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Abstract 

miRNAs play important roles in the regulation of gene expression. The rapidly developing field 

of microRNA sequencing (miRNA-seq; small RNA-seq) needs comprehensive bioinformatics 

tools to analyze these large datasets. We present the second iteration of miRge, miRge 2.0, with 

multiple enhancements.  miRge 2.0 adds new functionality including novel miRNA detection, A-

to-I editing analysis, better output files, and improved alignment to miRNAs. Our novel miRNA 

detection method is the first to use both miRNA hairpin sequence structure and composition of 

isomiRs resulting in a more specific capture of potential miRNAs. Using known miRNA data, 

our support vector machine (SVM) model predicted miRNAs with an average Matthews 

correlation coefficient (MCC) of 0.939 over 32 human cell datasets and outperformed miRDeep2 

and miRAnalyzer regarding phylogenetic conservation. The A-to-I editing analysis 

implementation strongly correlated with a reference dataset’s prior analysis with adjusted R2 = 

0.96. miRge 2.0 comes with alignment libraries to both miRBase v21 and MirGeneDB for 6 

species: human, mouse, rat, fruit fly, nematode and zebrafish; and has a tool to create custom 

libraries. With the redevelopment of the tool in Python, it is now incorporated into bcbio-nextgen 

and implementable through Bioconda. miRge 2.0 is freely available at: 

https://github.com/mhalushka/miRge.  
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Introduction 

MicroRNAs (miRNAs) are short, single-stranded RNAs that post-transcriptionally regulate gene 

expression via mRNA decay and/or translational repression (1,2). MiRNAs are transcribed by 

RNA polymerases II and III, generating precursors that undergo a series of cleavage events to 

form mature miRNAs (3). Around 30% to 60% of all human protein coding genes are regulated 

by miRNAs (4), involved in almost all biological process ranging from development to 

metabolism to cancer (5-7).  

With the continued popularity of small RNA sequencing to characterize miRNAs, much 

attention has been focused on miRNA alignment software. In 2015 we introduced miRge, a fast, 

multiplexing method to align miRNAs and other RNA species to expressed libraries (8). Since 

that time, a number of developments in the field have occurred necessitating improvements to 

this alignment tool. 

The number and classification of true miRNAs has become controversial. miRBase, the central 

resource for miRNA curation, lists 2,588 human miRNAs in their latest version (v21), which has 

not been recently updated (9). Other manuscripts have listed thousands more putative novel 

miRNAs (10-12) including new passenger miRNA sequences of known miRNAs. However, the 

MirGeneDB group has indicated, using strict criteria, that only 858 human miRNAs exist, calling 

into question the continued search for novel miRNAs and perhaps the loose methods employed 

to designate short RNAs as miRNAs from deep RNA-seq data (13). 

In recent years, there has also been an increased awareness and value placed on isomiRs. 

IsomiRs are categorized into three main classes: 5’ isomiRs, 3’ isomiRs and polymorphic 

isomiRs, with 5’ and 3’ isomiRs subclassified into templated and nontemplated modifications 
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(14). The 5’ and 3’ isomiRs are the result of imprecise and alternative cleavage during the 

precursor miRNA (pre-miRNA) processing, post-transcriptional modifications, and/or editing by 

various post-transcriptional enzymes including exoribonucleases and nucleotidyl transferases 

(15-19). IsomiRs are beginning to be considered as more selective than just miRNA expression 

levels and must become well-characterized (20). True internal modifications (not technical 

artifacts) are generally the result of adenosine deaminase (ADAR) acting on RNA to cause an A 

to I modification (21) as noted in a variety of RNA species. 

In response to these advancements, we now report major improvements in the 2.0 version of 

miRge.  These include a highly-specific novel miRNA detector based on a machine learning 

algorithm and the ability to identify ADAR activity.  Smaller revisions have been made to the 

algorithm to improve miRNA calling, increase flexibility of reporting and unification of the code 

base to Python for ease of programming and allowing for the implementation of miRge 2.0 into 

the bcbio-nextgen framework.  We report the improvements and comparisons to other tools 

below. 

Materials and Methods 

Sequence databases and software dependencies 

miRNA libraries were obtained from both miRBase.org (9) and MirGeneDB (13). mRNA and 

noncoding libraries were obtained from Ensembl (www.ensembl.org) unless otherwise noted. 

Human tRNAs were obtained from the Genomic tRNA Database (22). Human snoRNA was 

obtained from the snoRNABase (www-snorna.biotoul.fr). The redundant sequences in non-

miRNA libraries were removed and the regions in these sequences which were identical to 

mature miRNAs were substituted with Ns. miRge 2.0 was written in Python (2.7.12) and utilizes 
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the following tools and libraries: Bowtie (v1.1.1) (23),  RNAfold (v2.3.5) (24), SAMtools (v1.5) 

