 998 nodes, for 728 

each condition, and for each subject separately. We calculated zero lag Pearson correlation 729 

coefficients for each pair of the BOLD timeseries to obtain a FC matrix for each condition and 730 

for each subject. We used the weighted FC matrices within each condition to construct graphs 731 

where each one of the 998 ROIs corresponded to a graph node and the correlation coefficients 732 

between each pair of ROIs corresponded to graph edges (Bolt, Nomi, et al., 2017; Di et al., 733 

2013). To keep the same number of edges across conditions, we thresholded the network 734 

edges to a sparsity level of between 5% and 40% (Di et al., 2013) with a step size of 5%. 735 

 736 

Graph theory analysis 737 

A set of eight graph theoretical metrics (global efficiency, local efficiency, clustering coefficient, 738 

characteristic path length, eigenvector centrality, betweenness centrality, participation 739 

coefficient, and modularity) were calculated using the FC matrices for each of the conditions 740 

using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010) in Python, publicly available at 741 

https://github.com/aestrivex/bctpy. We calculated graph metrics for each individual FC matrix, 742 
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for each condition and for each density threshold. Then we calculated the average and standard 743 

deviation of each graph metric for each density threshold. 744 

Global efficiency (Latora & Marchiori, 2001) measures “functional integration” (Rubinov & 745 

Sporns, 2010) and indicates how well nodes are coupled through functional connections across 746 

the entire brain. Global efficiency is calculated as the average inverse shortest path length 747 

(Rubinov & Sporns, 2010). Local efficiency is the inverse of the average shortest path 748 

connecting a given node to its neighbors (Lee et al., 2017). Clustering coefficient (Watts & 749 

Strogatz, 1998) is a measure of “functional segregation” (Rubinov & Sporns, 2010). The 750 

clustering coefficient of a network node is the proportion of the given node’s neighbors that are 751 

functionally connected to each other. Whole brain clustering coefficient is calculated as the 752 

average of the clustering coefficients in a functional connectivity matrix (Rubinov & Sporns, 753 

2010). Characteristic path length is the average shortest path length between all node pairs in a 754 

network (Rubinov & Sporns, 2010). Eigenvector centrality is a measure of centrality that 755 

considers degree of a given node and degree of that node’s neighbors (Fornito, Zalesky, & 756 

Bullmore, 2016 2016). Betweenness centrality is the fraction of shortest paths that cross a given 757 

network node (Rubinov & Sporns, 2010). Participation coefficient is a measure of each node’s 758 

participation in a given set of network communities. We used a set of six network communities 759 

for the participation coefficient calculation, as shown in Table S1 of (Hagmann et al., 2008), 760 

Table S1. Modularity (Newman, 2004) is a metric of functional segregation and it detects 761 

community structure in a network by dividing a functional connectivity matrix into sets of non-762 

overlapping modules and it measures how well a network can be divided into those modules 763 

(Rubinov & Sporns, 2010).   764 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted May 1, 2018. ; https://doi.org/10.1101/250894doi: bioRxiv preprint 

https://doi.org/10.1101/250894


 38

 765 

SUPPORTING INFORMATION 766 

Table S1. Parameters used in the Wilson-Cowan equation for each connectome within TVB.  767 

Table S2. Parameters used for simulating the Hagmann connectome within the TVB simulator. 768 

Table S3. Parameters used in the Wilson-Cowan unit model of each LSNM submodule. 769 

Table S4. Connection patterns among submodules of the LSNM model. 770 

Table S5. Connection weights among submodules in the prefrontal cortex regions of LSNM. 771 

Table S6. Parameters used for the Balloon model of hemodynamic response. 772 
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Table 1. Hypothesized locations, in Talairach coordinates, of visual LSNM modules, along with 1004 

the closest node in the Hagmann et al. connectome. Note that the locations of FS and D2 are 1005 

not explicitly known (see text) and were chosen only to demonstrate validity of the method.  1006 

 1007 
Visual submodule Talairach location Source Host connectome node 

V1/V2 (18, -88, 8) (Haxby, Ungerleider, 
Horwitz, Rapoport, & 

Grady, 1995) 

(14, -86, 7) 

V4 (30, -72, -12) (Haxby et al., 1995) (33, -70, -7) 
IT (28, -36, -8) (Haxby et al., 1995) (31, -39, -6) 
FS Location selected for illustrative purposes (47, 19, 9) 
D1 (42, 26, 20) (Haxby et al., 1995) (43, 29, 21) 
D2 Location selected for illustrative purposes (42, 39, 2) 
FR (1, 7, 48) (Pessoa et al., 2002) (8, 6, 50) 

