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ABSTRACT 
Summary: AlphaMate is a flexible program that optimises selection, 
maintenance of genetic diversity, and mate allocation in breeding pro-
grams. It can be used in animal and cross- and self-pollinating plant 
populations. These populations can be subject to selective breeding 
or conservation management. The problem is formulated as a multi-
objective optimisation of a valid mating plan that is solved with an 
evolutionary algorithm. A valid mating plan is defined by a combina-
tion of mating constraints (the number of matings, the maximal num-
ber of parents, the minimal/equal/maximal number of contributions 
per parent, or allowance for selfing) that are gender specific or ge-
neric. The optimisation can maximize genetic gain, minimize group 
coancestry, minimize inbreeding of individual matings, or maximize 
genetic gain for a given increase in group coancestry or inbreeding. 
Users provide a list of candidate individuals with associated gender 
and selection criteria information (if applicable) and coancestry ma-
trix. Selection criteria and coancestry matrix can be based on pedi-
gree or genome-wide markers. Additional individual or mating specific 
information can be included to enrich optimisation objectives. An ex-
ample of rapid recurrent genomic selection in wheat demonstrates 
how AlphaMate can double the efficiency of converting genetic diver-
sity into genetic gain compared to truncation selection. Another ex-
ample demonstrates the use of genome editing to expand the gain-
diversity frontier. 
Availability: Executable versions of AlphaMate for Windows, Mac, 
and Linux platforms are available at http://www.alpha-
genes.roslin.ed.ac.uk/AlphaMate 
Contact: gregor.gorjanc@roslin.ed.ack.uk 

1 INTRODUCTION  
This paper describes the AlphaMate program that optimises se-

lection, maintenance of genetic diversity, and mate allocation in 
breeding programs. Breeding programs aim to achieve defined tar-
gets over the course of a time horizon. Some programs select indi-
viduals to improve future performance, while other programs try to 
maintain the current state or even save a population from extinction. 
In all cases optimal management of genetic diversity within the 
bounds of practical constraints is crucial to sustainably support the 
current and yet unknown future targets. For example, breeding pro-
grams that select for improved performance must balance short and 
long-term genetic gain by avoiding excessive use of elite individu-
als. While elite individuals increase the mean of next generations, 
their excessive use also significantly reduces the amount of genetic 

diversity. This reduction limits the potential for long-term improve-
ment. Breeding programs that focus solely on maintenance of diver-
sity must also ensure that individuals contribute in a somewhat bal-
anced manner. Therefore, breeding programs must balance individ-
uals’ contributions to future generations to ensure long-term viabil-
ity. 

The optimal contribution theory formulates balancing selection 
and maintenance of genetic diversity as optimisation of individuals’ 
contributions to the next generation under constrained rate of group 
coancestry; see Woolliams et al. (2015) for review. Contributions 
can be optimised with two approaches. The first approach optimises 
contributions to maximise genetic gain under a constrained rate of 
group coancestry amongst the contributors or to only minimise 
group coancestry. This optimisation prevents the loss of genetic di-
versity above the accepted rate of coancestry. Optimisation of con-
tributions can be followed by mate allocation to minimize inbreed-
ing of individual matings. This second optimisation prevents exces-
sive inbreeding depression in resulting progeny. These two optimi-
sations can be solved with deterministic optimisation methods that 
vary according to the mathematical formulation of the problem, e.g., 
Lagrangian multipliers (Meuwissen, 1997), linear programming 
(Toro and Perez-Enciso, 1990), or quadratic programming (Pong-
Wong and Woolliams, 2007). The second approach jointly opti-
mises contributions and mate allocations via optimisation of a mat-
ing plan (Kinghorn and Shepherd, 1999; Akdemir and Sanchez, 
2016). The joint optimisation does not have an analytical form and 
has to be solved with stochastic or metaheuristic methods, such as 
evolutionary algorithms. These methods can easily accommodate 
constraints and multiple objectives in comparison to deterministic 
algorithms, but usually require more computing time. 

Existing programs that implement the above described ap-
proaches are often applicable to specific applications and are not ge-
nerically applicable to both animal and plant populations or do not 
accommodate application of modern biotechnologies such as ge-
nome editing. The aim of this work is to present a flexible program 
AlphaMate that can be used in animal and cross- or self-pollinating 
plant populations. We briefly describe the implemented methodol-
ogy in AlphaMate and show its application in two examples: i) max-
imising efficiency of converting genetic diversity into genetic gain 
in a rapid recurrent genomic selection program for wheat and ii) ex-
panding the gain-diversity frontier with genome editing. 