(25), cutadapt (v1.11) (26), biopython (v1.68; http://biopython.org), sklearn (v0.18.1; 

http://scikit-learn.org), numPy (v1.11.0; http://www.numpy.org), SciPy (v0.17.0; 

https://www.scipy.org), pandas (v0.21.0; http://pandas.pydata.org), reportlab (v3.3.0; 

http://www.reportlab.com) and forgi (v0.20; https://viennarna.github.io/forgi). A installer 

incorporating all of these tools except Bowtie, SAMtools and RNAfold is included and the entire 

package is available through Bioconda. miRge 2.0 runs on a Linux platform (Ubuntu 16.04.3). 

miRge 2.0 Workflow 

Figure 1 shows the workflow of miRge 2.0. In Figure 1, similar to the original miRge, the input 

FASTQ file(s) undergo prealignment steps of quality control, adaptor removal (cutadapt v1.11) 

and collapse into unique reads and their observed counts with subsequent merging across all 

unique samples (8). This file is then annotated against various search libraries, including mature 

miRNA, miRNA hairpin, mRNA, tRNA, snoRNA, rRNA, other non-coding RNA, and (optional) 

known RNA spike-in sequences (27,28). A full rationale of the method was given previously (8). 

The modifications of the search libraries are described in “Improvements of miRge 2.0” below. 

As an update from the original miRge approach, some alignment strategies were adjusted: 1) 

responding to a concern, only forward strand direction matching was allowed in the Bowtie step 

to search miRNAs with greater accuracy (29); 2) in the isomiR step, the Bowtie search was 

modified slightly from “bowtie -l 15 -5 1 -3 2 -n 2 –f” to  “bowtie -5 1 -3 2 –v 2 –f –norc –best –

S.”). 

We addressed the effect of reads cross-mapping to more than one miRNA. We approach this by 

clustering the reads of the two or more similar miRNAs together (ex. hsa-miR-215-5p/192-5p). 

We made several improvements over the original miRge approach including systematically 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2018. ; https://doi.org/10.1101/250779doi: bioRxiv preprint 

https://doi.org/10.1101/250779
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

analyzing sequence similarity and merging miRNAs together if no mismatch is present in the 

main region of the miRNA. This was hand-curated and experimentally validated by repeated 

Bowtie alignments investigating random placement of reads.  

Two new optional modules added in miRge 2.0 are the identification of ADAR A-to-I editing 

positions in the miRNAs and the search for putative novel miRNAs from unannotated reads 

(described below). Output files contain: 1) a .csv file containing all the annotated sequences; 2) 

two .csv files containing reads counts or reads per million (RPM) per miRNA; 3) an optional .csv 

file containing miRNA entropy and % canonical reads per miRNA; 4) an optional .csv file on the 

entropy of each isomiR across samples; 5) a .pdf report file containing an annotation log of the 

unique sequences identified across the entirety of the sample set analyzed along with per sample 

information on total reads, sequence length histograms, and the composition of the sample with 

respect to miRNA, mRNA, ncRNA, genomic, and unaligned reads; 6) an optional .gff file on the 

miRNAs and isomiRs (including CIGAR annotation) across samples; 7) an optional .csv file 

containing the identified significant A-to-I editing site in miRNAs and their proportion and 

adjusted p value; 8) an optional .pdf file showing a heat map of the A-to-I editing sites across 

samples; 9) an optional .csv report file of each sample containing the identified novel miRNAs; 

10) Multiple .pdf files containing the structure of precursor miRNAs, the location, and reads 

alignment of novel miRNAs.  

Datasets to model novel miRNA detection 

Sequencing datasets from 17 tissues in human and mouse (adrenal, bladder, blood, brain 

prefrontal cortex, colon, epididymis, heart, kidney, liver, lung, pancreas, placenta, retina, skeletal 

muscle, skin, testes and thyroid) were retrieved from Sequence Read Archive (Table 1). These 

samples were processed through miRge 2.0 to identify the different RNA species for machine 
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learning controls. MirGeneDB miRNAs were used to assemble positive clusters (known 

miRNAs). RNAs in the categories of tRNA, snoRNA, rRNA or mRNA were used to assemble 

negative clusters (known non-miRNAs). Sequences in repeat elements were excluded. The 

details regarding the final selection of RNA species used are listed in “Generation of read 

clusters.” The collected miRNAs were further subselected by removing those that had less than 3 

unique sequences, less than 10 overall reads, and are unable to form putative pre-miRNA 

structures. This yielded 12,048 and 7,795 known miRNAs (positive clusters) and 52,395 and 

7,044 non-miRNAs (negative clusters) for the human and mouse datasets, respectively. To 

balance the positive and negative cluster data, 12,048 non-miRNA elements were randomly 

sampled from the original 52,395 in the human dataset and 7,044 miRNA elements were 

randomly sampled from the original 7,795 in the mouse dataset. 