 1008 

  1009 
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 1010 

1011 
Figure 1. Visual short-term memory model consisted of interconnected neural populations that 1012 

represent primary and secondary visual (V1/V2, V4), inferotemporal (IT), and prefrontal cortex 1013 

(PFC). Each one of the sub-modules (shown above as squares) within a given brain module is 1014 

modeled with 81 (9x9) modified Wilson-Cowan neuronal population units. Solid arrows 1015 

represent Excitatory to Excitatory connections and dashed arrows represent Excitatory to 1016 

Inhibitory connections.  Adapted from (Horwitz et al., 2005). 1017 

  1018 
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 1019 

1020 
Figure 2. Graphical representation of the location where each of the visual short-term memory 1021 

nodes was embedded within Hagmann’s connectome (Hagmann et al., 2008). Also  1022 

shown are direct anatomical connections to connectome nodes from each one of the 1023 

embedded LSNM nodes. 1024 

  1025 
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 1026 
 1027 

Figure 3. Typical electrical and in neuronal populations of task-related brain regions during one 1028 

trail of each of the simulated conditions. Key: PF (blue line), PV (green line), DMS (red line). 1029 

What is shown is the average across all cortical columns in a brain region. 1030 

__ PF 

__ PV 

__ DMS 

3
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   1031 

1032 
Figure 4. Average BOLD signal of non-task brain regions with direct connections to task related 1033 

brain regions. A complete trial corresponding to 91 scans is shown above. for the PV and DMS 1034 

conditions, each experiment above contains 6 task blocks (shaded regions) interspersed with 1035 

rest blocks.   1036 

__ PF 

__ PV 

__ DMS 

4
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                        PF                                           PV                                            DMS 1037 

 1038 
 1039 

(A) 1040 

 1041 

 1042 
(B) 1043 

 1044 

Figure 5. Representative correlation-based functional connectivity matrices for the three 1045 

conditions simulated. Subject 12 is shown above. (A) The nodes in each matrix are arranged 1046 

using the standard connectome files in (Hagmann et al., 2008). (B) Nodes in the matrix have 1047 

been rearranged to match Yeo et al (Yeo et al., 2011) parcellation (7 modules). Brain 1048 

parcellation was displayed using Freesurfer. 1049 

  1050 
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 1051 

 1052 

 1053 
 1054 

Figure 6. Correlation between PF and PV and between PF and DMS weighted functional 1055 

connectivity matrices.  1056 

6
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 1057 

 1058 

  1059 

 1060 
Figure 7. Mean graph theoretical metrics for each condition and for a range of network 1061 

densities (5 to 40%). Error bars correspond to standard deviation.  1062 

7
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1063 
Figure 8. Relative difference between PF and PV and between PF and DMS for each one of the 1064 

graph metrics in Figure 7. Error bars correspond to standard deviation. 1065 

 1066 

  1067 
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 1068 

1069 
 1070 

Figure 9. Eigenvector centrality (A) and betweenness centrality (B) depicted on a node-by-node 1071 

basis on sagittal (left) and axial (right) views of the brain. The density threshold used for the 1072 

depiction above was 10%.  1073 

9
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 1074 

 1075 

 1076 
Figure 10. Modular structure of functional connectivity between non-task nodes in conditions 1077 

(A) PF, (B) PV, and (C) DMS. The graphs used unweighted, undirected functional connectivity 1078 

matrices at a density threshold of 10%. These graphs were rendered using the radial axis layout 1079 

of Gephi (Bastian et al., 2009) and the modular structures were computed using the algorithm 1080 

of (Blondel et al., 2008).  1081 

(A) PF 

[8 modules] 

(B) PV 

[6 modules] 

(C) DMS 

[3 modules] 
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Parameter Description Value 

���  Excitatory to excitatory weight 12.0  

 ��� Inhibitory to excitatory weight 4.0  

��� Excitatory to inhibitory weight 13.0 

��� Inhibitory to inhibitory weight 11.0 

�� Membrane time-constant, excitatory population 10.0 

�� Membrane time-constant, inhibitory population 10.0 

�� Slope of excitatory response function 1.2 

�� Position of maximum slope of excitatory sigmoid function 2.8 

�� Amplitude of excitatory response function 1.0 

�� Excitatory threshold 0.0 

�� Slope of inhibitory response function 1.0 

�� Position of maximum slope of inhibitory sigmoid function 4.0 

�� Inhibitory threshold 0.0 

�� Amplitude of inhibitory response function 1.0 

�� Excitatory refractory period 1.0 

�� Inhibitory refractor period 1.0 

�� Maximum value of excitatory response function 1.0 

�� Maximum value of inhibitory response function 1.0 

	� Balance between excitatory and inhibitory 1.0 

	� Balance between excitatory and inhibitory 1.0 

 1082 

Table S1. Parameters used in the Wilson-Cowan equation for each connectome node within 1083 