2 METHOD 
AlphaMate by default jointly optimises contributions and mate 

allocations. The goal of this optimisation is to find a valid mating 
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plan that delivers desired targets. This is achieved with an evolution-
ary optimisation of a single objective or multiple objectives simul-
taneously. 

A valid mating plan is defined by a combination of mating con-
straints: i) the number of matings, ii) the maximal number of parents, 
iii) the minimal, equal, or maximal number of contributions per par-
ent, or iv) allowance for selfing. If a user requires only optimised 
contributions, then only the specifications ii) and iii) are relevant. 

The desired targets formulate optimisation objectives, such as: 
i) maximize genetic gain, ii) minimize group coancestry amongst 
contributors, iii) minimize expected inbreeding of individual mat-
ings, iv) maximize genetic gain with constrained group coancestry 
or inbreeding, or v) as i) or iv) but with the ability to genome edit a 
fixed set of contributors. 

Optimisation is performed with an evolutionary algorithm based 
on differential evolution (Storn and Price, 1997) with modifications 
to avoid premature convergence (Gondro and Kinghorn, 2009). For 
a single target, we optimise a single objective function accounting 
for mating constraints. For multiple targets, we perform multiple ob-
jective optimisation in two steps; see e.g. Deb (2014) for review. 
First, we optimise single objective functions for each target sepa-
rately to find bounds of the objective space and normalize objec-
tives. Second, we use the ε–constraint method to either: i) find a Pa-
reto-optimal solution with targeted balance between objectives or ii) 
evaluate the whole frontier of Pareto-optimal solutions (the Pareto 
frontier). A Pareto-optimal solution is the best solution with a spe-
cific balance between objectives. The Pareto frontier is a set of Pa-
reto-optimal solutions and is useful when a breeder does not have 
clearly defined targets and can explore optimal solutions with dif-
ferent balance between targets to reach a decision. Fig. 1. demon-
strates the Pareto frontier of genetic gain and group coancestry and 
the optimisation path for a targeted solution. 

Optimisation works with mating plans, which we encode as pro-
posed by Kinghorn and Shepherd (1999). We ensure that mating 
plans are valid in two ways. First, we fix encoded representation, 
e.g., we trim contributions to user defined limits and round them to 
integer values (Lampinen and Zelinka, 1999). Second, when fixing 
is not sufficient, we penalize invalid mating plans so that the evolu-
tionary algorithm advances (more) valid mating plans. 

 
Fig. 1. Trade-off between genetic gain and group coancestry 

and optimisation path of evolutionary algorithm (target set to 30°, 
dots show evaluated solutions, line shows evolution of the best so-

lution) 

3 USE 
AlphaMate was written in object oriented Fortran 95 as a 

standalone program and compiled versions are available for Win-
dows, Mac, and Linux platforms. A single specification file controls 
the program. In this file, a user specifies: i) input files, ii) mating 
constraints, iii) desired targets, and iv) optimisation controls. Below 
we briefly describe these groups of specifications, while the full list 
is available in the AlphaMate manual. 

i) The basic files are the coancestry matrix, selection criteria, 
and gender information for candidates. The coancestry matrix and 
selection criteria can be based on pedigree or genomic data. Addi-
tionally, further individual or mating specific information can be 
given to enrich optimisation objectives. 

ii) Mating constraints can be gender specific or generic to ac-
commodate different reproductive systems in animals and cross- or 
self-pollinating plants. A user can specify all the mating constraints 
or a subset of them depending on the objective of optimisation and 
biologic or logistic reasons. 

iii) Desired targets define the optimisation objectives. For ease 
of use we allow for various forms of some targets, e.g., constraint 
on the loss of genetic diversity can be defined with the targeted value 
of coancestry, rate of coancestry, percentage of the minimum possi-
ble coancestry, or trigonometric degrees between genetic gain and 
group coancestry (see Fig. 1.). 

iv) Optimisation controls specify weights used to combine mul-
tiple targets into a single objective function, penalties used to penal-
ize invalid mating plans, and parameters of evolutionary algorithm 
such as the number of iterations, the number of evaluated matings 
plans, convergence criteria, etc. 

The AlphaMate output consists of: i) summary of input data, ii) 
list of contributors with associated data and optimised contributions, 
iii) optimised mating plan, iv) optimisation log, and v) the seed value 
for random number generator to enable reproducibility. A utility R 
script is provided to plot the Pareto frontier and the optimisation 
paths. 