Construction of the predictive model 

Figure 2A illustrates the process of construction of the predictive model. 1) Annotated reads 

previously from a FASTQ file are classified into positive reads (miRNAs and isomiRs based on 

miRGeneDB) and negative reads (mRNAs and noncoding RNAs); 2) These raw sequence reads 

are mapped to the genome with perfect alignment and a new sequence cluster is generated based 

on their overlapping coordinates. The cluster sequences located at repeat regions are excluded. 3) 

All reads are then realigned to these putative mature miRNAs in an exact match round and single 

mismatch round using Bowtie. The most stable region of each cluster is extracted as a putative 

mature miRNA in the three steps, shown in Figure 2B. First all reads were aligned to the cluster; 

then we calculated the ratio of the read counts of each base along the cluster to the total read 

number for the cluster and finally set the start and end position of the putative miRNA as the first 

and last base with a ratio >0.8 of base position reads to total reads of the cluster. 4) We used 
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these read structures to determine the optimal candidate pre-miRNA hairpins based on folding 

energy of the surrounding sequence. 5) The compositional features and the structural features of 

the pre-miRNAs were computed for each cluster. 6) A support vector machine (SVM) model, 

described below, was built to calculate the probability that a given candidate was a miRNA. 7) 

The probability of each putative mature miRNA is compared to the known positive or negative 

miRNA status of the read cluster to develop test statistics. 

Generation of read clusters for annotated reads in model construction  

After building the model with positive (known miRNAs) and negative (known non-miRNA) 

reads, we tested the model with reads that failed to map using our standard miRge alignments to 

known RNA libraries. From here, these unmapped reads were mapped to the human genome 

using Bowtie with 0 mismatches, seed length of 25 bp and alignment to 3 or fewer loci and then 

assembled based on coordinates. To form a cluster, two or more overlapping reads must have the 

same strand directionality with a minimum overlapped length of 14 bp. We removed assembled 

cluster sequences with length > 30 bp, a 6+ bp poly-A at the 3’ end, a 6+ bp poly-T at the 5’ end, 

or if they were located in a repetitive element region. All the reads were mapped to the 

assembled sequences with 0 mismatches, seed length of 25, and forward direction. The reads that 

did not align in this first step were mapped to the clusters in a less stringent manner, in which the 

first nucleotide and the last 3 nucleotides were ignored, up to 1 misaligned base pairs were 

allowed, seed length of 15 bp and forward strand direction was selected. 

Calculating compositional features of read clusters 

miRNAs have a characteristic processing pattern to generate 5’ isomiRs and 3’ isomiRs. The 5’ 

end tends to stably begin at the same nucleotide, the 3’ end tends to be variable and nucleotide 
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additions of uracils (U/T) or adenines (A) are frequently seen here. Non-miRNAs tend to not 

share these features, so this difference can be exploited. In order to codify these patterns, several 

features of read clusters were defined as follows: 1) the 5’ and 3’ unstable length of the cluster; 2) 

genome nucleotide proportion at the positions -3, -2, -1 of 5’ and +1, +2, +3, +4, +5, +6 of 3’ in 

the stable range of the cluster sequences; 3) A, T, C, and G percentages at the positions -3, -2, -1 

of 5’ and +1, +2, +3, +4, +5, +6 of 3’ in the stable range of the cluster sequences. In addition, 

sequence type count, total read count and the proportion of reads that are an exact match to the 

cluster sequences were calculated as well. 

Generating precursor candidates for structural features 

From the clustering process described above, genomic positions of the clusters (of known 

miRNAs known non-miRNAs, and unmapped reads) were obtained. The precursor (hairpin) 

candidate structures were generated as follows: 

1) If a mapped cluster had no adjacent clusters, we determined a most-likely precursor (hairpin) 

structure.  To do this, we generated two potential hairpin structures.  We either added 20 nt 

upstream and 70 nt downstream or 70 nt upstream and 20 nt downstream of genomic sequence. 

Then, the secondary structure of the precursor was predicted by RNAfold. Any sequence without 

a hairpin secondary structure was removed at this step. After prediction, 5 nt was removed from 

the 20 nt side, and a matching length of sequence was removed from the 70 nt side, such that the 

hairpin had no overhang. We determined a 15 nt extended length is optimal for determining 

minimum free energy. 

2) Precursor miRNA hairpin structures are discarded, if: a) a read cluster overlaps with the loop 

by more than 5 bp in the 5p-arm (no overlap is allowed on 3p-arm); b) the pruned pre-miRNA 
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has no hairpin; c) the hairpin has less than 15 bindings in the total precursor structure; d) < 60% 

of nucleotides in the putative mature miRNA cluster are paired. If both precursor options remain, 

we chose the precursor with the lowest minimum free energy.  

3) For those sequence clusters that had additional nearby clusters (within 44 bp), which could 

represent 5p and 3p arms, we approached these slightly differently. For these sequences, we 

assigned the neighbor state of each cluster sequence. To do this, we assigned the distance from 

the adjoining upstream sequence “seq1” to the target sequence “seq2” as D1.  If there were three 

nearby sequence clusters, then we determined the distance from the adjoining downstream 

sequence “seq3” to the target sequence “seq2” as D2. If 9 <= D1 <= 44 and the direction of “seq1” 

is equal to the direction of “seq2” or 9 <=D2 <= 44 and the direction of “seq2” is equal to the 

direction of “seq3.” From each plausible scenario, we generated a precursor structure as 

described in 1) above and determined the optimal precursor based on the rules of 2) above.   