TVB. The parameters shown above are the default parameters within TVB and are also shown in 1084 

Table 11(a) of (Sanz-Leon et al., 2015). 1085 

 1086 

  1087 
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Parameter Value 

Number of nodes 998 
Global coupling strength 0.15 

White matter transmission speed (mm/ms) 3.0 
Integrator Euler stochastic (dt=5) 

 1088 

Table S2. Parameters used for simulating the Hagmann et al. (Hagmann et al., 2008) 1089 

connectome within the TVB resting state simulator. Please note the values of Global coupling 1090 

strength and white matter transmission speed above are different to those presented in (Ulloa 1091 

& Horwitz, 2016). In the present study we implemented a parameter search to better 1092 

reproduce empirical RS FC of (Hagmann et al., 2008). See methods sections for details.  1093 
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Parameter E element I element 
K 9.0 20.0 


 0.3 0.1 
N �0.025 �0.025 
∆ 0.5 0.5 

� 0.5 0.5 

 1095 

Table S3. Parameters used in the Wilson-Cowan unit model of each LSNM submodule 1096 

  1097 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted May 1, 2018. ; https://doi.org/10.1101/250894doi: bioRxiv preprint 

https://doi.org/10.1101/250894


 64

Source Destination Fanout Mean/SD Percent to create Comments 
LGN V1 7x7 34 @ 0.003±0.003  

2 x 5 @ 0.006 ± 0.003 
1 x 5 @ 0.020 ± 0.002 

100 Highest values 
oriented either 
vertically or 
horizontally 

V1h V4h 1x5 0.04 ± 0.01 50  

V1v V4v 5x1 0.04 ± 0.01 50  

V1h V4c 3x3 4 @ 0.0 ± 0.01 
5 @ 0.02 ± 0.01 

50 Lowest values at 
the corners  

V1v V4c 3x3 4 @ 0.0 ± 0.01 

5 @ 0.02 ± 0.01 

50 Lowest values at 
the corners 

V4 IT 5x5 0.01 ± 0.01 50 Learned 

IT FS 1x1 0.2 ± 0.02 100  

D2 V4 5x5 0.0014 ± 0.0007 100  

D1 IT 1x1 0.03 ± 0.001 100 Inhibitory 

D2 IT 1x1 0.01 ± 0.002 100  

IT V4 4x4 0.00125 ± 0.0006 100  

 1098 

Table S4. Connection patterns among submodules of LSNM model 1099 
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Source Destination Element Weight 
FS D2 E 0.07 
FS FR E 0.05 
D1 FR E 0.06 
D1 D2 E 0.105 
D2 D1 E 0.10 
D1 FS I 0.02 
FS D1 I 0.05 
FR D1 I 0.03 
FR D2 I 0.065 

 1101 

Table S5. Connection weights among submodules in the prefrontal cortex region of LSNM 1102 
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Parameter Description Value Reference 

�� Rate constant of vasodilatory signal decay in seconds 1.54 (Heinzle, Koopmans, den 
Ouden, Raman, & Stephan, 

2016) 

�� Time of flow-dependent elimination in seconds 2.44 (Heinzle et al., 2016) 

	 Grubb’s vessel stiffness exponent 0.32 (Heinzle et al., 2016) 

�	 Hemodynamic transit time in seconds 2.0 (Havlicek et al., 2015)  

� Efficacy of synaptic activity to induce signal 0.1 (Friston et al., 2000) 

�	 Slope of intravascular relaxation rate in Hertz 108.0 (Havlicek et al., 2015)  

�	 Frequency offset at outer surface of magnetized vessels 80.6 (Obata et al., 2004)  

� Ratio of intra- and extravascular BOLD signal at rest 0.47 (Heinzle et al., 2016) 

�	 Resting blood volume fraction 0.02 (Obata et al., 2004) 

�	 Resting oxygen extraction fraction 0.34 (Heinzle et al., 2016) 

�� Echo time  0.03 (Heinzle et al., 2016) 

 1104 

Table S6. Parameters used for the Balloon model of hemodynamic response used in our 1105 

simulations. Values are based on a 3T MRI magnet. 1106 
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