4 DEMONSTRATION 
We demonstrate the use of AlphaMate with two examples. The 

first example optimises conversion of genetic diversity into genetic 
gain based on a subset of the results from a previous study we un-
dertook to model the benefit of rapid recurrent genomic selection in 
wheat (Gorjanc et al., 2017). Here we compare AlphaMate to trun-
cation selection method over 20 years when breeding program used 
four recurrent selection cycles per year. In each cycle, we used a 
pool of 32 parents to generate 16 crosses with 160 progeny in total. 
We used AlphaMate to optimise selection and mate allocation with 
a constraint that a parent could only contribute at most four crosses. 
We supplied AlphaMate with genomic estimates of breeding values 
and a genomic coancestry matrix that measured as the proportion of 
marker alleles in common between the progeny. We ran ten simula-
tions, collected genetic mean and genic standard deviation in prog-
eny for each year, and fitted linear regression on this data. In Fig. 2. 
we show the evolution of genetic mean and genic standard deviation 
over the 20 years as influenced by different balances between selec-
tion and maintenance of genetic diversity achieved via different trig-
onometric degrees. We also show results for the truncation selection 
method, where we ignored maintenance of genetic diversity and par-
ents either contributed one or four crosses. There is a clear effect of 
balancing the two objectives on the long-term performance of the 
breeding program. In comparison to truncation selection with one 
(four) cross per parent AlphaMate with the target of 35° delivered 
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65% (11%) higher genetic gain with 278% (139%) lower reduction 
of genic standard deviation, which translates to a 242% (93%) 
higher efficiency of converting genetic diversity into genetic gain. 
We note that truncation selection with one cross per parent achieved 
slightly higher genetic gain than AlphaMate with comparable effi-
ciency (15-20°), which suggests that group coancestry based on the 
proportion of shared marker alleles might not be the best metric for 
the long-term maintenance of genetic diversity in populations under 
selection. This is the subject of our future research. 

 
Fig. 2. The genetic mean and genic standard deviation over 20 

years of a wheat breeding program optimised with AlphaMate for 
different balance between selection and maintenance of genetic di-
versity defined by trigonometric degrees; black lines denote trun-
cation selection with one (dashed) or four (full) crosses per parent 

 
The second example expands the gain-diversity frontier based 

on our previous modelling of the genome editing potential to im-
prove quantitative traits along standard selection methods (Jenko et 
al., 2015). By way of example genome editing could improve the 
genetic merit of the top individuals or the average individuals. If 
used optimally, the latter option might have the potential to expand 
the gain-diversity frontier, i.e., expand the Pareto frontier of genetic 
gain and group coancestry. To test this, we have simulated a breed-
ing program as in Jenko et al. (2015) with 1000 selection candidates 
out of which we aimed to select 25 males and all 500 females with 
equalized contributions. In addition, we assumed to have resources 
to genome edit any 5 males, each at 1, 5, or 20 top causal loci. The 
question in such a setting is, which males should be selected and 
edited to maximise genetic gain for a given increase in group 
coancestry. We evaluated this by first calculating the genetic merit 
that male candidates could have been achieved with editing. We then 
provided the non-edited and edited genetic merit of the candidates 
to AlphaMate and jointly optimised which males should be selected 
and edited. To this end we have added to optimisation a set of “edit 
rank” variables of length equal to the number of candidates for edit-
ing. When calculating the genetic gain, we used “edited” genetic 
merit for individuals with the highest “edit rank” and “non-edited” 
genetic merit for the others. In Fig. 3. we show the Pareto frontier 
without and with genome editing. The results show that genome ed-
iting expanded the frontier. However, the expansion was substan-
tially only when we edited 20 top causal loci and when target was 
not solely on minimum coancestry. At 30° the baseline maximum 
gain was 80% and the baseline minimum coancestry was 46%. With 
editing 5 or 20 loci the maximum gain improved to respectively 85% 

or 96%, while the minimum coancestry only slightly deteriorated to 
45%. 

 
Fig. 3. Trade-off between genetic gain and group coancestry and 

its modification with genome editing 

5 CONCLUSION 
In this paper, we have described the AlphaMate program that 

optimises selection, maintenance of diversity, and mate allocation in 
breeding programs. The program enables both animal and plant 
breeding programs to be more optimal and facilitates new research 
opportunities. 
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