Prediction models for novel miRNA detection 

We created a broad variety of features associated with cluster composition and precursor 

structures. All the features evaluated were listed in Supplemental Table 1. The discrimination 

power of each feature was ranked by its Minimum Redundancy Maximum Relevance (mRMR) 

score. We applied forward stepwise feature selection (30), to subselect the most informative 

features.  

To test the model for robustness, the dataset was randomly split into training and test sets at the 

ratio of 4:1 in 10 replicates. The parameters of the estimator were optimized by 10 fold cross-

validated grid-search over a parameter grid. The searching space of C and gamma in radial basis 

function kernel of SVM (31) were {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000}. The SVM 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2018. ; https://doi.org/10.1101/250779doi: bioRxiv preprint 

https://doi.org/10.1101/250779
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

model was implemented by scikit-learn Python package (http://scikit-learn.org). Matthews 

correlation coefficient (MCC) was used to evaluate the performance of the training model. The 

models were additionally tested on 12 rat samples (Supplemental Table 2). 

A-to-I editing analysis 

We utilized the mapped output file to identify all reads corresponding to each miRNA for A-to-I 

editing, as noted as an A to G change. First, the reads were aligned against the genome with the 

last two nucleotides at the 3’ end trimmed and allowance of up to one mismatch. Here, we 

demanded unique best hits (i.e. a read that can’t be aligned to other locations in the genome with 

the same number of mismatches). Then, for the retained reads that belong to one miRNA and its 

isomiR, all nucleotide positions in the canonical miRNA, except the terminal 5 bp were screened 

for A to G changes based on a binomial test considering the expected sequencing error rate 

(0.1%), as described (32). A Benjamini-Hochberg-corrected P-value (33) was calculated for each 

site on the miRNA. The A-to-I editing level was defined as the proportion of the mapped reads 

containing the edited nucleotide relative to the total mapped reads at the given location. Finally, 

we excluded the putative A-to-I signals if: 1) the locations where similar miRNA families or 

miRNA SNPs that have A/G differences could be mistaken for A-to-I changes (i.e. nucleotide 

position 19 in let-7a-5p and let-7c-5p which differ only by an A/G variation and miR- 548al 

which has a SNP (A-to-G) at position 8 with the frequency of 0.18); 2) the 455 miRNAs found in 

repeat elements which could give false positives (i.e. miR-6503-3p is located in a MTL1D long 

terminal repeat.); 3) the miRNAs where the RPM of the canonical sequence is less than 1; 4) the 

miRNAs where the corresponding one nucleotide switched sequence (A to G) can be aligned to 

more than 1 location in the genome with trimming the last two nucleotides at 3'. 

Comparison to other novel miRNA tools 
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Currently, miRDeep2 (34) and miRAnalyzer (35) are two prevailing tools for the prediction of 

novel miRNAs. In our annotation comparison study, default parameters were utilized except that 

the ‘-l’ was set to be 17 in the mapper.pl for miRDeep2 and default parameters were utilized in 

miRAnalyzer. In our prediction comparison study, new FASTQ files were generated from the 

unmapped read data of an original miRge run. Default parameters were utilized when running 

miRDeep2 and miRAnalyzer. Two metrics of novel miRNAs were used to compare three tools: 

PhyloP score and quality score. Basewise conservation scores across miRNAs were calculated 

from PhyloP data downloaded from 

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/phyloP20way/ (36) using the PHAST package 

(37). For each miRNA, the mean of PhyloP values across its length was calculated. The quality 

scores for each miRNA by each tool was defined by: 1 - (ranking percentile by the tool). 

Hardware 

All processing was performed on a workstation with 56 CPUs (dual Intel(R) Xeon(R) E5-2690 

v4 at 2.60GHz) and 256GB DDR4-RAM. Novel miRNA modelling was performed using 32 

CPUs.  For speed testing, the number of CPUs in running original miRge, miRge 2.0, miRDeep2 

and miRAnalyzer were 5, 5, 1 and 1, respectively. Due to a java incompatibility on the 

workstation, miRAnalyzer was run on a desktop with 4 CPUs (Intel(R) Core(TM) i7-6700 CPU 

at 3.40GHz) and 16GB DDR4-RAM. 

Results: 

Improvements of miRge 2.0 

The major improvements of miRge 2.0 consist of a novel miRNA detection method, improved 

alignment parameters, and the reporting of A-to-I changes in the sequence. These are described 
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below, while smaller improvements are reported here. By changing the search parameters, 

miRge 2.0 is able to annotate reads more precisely. In human data, using the miRBase library, 

we search for 2,741 miRNAs of which 134 are merged due to a similarity of their sequences.  

miRge 2.0 provides an optional GFF file report, which includes isomiR CIGAR values. These 

can be used for isomiR-driven analyses. Additionally, the GFF data file is easily incorporated 

into other analysis pathway software including the bcbio-nextgen framework.  miRge 2.0 also 

generates a .csv and .pdf file report of summary statistics; replacing a html report which was 

more difficult to process for tabular information. We also made several revisions to the search 

libraries. For the miRBase-based alignment search, we included additional SNP information in 

the miRNA library based on the updated miRNASNP database (38).  We have also included 153 

5p or 3p miRNAs that are the complement of known miRBase miRNAs for which the passenger 

strand was detected recently (11). Thus we have expanded our miRBase search library from 

2,588 miRNAs in our original method to 2,741 miRNAs currently. We have also built a 

MirGeneDB-based alignment library that is corrected for SNP information for those 

investigators seeking this more specific set of miRNAs.  For any alignment, we have added an 

optional spike-in RNA library search based on two popular sources of spike-in normalization 

(27,28). This search can easily be expanded to capture newer spike-in normalization methods as 

they appear. All options to call in miRge 2.0 are shown in Supplemental Table 3. 

Speed and annotation comparison of original miRge and miRge 2.0 

We performed tests of speed and annotation function of miRge 2.0 using six datasets. Both 

miRBase and MirGeneDB based libraries were analyzed although novel miRNA detection and 

A-to-I analysis were not performed. We found miRge 2.0 required 10%-20% more processing 

time than the original miRge (totaling approximately 1-2 minutes more time) due to increased 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2018. ; https://doi.org/10.1101/250779doi: bioRxiv preprint 

https://doi.org/10.1101/250779
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

and larger bowtie searching libraries and adjusted searching parameters (Table 2). The number of 

detected miRNAs was slightly decreased as well. The alignment speed was essentially the same 

as miRAnalyzer and significantly faster than miRDeep2. The discovery of novel miRNAs is 

more time and memory intensive, as expected. For the dataset SRR553572 with 25.7 million 

reads, to identify novel miRNAs, the calculation time and maximum memory consumption were 

1.2 h and 6.7 GB RAM respectively. 

A-to-I editing analysis 

To evaluate the accuracy of A-to-I editing analysis, we performed A-to-I analysis using a pooled 

human brain sample (SRR095854) and compared the results to prior published data on this 

sample (32). We identified 19 significant A-to-I modification sites compared to 16 reported in 

the reference paper. Comparing the two sets of results, the adjusted R2 of A-to-I proportion of 

these shared 16 sites was 0.96 and the slope of the linear regression was 0.99 indicating high 

reproducibility between our method and the established method (Figure 3A). We then performed 

a new A-to-I editing analysis across colon tissue (Sequence Read Archive samples: SRR837842 

and SRR837839), colon epithelial cells (SRR5127219), colon cancer (SRR1646473 and 

SRR1646493), and the colon cancer cell lines DKO1 (SRR1917324), DLD1 (SRR1917336) and 

DKS8 (SRR1917329). Significant miRNA editing sites with A-to-I percentage ≥ 1% in at least 

one sample were shown in Figure 3B, with the data indicating differences between tumor and 

normal cells in ADAR activity (39). 

Validation of the predictive model 

To determine the optimal number of features to use in the human and mouse predictive model, 

the MCC for the training and test sets for the top 40 ranked features based on mRMR scores are 
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shown in Figure 4. For human data, when the number of features reached 21, the mean value of 

MCC of training and test set approached the maximum and became stable. These top features are 

listed in Table 3. Among them, there are 11 precursor miRNA structural features and 10 

compositional features. The ultimate model was constructed using these selected features. We 

used 32 human cell data sets to validate the model as an external test set. The positive and 

negative miRNAs were generated through the same process described above. The predictive 

result is shown in Table 4. The mean of MCC is 0.94, indicating that the performance of the 

model in the external test set is good. 

Meanwhile, in the mouse predictive model, the optimal number of features are 12 which is 

shown in Supplemental Table 4. These 12 features are a subset of the 21 human features used. 

The performance of mouse model towards 19 mouse cell datasets are shown in Supplemental 

Table 5 where the mean of MCC is 0.93, indicating that the mouse model performed well on the 

external dataset. 

Comparison with other novel miRNA detection tools 

Using miRge 2.0, we identified 302 RNA species that are putative novel miRNAs from 32 cell 

types (11). Referring to these sequences as novel miRNAs, without further validation, may be 

incorrect terminology. However, without other terminology for these small “true miRNAs” or 

“miRNA-like RNA species,” we will refer to them as putative novel miRNAs.  We then used the 

same unmapped reads generated from miRge 2.0 as input for miRDeep2 and miRAnalyzer. They 

predicted 1,975 and 18,168 putative novel miRNAs respectively. After thresholding the data 

from those two tools to the same parameters as miRge 2.0 (≥10 total reads, ≥3 sequences, etc.), 

there were 312 and 391 putative novel miRNAs remaining. As shown in Figure 5A, a Venn 
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diagram depicts the overlap among miRge 2.0, miRDeep2 and miRAnalyzer, showing 129 novel 

miRNAs shared between the three methods. We then calculated the mean PhyloP scores as a 

measure of nucleotide conservation across primates for the novel miRNAs (Figure 5B).  More 

conservation was noted for the shared novel miRNAs (0.14) compared to miRAnalyzer (0.013) 

and miRDeep2 (-0.036). Conservation was equivocal between the shared novel miRNAs and the 

miRge 2.0 novel miRNAs (0.15) As all three tools give a quality score to each novel prediction, 

we compared these values for miRNAs found shared vs. those unique to each method. As shown 

in Figure 5C, the overlapped miRNAs ranked higher in quality for each method, further 

suggesting these 129 are the optimal putative novel miRNAs from the group. The full list of 

putative novel miRNAs generated by the three tools are available in Supplemental Table 6. 

Comparison between the human model and mouse model 

We used our SVM model to create an optimal novel miRNA tool for both human and mouse. We 

questioned how well those tools could predict novel miRNAs in other species. We utilized both 

the human and mouse models on the 12 rat miRNA samples shown in Supplemental Table 2. 

Using known miRNAs and known non-miRNAs, we found the average MCC for the rat samples 

to be equivalent when using the human model (0.96) than when using the mouse model (0.95).  

Therefore, either model seems useful for finding novel miRNAs in at least other mammals.  

Discussion: 

In light of the positive and negative feedback we received for our original miRge tool, we set 

about to make an improved 2.0 version. miRge 2.0 has a more robust search, better overall 

output reporting, more run options, and new parameters for novel miRNA detection and A-to-I 

editing detection. It can be implemented within the bcbio-nextgen framework to better integrate 
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with other software tools. It still remains one of the fastest options for alignment and can 

multiplex multiple samples in a single run. The new novel miRNA detection tool has reasonable 

requirements for RAM and can be used widely. 

Our data suggests the miRge 2.0 novel miRNA detection tool is more robust than the earlier 

tools miRDeep2 and miRAnalyzer. We believe that our unique use of compositional features 

improved miRNA discovery. The strategy of removing clusters if there were > 3 unique 

sequences, > 10 overall reads, and/or lacked a pre-miRNAs structure also reduced the false 

positive rate. We caution though, that these are putative novel miRNAs and should not be 

thought of as bona fide miRNAs unless they meet additional parameters (13).  We are also 

wondering if a novel detection tool built for one mammalian species could be used to detect 

putative novel miRNAs in other species. Our human and mouse models assayed with the rat data 

indicates, that, indeed, at least among mammalia, our tool is robust. 

We have also tried to make miRge 2.0 more robust to current concerns of the community. Many 

authors have argued that miRBase—the online repository for miRNAs —is riddled with false 

positive miRNAs (40-42). Therefore, we have built a MirGeneDB-based alignment library, 

incorporating SNPs, for 6 species to cater to those investigators seeking a better-defined set of 

miRNAs. We have reported concerns with using reads per million miRNA reads (RPM) as a 

normalization tool (43). Therefore, we have added an optional spike-in RNA library search step 

for spike-in normalization. Spike-in for miRNA RNA-seq is still in its infancy, so this step can 

easily be expanded/modified to account for newer spike-in normalization methods. Currently, the 

sequence libraries of human, mouse, rat, nematode, fruitfly and zebrafish datasets are provided, 

but miRge 2.0 can be used by individual users to investigate any species by constructing the 
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sequence libraries to incorporate in the miRge 2.0 workflow using our miRge_bowtie_build.py 

tool. 

In our original miRge tool, we accepted that reads could randomly align to highly similar 

miRNAs, e.g. miR-192-5p and miR-215-5p; thus we reported those together as miR-215-5p/192-

5p reads. The cross-mapping of sequencing reads can create false alignments that may be 

interpreted as sequence or expression alterations which can occur in other alignment tools, as 

other tools have generally not hand-curated their alignment libraries. Our improvements in 

miRge 2.0 optimize the number of miRNAs that are clustered together to reduce these random 

alignment challenges.  

With the interest in ADAR activity and A-to-I changes in RNAs, we have added a feature to 

miRge 2.0 to capture this information. miRge 2.0 performs robustly in identifying these ADAR 

sites, comparable to other stand-alone programs.  

In summary, miRge 2.0 is an update of our original miRNA alignment tool that more 

comprehensively and more robustly analyzes miRNA sequencing data. We believe the 

improvements in miRge 2.0 will be useful to a wide range of scientists who are interested in 

interpreting small RNA-seq data for miRNA expression patterns. 
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Figure Legends 

Figure 1. Workflow of miRge 2.0. It illustrates the flow chart from input to output. The models 

of A-to-I editing sites for known miRNAs and novel miRNAs detection are newly added 

functions, while the original outputs are shown in dashed box. 

 

Figure 2. The process of construction of the predictive model. A) The building of the predictive 

model composed of data preparation, feature calculation, feature selection and machine learning 

model training. B) Schematic diagram of generating a stable range of clustered sequences in a 

cluster. The sequences in the cluster were aligned against the assembled sequence. The 

probability of the major nucleotide at each position was computed. A threshold of 0.8 was 

selected to determine the stable range of the cluster sequence. 

 

Figure 3.  A-to-I analysis. A) The A-to-I proportion of the sites is strongly correlated with a 

reference dataset analysis with adjusted R2 of 0.96 in the log-log plot. B) The output of miRge 

2.0 showing an illustrated heat map of miRNA A-to-I editing sites across colon tissue, primary 

colon cell, colon cancer tissue and colon cancer cells from multiple sources.  

 

Figure 4. Model performance on top 40 features for training and test sets for human (Figure 4A) 

and mouse (Figure 4B) miRNA discovery. Each dot stands for the mean value of Matthews 

correlation coefficient (MCC).  
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Figure 5. Venn diagram for novel miRNAs predicted by miRge 2.0, miRDeep2, and 

miRAnalyzer. A) Overlapped novel miRNAs among the three tools. B) The average basewise 

conservation scores across novel miRNAs. C) The average Quality score across novel miRNAs 

among the three tools.  
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Tables 

Table 1. Data sets for constructing the predictive model in human and mouse. 

Tissue Type SRA References in human SRA References in mouse 

Adrenal SRR944031, SRR944034 SRR3653309, SRR3653310 

Bladder SRR333658, SRR333674 SRR3652859, SRR3652860 

Blood SRR837475, SRR837477 SRR5241767, SRR5241768 

Brain Prefrontal Cortex SRR1635903, ERR409900 SRR3540303, SRR3540304 

Colon SRR837839, SRR837842 SRR1973865 

Epididymis SRR384894 NA 

Heart SRR553574, ERR038425 SRR5832818, SRR5832819 

Kidney SRR553575, ERR038420 SRR3652244, SRR3652245 

Liver ERR038413, ERR038410 SRR5832837, SRR5832838 

Lung SRR372648, SRR372650 SRR5059366, SRR5059367 

Pancreas ERR852097, ERR852099 SRR1973869 

Placenta SRR567637, SRR567638 NA 

Retina ERR973611, ERR973613 SRR1427160, SRR1427161 

Skeletal Muscle SRR1635908, SRR1820680 SRR3651659, SRR3651660 

Skin SRR2174513, SRR2174517 SRR3402126, SRR3402132 

Testes SRR333680, SRR553576 SRR1647951, SRR1647953 

Thyroid SRR1291267, SRR1291269 NA 
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Table 2. Annotation comparison of the first version of miRge, miRge 2.0, miRDeep2 and 

miRAnalyzer. 

 

Tissue/ 

Cell 

SRA 

References 

Alignment Tool Processing time  miRNA 

Reads 

Unique 

miRNAs 

miRNAs > 

10 RPM 

Human Adipose 

Tissue 
SRR772563 

miRge - mb 35 sec 2,041,433 484 240 

miRge 2.0 - mb 40 sec 2,040,263 474 239 

miRge 2.0 - MDB 38 sec 2,034,723 385 221 

miRDeep2 8.7 min 1,981,793 598 224 

miRAnalyzer 30 sec 1,752,855 689 243 

Human Alpha 

Cell 
SRR1028924 

miRge - mb 14.6 min 44,124,580 920 293 

miRge 2.0 - mb 18.7 min 44,116,448 918 286 

miRge 2.0 - MDB 17.0 min 43,773,596 570 264 

miRDeep2 52.6 min 42,326,135 864 267 

miRAnalyzer 18.4 min 34,349,816 1,124 281 

Human Beta 

Cell 
SRR873410 

miRge - mb 6.5 min 26,196,298 896 297 

miRge 2.0 - mb 7.4 min 26,216,140 887 290 

miRge 2.0 - MDB 6.9 min 26,132,248 567 274 

miRDeep2 32.5 min 23,280,604 754 273 

miRAnalyzer 8.0 min 14,240,669 1,113 289 

Mouse Stomach 

Tissue 
SRR3653378 

miRge - mb 2.0 min 7,063,128 804 457 

miRge 2.0 - mb 2.5 min 7,182,207 810 430 

miRge 2.0 - MDB 2.3 min 7,094,294 571 372 

miRDeep2 17.1 min 6,738,987 748 387 

miRAnalyzer 2.5 min 6,818,220 1,086 423 

Mouse 

Epididymal 

Epithelial Cell 

SRR2075702 

miRge - mb 3.0 min 1,394,193 435 364 

miRge 2.0 - mb 4.1 min 1,409,302 423 311 

miRge 2.0 - MDB 3.7 min 1,390,956 369 289 

miRDeep2 22.8 min 1,367,627 402 212 

miRAnalyzer 3.0 min 925,019 532 270 

Mouse B3 Cell SRR2960463 

miRge - mb 3.7 min 9,515,760 604 322 

miRge 2.0 - mb 4.7 min 9,928,626 616 294 

miRge 2.0 - MDB 4.4 min 9,572,699 357 226 

miRDeep2 30.6 min 8,321,228 487 251 

miRAnalyzer 4.2 min 6,856,264 819 289 
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Key: mb = miRBase v21; MDB = MirGeneDB. Starting read counts: SRR772563 = 2,373,604 

reads; SRR1028924 = 82,497,527 reads; SRR873410 = 33,233,648 reads; SRR3653378 = 

9,587,887 reads; SRR2075702 = 13,890,643 reads; SRR2960463 = 17,652,076 reads.  

 

Table 3. Top 21 features in human predictive model. Hairpin structural features are labeled in 

bold/italics, while read compositional features are not. 

Rank  Feature name Description of the feature 

1 count_bindings_in_miRNA Number of bindings in the stable range of sequences 

2 exactMatchRatio The proportion of reads that are an exact match to the cluster 

sequence in the cluster 

3 pair_state_No Whether there is another stable range of sequences located at 

the other arm of precursor 

4 mFE Minimum free energy (MFE) of the precursor 

5 head_minus3_TemplateNucleotide_percentage Proportion of genomic nucleotide at position -3 relative to the 

5’ end of the stable range of the cluster sequences 

6 hairpin_count Number of hairpin loops in the precursor 

7 stem_length Stem length of the precursor 

8 distanceToloop Distance between the stable range of sequences and the 

terminal loop 

9 percentage_PairedInMiRNA Number of bindings in the stable range of sequences divided by 

its length 

10 headUnstableLength 5’ unstable length of the cluster 

11 pair_state_Yes Whether there is another stable range of sequences located at 

the other arm of precursor 

12 tail_plus2_A_percentage Proportion of adenine (A)  at position +2 relative to the 3’ end 

of the stable range of the cluster sequences 

13 head_minus2_TemplateNucleotide_percentage  Proportion of genomic nucleotide at position -2 relative to the 
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5’ end of the stable range of the cluster sequences 

14 binding_count Number of bindings in the precursor hairpin 

15 tail_plus1_A_percentage Proportion of adenine (A)  at position +1 relative to the 3’ end 

of the stable range of the cluster sequences 

16 armType_loop Whether the stable range of sequences is located at the 

terminal loop if the precursor 

17 tail_plus3_A_percentage Proportion of adenine (A)  at position +3 relative to the 3’ end 

of the  stable range of the cluster sequences 

18 tail_plus5_TemplateNucleotide_percentage Proportion of genomic nucleotide at position +5 relative to the 

3’ end of the stable range of the cluster sequences 

19 tail_plus1_TemplateNucleotide_percentage Proportion of genomic nucleotide at position +1 relative to the 

3’ end of the stable range of the cluster sequences 

20 interiorLoopCount Number of interior loops in the precursor 

21 head_minus1_TemplateNucleotide_percentage Proportion of genomic nucleotide at position -1 relative to the 

5’ end of the stable range of the cluster sequences 

 

 

Table 4. Predictive results of 32 human cell data as external test sets by human model. 

Cell Type SRA References AUC Precision Recall MCC 

Fibroblast Aorta Adventitia SRR5127206 0.995 0.983 0.963 0.945 

Smooth Muscle Cell Aorta SRR5127217 0.994 0.981 0.961 0.938 

Astrocyte SRR5127214 0.994 0.98 0.968 0.949 

Smooth Muscle Cell Bladder SRR5127215 0.992 0.971 0.963 0.936 

Fibroblast Dermal (Adult) SRR5127205 0.995 0.983 0.974 0.95 

Fibroblast Dermal (Neonatal) SRR5127225 0.995 0.989 0.96 0.942 

Epithelium Keratinocyte (Adult) SRR5127203 0.994 0.977 0.962 0.934 
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Epithelium Keratinocyte (Neonatal) SRR5127208 0.993 0.975 0.942 0.923 

Endothelial Aortic SRR5139121 0.988 0.975 0.932 0.915 

Endothelial Umbilical vein SRR5127213 0.993 0.981 0.954 0.926 

Epithelium Bronchial SRR5127216 0.988 0.974 0.951 0.935 

Chondrocyte SRR5127229 0.995 0.985 0.959 0.944 

Endothelial Microvascular SRR5127201 0.991 0.973 0.957 0.945 

Fibroblast Cardiac  SRR5127236 0.992 0.983 0.945 0.94 

Melanocyte SRR5127207 0.995 0.99 0.981 0.954 

Epithelium Mammary SRR5127224 0.99 0.976 0.941 0.927 

Epithelium Prostate SRR5127212 0.992 0.975 0.961 0.948 

Epithelium Renal Cortex SRR5127204 0.988 0.966 0.948 0.927 

Epithelium Renal Proximal SRR5127230 0.992 0.978 0.949 0.936 

Stromal cell Prostate SRR5127226 0.991 0.976 0.963 0.94 

Myoblast Skeletal Muscle SRR5127218 0.99 0.974 0.956 0.932 

Epithelium Intestinal SRR5127223 0.994 0.985 0.973 0.957 

Myofibroblast SRR5127220 0.991 0.987 0.965 0.95 

Smooth Muscle Cell Prostate SRR5127222 0.991 0.978 0.961 0.943 

Neuron Dopaminergic SRR5127234 0.982 0.963 0.922 0.916 

Neuron Cortical SRR5127209 0.986 0.968 0.917 0.917 

Mesangial SRR5127221 0.996 0.986 0.971 0.948 

Osteoblast SRR5127233 0.997 0.986 0.955 0.946 

Fibroblast Periodontal ligament SRR5127227 0.994 0.986 0.962 0.946 

Epithelium Renal SRR5127235 0.992 0.989 0.954 0.936 

Epithelium Retinal Pigment SRR5127210 0.994 0.988 0.974 0.959 

Skeletal Muscle Cell SRR5127202 0.995 0.984 0.96 0.936 

Mean  0.992 0.98 0.956 0.939 

Std dev  0.003 0.007 0.014 0.012 
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